1. Field of the Invention
The invention generally related to location-base services and, more specifically, to methods and systems of determining locations of Wi-Fi access points and using such information to locate a Wi-Fi-enabled device.
2. Discussion of Related Art
In recent years the number of mobile computing devices has increased dramatically creating the need for more advanced mobile and wireless services. Mobile email, walkie-talkie services, multi-player gaming and call following are examples of how new applications are emerging on mobile devices. In addition, users are beginning to demand/seek applications that not only utilize their current location but also share that location information with others. Parents wish to keep track of their children, supervisors need to track the location of the company's delivery vehicles, and a business traveler looks to find the nearest pharmacy to pick up a prescription. All of these examples require the individual to know their own current location or that of someone else. To date, we all rely on asking for directions, calling someone to ask their whereabouts or having workers check-in from time to time with their position.
Location-based services are an emerging area of mobile applications that leverages the ability of new devices to calculate their current geographic position and report that to a user or to a service. Some examples of these services include local weather, traffic updates, driving directions, child trackers, buddy finders and urban concierge services. These new location sensitive devices rely on a variety of technologies that all use the same general concept. Using radio signals coming from known reference points, these devices can mathematically calculate the user's position relative to these reference points. Each of these approaches has its strengths and weaknesses based on the radio technology and the positioning algorithms they employ.
The Global Positioning System (GPS) operated by the US Government leverages dozens of orbiting satellites as reference points. These satellites broadcast radio signals that are picked up by GPS receivers. The receivers measure the time it took for that signal to reach to the receiver. After receiving signals from three or more GPS satellites the receiver can triangulate its position on the globe. For the system to work effectively, the radio signals must reach the received with little or no interference. Weather, buildings or structures and foliage can cause interference because the receivers require a clear line-of-sight to three or more satellites. Interference can also be caused by a phenomenon known as multi-path. The radio signals from the satellites bounce off physical structures causing multiple signals from the same satellite to reach a receiver at different times. Since the receiver's calculation is based on the time the signal took to reach the receiver, multi-path signals confuse the receiver and cause substantial errors.
Cell tower triangulation is another method used by wireless and cellular carriers to determine a user or device's location. The wireless network and the handheld device communicate with each other to share signal information that the network can use to calculate the location of the device. This approach was originally seen as a superior model to GPS since these signals do not require direct line of site and can penetrate buildings better. Unfortunately these approaches have proven to be suboptimal due to the heterogeneous nature of the cellular tower hardware along with the issues of multi-path signals and the lack of uniformity in the positioning of cellular towers.
Assisted GPS is a newer model that combines both GPS and cellular tower techniques to produce a more accurate and reliable location calculation for mobile users. In this model, the wireless network attempts to help GPS improve its signal reception by transmitting information about the clock offsets of the GPS satellites and the general location of the user based on the location of the connected cell tower. These techniques can help GPS receivers deal with weaker signals that one experiences indoors and helps the receiver obtain a ‘fix’ on the closest satellites quicker providing a faster “first reading”. These systems have been plagued by slow response times and poor accuracy—greater than 100 meters in downtown areas.
There have been some more recent alternative models developed to try and address the known issues with GPS, A-GPS and cell tower positioning. One of them, known as TV-GPS, utilizes signals from television broadcast towers. (See, e.g., Muthukrishnan, Maria Lijding, Paul Having a, Towards Smart Surroundings: Enabling Techniques and Technologies for Localization, Lecture Notes in Computer Science, Volume 3479, Jan 2Hazas, M., Scott, J., Krumm, J.: Location-Aware Computing Comes of Age. IEEE Computer, 37(2):95-97, February 2004 005, Pa005, Pages 350-362.) The concept relies on the fact that most metropolitan areas have 3 or more TV broadcast towers. A proprietary hardware chip receives TV signals from these various towers and uses the known positions of these towers as reference points. The challenges facing this model are the cost of the new hardware receiver and the limitations of using such a small set of reference points. For example, if a user is outside the perimeter of towers, the system has a difficult time providing reasonable accuracy. The classic example is a user along the shoreline. Since there are no TV towers out in the ocean, there is no way to provide reference symmetry among the reference points resulting in a calculated positioning well inland of the user.
