1. Field of the Invention
The present application relates to optical metrology, and more particularly to shape roughness measurement in optical metrology.
2. Related Art
Optical metrology involves directing an incident beam at a structure, measuring the resulting diffracted beam, and analyzing the diffracted beam to determine various characteristics, such as the profile of the structure. In semiconductor manufacturing, optical metrology is typically used for quality assurance. For example, after fabricating a periodic grating in proximity to a semiconductor chip on a semiconductor wafer, an optical metrology system is used to determine the profile of the periodic grating. By determining the profile of the periodic grating, the quality of the fabrication process utilized to form the periodic grating, and by extension the semiconductor chip proximate the periodic grating, can be evaluated.
Conventional optical metrology is used to determine the deterministic profile of a structure formed on a semiconductor wafer. For example, conventional optical metrology is used to determine the critical dimension of a structure. However, the structure may be formed with various stochastic effects, such as edge roughness, which are not measured using conventional optical metrology.
In one exemplary embodiment, a simulated diffraction signal to be used in measuring shape roughness of a structure formed on a wafer using optical metrology is generated by defining an initial model of the structure. A statistical function of shape roughness is defined. A statistical perturbation is derived from the statistical function and superimposed on the initial model of the structure to define a modified model of the structure. The simulated diffraction signal is generated based on the modified model of the structure.
The present application can be best understood by reference to the following description taken in conjunction with the accompanying drawing figures, in which like parts may be referred to by like numerals:
The following description sets forth numerous specific configurations, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present invention, but is instead provided as a description of exemplary embodiments.
1. Optical Metrology
With reference to
As depicted in
To determine the profile of periodic grating 102, optical metrology system 100 includes a processing module 114 configured to receive the measured diffraction signal and analyze the measured diffraction signal. As described below, the profile of periodic grating 102 can then be determined using a library-based process or a regression-based process. Additionally, other linear or non-linear profile extraction techniques are contemplated.
2. Library-Based Process of Determining Profile of Structure
In a library-based process of determining the profile of a structure, the measured diffraction signal is compared to a library of simulated diffraction signals. More specifically, each simulated diffraction signal in the library is associated with a hypothetical profile of the structure. When a match is made between the measured diffraction signal and one of the simulated diffraction signals in the library or when the difference of the measured diffraction signal and one of the simulated diffraction signals is within a preset or matching criterion, the hypothetical profile associated with the matching simulated diffraction signal is presumed to represent the actual profile of the structure. The matching simulated diffraction signal and/or hypothetical profile can then be utilized to determine whether the structure has been fabricated according to specifications.
Thus, with reference again to
The set of hypothetical profiles stored in library 116 can be generated by characterizing a hypothetical profile using a set of parameters, then varying the set of parameters to generate hypothetical profiles of varying shapes and dimensions. The process of characterizing a profile using a set of parameters can be referred to as parameterizing.
For example, as depicted in
As described above, the set of hypothetical profiles stored in library 116 (
With reference again to
For a more detailed description of a library-based process, see U.S. patent application Ser. No. 09/907,488, titled GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNALS, filed on Jul. 16, 2001, which is incorporated herein by reference in its entirety.
3. Regression-Based Process of Determining Profile of Structure
In a regression-based process of determining the profile of a structure, the measured diffraction signal is compared to a simulated diffraction signal (i.e., a trial diffraction signal). The simulated diffraction signal is generated prior to the comparison using a set of parameters (i.e., trial parameters) for a hypothetical profile (i.e., a hypothetical profile). If the measured diffraction signal and the simulated diffraction signal do not match or when the difference of the measured diffraction signal and one of the simulated diffraction signals is not within a preset or matching criterion, another simulated diffraction signal is generated using another set of parameters for another hypothetical profile, then the measured diffraction signal and the newly generated simulated diffraction signal are compared. When the measured diffraction signal and the simulated diffraction signal match or when the difference of the measured diffraction signal and one of the simulated diffraction signals is within a preset or matching criterion, the hypothetical profile associated with the matching simulated diffraction signal is presumed to represent the actual profile of the structure. The matching simulated diffraction signal and/or hypothetical profile can then be utilized to determine whether the structure has been fabricated according to specifications.
Thus, with reference again to
In one exemplary embodiment, the simulated diffraction signals and hypothetical profiles can be stored in a library 116 (i.e., a dynamic library). The simulated diffraction signals and hypothetical profiles stored in library 116 can then be subsequently used in matching the measured diffraction signal.
