This application claims priority to Provisional Application No. 60/704,501.
The present invention relates to a power generating system configured to generate electricity from hydro energy in sewer lines. The novel system is sized and shaped to fit within manholes. The system includes a hydro turbine that can be raised and lowered into the water flowing through the sewer. They system also includes a flow control plate that accelerates and directs the water for optimal power generation.
One embodiment of the present invention is directed to a sewer line hydro power generator system includes a flow control plate shaped to be received in a sewer line, wherein the flow control plate includes a flow control channel, a hydro turbine connected to the flow control plate and positioned relative to the flow control channel, and an alternator connected to the hydro turbine. The system may also include an attachment hinge connected to the flow control plate. The flow control plate may be configured to pivot about the attachment hinge in response to the force exerted by water flowing through a sewer line. The system may be set up so that the water force needed to pivot the flow control plate remains constant.
The sewer line hydro power generator system may also include a pivot spring attached to the attachment hinge and the flow control plate.
The alternator of the system may also be attached to the flow control plate. The hydro turbine includes turbine blades. The flow control plate may have a width that is substantially equal to the diameter of a sewer pipe.
Another embodiment of the sewer line hydro power generator system includes a turbine shaft housing with an upper end and a lower end, a hydro turbine connected to the lower end of the turbine shaft housing, an alternator connected to the upper end of the turbine shaft housing, and a flow control plate with an up-steam side and a down-stream side, wherein the hydro turbine is positioned on the down-stream side of the flow control plate. The system may further include a means for collecting data about water flow. The system may further include an actuator configured to raise and lower the hydro turbine. The system may further include a pressure sensor mounted on the flow control plate. The hydro turbine may include turbine blades sized to fit within the diameter of a sewer pipe.
The system may also include a flow control plate with a flow channel and a hydro turbine positioned relative to the flow channel. The flow control plate may also be pivotally attached to an attachment hinge. The system may include a turbine blades/sewer pipe clearance of approximately ΒΌ inch. The turbine blades may also be shaped to match the curvature of the sewer pipe. The turbine shaft housing may also be sized such that at its maximum extension the turbine blades are not in the water during normal sewer flow rates.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which in addition to the above form the subject of the claims of the invention. It should be appreciated that the conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized that such equivalent constructions do not depart from the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures are provided for the purpose of illustration and description only and are not intended to define of the limits of the present invention.
The advantages, features, and details of the invention are explained in greater detail in the following description of the preferred embodiment, with the aid of drawings as listed below. For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
Upon review of the detailed description and the accompanying drawings provided herein, it will be apparent to one of ordinary skill in the art that the sewer power generating system can be used in a number of different applications. Accordingly, the present invention is not limited to the structures specifically described and illustrated herein. The disclosed systems, however, are particularly adapted for generating power from water flow in sewers.
Hydro turbine (13) is attached to a flow control plate (19). Flow control plate (19) restricts water flow through the sewer in order to increase the flow velocity in the vicinity of hydro turbine (13). In the preferred embodiment, flow control plate (19) includes a flow control channel cutout (not shown). The flow channel cutout is a section in flow control plate (19) that helps control water flow. For example, the flow control channel allows water to be directed at the turbine blades (20) of hydro turbine (13). The flow control channel is shaped according to the shape and configuration of turbine blades (20). For example, in the split turbine blade configuration shown in
The flow control plate (19) is attached to the sewer wall by attachment fixture (21) through pivot point (22). As hydro turbine (13) is raised and lowered, flow control plate (19) pivots deeper into and out of the sewer pipe. When actuator (16) is in a retracted position, hydro turbine (13) is in its lowest position and flow control plate (19) is substantially straight down. In a straight down position (23) force from the water is maximized for a given flow. However, for higher flow rates, the force can be reduced and still be high enough force to turn turbine blades (20). Accordingly, hydro turbine (13) can be raised and lowered to keep the hydro force generally constant on the turbine blades (20). As the flow increases, actuator (16) expands and raises hydro turbine (13) and flow control plate (19) to maintain constant water force on flow control plate (19) and/or hydro turbine. Water pressure is monitored with a pressure sensor (24). Alternatively, the hydro turbine (13) can be raised and lowered based on power needs. In no event should hydro turbine be submerged past its axis of rotation. In an alternative embodiment, both the position of the flow control plate and the hydro turbine are independently moved by separate but coordinated actuators.