Microsoft Corporation and Intel Corporation (via a research group known as PlaceLab) have deployed a Wi-Fi Location system using the access point locations acquired from amateur scanners (known as “wardrivers”) who submit their Wi-Fi scan data to public community web sites. (See, e.g., LaMarca, A., et. al., Place Lab: Device Positioning Using Radio Beacons in the Wild.) Examples include WiGLE, Wi-FiMaps.com, Netstumbler.com and NodeDB. Both Microsoft and Intel have developed their own client software that utilizes this public wardriving data as reference locations. Because individuals voluntarily supply the data the systems suffer a number of performance and reliability problems. First, the data across the databases are not contemporaneous; some of the data is new while other portions are 3-4 years old. The age of the access point location is important since over time access points can be moved or taken offline. Second, the data is acquired using a variety of hardware and software configurations. Every 802.11 radio and antenna has different signal reception characteristics affecting the representation of the strength of the signal. Each scanning software implementation scans for Wi-Fi signals in different ways during different time intervals. Third, the user-supplied data suffers from arterial bias. Because the data is self-reported by individuals who are not following designed scanning routes, the data tends to aggregate around heavily traffic areas. Arterial bias causes a resulting location pull towards main arteries regardless of where the user is currently located causing substantial accuracy errors. Fourth, these databases include the calculated position of scanned access points rather than the raw scanning data obtained by the 802.11 hardware. Each of these databases calculates the access point location differently and each with a rudimentary weighted average formula. The result is that many access points are indicated as being located far from their actual locations including some access points being incorrectly indicated as if they were located in bodies of water.
There have been a number of commercial offerings of Wi-Fi location systems targeted at indoor positioning. (See, e.g., Kavitha Muthukrishnan, Maria Lijding, Paul Having a, Towards Smart Surroundings: Enabling Techniques and Technologies for Localization, Lecture Notes in Computer Science, Volume 3479, Jan 2Hazas, M., Scott, J., Krumm, J.: Location-Aware Computing Comes of Age. IEEE Computer, 37(2):95-97, February 2004 005, Pa005, Pages 350-362.) These systems are designed to address asset and people tracking within a controlled environment like a corporate campus, a hospital facility or a shipping yard. The classic example is having a system that can monitor the exact location of the crash cart within the hospital so that when there is a cardiac arrest the hospital staff doesn't waste time locating the device. The accuracy requirements for these use cases are very demanding typically calling for 1-3 meter accuracy. These systems use a variety of techniques to fine tune their accuracy including conducting detailed site surveys of every square foot of the campus to measure radio signal propagation. They also require a constant network connection so that the access point and the client radio can exchange synchronization information similar to how A-GPS works. While these systems are becoming more reliable for these indoor use cases, they are ineffective in any wide-area deployment. It is impossible to conduct the kind of detailed site survey required across an entire city and there is no way to rely on a constant communication channel with 802.11 access points across an entire metropolitan area to the extent required by these systems. Most importantly outdoor radio propagation is fundamentally different than indoor radio propagation rendering these indoor positioning algorithms almost useless in a wide-area scenario.
There are numerous 802.11 location scanning clients available that record the presence of 802.11 signals along with a GPS location reading. These software applications are operated manually and produce a log file of the readings. Examples of these applications are Netstumber, Kismet and Wi-FiFoFum. Some hobbyists use these applications to mark the locations of 802.11 access point signals they detect and share them with each other. The management of this data and the sharing of the information is all done manually. These application do not perform any calculation as to the physical location of the access point, they merely mark the location from which the access point was detected.
Performance and reliability of the underlying positioning system are the key drivers to the successful deployment of any location based service. Performance refers to the accuracy levels that the system achieves for that given use case. Reliability refers to the percentage of time that the desired performance levels are achieved.
The invention provides a location beacon database and server, method of building location beacon database, and location based service using same.
