1. Field of the Invention
Embodiments of the present invention relate to processors and microprocessors. More specifically, embodiments of the present invention relate to exception handling.
2. Related Art
At some point during execution of a code sequence (a stream of instructions or micro-instructions) by a processor or microprocessor, an event may be identified. The event can be internal or external to the processor or microprocessor. External events are also referred to as “interrupts” and internal events are also referred to as “traps.”
According to the prior art, a trap is conventionally handled immediately by an exception handler that usually resides as software in main memory. This can be problematic if the event occurs at a time when a system is not prepared to handle it.
Embodiments of the present invention provide methods and systems thereof for handling exceptions.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of these embodiments.
Reference will now be made in detail to the various embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Some portions of the detailed descriptions that follow are presented in terms of procedures, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, bytes, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “translating,” “advancing,” “rolling back,” “identifying,” “executing,” “setting,” “indicating,” “generating,” “clearing,” “establishing,” “running,” or the like, refer to the action and processes (e.g., flowcharts 200 and 500 of
Aspects of the present invention may be practiced on a computer system that includes, in general, a central processing unit (CPU) for processing information and instructions, random access (volatile) memory (RAM) for storing information and instructions, read-only (non-volatile) memory (ROM) for storing static information and instructions, a data storage device such as a magnetic or optical disk and disk drive for storing information and instructions, an optional user output device such as a display device (e.g., a monitor) for displaying information to the computer user, an optional user input device including alphanumeric and function keys (e.g., a keyboard) for communicating information and command selections to the processor, and an optional user input device such as a cursor control device (e.g., a mouse) for communicating user input information and command selections to the processor. The computer system may also include an input/output device for providing a physical communication link between the computer system and a network, using either a wired or a wireless communication interface.
At some point during the execution of a code sequence (a stream of instructions or micro-instructions) by the processor 103, an event (e.g., a trap) may be identified. According to one embodiment of the present invention, when an event is identified, a flag (e.g., bit 92) is set in one of the registers 105. The flag 92 can be set either in hardware or software.
Thus, according to the present embodiment, a new bit (e.g., a “trap bit”) is added to the architecture of one of the control registers such as, but not limited to, one of the registers 105. The trap bit serves as a flag to indicate that an event has been identified during execution of the code sequence. Importantly, the event is not necessarily handled when it is identified. Instead, when the trap bit is set, an exception is raised (generated) at a later point in time. Accordingly, handling of the exception is deferred in time, to a point in time when it is safe to handle the event. The exception can then be handled by the associated handler.
The exception is generated at what is referred to herein as a “safe point.” Generally, a safe point can be described as a point at which the exception can be handled without significantly disrupting other processing activities. In one embodiment, a safe point is identified via an explicit instruction in a code sequence. In another embodiment, there are N flag bits (Fi, where i=1, 2, . . . , N) in the registers 105, and the processor 103 provides N different instructions (Ii, where i=1, 2, . . . , N) for signaling safe points. Each of the flag bits Fi corresponds to one of the instructions Ii. An exception in generated when instruction Ii is issued and the flag bit Fi is set.
In those instances in which a trap bit is not set, then an exception is not generated. Upon handling of an event, the trap bit is cleared in hardware or in software.
In step 210 of
In step 220, in the present embodiment, a bit is set to indicate that the event referred to in step 210 has been identified and awaits handling. In general, according to the various embodiments of the present invention, the presence of an action to be performed (e.g., an event to be handled) is identified and flagged, allowing the action to be deferred until a later point in time. Accordingly, execution of the action (generating and handling of an exception) is deferred.
In step 230, in the present embodiment, a safe point is signaled, and an exception is generated and handled by an exception handler. The safe point can correspond to the end of the code sequence. The safe point can instead correspond to a point in the midst of executing the code sequence, at which the generation and handling of the exception can be legally performed. The safe point can also be correspond to a point in the code sequence that has been designated in advance for generating and handling exceptions, using an explicit instruction as described above.
In step 240, the bit set in step 220 is cleared and normal operation can resume.
As used herein, a “translation” refers to a sequence of native instructions that perform the same function as some set of non-native instructions. A translation can be viewed as having a beginning state and an ending state (the ending state is, in essence, the beginning state of the next translation). The beginning and ending states may be referred to as “commit points.” Generally, a number of non-native instructions are translated between commit points, although there may be instances in which one or more commit points occur without advancing through the non-native instructions.
In one embodiment, the processor 10 provides instructions to commit register and memory changes made since the last commit point, and other instructions to undo—or rollback—these changes. In such an embodiment, the commit and/or rollback operations can naturally establish safe points at which pending events can be executed (handled). Thus, the commit and/or rollback operations can be used to signal safe points in a manner similar to that described above.
