SHANGHAI UNIVERSITY OF ENGINEERING SCIENCE

Information

  • Patent Application
  • 20180017375
  • Publication Number
    20180017375
  • Date Filed
    July 19, 2017
    7 years ago
  • Date Published
    January 18, 2018
    7 years ago
Abstract
The present invention relates to a parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section. The method conducts the non-contact high-accuracy measurement based on the machine vision and the image analysis, adopts a GPU multi-core parallel platform for the high-speed measurement, extracts the useful information from the section image of the radial symmetrical cable, and then measures the insulating layer thickness. Compared with the prior art, the present patent can lower the time consumed for the accurate measurement, fill in the blank of the high-accuracy parallel image measurement of the insulating layer thickness of the radial symmetrical cable section in the domestic cable industry, break down the monopoly and technology blockade by related foreign manufacturers and improve the technology level of on-line testing of product quality in China, expedite the production automation progress of domestic manufacturer.
Description
BACKGROUND OF THE INVENTION
Technical Field

The present invention relates to the field of machine vision industrial testing, especially relates to a parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section.


Description of Related Art

The industry of electrical wire and cable is the second largest industry next only to the automobile industry in mechanical manufacturing. It is estimated that as China will enter the later stage of industrialization in the next several years, the rate of development of the electrical wire and cable industry in China will be higher than that of the national economy, estimated to be over 10%, while the average annual increase for the electrical conductor and cable can be up to 15%. As the core of many power infrastructures, the cable determines the security and reliability of the whole power grid. Once the product quality deviation appears in the production line of a cable and fails to be timely adjusted, substantive defective products will be produced, leading to a lot of waste. Once the defective products enter the market, they will cause astronomically more power loss. Therefore the structure measurement of a cable is an essential link in product quality monitoring system, also serves as an important factor to guarantee the enterprises outperformance in the cut-throat market competition. The structural measurement of electric wire and cable has experienced the first-generation caliper, the second-generation micrometer reading microscope measurement and the third-generation digital projector. The traditional measurement methods can only measure limited points and local parts with a lot of missing points, thus making it hard to guarantee accuracy. Besides, the time consuming and laborious manual operations just produce unstable measurement effects that are significantly related to operators.


In recent years, the foreign advanced countries have introduced the high definition (HD) industrial camera, which is based on the industrial vision theory and technology to explore high-accuracy image measurement, with borderline products being put in commercial application gradually. However, the equipment is expensive and cannot be adjusted to the actual conditions of the domestic manufacturers. Market research displays an estimated total demand of more than 1,000 units, and similar foreign equipment is priced at 500,000-800,000 Yuan per unit. From the perspective of social value, an automatic optic inspection (AOI) system can operate continuously for long with a strong adaptability to the tough work environment, thus avoiding the negative influence from continuous high-strength work of the workers, thereby providing a guarantee for humanistic management of the enterprises. From the perspective of national interests, currently the Chinese AOI technology based on the computer vision has just started, with the main application fields of low speed and low precision such as character recognition, inspection of printing quality and product selecting, etc., while there is still dependence on the foreign products in high-precision and high-speed inspection, with costly purchase and maintenance expenses. Some home-made inspection systems based on the computer vision also adopt the core foreign technology. These products' key technologies such as system structure and core algorithm are still in the hands of foreign manufacturers, who often provide us with outdated technologies about to be washed out.


The commercially available cables have a lot of radial symmetrical sections. To eliminate the defects in the traditional measurement methods, the major technology problems encountered in the real-time calculation of the minimum thickness, the average thickness and the maximum thickness of insulating layer comprise:


(1) how to improve the measurement accuracy of the section image


(2) how to improve the computing speed of the complicated image


BRIEF SUMMARY OF THE INVENTION

The purpose of the present invention is to provide a parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section to overcome the above defects of prior art. This method can help the cable quality inspectors to non-contact measure the insulating layer thickness of radial symmetrical cable section in real time during quality inspection, and can analyze and infer the problems existing in the production or processing of the cable by dint of measurement data.


The purpose of the present invention can be achieved by the following technical solution:


A parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section, characterized in that, the method conducts the non-contact high-accuracy measurement based on the machine vision and the image analysis, adopts a GPU multi-core parallel platform for the high-speed measurement, extracts the useful information from the section image of the radial symmetrical cable to measure insulating layer thickness.