Under another aspect of the invention, a Wi-Fi location server includes a database of Wi-Fi access points for at least one target area having a radius on the order of tens of miles, said database being recorded in a computer-readable medium and including database records for substantially all Wi-Fi access points in the target area, each record including identification information for a corresponding Wi-Fi access point and calculated position information for the corresponding Wi-Fi access point, wherein said calculated position information is obtained from recording multiple readings of the Wi-Fi access point to provide reference symmetry when calculating the position of the Wi-Fi access point and to avoid arterial bias in the calculated position information. The server also includes computer-implemented logic to add records to the database for newly-discovered Wi-Fi access points said computer logic including logic to recalculate position information for Wi-Fi access points previously stored in the database to utilize the position information for the newly-discovered Wi-Fi access points.
Under another aspect of the invention, the server includes computer-implemented clustering logic to identify position information based on error prone GPS information.
Under another aspect of the invention, the clustering logic includes logic to determine a weighted centroid position for all position information reported for an access point and logic to identify position information that exceeds a statistically-based deviation threshold amount away from the centroid position and excludes such deviating position information from the database and from influencing the calculated positions of the Wi-Fi access points.
In the drawings,
Preferred embodiments of the present invention provide a system and a methodology for gathering reference location data to enable a commercial positioning system using public and private 802.11 access points. Preferably, the data is gathered in a programmatic way to fully explore and cover the streets of a target region. The programmatic approach identifies as many Wi-Fi access points as possible. By gathering location information about more access points, preferred embodiments not only provide a larger collection of location information about access points, but the location information for each access point may be calculated with more precision. Subsequently this larger set of more precise data may be used by location services to more precisely locate a user device utilizing preferred embodiments of the invention. Certain embodiments use techniques to avoid erroneous data in determining the Wi-Fi positions and use newly-discovered position information to improve the quality of previously gathered and determined position information. Certain embodiments use location-determination algorithms based on the context of the user device at the time the user requests a location. For example, the location-determination algorithm will be based on the number of Wi-Fi access points identified or detected when a location request is made, or based on the application making the request.
The positioning software is described in greater detail with reference to
The scanner passes this array of access points to the Locator [906] which checks the MAC addresses of each observed access point against the Access Point Reference Database [905]. This database can either be located on the device or remotely over a network connection. The Access Point Reference Database returns the location data for each of the observed access points that are known to the system. The Locator passes this collection of location information along with the signal characteristics returned from each access point to the Bad Data Filter [907]. This filter applies a number of comparison tests against each access point to determine if any of the access points have moved since they were added to the access point database. After removing bad data records, the Filter sends the remaining access points to the Location Calculation component [908]. Using the reference data from the access point database and the signal strength readings from the Scanner, the Location Calculation component computes the location of the device at that moment. Before that location data is sent back to the Locator, it is processed by the Smoothing engine [909] which averages a past series of location readings to remove any erratic readings from the previous calculation. The adjusted location data is then sent back to the Locator.
The calculated location readings produced by the Locator are communicated to these location-based applications [901] through the Application Interface [910] which includes an application programming interface (API) or via a virtual GPS capability [911]. GPS receivers communicate their location readings using proprietary messages or using the location standard like the one developed by the National Marine Electronics Association (NMEA). Connecting into the device using a standard interface such as a COM port on the machine retrieves the messages. Certain embodiments of the invention include a virtual GPS capability that allows any GPS compatible application to communicate with this new positioning system without have to alter the communication model or messages.
The location calculations are produced using a series of positioning algorithms intended to turn noisy data flows into reliable and steady location readings. The client software compares the list of observed access points along with their calculated signal strengths to weight the location of user to determine precise location of the device user. A variety of techniques are employed including simple signal strength weighted average models, nearest neighbor models combined with triangulation techniques and adaptive smoothing based on device velocity. Different algorithms perform better under different scenarios and tend to be used together in hybrid deployments to product the most accurate final readings. Preferred embodiments of the invention can use a number of positioning algorithms. The decision of which algorithm to use is driven by the number of access points observed and the user case application using it. The filtering models differ from traditional positioning systems since traditional systems rely on known reference points that never move. In the model of preferred embodiments, this assumption of fixed locations of access points is not made; the access points are not owned by the positioning system so they may move or be taken offline. The filtering techniques assume that some access points may no longer be located in the same place and could cause a bad location calculation. So the filtering algorithms attempt to isolate the access points that have moved since their position was recorded. The filters are dynamic and change based on the number of access points observed at that moment. The smoothing algorithms include simple position averaging as well as advanced bayesian logic including Kalman filters. The velocity algorithms calculate device speed by estimating the Doppler effect from the signal strength observations of each access point.