One embodiment of a processor 10, which includes the Code Morphing™ software 11 and the host hardware 12 described above, is described further by U.S. Pat. No. 6,031,992, “Combining Hardware and Software to Provide an Improved Microprocessor,” by Robert F. Cmelik et al., dated Feb. 29, 2000, assigned to the assignee of the present invention, and hereby incorporated by reference in its entirety.
Referring now to
According to the present embodiment, the registers 41 and 42 allow for the maintenance of a set of host or working registers (41) for processing the host (native) instructions, and a set of target (or shadow) registers (42) to hold the official state of the target processor for which a target application was created. The target (or shadow) registers 42 are coupled to their working register 41 equivalents through an interface that allows an operation that may be referred to as “commit” to quickly transfer the content of all working registers 41 to target registers 42, and allows an operation that may be referred to as “rollback” to quickly transfer the content of all target registers 42 back to their working register 41 equivalents.
When a translation has been executed by host hardware 12 without error, then the information in the store buffer 50 generated during the execution is moved together past the gate of the store buffer 50 (e.g., it is committed) and subsequently written to translation buffer 14. This marks an architecturally precise point in execution, where the state of these registers is the same with respect to the native and non-native application programs.
The native instruction sequences 421 and 422 are demarcated by a beginning state point and an ending state point that may generally be referred to as commit points.
Referring to
At some point during the execution of the translation by the processor 10, an event may be identified by the Code Morphing™ software 11 (refer to
According to one embodiment of the present invention, when such an event is identified, a flag (e.g., either bit 90 or 91 of
Thus, in one embodiment, a new bit (e.g., a “trap on commit bit”) is added to the architecture of one of the control registers. The trap on commit bit serves as a flag to indicate that an event has been identified. Importantly, the event is not necessarily handled when it is identified. Instead, when the trap on commit bit is set, an exception corresponding to the action is raised at the next safe point (at the upcoming commit point, or at a preceding commit point that is reached by a rollback). Accordingly, handling of the event is deferred in time, to a point in time when it is safe to handle the event.
As mentioned above, the commit and/or rollback operations can naturally establish safe points at which pending events can be executed (handled). Thus, the occurrence of a commit or rollback operation can be used to signal the arrival of a safe point. The exception can then be handled by the associated handler.
In another embodiment, instead of a single trap on commit bit, two new bits are added to the architecture of one of the control registers. In this embodiment, one bit is set to generate an exception when a commit operation occurs, and the other bit is set to generate an exception when a rollback operation occurs. These bits are represented as bits 90 and 91 in
In those instances in which a trap on commit bit is not set, then an exception is not generated. Upon handling of the exception, the trap on commit bit is cleared in hardware or in software.
In step 510 of
In step 520, in the present embodiment, an event is identified during execution of the translation. In other words, identification of this event occurs between architecturally precise points of the translation being executed. The event can only be handled at a safe point such as the beginning or ending point demarcating the translation (e.g., at a commit or architecturally precise point). Examples of such events are changes in cacheability, which may not be able to occur in the midst of instruction execution, and interrupt acceptance or handling.
In step 530, in one embodiment, a bit is set to indicate that the event referred to in step 520 has been identified and is to be handled. In one embodiment, a single bit is instead used to indicate that the action is to be performed at the next safe point that occurs according to a commit or rollback operation. In another embodiment, two bits are used, one bit to indicate that the event is to be handled at the next commit point that occurs according to a commit operation, and the other bit to indicate that the action is to be performed at the next commit point that occurs according to a rollback operation. Although described for one or two bits, the present invention is not so limited. In addition, there may be other mechanisms for identifying that an event has been identified during translation. In general, according to the various embodiments of the present invention, the presence of an event to be handled at an upcoming safe point (e.g., the next commit point, or the preceding commit point that is returned to via rollback) is identified and flagged, allowing the action to be deferred until that safe point is reached. Accordingly, handling of the event is deferred.
In step 540, in the present embodiment, an exception (or trap or interrupt or the like) for the event is generated at the next safe point (e.g., following either a commit or rollback operation). The exception is handled by an exception handler that performs the action. Accordingly, the event is identified at an architecturally imprecise point, and the event is handled is at an architecturally precise point.
In step 550, in the present embodiment, the bit set in step 530 is cleared and normal operation can resume.
Embodiments of the present invention have been described. The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.