Specifically, the method comprises the following steps:


1) reading an image shot, calibrated by an industrial CCD camera;


2) extracting an inner and an outer contour of the radial symmetrical cable section from the image, and calculating a mass center of the cable section;


3) subjecting the pixels in the inner contour to the sub-pixel pinpointing, connecting the mass center and the pixels of the inner contour and prolonging to the outer contour;


4) subjecting the outer contour to the piece-wise curve fitting, and solving a junction of the outer contour and an elongation line;


5) calculating the distance between the junction and the pixels of the inner contour, which will be the insulating layer thickness corresponding to the current pixels of the inner contour;


6) adopting a statistical method to obtain the maximum thickness, the minimum thickness and the average thickness of the insulating layer of this radial symmetrical cable section


Realizing the B-spline curve fitting method based on a GPU multi-core parallel calculation platform, to realize pinpointing of the inner contour pixels and piecewise fitting of the outer contour.


Specifically, realizing B-spline curve fitting method based on the GPU multi-core parallel calculation platform is done by:


{circle around (1)} starting a GPU, allocating space in a display memory and copying data to the display memory;


{circle around (2)} defining the number of the blocks and the threads, spawning the threads, calling a kernel function, adopting the B-spline curve fitting to realize sub-pixels pinpointing of the inner contour points;


{circle around (3)} defining the number of the blocks and the threads, spawning the threads, calling the kernel function, calculating with the mass center, the points on the inner contour and the fitting function, to obtain the corresponding points on the outer contour;


{circle around (4)} the display memory and the GPU transfer the calculated results to a CPU, the resources on the display memory and the GPU are released.


Adopting the statistical method to obtain the maximum thickness, the minimum thickness and the average thickness of the insulating layer of this radial symmetrical cable section, looking for an appropriate value from all candidate thickness values as the final measured value to solve the maximum and the minimum values of the thickness, are not using a simple sorting algorithm. If an inner wall point corresponding to the thickness extrema is an active pixel, then there will exist heaps of similar active pixels around this pixel, making the neighboring thickness value an approximation of the thickness extrema.


The specific steps in solving the minimum thickness are as follows:


(1) sequencing the calculated thickness value of the insulating layer corresponding to each pixel of inner contour in an ascending order.


(2) taking N minimum values and the corresponding 2D co-ordinates, marking them as set Tn;


(3) for the ith minimal value, defining the weight Wi=0; if the point q adjacent to it in the image is in Tn, and the sequencing interval of the thickness does not exceed 10, then Wi++, and letting the adjacent points inactive in Tn;


(4) making the same operation for N minimum values in the ascending order. If Wi is greater than a certain threshold, the current Ti is the minimum value.


The present invention contains the following benefits over the prior art


Firstly, with respect to characteristics of radial symmetrical cable section, this method uses the section image, offers a parallel measurement technology solution suitable for non-contact measurement and cuts the time consumed for the accurate measurement via the GPU multi-core parallel calculation platform.


Secondly, it pinpoints the pixels of the inner contour of cable through an analysis on the section image of the cable, adopts the B-spline curve fitting to piecewise fit the outer contour, thereby laying a foundation for the high-accuracy measurement.


Thirdly, it looks for an appropriate value from all the candidate thickness values measured as the last measurement value, thereby eliminating the influence of inactive pixels on the measurement accuracy.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a technical line map of the present invention;



FIG. 2 is an organizational structure schematic diagram of the threads;



FIG. 3 is a schematic diagram of a cable section.





DETAILED DESCRIPTION OF THE INVENTION

The present invention will now be described in detail in connection with an embodiment of the present invention with reference to the accompanying drawings.


Embodiment

The difference from the existing measurement methods resides in that the present invention conducts the non-contact high-accuracy measurement based on the machine vision and the image analysis, adopts a GPU multi-core parallel platform for the high-speed measurement. It mainly considers how to extract the useful information from the section image of the radial symmetrical cable, and then measures the insulating layer thickness systematically, as shown in FIG. 1. The specific steps of the present invention are as follows:


{circle around (1)} reading an image shot, calibrated by an industrial CCD camera;


{circle around (2)} extracting an inner and an outer contour of a radial symmetrical cable section from the image, and calculating a mass center of the cable section;


{circle around (3)} subjecting the pixels of the inner contour to the sub-pixel pinpointing, connecting the mass center and the pixels of the inner contour and prolonging to the outer contour;