Another approach is develop routing algorithms that include every single street in the target area so as to avoid arterial bias in the resulting collection of data thus producing a more reliable positioning system for the end users.
Once collected (or partially collected), the scanning data is uploaded back to a central access point database (described later in this application) where it is processed. The raw observation points for each access point are used to reverse triangulate the actual physical location of the access points or create a power profile representing the radio propagation of that access point. In order to produce the most accurate calculated location for a particular access points or to create the most accurate power profile, the scanning vehicle must observe the access point from as many different angles as possible. In the random model [
The scanning data collected from this system represents a reliable proxy for the signal propagation pattern for each access point in its specific environment. Every radio device and associated surrounding environment produces a unique signal fingerprint showing how far the signal reaches and how strong the signal is in various locations within the signal fingerprint. This fingerprint data is used in conjunction with the calculated access point location to drive high accuracy for the positioning system. This fingerprint is also known as a “power profile” since the signal strengths at each position is measured as signal power in watts. The positioning system can interpret the fingerprint data to indicate that a particular signal strength of an 802.11 access point radio is associated with a particular distance from that access point. Signal fingerprinting techniques are used in indoor Wi-Fi positioning but have proved difficult to replicate in the wider area outdoor environments because the difficulty associated with collecting the fingerprint data. When the fingerprints or power profiles of multiple access points are overlayed, the positioning system can determine a device location merely by finding the one position where the observed signal strengths match the combined fingerprints. Preferred embodiments of this invention provide a reliable system for obtaining this fingerprint data across a massive coverage area with millions of access points in order to utilize fingerprint-based positioning algorithms.
Positioning systems typically work by having three or more reference points around the device being tracked. These positioning systems use the radio signals from these reference points in various ways to calculate the device's current location. Significant errors occur when there are an insufficient number of reference points or when the reference points lack balance or symmetry around the user. As illustrated in
The Scanning Client 704 of certain embodiments is described in connection with
In the Upload Manager [1003] there is a Hotspot Detector [1017] that monitors the 802.11 scanning results to look for the configured network of public hotspots [1024] (e.g. T-mobile) that the device is authorized to access. Once it detects a valid Hotspot it notifies the user of its presence. The user can select to connect to the hotspot by activating the Create Connection component [1018]. This component associates with the hotspot's access point and creates an 802.11 connection. Then the Hotspot Authentication module [1019] supplies valid authentication information for the device. The hotspot validates the account and then provides network access to the device. The Upload Manager then initiates the Upload Server Authentication process [1020] to connect to the Central Network Server [1025] and provides valid authentication information. Once authenticated, the Upload & Data Verification module [1021] is initiated. This module retrieves the scan data from the Scanning Data store [1011] and uploads the data to the Central Network Server using FTP. The Central Network Server initiates a process to store all the data in the Central Access Point Database. After the upload is complete the upload process moves the scan data from the Scanning Data store [1011] to the Backup Data store [1012] on the device. Once the upload is completed and verified, the New Version module [1022] checks the Central Network Server to determine if there is a new version of the client software available for the device. If there is a new version, the software is downloaded and the New Version Installation [1023] process begins to upgrade the client software. Once the installation process is completed the connection with the Central Network Server is terminated, the connection with the hotspot is terminated and the device returns to normal scanning operation.
