The present invention relates to a sheath protecting a cannula, said sheath being primarily designed to prevent or minimize accidental needlestick injuries. The present invention also relates to a safety syringe comprising said sheath, and more particularly to a safety syringe adapted to receive a medication-containing cartridge and comprising said sheath.
Needlestick injuries frequently occur among healthcare workers, introducing high risk of blood-borne pathogen infection for surgeons, assistants, and nurses, such as HIV, hepatitis B, hepatitis C or viral hemorrhagic fevers. In a UK report, 37% of nurses reported that they have sustained a needle-stick injury at some stage during their career (Prevention CfDCa, Overview: Risks and Prevention of Sharps Injuries in Healthcare Personnel, CDC, Atlanta, Ga., USA, 2004). These results have further to be read taking into account that not all needle-stick injuries are reported, and that the rate of detection may be low. In a study investigating the use of blunt needles during obstetrical laceration repair surgeries (Wilson et al., “The use of blunt needles does not reduce glove perforations during obstetrical laceration repair”, Am J Obstet Gynecol., 2008, 199(6):641.e1-3), only 11% of glove perforations were detected by the physician in a study.
Strategies are available in response to these issues, including education of healthcare workers on the risks and precautions, reduction of invasive procedures, management of exposures and use of safer devices.
Among the safest devices, an efficient way to protect a healthcare worker from being pricked by a needle is the use of safety syringes. Such syringes have the particularity to comprise a sheath protecting the needle, which can be retracted or extended. In a retracted position, the needle is completely covered and secured by the sheath. In an extended position, the needle projects outside the sheath.
A major issue when designing such safety syringes, further to securing the needle, is the ease of use of said safety syringes. Even though the protection sheath may enhance safety, its volume may make the syringe uneasy and cumbersome to manipulate.
Several safety syringes comprising a sheath have been proposed in the literature. However, none of them describes a sheath according to the invention, designed for an improved convenience and an improved safety for the healthcare worker.
For example, International Patent application WO 2006/105006 discloses a safety syringe including locking positions, formed by an inner sleeve receiving a cartridge filled with liquid, an outer sleeve through which said inner sleeve is telescopically reciprocated, and a plunger assembly that is attached to the inner sleeve and used to eject the liquid. This device is capable of both intermittent locking during use RU as well as permanent locking after use RAU (page 5, lines 2-3), performed by pushing inward a tab which engages permanently a hole. However, there is no specific retracted position before use RBU.
US patent 2011/0082428 relates to a safety structure for covering a syringe needle including a safety sleeve and a hub. The safety sleeve is fitted around the hub and provided with an axial sliding slot, a locating slot laterally extended from the sliding slot and a locating hole located at a bottom of the locating slot. The protective sheath comprises a “retracted position before use” in the locating slot, an “ejection position” in the sliding slot and a “retracted position after use” in the locating hole. However, this device does not provide a “retracted position during use”. Moreover, this safety structure does not provide a one-way path for the male means of the hub through the female means of the safety sleeve: backtracks are indeed needed in order to access to the various retracted positions (RBU, RU and RAU). Thus said safety structure lacks of convenience and safety.
U.S. Pat. No. 4,994,045 discloses a safety syringe including a conventional syringe, a locating ring and an elongated and tubular sheath. This device is capable of both intermittent and permanent positions where the needle is secured, allowing the user to extend or retract the tubular sheath at will during use (ejection position E and retracted position during use RU), and to definitely secure the needle after use (retracted position after use RAU). However, the various retracted positions are not transversally aligned (see FIG. 2 of U.S. Pat. No. 4,994,045), resulting in a non-optimized sheath length as described further in the description of the invention.
European Patent EP 1 603 612 discloses a preservative sheath for an injection needle or cannula arranged on a cannula-holding support which can be fitted onto a syringe. The sheath comprises guide means, which may be ramps, allowing the cannula to be in a retracted position before use RBU, a retracted position during use RU, a retracted position after use RAU and an ejection position E. However, the various retracted positions are not transversally aligned, resulting in a non-optimized sheath length as described further in the description of the invention. Moreover, the RU position comprises no temporary locking means.
U.S. Pat. No. 5,312,370 discloses a needle protecting device adapted for use on a standard syringe, especially a conventional dental syringe able to receive a cartridge. The sheath of this device may be rotated from an intermediate locked position during use RU to a final locked position after use RAU securing the needle. However, there is only one possible intermediate locked position (as described column 8 of U.S. Pat. No. 5,312,370). This device provides no specific retracted position before use RBU.
Therefore, there is still a need in the art for a needle protective sheath improving the healthcare worker's convenience and safety.
A first object of the present invention is a protective sheath for a cannula arranged on a hub which can be fitted onto a syringe, said sheath comprising female means intended to cooperate with male means of the hub for guiding thereof, and characterized in that:
Female means of the sheath according to the invention may include:
In one embodiment, said male means are bosses. In one embodiment, female means are in the form of holes and/or grooves in the internal surface of the sheath.
Primary transition means may preferably be one-way transition means comprising anti-return means.
Secondary transition means may advantageously include translation/rotation guiding means from the RBU position to a transitory position T, and longitudinal guiding means from the T position to the RU position, said longitudinal guiding means being preferably one-way transition means comprising anti-return means.
In one embodiment, tertiary transition means may include rotational guiding means.
The sheath may further comprise anti-slipping means. For example, said anti-slipping means include inclined planes and/or at least one rib.
Anti-slipping means may further include means for preventing dismounting of the hub from the sheath, such as for example at least one rib.
The distal end of the sheath according to the invention may preferably be conical or beveled.