{circle around (4)} subjecting the outer contour to the piece-wise curve fitting and solving a junction of the outer contour and an elongation line;


{circle around (5)} calculating the distance between the junction and the pixels of the inner contour, which will be the insulating layer thickness corresponding to the current pixels of the inner contour;


{circle around (6)} adopting a statistical method to obtain the maximum thickness, the minimum thickness and the average thickness of the insulating layer of this radial symmetrical cable section


The technology solution of the present invention is used by the quality inspectors of cable to obtain the measurement data of the insulating layer thickness via parallel calculation of the section image, specifically including the following:


1. Pinpointing of the pixels of the inner contour and piecewise fitting the outer contour based on a GPU platform


(1) Rationale


In consideration of the calculation capacity and performance of the hardware, a GPU parallel calculation model can be adopted to overcome the problems of too much time consumed and slow speed in the procedure of testing cable thickness, to enable a dramatic reduction of the time consumed in the testing procedure. The GPU (Graphics Processing Unit) is a highly parallel and multi-threading multi-core processor with a powerful computing capacity and a high band width. GPU parallel calculations can improve the performance of image processing dozens of times.


The CUDA is a soft hardware system with a GPU as the data parallel calculation equipment, developed by C language and easy for learning and use. A CPU serves as a host to do strongly logical tasks and serial computing. The GPU serves as a device to do highly threaded parallel processing tasks. Adopting a CPU+GPU isomerical parallel processing can significantly lower the burden to the CPU, decrease the CPU system overhead, raise the whole throughput of the system, improve the computing capacity of the system and economize on the cost and energy resources. A GPU parallel algorithm is adopted in the procedure of testing cable thickness to overcome the problems of too much time consumed and slow speed of calculation. The organizational structure of the threads is as shown in FIG. 2.


(2) Basic Steps


The B-spline curve fitting method can only target one certain pixel on the contour in each calculation, and the one calculated is a sub-pixel edge position of an individual pixel. The sub-pixel positioning of the edge entails calculating whole pixels on the contour one by one, with higher positioning accuracy yet relatively slow speed. Besides, as the image adopts a resolution of 4092*4092, the quantity of pixels on the inner and outer contours becomes very large and the calculation consumes a lot of time. Adopting the GPU parallel calculation model can considerably shorten the time consumed in this procedure. The main steps are as follows:


{circle around (1)} starting the GPU, allocating space in a display memory and copying the data to the display memory;


{circle around (2)} defining the number of the blocks and the threads, spawning the threads, calling a kernel function, adopting a B-spline curve fitting to realize sub-pixels pinpointing of contour points;


{circle around (3)} defining the number of the blocks and the threads, spawning the threads, calling the kernel function, calculating the mass center, the points on the inner contour and the fitting function, to obtain the corresponding points on the outer contour;


{circle around (4)} the display memory and GPU transfer the calculated results to the CPU and the resources on the display memory and GPU are released.


Mean and extrema calculation of insulating layer thickness based on the statistical method


(1) Rationale


Every cable section has an objective true value, and the most ideal measurement is to get this true value. However, the cable section is measured by humans using a CCD camera under certain illumination, which is limited by the sensitivity and the resolution capacity of the camera as well as the environmental instability, etc., hence the true value to be measured is immeasurable. Therefore, due to the natural limitation of accuracy and precision of the CCD camera, there are still residual inactive pixels even if the image is de-noised. The accuracy of the measured value will be influenced if the inactive pixel coincides with the inner wall point corresponding to the thickness extrema.


Thus an appropriate value should be selected from all candidate thickness values as the last measured value to solve the maximum value and the minimum value of the thickness, instead of using a simple sorting algorithm. If the inner wall point corresponding to the thickness extrema is an active pixel, then there will exist heaps of similar active pixels around this pixel, making the neighboring thickness value only an approximation of the thickness extrema.


(2) Basic Steps


Calculate the maximum thickness, the minimum thickness and the average thickness of the insulating layer of the radial symmetrical cable section, i.e. select the appropriate value from all candidate thickness values as the last measured value. The schematic diagram of the radial symmetrical cable is as shown in FIG. 3. The specific steps of solving the minimum value of the insulating layer thickness include the following:


{circle around (1)} sequencing the calculated thickness values of the insulating layer corresponding to each pixel of inner contour in an ascending order.