This application is a continuation of commonly-owned U.S. patent application Ser. No. 10/406,022 by G. Rozas et al., filed on Apr. 2, 2003, entitled “Methods and Systems Employing a Flag for Deferring Exception Handling to a Commit or Rollback Point,” now U.S. Pat. No. 7,310,723, assigned to the assignee of the present invention, and hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4434459 | Holland et al. | Feb 1984 | A |
4794522 | Simpson | Dec 1988 | A |
5167023 | de Nicolas et al. | Nov 1992 | A |
5361389 | Fitch | Nov 1994 | A |
5494821 | Takahashi et al. | Feb 1996 | A |
5537559 | Kane et al. | Jul 1996 | A |
5596390 | Sawada | Jan 1997 | A |
5625835 | Ebcioglu et al. | Apr 1997 | A |
5636366 | Robinson et al. | Jun 1997 | A |
5649136 | Shen et al. | Jul 1997 | A |
5668969 | Fitch | Sep 1997 | A |
5692169 | Kathail et al. | Nov 1997 | A |
5721927 | Baraz et al. | Feb 1998 | A |
5724590 | Goettelmann et al. | Mar 1998 | A |
5748936 | Karp et al. | May 1998 | A |
5751942 | Christensen et al. | May 1998 | A |
5751982 | Morley | May 1998 | A |
5757942 | Kamatani et al. | May 1998 | A |
5761467 | Ando | Jun 1998 | A |
5784585 | Denman | Jul 1998 | A |
5790625 | Arimilli | Aug 1998 | A |
5790825 | Traut | Aug 1998 | A |
5832202 | Slavenburg et al. | Nov 1998 | A |
5832205 | Kelly et al. | Nov 1998 | A |
5842017 | Hookway et al. | Nov 1998 | A |
5867681 | Worrell et al. | Feb 1999 | A |
5875318 | Langford | Feb 1999 | A |
5915117 | Ross et al. | Jun 1999 | A |
5925123 | Tremblay et al. | Jul 1999 | A |
5948112 | Shimada et al. | Sep 1999 | A |
6011908 | Wing et al. | Jan 2000 | A |
6031992 | Cmelik et al. | Feb 2000 | A |
6032244 | Moudgill | Feb 2000 | A |
6044450 | Tsushima et al. | Mar 2000 | A |
6052708 | Flynn et al. | Apr 2000 | A |
6091897 | Yates et al. | Jul 2000 | A |
6112299 | Ebcioglu et al. | Aug 2000 | A |
6164841 | Mattson, Jr. et al. | Dec 2000 | A |
6199152 | Kelly et al. | Mar 2001 | B1 |
6202143 | Rim | Mar 2001 | B1 |
6230260 | Luick | May 2001 | B1 |
6308318 | Krishnaswamy | Oct 2001 | B2 |
6351844 | Bala | Feb 2002 | B1 |
6356615 | Coon et al. | Mar 2002 | B1 |
6363336 | Banning et al. | Mar 2002 | B1 |
6408325 | Shaylor | Jun 2002 | B1 |
6415379 | Keppel et al. | Jul 2002 | B1 |
6434710 | Sato et al. | Aug 2002 | B1 |
6463582 | Lethin et al. | Oct 2002 | B1 |
6594821 | Banning et al. | Jul 2003 | B1 |
6615300 | Banning et al. | Sep 2003 | B1 |
6658551 | Berenbaum et al. | Dec 2003 | B1 |
6704925 | Bugnion | Mar 2004 | B1 |
6714904 | Torvalds et al. | Mar 2004 | B1 |
6738892 | Coon et al. | May 2004 | B1 |
6845353 | Bedichek et al. | Jan 2005 | B1 |
6871274 | Nunomura | Mar 2005 | B2 |
6990658 | Torvalds et al. | Jan 2006 | B1 |
7089404 | Rozas et al. | Aug 2006 | B1 |
7096460 | Banning et al. | Aug 2006 | B1 |
7107580 | Zemach et al. | Sep 2006 | B2 |
7111096 | Banning et al. | Sep 2006 | B1 |
7240186 | Bell et al. | Jul 2007 | B2 |
7331041 | Torvalds et al. | Feb 2008 | B1 |
7404181 | Banning et al. | Jul 2008 | B1 |
7475230 | Chou et al. | Jan 2009 | B2 |
20020092002 | Babaian et al. | Jul 2002 | A1 |
20040015967 | Morris | Jan 2004 | A1 |
20050060705 | Katti et al. | Mar 2005 | A1 |
20070006189 | Li et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
0908820 | Apr 1999 | EP |
0148605 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 10406022 | Apr 2003 | US |
Child | 12002983 | US |