For a more detailed description of a regression-based process, see U.S. patent application Ser. No. 09/923,578, titled METHOD AND SYSTEM OF DYNAMIC LEARNING THROUGH A REGRESSION-BASED LIBRARY GENERATION PROCESS, filed on Aug. 6, 2001, which is incorporated herein by reference in its entirety.
4. Rigorous Coupled Wave Analysis
As described above, simulated diffraction signals are generated to be compared to measured diffraction signals. As will be described below, in one exemplary embodiment, simulated diffraction signals can be generated by applying Maxwell's equations and using a numerical analysis technique to solve Maxwell's equations. More particularly, in the exemplary embodiment described below, rigorous coupled-wave analysis (RCWA) is used. It should be noted, however, that various numerical analysis techniques, including variations of RCWA, can be used.
In general, RCWA involves dividing a profile into a number of sections, slices, or slabs (hereafter simply referred to as sections). For each section of the profile, a system of coupled differential equations generated using a Fourier expansion of Maxwell's equations (i.e., the components of the electromagnetic field and permittivity (E)). The system of differential equations is then solved using a diagonalization procedure that involves eigenvalue and eigenvector decomposition (i.e., Eigen-decomposition) of the characteristic matrix of the related differential equation system. Finally, the solutions for each section of the profile are coupled using a recurrent-coupling schema, such as a scattering matrix approach. For a description of a scattering matrix approach, see Lifeng Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13, pp 1024-1035 (1996), which is incorporated herein by reference in its entirety. For a more detailed description of RCWA, see U.S. patent application Ser. No. 09/770,997, titled CACHING OF INTRA-LAYER CALCULATIONS FOR RAPID RIGOROUS COUPLED-WAVE ANALYSES, filed on Jan. 25, 2001, which is incorporated herein by reference in its entirety.
In RCWA, the Fourier expansion of Maxwell's equations is obtained by applying the Laurent's rule or the inverse rule. When RCWA is performed on a structure having a profile that varies in at least one dimension/direction, the rate of convergence can be increased by appropriately selecting between the Laurent's rule and the inverse rule. More specifically, when the two factors of a product between permittivity (ε) and an electromagnetic field (E) have no concurrent jump discontinuities, then the Laurent's rule is applied. When the factors (i.e., the product between the permittivity (ε) and the electromagnetic filed (E)) have only pairwise complimentary jump discontinuities, the inverse rule is applied. For a more detailed description, see Lifeng Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A13, pp 1870-1876 (September, 1996), which is incorporated herein by reference in its entirety.
For a structure having a profile that varies in one dimension (referred to herein as a one-dimension structure), the Fourier expansion is performed only in one direction, and the selection between applying the Laurent's rule and the inverse rule is also made only in one direction. For example, a periodic grating depicted in
However, for a structure having a profile that varies in two or more dimensions (referred to herein as a two-dimension structure), the Fourier expansion is performed in two directions, and the selection between applying the Laurent's rule and the inverse rule is also made in two directions. For example, a periodic grating depicted in
Additionally, for a one-dimension structure, Fourier expansion can be performed using an analytic Fourier transformation (e.g., a sin(v)/v function). However, for a two-dimension structure, Fourier expansion can be performed using an analytic Fourier transformation only when the structure has a rectangular patched pattern, such as that depicted in
5. Machine Learning Systems
In one exemplary embodiment; simulated diffraction signals can be generated using a machine learning system employing a machine learning algorithm, such as back-propagation, radial basis function, support vector, kernel regression, and the like. For a more detailed description of machine learning systems and algorithms, see “Neural Networks” by Simon Haykin, Prentice Hall, 1999, which is incorporated herein by reference in its entirety. See also U.S. patent application Ser. No. 10/608,300, titled OPTICAL METROLOGY OF STRUCTURES FORMED ON SEMICONDUCTOR WAFERS USING MACHINE LEARNING SYSTEMS, filed on Jun. 27, 2003, which is incorporated herein by reference in its entirety.
6. Roughness Measurement
As described above, optical metrology can be used to determine the profile of a structure formed on a semiconductor wafer. More particularly, various deterministic characteristics of the structure (e.g., height, width, critical dimension, line width, and the like) can be determined using optical metrology. Thus the profile of the structure obtained using optical metrology is the deterministic profile of the structure. However, the structure may be formed with various stochastic effects, such as line edge roughness, slope roughness, side wall roughness, and the like. Thus, to more accurately determine the overall profile of the structure, in one exemplary embodiment, these stochastic effects are also measured using optical metrology. It should be recognized that the term line edge roughness or edge roughness is typically used to refer to roughness characteristics of structures other than just lines. For example, the roughness characteristic of a 2-dimensional structure, such as a via or hole, is also often referred to as a line edge roughness or edge roughness. Thus, in the following description, the term line edge roughness or edge roughness is also used in this broad sense.
