The present invention relates to a shaving tool used in a step of manufacturing a wire material to be used for a suspension bridge wire cable or a spring, the shaving tool for shaving a surface of the wire material.
Since flaws such as a scale and a roll mark remain on a surface of a wire material, particularly of a steel wire material after a hot rolling step is completed, unevenness often exists. In order to smoothen such a surface of the wire material and improve quality of the surface, a surface layer over the entire circumference of the wire material is frequently cut and removed by a die shape shaving tool (for example, refer to Patent Documents 1 and 2).
Patent Document 1: JP 2007-283432 A
Patent Document 2: JP H05-228729 A
In a shaving method of a wire material disclosed in Patent Document 1, shaving is performed while a cooling liquid is jetted to a blade edge of a die from a plurality of jetting devices fixed at different positions from each other in which directions of nozzles are adjustable. Thereby, a cooling effect of the die is enhanced, heat generation is suppressed, and damage to the blade edge of the die is effectively suppressed. A shaving tool disclosed in Patent Document 2 substantially harmoniously has abrasion resistance and toughness which are required in a shaving die for a relatively soft metal wire of copper, a copper alloy, or the like, and does not necessarily require coating which is conventionally considered as essential. In this shaving tool, a rake angle is 40° to 50° and a clearance angle is 3° to 10°. Thereby, the shaving tool having such a blade edge strength that crack and breakage due to a cutting force at the time of shaving processing are not generated and chip powder is smoothly discharged can be obtained.
However, with the shaving method disclosed in Patent Document 1, there is a need for a forced cooling device for bringing the cooling liquid into direct contact with the blade edge of the die, so that the method is complex. Patent Document 2 discloses a blade edge shape of the shaving die for a relatively soft metal wire of copper, a copper alloy, or the like mainly from a view point of tool abrasion. However, the disclosure is not for a steel wire material which is harder than copper and a copper alloy. Smoothness of a cut surface after shaving is not taken into consideration at all.
While a surface layer of the wire material is cut and removed by the shaving tool, due to an influence of a remaining scale or unevenness of the surface, crack is sometimes generated on the blade edge of the shaving tool. When crack is generated on the blade edge, a processing mark (cutting mark) remains on the surface of the wire material and a processing force (cutting force) applied onto the blade edge is increased. Thus, there is a problem that the tool abrasion is remarkably developed and the tool life is shortened. Meanwhile, from a view point of improvement in the quality of the surface of the wire material, the surface of the wire material after shaving is desirably as smooth as possible.
An object of the present invention is to provide a shaving tool excellent in the tool life, the shaving tool for enhancing smoothness of a surface of a wire material after shaving by suppressing crack generation on a blade edge while cutting and removing and tool abrasion.
In order to achieve the above object, the following configurations are adopted in the present invention.
A shaving tool according to the present invention is a shaving tool for shaving a surface of a wire material, in which a rake angle of a cutting blade of the shaving tool is within a negative range, and a flat surface of which clearance angle is zero is formed on a clearance surface of the shaving tool.
In a case where the rake angle of the cutting blade of the shaving tool is set within the negative range, and even in a case where center of the shaving tool and center of the wire material are slightly displaced at the time of shaving, a cutting component force is applied in the direction in which the cut material (wire material) is returned to the center of the shaving tool. Since this cutting component force is applied as a kind of aligning action, the wire material is not oscillated and unevenness of the surface of the wire material after shaving processing is reduced. Thereby, smoothness is enhanced and quality of the surface is improved. An effect of suppressing crack generation on a blade edge can also be obtained.
By the flat surface of which clearance angle is zero, the flat surface being formed on the clearance surface of the shaving tool, an action of rubbing the processing surface of the wire material generated by the blade edge is exerted. Thus, an effect of reducing the unevenness of the surface of the wire material can be obtained. By the flat surface, together with the action of rubbing, an action of retaining the wire material immediately after shaving can also be obtained. Thus, an effect of further suppressing oscillation of the wire material can also be obtained.
In the above shaving tool, preferably, the rake angle of the cutting blade is within a range from −5° to −30°, and a flat surface length in the forward direction of the wire material is within a range from 0.1 to 1 mm.