Included in the Scanning Client 704 are a set of utilities that help to manage the device and reduce system errors. The Radio Manager [1013] monitors the operation of the GPS Radio and the Wi-Fi Radio to make sure they are functioning properly. If the Radio Manager encounters a problem with one of the radios, it will restart the radio. The User Interface Controller [1014] presents the tools and updates to the user so they can operate the device effectively. The Error Handling and Logging [1015] records all system issues to the device and alerts the user so they can address. The System Restart module [1016] is called when issues cannot be resolved. This module shuts down the device and restarts the hardware, operating system and scanning client to ensure proper operation.
The 1/10 of a second 802.11 scanning interval was chosen since it provides the optimal scanning period for 802.11 under these conditions using off the shelf hardware. 802.11b/g/n operates using 14 channels of the unlicensed spectrum. An individual access point broadcasts its signal beacon over one of those channels at any given time. The scanning device needs to survey each channel in order to observe as many access points as possible. The scanning interval is correlated with the average speed of the scanning vehicle to optimize how the scanning client covers the frequency real estate of a particular region.
With reference to
Once the data has been uploaded to the database, the Parser and Filter process [803] begins. The Parser and Filter process reads all of the upload scanning data and loads it up into the appropriate tables of the database. During this exercise the data is evaluated for quality issues. In some cases the GPS receiver may record erroneous or error records for some period of time, which could negatively affect the final access point location calculation. The parser and filter process identifies these bad records and either corrects them or removes them from the system. The filtering process users clustering techniques to weed out error prone GPS readings. For example, if 90% of the readings are within 200 meters of each other but the remaining 10% of the readings are 5 kilometers away then those outliers are removed by the filter and stored in a corrupted table of the database for further analysis. In particular, the system first calculates the weighted centroid for the access point using all reported data. It then determines the standard deviation based on the distribution of the reported locations. The system uses a definable threshold based on the sigma of this distribution to filter out access points that are in error. Once these error records are marked, the centroid is recalculated with the remaining location records to determine the final centroid using the Reverse Triangulation method described below.
Note that the error records may be the result of an access point that has moved. In this instance, the centroid for the access points will quickly “snap” to the new location based on the preponderance of records. An additional enhancement to the algorithm would include a weighting value based on the age of the records such that new records represent a more significant indication of the present location for a given access point.
Once the parsing process has been completed the central network system initiates the Reverse Triangulation model [804] begins processing the new data. During this process 1) new access points are added to the database and their physical location is calculated and 2) existing access points are repositioned based on any new data recorded by the scanners. The reverse triangulation algorithm factors in the number of records and their associated signal strengths to weight stronger signal readings more than weaker signals with a quasi weighted average model.
During data gathering, a WPS user is equipped with a Wi-Fi receiver device which measures Received Signal Strength (RSS) from all the available Wi-Fi access points, and then extracts location information of corresponding access points. RSS value of access points are shown as follows:
{RSS1, RSS2, . . . RSSn}
If the corresponding recorded GPS location of access point i is denoted by {Lati, Longi}, and the calculated access point location is denoted by {Lati, Longi}, the triangulated position is found by applying the algorithm as follows:
The quad root of power is selected to ease the implementation of the algorithm, since quad root is synonymous to taking two square roots.
The second point is referring to adjusting the dynamic range of coefficients. If the dynamic range of coefficients is a concern, the coefficient of the algorithm can be divided by a constant number, e.g.,
The Parameter C can be any number and it does not impact the results, theoretically. Since, the weighted average is based on the ratio of the coefficients and not the absolute value, theoretically, dividing all the coefficients by a constant value, C, does not impact the results, but it changes the dynamic range of the coefficient values.
This final {Lati, Longi} is then used as the final centroid value for the location of that access point. The latitude and longitude will then be stored in the database including a timestamp to indicate the freshness of the triangulation calculation.
After the Central Network Database has been updated and each access point has been repositioned, the Data Pack Builder [805] creates subsets of the database based on regions of the country or world. The pack builder facilitates distribution of the database for a variety of use cases in which only region certain geographies are of interest. The pack builder is configured with region coordinates representing countries, time zones and metropolitan areas. Utilizing this technique a user can download just the location data for the west coast of the United States. The pack builder segments the data records and then compresses them.