Actuator (16) is shown vertically, but one skilled in the art understands that is could be attached in any number of ways. The manner shown is designed to allow the system to be easily installed and removed. Nevertheless, other configurations are contemplated. For example, the actuator could be installed horizontally or at an angle. Alternatively, actuator could be connected directly to flow control plate (19) or any number of different locations. The common requirement is that the actuator be able to raise and lower hydro turbine (13).
Pressure sensor (24) is positioned to measure pressure at or near turbine blades (20). In one embodiment, pressure sensor (24) is connected to flow control plate (19). Pressure sensor (24) is shown connected to actuator (16). A control unit (not shown) receives signals from pressure sensor (24) and extends or contracts actuator (16) accordingly. Although the signal line is shown going to actuator (16), pressure sensor (24) can also be configured to send information to external monitoring locations or to save information. In this way, water flow through sewers can be monitored via power generating systems (10) strategically placed in different manholes.
In some applications, the reach of actuator (16) is limited in that it cannot extend turbine blades (20) low enough to reach the water during low flow periods. This prevents hydro turbine (13) from clogging the sewer line in low flow periods. Alternatively, flow control plate (19) and hydro turbine (13) can be configured to extend all the way to the bottom of the sewer pipe. In this configuration, flow control plate (19) and hydro turbine (13) combine to back up flow until enough water pressure is built up to turn turbine blades (20).
Power generating system (10) is shown with actuator (16), mounting rod (18), guide (15) and shaft housing (14). However, in an alternative embodiment, hydro turbine (13) can be mounted directly to flow control plate (19). In this configuration, the water force exerted on turbine blades (20) is controlled by the weight of the hydro generator (13). The water force and weight of the hydro generator (13) are designed to be in equilibrium at a desired water force. In such a configuration, additional weight can be added to flow control plate (19) or a spring can be added at pivot point (21) to aid in establishing equilibrium.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the vehicles and the methods described in the specification. Accordingly, the appended claims are intended to include within their scope such articles and methods.
Number | Name | Date | Kind |
---|---|---|---|
1010609 | Fountain | Dec 1911 | A |
2029633 | Muhleisen | Feb 1936 | A |
2097286 | McGee | Oct 1937 | A |
2276714 | Brown | Mar 1942 | A |
2600309 | MacDonald et al. | Jun 1952 | A |
3188421 | Rowell | Jun 1965 | A |
3199488 | Farr | Aug 1965 | A |
3224270 | Karol et al. | Dec 1965 | A |
3251335 | Dannevik | May 1966 | A |
3372645 | Willi | Mar 1968 | A |
3443753 | McDonnell | May 1969 | A |
3559197 | Jarvis et al. | Jan 1971 | A |
3565099 | Huber | Feb 1971 | A |
3745967 | Smith et al. | Jul 1973 | A |
3803422 | Krickler | Apr 1974 | A |
3857277 | Moore | Dec 1974 | A |
3914994 | Banner | Oct 1975 | A |
3955415 | Sharon | May 1976 | A |
4023041 | Chappell | May 1977 | A |
4057736 | Jeppson | Nov 1977 | A |
4122381 | Sturm | Oct 1978 | A |
4134024 | Wiseman | Jan 1979 | A |
4137005 | Comstock | Jan 1979 | A |
4208873 | Foglia | Jun 1980 | A |
4239976 | Collard | Dec 1980 | A |
4241283 | Storer, Sr. | Dec 1980 | A |
4246753 | Redmond | Jan 1981 | A |
4272686 | Suzuki | Jun 1981 | A |