With reference to
In step 702, an initial model of the structure is defined. The initial model can be defined by smooth lines. For example, with reference to
With reference again to
with σ being the rms of the stochastic surface, λ the probing wavelength and θi the (polar) angle of incidence. The root mean square σ is defined in terms of surface height deviations from the mean surface as:
L is a finite distance in the lateral direction over which the integration is performed.
Another statistical function that can be used to characterize roughness is Power Spectrum Density (PSD). More particularly, the (one-dimensional) PSD of a surface is the squared Fourier integral of z(x):
Here, fx is the spatial frequency in x-direction. Because the PSD is symmetric, it is fairly common to plot only the positive frequency side. Some characteristic PSD-functions are Gaussian, exponential and fractal.
The rms can be derived directly from the zeroth moment of the PSD as follows:
Note that the measured rms is bandwidth limited due to measurement limitations. More particularly, the least spatial frequency fmin is determined by the closest-to-specular resolved scatter angle and fmax is determined by the evanescent cutoff. Both scale with the probing wavelength via the grating equation, i.e., lower wavelengths enable access to higher spatial frequencies and higher wavelength enable lower spatial frequencies to detect.
Still another statistical function that can be used to characterize roughness is an auto-correlation function (ACF), meaning a self-convolution of the surface expressed by:
According to the Wiener-Khinchin theorem, the PSD and the ACF are a Fourier transform pair. Thus they expressing the same information differently.
When the Ralyleigh criterion is met, the PSD is also directly proportional to a Bi-directional Scatter Distribution Function (BSDF). For smooth-surface statistics (i.e., when the Rayleigh criterion is met), the BSDF is equal to the ratio of differential radiance to differential irradiance, which is measured using angle-resolved scattering (ARS) techniques.
It should be recognized that the roughness of a surface can be defined using various statistical functions. See, John C. Stover, “Optical Scattering,” SPIE Optical Engineering Press, Second Edition, Bellingham Wash. 1995, which is incorporated herein by reference in its entirety.
In step 706, a statistical perturbation is derived from the statistical function defined in step 704. In step 708, the statistical function perturbation derived in step 704 is superimposed on the initial model of the structure defined in step 702 to define a modified model of the structure. For example, with reference to
With reference again to
In one exemplary embodiment, to generate the simulated diffraction signal, an elementary cell is defined. The modified model in the elementary cell is discretized. For example, the modified model in the elementary cell is divided into a plurality of pixel elements, and an index of refraction and a coefficient of extinction (n & k) values are assigned to each pixel. Maxwell's equations are applied to the discretized model (including the Fourier transform of the n & k distribution), then solved using a numerical analysis technique, such as RCWA, to generate the simulated diffraction signal.
For example, with reference to
With reference to
With reference to
With reference to
Thus far the initial model of the structure and the statistical function of shape roughness have been depicted and described in a lateral dimension. It should be recognized, however, that the initial model and the statistical function of shape roughness can be defined in a vertical dimension and a combination of lateral and vertical dimensions.
For example, with reference to
With reference again to
As described above, the generated diffraction signal can be used to determine the shape of a structure to be examined. For example, in a library based system, steps 702 to 710 are repeated to generate a plurality of modified model and corresponding simulated diffraction signal pairs. In particular, the statistical function in step 704 is varied, which in turn varies the statistical perturbation derived in step 706 to define varying modified models in step 708. Varying simulated diffraction signals are then generated in step 710 using the various modified models defined in step 708. The plurality of modified model and corresponding simulated diffraction signal pairs are stored in a library. A diffraction signal is measured from directing an incident beam at a structure to be examined (a measured diffraction signal). The measured diffraction signal is compared to one or more simulated diffraction signals stored in the library to determine the shape of the structure being examined.
Alternatively, in a regression based system, a diffraction signal is measured (a measured diffraction signal). The measured diffraction signal is compared to the simulated diffraction signal generated in step 710. When the measured diffraction signal and the simulated diffraction signal generated in step 710 do not match within a preset criteria, steps 702 to 710 of process 700 are repeated to generate a different simulated diffraction signal. In generating the different simulated diffraction signal, the statistical function in step 704 is varied, which in turn varies the statistical perturbation derived in step 706 to define a different modified model of the structure in step 708, which is used to generate the different simulated diffraction signal in step 710.
Although exemplary embodiments have been described, various modifications can be made without departing from the spirit and/or scope of the present invention. Therefore, the present invention should not be construed as being limited to the specific forms shown in the drawings and described above.