The Fleet Management Module [806] helps operations personnel manage the scanning vehicles and ensure they are adhering the routing procedures. This module processes all the scan data and builds the location track for each vehicle in the system. The operations manager can create maps of the vehicle track using the Map Builder [808] to visually inspect the coverage for a particular region. The GPS tracking data from each device is reviewed with route mapping software to verify completion of coverage and to identify missed areas. This ability to audit and verify uniform coverage ensures that the system is getting the best data possible. The module also calculates the driving time of the vehicle to determine average speed and to subtract any idle time. These outputs are used to monitor efficiency of the overall system and in planning of future coverage.
It will be appreciated that the scope of the present invention is not limited to the above described embodiments, but rather is defined by the appended claims; and that these claims will encompass modifications of and improvements to what has been described.
This application is a continuation of prior U.S. patent application Ser. No. 11/261,898 filed on Oct. 28, 2005, entitled Server For Updating Location Beacon Database, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 60/623,108, filed on Oct. 29, 2004, entitled Wireless Data Scanning Network for Building Location Beacon Database, both of which are herein incorporated by reference in their entirety. This application is related to the following U.S. patent applications: U.S. patent application Ser. No. 11/261,848, filed Oct. 28, 2005, entitled Location Beacon Database;U.S. patent application Ser. No. 11/261,988, now U.S. Pat. No. 7,305,245, filed on Oct. 28, 2005, entitled Location-Based Services That Choose Location Algorithms Based On Number Of Detected Access Points Within Range Of User Device;U.S. patent application Ser. No. 11/261,987, now U.S. Pat. No. 7,403,762, filed Oct. 28, 2005, entitled Method and System for Building a Location Beacon Database;U.S. patent application Ser. No. 11/950,178, filed Dec. 4, 2007, entitled Location-Based Services That Choose Location Algorithms Based On Number Of Detected Access Points Within Range Of User Device; andU.S. patent application Ser. No. 11/950,242, filed Dec. 4, 2007, entitled Location-Based Services That Choose Location Algorithms Based On Number Of Detected Wireless Signal Stations Within Range Of User Device.
Number | Name | Date | Kind |
---|---|---|---|
3881060 | Connell et al. | Apr 1975 | A |
4310726 | Asmuth | Jan 1982 | A |
4415771 | Martinez | Nov 1983 | A |
4757267 | Riskin | Jul 1988 | A |
4924491 | Compton et al. | May 1990 | A |
4991176 | Dahbura et al. | Feb 1991 | A |
5043736 | Darnell et al. | Aug 1991 | A |
5095505 | Finucane et al. | Mar 1992 | A |
5119504 | Durboraw, III | Jun 1992 | A |
5136636 | Wegrzynowicz | Aug 1992 | A |
5161180 | Chavous | Nov 1992 | A |
5235630 | Moody et al. | Aug 1993 | A |
5235633 | Dennison et al. | Aug 1993 | A |
5315636 | Patel | May 1994 | A |
5334974 | Simms et al. | Aug 1994 | A |
5353023 | Mitsugi | Oct 1994 | A |
5379337 | Castillo et al. | Jan 1995 | A |
5389935 | Drouault et al. | Feb 1995 | A |
5414432 | Penny, Jr. et al. | May 1995 | A |
5564121 | Chow et al. | Oct 1996 | A |
5946615 | Holmes et al. | Aug 1999 | A |
6134448 | Shoji et al. | Oct 2000 | A |