4274436 | Smith | Jun 1981 | A |
4302683 | Burton | Nov 1981 | A |
4351192 | Toda et al. | Sep 1982 | A |
4352025 | Troyen | Sep 1982 | A |
4383797 | Lee | May 1983 | A |
4435131 | Ruben | Mar 1984 | A |
4443707 | Scieri et al. | Apr 1984 | A |
4467218 | Andruszkiw et al. | Aug 1984 | A |
4484536 | Henocque et al. | Nov 1984 | A |
4488055 | Toyama | Dec 1984 | A |
4496845 | Ensign et al. | Jan 1985 | A |
4499347 | Richards | Feb 1985 | A |
4615303 | Sackett | Oct 1986 | A |
4620448 | Oblander et al. | Nov 1986 | A |
4717831 | Kikuchi | Jan 1988 | A |
4731545 | Lerner et al. | Mar 1988 | A |
4740711 | Sato et al. | Apr 1988 | A |
4777979 | Twerdochlib | Oct 1988 | A |
4918369 | Solorow | Apr 1990 | A |
4923368 | Martin | May 1990 | A |
4963780 | Hochstrasser | Oct 1990 | A |
5007241 | Saitou | Apr 1991 | A |
5008841 | McElroy | Apr 1991 | A |
5043592 | Hochstrasser | Aug 1991 | A |
5099870 | Moore et al. | Mar 1992 | A |
5140254 | Katzman | Aug 1992 | A |
5236011 | Casada et al. | Aug 1993 | A |
5253651 | Stockwell et al. | Oct 1993 | A |
5337956 | Crutcher | Aug 1994 | A |
5427350 | Rinkewich | Jun 1995 | A |
5430332 | Dunn, Jr. | Jul 1995 | A |
5440175 | Mayo et al. | Aug 1995 | A |
5591004 | Aylor | Jan 1997 | A |
5644170 | Bynum et al. | Jul 1997 | A |
5743712 | Aylor | Apr 1998 | A |
5882143 | Williams, Jr. | Mar 1999 | A |
5970801 | Ciobanu et al. | Oct 1999 | A |
6032540 | Hawkins | Mar 2000 | A |
6036333 | Spiller | Mar 2000 | A |
6106705 | Giordano et al. | Aug 2000 | A |
6112764 | Engdahl et al. | Sep 2000 | A |
6114773 | Kouris | Sep 2000 | A |
6114823 | Doner et al. | Sep 2000 | A |
6149801 | Giordano et al. | Nov 2000 | A |
6164324 | Gradle | Dec 2000 | A |
6177735 | Chapman et al. | Jan 2001 | B1 |
6208037 | Mayo et al. | Mar 2001 | B1 |
6212958 | Conley | Apr 2001 | B1 |
6284129 | Giordano et al. | Sep 2001 | B1 |
6309179 | Holden | Oct 2001 | B1 |
6417578 | Chapman et al. | Jul 2002 | B1 |
6509652 | Yumita et al. | Jan 2003 | B2 |
6517707 | Giordano et al. | Feb 2003 | B2 |
6559553 | Yumita et al. | May 2003 | B2 |
6571960 | Williamson et al. | Jun 2003 | B2 |
6606857 | Simonds | Aug 2003 | B1 |
6768218 | Yumita | Jul 2004 | B2 |
6798080 | Baarman et al. | Sep 2004 | B1 |
6858950 | Simon | Feb 2005 | B1 |
6876100 | Yumita | Apr 2005 | B2 |
6885114 | Baarman et al. | Apr 2005 | B2 |
6926821 | Giordano et al. | Aug 2005 | B2 |
6927501 | Baarman et al. | Aug 2005 | B2 |
7067936 | Baarman et al. | Jun 2006 | B2 |
7075190 | Lomerson et al. | Jul 2006 | B1 |
7119451 | Baarman et al. | Oct 2006 | B2 |
7121495 | Caamano | Oct 2006 | B2 |
7190088 | Heidel | Mar 2007 | B2 |
7199483 | Lomerson et al. | Apr 2007 | B2 |
7233078 | Baarman et al. | Jun 2007 | B2 |
7252757 | Warren et al. | Aug 2007 | B2 |
7338267 | Patterson | Mar 2008 | B2 |
20010022085 | Stewart | Sep 2001 | A1 |
20010040121 | Giordano et al. | Nov 2001 | A1 |
20020005379 | Williamson et al. | Jan 2002 | A1 |
20020041100 | Yumita et al. | Apr 2002 | A1 |
20020047374 | Yumita | Apr 2002 | A1 |
20020113442 | Yumita | Aug 2002 | A1 |
20020180216 | McDavid | Dec 2002 | A1 |
20030046931 | Stewart | Mar 2003 | A1 |
20030218338 | O'Sullivan et al. | Nov 2003 | A1 |
20040069696 | Warren et al. | Apr 2004 | A1 |
20070098542 | Streeman et al. | May 2007 | A1 |
20070138021 | Nicholson | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
0106669 | Sep 2002 | BG |
WO-8304425 | Dec 1983 | WO |
WO-9701018 | Jan 1997 | WO |
WO-0210553 | Feb 2002 | WO |
WO-03083290 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070182159 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60704501 | Aug 2005 | US |