When the rake angle is more than −5°, the above aligning action is substantially not obtained, and an effect of improving the quality of the surface due to reduction in the unevenness of the surface of the wire material after shaving is not obtained. When the rake angle is less than −30°, sharpness of the shaving tool is deteriorated. Thus, the quality of the surface of the wire material is lowered, cutting speed cannot be increased, and cutting efficiency is lowered. Meanwhile, when the flat surface length in the forward direction of the wire material is shorter than 0.1 mm, the action of rubbing the surface of the wire material and the action of retaining the wire material are lowered, and the effect of reducing the unevenness of the surface of the wire material and the effect of suppressing the oscillation of the wire material can hardly be exerted. When the flat surface length is longer than 1 mm, an increase in cutting resistance cannot be ignored. When the cutting resistance is increased, the processing force (cutting force) applied onto the blade edge is increased. Thus, the tool abrasion is remarkably developed and the tool life is shortened.
In the above shaving tool, preferably, a blade edge of the cutting blade has a roundness of R10 to R50 (μm).
By forming the roundness of R10 to R50 (μm) in the blade edge, the crack generation on the blade edge during shaving can be suppressed. By increasing a roundness of this blade edge to some extent, an R surface can also substantially be formed on the clearance surface. Since this R surface exerts the action of rubbing the processing surface of the cut material (wire material) generated by the blade edge, the effect of reducing the unevenness of the surface of the wire material can also be obtained. When the blade edge roundness is more than R50, surface roughness (unevenness) of the wire material after shaving is increased and the cutting resistance also is increased. When the roundness of the blade edge is less than R10, the R surface formed by this roundness does not rub the processing surface formed by the blade edge but the processing surface of the wire material remains as it is. Thus, the effect of reducing the unevenness of the surface of the wire material cannot be obtained. The action and the effect of suppressing the crack generation on the blade edge are lowered.
In the above shaving tool, preferably, the cutting blade is formed of cemented carbide, high-speed tool steel, or ceramics.
In the present invention, the cutting blade of the shaving tool is formed so that the rake angle has a negative value. Thereby, even in a case where radial center of the shaving tool and radial center of the wire material are slightly displaced during shaving, the cutting component force in the normal direction is applied in the direction in which the wire material is returned to the center of the shaving tool. As a result, the wire material is not oscillated during shaving, the unevenness of the surface of the wire material after shaving is reduced, smoothness is enhanced, and the quality of the surface is improved. Since the flat surface formed on the clearance surface exerts the action of rubbing the processing surface of the wire material generated by the blade edge, the effect of reducing the unevenness of the surface of the wire material is obtained. Further, by forming the roundness on the blade edge of the cutting blade, the action of rubbing the processing surface of the cut material (wire material) generated by the blade edge is exerted. Thus, the effect of reducing the unevenness of the surface of the wire material is obtained. Thereby, the crack generation on the blade edge during shaving can also be suppressed and the tool life is improved.
a) is an explanatory view of a cutting component force applied onto a wire material during shaving processing of the conventional art; and
Hereinafter, an embodiment of the present invention will be described based on the attached
a) illustrates a case where the rake angle α of the cutting blade 2a of the shaving tool 2 is set to zero or a positive value. In this case, when radial center of the shaving tool 2 and radial center of the wire material 1 are even only slightly displaced during shaving, only a cutting component force in the direction in which displacement is larger among cutting component forces in the normal directions shown by arrows A and B is increased (arrow A>arrow B). Therefore, the force of displacing the wire material 1 from the center of the cutting blade 2a is increased, so that stable shaving cannot be performed.
Meanwhile,
By using a shaving tool in which the rake angle α, the flat surface length of the clearance surface, and the roundness of the blade edge are respectively changed, shaving processing was performed on a surface layer of a spring steel wire material having a wire diameter of 6 mmφ. Surface roughness of the wire material after shaving processing was calculated by cutting simulation.
Although an embodiment and example of the present invention are described above, the present invention is not limited to the above embodiment but can be variously changed and implemented according to the description of the claims. The present application is based on the Japanese Patent Application (No. 2011-062721) filed on Mar. 22, 2011 and the contents thereof are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2011-062721 | Mar 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/056271 | 3/12/2012 | WO | 00 | 9/13/2013 |