6262741 | Davies | Jul 2001 | B1 |
6272405 | Kubota | Aug 2001 | B1 |
6484034 | Tsunehara et al. | Nov 2002 | B1 |
6625647 | Barrick, Jr. et al. | Sep 2003 | B1 |
6664925 | Moore et al. | Dec 2003 | B1 |
6665658 | DaCosta et al. | Dec 2003 | B1 |
6674403 | Gray et al. | Jan 2004 | B2 |
6678611 | Khavakh et al. | Jan 2004 | B2 |
6741188 | Miller et al. | May 2004 | B1 |
6888811 | Eaton et al. | May 2005 | B2 |
6915128 | Oh | Jul 2005 | B1 |
6978023 | Dacosta | Dec 2005 | B2 |
6990351 | Tsunehara et al. | Jan 2006 | B2 |
7042391 | Meunier et al. | May 2006 | B2 |
7116988 | Dietrich et al. | Oct 2006 | B2 |
7120449 | Muhonen et al. | Oct 2006 | B1 |
7123928 | Moeglein et al. | Oct 2006 | B2 |
7130642 | Lin | Oct 2006 | B2 |
7130646 | Wang | Oct 2006 | B2 |
7167715 | Stanforth | Jan 2007 | B2 |
7167716 | Kim | Jan 2007 | B2 |
7197556 | Short et al. | Mar 2007 | B1 |
7206294 | Garahi et al. | Apr 2007 | B2 |
7242950 | Suryanarayana et al. | Jul 2007 | B2 |
7250907 | Krumm et al. | Jul 2007 | B2 |
7257411 | Gwon et al. | Aug 2007 | B2 |
7299058 | Ogino | Nov 2007 | B2 |
7305245 | Alizadeh-Shabdiz et al. | Dec 2007 | B2 |
7317914 | Adya et al. | Jan 2008 | B2 |
7319878 | Sheynblat et al. | Jan 2008 | B2 |
7323991 | Eckert et al. | Jan 2008 | B1 |
7373154 | Sharony et al. | May 2008 | B2 |
7389114 | Ju et al. | Jun 2008 | B2 |
7397424 | Houri | Jul 2008 | B2 |
7403762 | Morgan et al. | Jul 2008 | B2 |
7412246 | Lewis et al. | Aug 2008 | B2 |
7426197 | Schotten et al. | Sep 2008 | B2 |
7433673 | Everson et al. | Oct 2008 | B1 |
7433694 | Morgan et al. | Oct 2008 | B2 |
7433696 | Dietrich et al. | Oct 2008 | B2 |
7440755 | Balachandran et al. | Oct 2008 | B2 |
7471954 | Brachet et al. | Dec 2008 | B2 |
7474897 | Morgan et al. | Jan 2009 | B2 |
7474988 | Kamisuwa et al. | Jan 2009 | B2 |
7493127 | Morgan et al. | Feb 2009 | B2 |
7502620 | Morgan et al. | Mar 2009 | B2 |
7515578 | Alizadeh-Shabdiz et al. | Apr 2009 | B2 |
7519372 | MacDonald et al. | Apr 2009 | B2 |
7551579 | Alizadeh-Shabdiz et al. | Jun 2009 | B2 |
7551929 | Alizadeh-Shabdiz et al. | Jun 2009 | B2 |
7672675 | Pande et al. | Mar 2010 | B2 |
20010053999 | Feinberg | Dec 2001 | A1 |
20020055956 | Krasnoiarov et al. | May 2002 | A1 |
20020173317 | Nykanen et al. | Nov 2002 | A1 |
20030043073 | Gray et al. | Mar 2003 | A1 |
20030125045 | Riley et al. | Jul 2003 | A1 |
20030225893 | Roese et al. | Dec 2003 | A1 |
20040019679 | E et al. | Jan 2004 | A1 |
20040039520 | Khavakh et al. | Feb 2004 | A1 |
20040058640 | Root et al. | Mar 2004 | A1 |
20040081133 | Smavatkul et al. | Apr 2004 | A1 |
20040087317 | Caci | May 2004 | A1 |
20040157624 | Hrastar | Aug 2004 | A1 |
20040162896 | Cen et al. | Aug 2004 | A1 |
20040203847 | Knauerhase et al. | Oct 2004 | A1 |
20040205234 | Barrack et al. | Oct 2004 | A1 |
20040263388 | Krumm et al. | Dec 2004 | A1 |
20050020266 | Backes et al. | Jan 2005 | A1 |
20050021781 | Sunder et al. | Jan 2005 | A1 |
20050037775 | Moeglein et al. | Feb 2005 | A1 |
20050043040 | Contractor | Feb 2005 | A1 |
20050108306 | Martizano Catalasan | May 2005 | A1 |
20050136845 | Masuoka et al. | Jun 2005 | A1 |
20050164710 | Beuck | Jul 2005 | A1 |
20050192024 | Sheynblat | Sep 2005 | A1 |
20050232189 | Loushine | Oct 2005 | A1 |
20050251326 | Reeves | Nov 2005 | A1 |
20060002326 | Vesuna | Jan 2006 | A1 |
20060009235 | Sheynblat et al. | Jan 2006 | A1 |
20060040640 | Thompson et al. | Feb 2006 | A1 |