{circle around (2)} taking N minimum values and corresponding 2D co-ordinates, marking them as set Tn;


{circle around (3)} for the ith minimal value, defining the weight Wi=0; if the point q adjacent to it (point distance smaller than 3) in the image is in Tn, and the sequencing interval of the thickness does not exceed 10, then Wi++, and letting the adjacent points inactive in TN;


{circle around (4)} making the same operation for N minimum values in the ascending order. If Wi is greater than a certain threshold, the current Ti is the minimum value.


The present invention enables real-time calculation of the minimum size, the maximum size and the average size of the insulating layer thickness after obtaining the image of the cable cross section scanned by an HD industrial camera in a full-coverage way. The present patent will fill in the blanks of the high-accuracy parallel image measurement of the insulating layer thickness of the radial symmetrical cable section in the domestic cable industry, break down the monopoly and technology blockade by the concerned foreign manufacturers and improve the technology level of on-line measurement of product quality in China. Furthermore, it can expedite the production automation progress of domestic manufacturers, economize a great deal on labor, financial resources and material resources. The potential application is wide and expandability is satisfactory. In addition, the technology can be further developed to be applied to high-accuracy image measurement of enamel wire structures.

Claims
  • 1. A parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section, characterized in that said method conducts the non-contact high-accuracy measurement based on the machine vision and the image analysis, adopts a GPU multi-core parallel platform for the high-speed measurement, extracts the useful information from an image of said radial symmetrical cable section and then measures said insulating layer thickness.
  • 2. The parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section according to claim 1, characterized in that said method comprises the following steps: 1) Reading an image shot, calibrated by an industrial CCD camera;2) Extracting an inner and an outer contour of said radial symmetrical cable section from said image and calculating a mass center of said cable section;3) Subjecting the pixels of said inner contour to the sub-pixel pinpointing, connecting said mass center and said pixels of said inner contour and prolonging to said outer contour;4) Subjecting said outer contour to the piece-wise curve fitting, and solving a junction of said outer contour and an elongation line;5) Calculating the distance between said junction and pixels of said inner contour, which will be said insulating layer thickness corresponding to the current pixels of inner contour;6) Adopting a statistical method to obtain the maximum thickness, the minimum thickness and the average thickness of said insulating layer of said radial symmetrical cable section.
  • 3. The parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section according to claim 2, characterized in that it realizes B-spline curve fitting method based on a GPU multi-core parallel calculation platform, thereby realizing pinpointing of said pixels of said inner contour and piecewise fitting of said outer contour.
  • 4. The parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section according to claim 3, characterized in that, said realizing B-spline curve fitting method based on said GPU multi-core parallel calculation platform specifically includes: {circle around (1)} starting a GPU, allocating space in a display memory, and copying the data to said display memory;{circle around (2)} defining the number of the blocks and the threads, spawning said threads, calling a kernel function, adopting said B-spline curve fitting to realize the sub-pixels pinpointing of the inner contour points;{circle around (3)} defining said number of said blocks and said threads, spawning said threads, calling said kernel function, calculating with said mass center, the points on said inner contour and a fitting function, to obtain the corresponding points on said outer contour;{circle around (4)} said display memory and said GPU transfer the calculated result to a CPU, and the resources on said display memory and said GPU are released.
  • 5. The parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section according to claim 1, characterized in that said statistical method is adopted to obtain said maximum thickness, said minimum thickness and said average thickness of said insulating layer of said radial symmetrical cable section, and an appropriate value is identified from all the candidate values of thickness as a final measured value to solve the maximum and minimum values of the thickness.
  • 6. The parallel image measurement method oriented to the insulating layer thickness of a radial symmetrical cable section according to claim 5, characterized in that said solving the minimum value of thickness comprises the following specific steps: (1) sequencing the calculated thickness value of said insulating layer corresponding to each pixel of said inner contour in an ascending order.(2) taking N minimal values and the corresponding 2D co-ordinates, marking them as set Tn;(3) for the ith minimum value, defining the weight Wi=0; if the point q adjacent to it in said image is in Tn, and the sequencing interval of thickness does not exceed 10, then Wi++, and letting the adjacent points inactive in TN;(4) making the same operation for N minimum values in said ascending order. If Wi is greater than a certain threshold, the current Ti is the minimum value.
Priority Claims (1)
Number Date Country Kind
201510197679.2 Apr 2015 CN national
Continuations (1)
Number Date Country
Parent PCT/CN2016/072495 Jan 2016 US
Child 15654297 US