20060046709 | Krumm et al. | Mar 2006 | A1 |
20060058957 | Hickenlooper et al. | Mar 2006 | A1 |
20060061476 | Patil et al. | Mar 2006 | A1 |
20060078122 | Dacosta | Apr 2006 | A1 |
20060089157 | Casey et al. | Apr 2006 | A1 |
20060089160 | Othmer | Apr 2006 | A1 |
20060095348 | Jones et al. | May 2006 | A1 |
20060095349 | Morgan et al. | May 2006 | A1 |
20060106850 | Morgan et al. | May 2006 | A1 |
20060197704 | Luzzatto et al. | Sep 2006 | A1 |
20060200843 | Morgan et al. | Sep 2006 | A1 |
20060217131 | Alizadeh-Shabdiz et al. | Sep 2006 | A1 |
20060221918 | Wang | Oct 2006 | A1 |
20060240840 | Morgan et al. | Oct 2006 | A1 |
20070004427 | Morgan et al. | Jan 2007 | A1 |
20070004428 | Morgan et al. | Jan 2007 | A1 |
20070077945 | Sheynblat | Apr 2007 | A1 |
20070097511 | Das et al. | May 2007 | A1 |
20070100955 | Bodner | May 2007 | A1 |
20070126635 | Houri | Jun 2007 | A1 |
20070150516 | Morgan et al. | Jun 2007 | A1 |
20070202888 | Brachet et al. | Aug 2007 | A1 |
20070232892 | Hirota | Oct 2007 | A1 |
20070258408 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20070258409 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20070258420 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20070258421 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20070259624 | Alizadeh-Shabdiz et al. | Nov 2007 | A1 |
20080004888 | Davis et al. | Jan 2008 | A1 |
20080008117 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080008118 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080008119 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080008120 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080008121 | Alizadeh-Shabdiz | Jan 2008 | A1 |
20080033646 | Morgan et al. | Feb 2008 | A1 |
20080108371 | Alizadeh-Shabdiz et al. | May 2008 | A1 |
20080132170 | Alizadeh-Shabdiz et al. | Jun 2008 | A1 |
20080133336 | Altman et al. | Jun 2008 | A1 |
20080139217 | Alizadeh-Shabdiz et al. | Jun 2008 | A1 |
20080176583 | Brachet et al. | Jul 2008 | A1 |
20080248741 | Alizadeh-Shabdiz | Oct 2008 | A1 |
20080248808 | Alizadeh-Shabdiz | Oct 2008 | A1 |
20090017841 | Lewis et al. | Jan 2009 | A1 |
20090075672 | Jones et al. | Mar 2009 | A1 |
20090149197 | Morgan et al. | Jun 2009 | A1 |
20090154371 | Alizadeh-Shabdiz et al. | Jun 2009 | A1 |
20090175189 | Alizadeh-Shabdiz et al. | Jul 2009 | A1 |
20090252138 | Alizadeh-Shabdiz et al. | Oct 2009 | A1 |
20090303112 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303113 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303114 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303115 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303119 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303120 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090303121 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090310585 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090312035 | Alizadeh-Shabdiz | Dec 2009 | A1 |
20090312036 | Alizadeh-Shabdiz | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
2056203 | Jul 1992 | CA |
493896 | Aug 1992 | EP |
1359714 | Nov 2003 | EP |
3235562 | Oct 1991 | JP |
04-035345 | Feb 1992 | JP |
03021851 | Mar 2003 | WO |
2004002185 | Dec 2003 | WO |
2005004527 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090075672 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60623108 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11261898 | Oct 2005 | US |
Child | 12190683 | US |