The sheath may further comprise gripping means, which are preferably ribs covered by a grinding or an erosion grain such as VDI 20 to 30, located on the external surface of the sheath.
Thus, the sheath according to the invention may comprise 1, 2, 3, 4 or all of the following features:
A second object of the present invention is a hub adapted to be inserted within a sheath as described above, comprising:
In an embodiment, the hub comprises reception means located at one end of the hub and designed to receive a syringe.
A third object of the present invention is an injection system, comprising a sheath as described above and a hub cooperating with said sheath, as described above. In one embodiment, the hub is inside the sheath.
A fourth object of the present invention is a syringe including a sheath or an injection system as described above.
The syringe of the invention may be a standard syringe comprising a plunger, a barrel or a carpule-holder and means for being adapted on a hub of the invention or an injection system of the invention. In an embodiment, the syringe is adapted for dentistry.
In an embodiment, the syringe of the invention is designed to hold a cartridge; preferably the cartridge is immobilized in radial direction via demolding clips and the back of the syringe, and/or in axial direction at the neck of said cartridge via a clip which is preferably flexible.
The plunger of a syringe according to the invention may be advantageously equipped with a plunger seal comprising lips, wherein said lips may bend backwards for an easier introduction into the cartridge. According to one embodiment, the plunger seal is overmolded on the plunger.
The syringe may further comprise soft overmoldings installed in the thumb area and in the grip area of said syringe.
According to an embodiment, the syringe of the invention is disposable. In this embodiment, wherein the syringe is disposable, the syringe may have a precut located substantially at the distal end of the syringe, being for example a series of perforations or one or more circumferential grooves, preferably one circumferential groove.
According to an embodiment, the cartridge of said syringe is immobilized in radial direction via demolding clips and the back of the syringe; and the plunger of said syringe is equipped with a plunger seal comprising lips, wherein said lips may bend backwards for an easier introduction into the cartridge, said plunger seal being optionally overmolded on the plunger.
Thus, the syringe according to the invention may comprise 1, 2, 3 or all of the following features:
A fifth object of the present invention is a syringe designed to hold a cartridge, wherein the cartridge may be immobilized in radial direction via demolding clips and the back of the syringe, and/or in axial direction at the neck of said cartridge via a clip which is preferably flexible. In an embodiment, this syringe comprises a sheath of the invention, a hub of the invention or an injection system of the invention.
A sixth object of the present invention is a manufacturing device, preferably a mould or an assembly machine, for manufacturing a hub, a sheath, and/or a syringe according to the invention.
In the present invention, the following terms have the following meanings:
Protective Sheath
The present invention relates to a protective sheath 100 for a cannula 210 arranged on a hub 200 which can be fitted onto a syringe 300, allowing a safe use of said cannula 210 without the risk of being accidentally pricked.
As shown in
In still another embodiment, the sheath 100 has a length preferably ranging from 30 to 150 mm.
In one embodiment, the sheath 100 is made of plastic, preferably transparent so that the cannula 210 may be visible through the sheath 100. In another embodiment, the sheath 100 is opaque. In one embodiment, the thickness of the sheath 100 is preferably substantially constant (for example with a variation of maximum 20%, 10%, 5%, or 1% from its nominal value), but may be narrowed at non protective locations to save matter, for example at the distal and proximal ends 102 and 103 of said sheath 100. In one embodiment, the thickness of the sheath 100 is comprised between 0.2 and 5 mm, preferably between 0.5 and 3 mm, more preferably between 1 and 2 mm, and said thickness may be narrowed of between 20 and 60% at non-protective locations.
The sheath 100 comprises female means which comprises structure (further described hereafter) structured to cooperate with structure forming a male means, e.g. one or more bosses 201, of the hub 200, said female means allowing said hub 200 to be in various positions, as depicted in
The various positions of the hub 200 inside the sheath 100 contribute to the healthcare worker's safety, in that:
In a preferred embodiment, the insertion position, the retracted position before use, the retracted position during use, the ejection position and the retracted position after use are distinct one from another.
In another embodiment, the retracted position before use, the retracted position during use and the retracted position after use are distinct one from another.
In another embodiment, the retracted position before use and the retracted position during use are distinct.
In a preferred embodiment, the sheath 100 of the present invention includes at least 3 retracted positions (RBU, RU and RAU). In a preferred embodiment, the sheath 100 of the present invention includes more than 2 retracted positions. In an embodiment, the invention does not include any device featuring two retracted positions only.
In another embodiment, the sheath 100 does not provide a priming position distinct from the ejection position.
In an embodiment, the male means 201 is not temporary locked in the ejection position.
In an embodiment, the male means 201 is temporary locked in the ejection position.
The passage of male means 201 between the various positions and the immobilization of said male means 201 within the female means of the sheath 100 are rendered possible via:
Primary, secondary and tertiary transition means 110, 130 and 160 are preferably one-way transition means, meaning that they allow the transition from a first position to a second position only, but do not allow the reverse transition back from the second position to the first position. These transition means comprise therefore advantageously anti-return means. The achievement of a one-way path (i.e. without reverse transition) through the various retracted positions (RBU, RU and RAU) via the transition means (110, 130, and 160) ensures an ease of use. In one embodiment, the sheath 100 contains female means which provide a precise continuous one-way path for the male means 201; therefore avoiding routing errors and making use easier and safer. In one embodiment, the sheath 100 contains female means which provide a precise one-way path for the male means 201; therefore avoiding routing errors and making use easier and safer.
In one embodiment, the guiding means 150 is the only means which allows reverse transition. It is obvious from one skilled in the art that the guiding means 150 to the ejection position has to allow reverse transition.
The various positions, being successively reached, prevent a cannula 210 equipped with said sheath 100 to be re-used.
A major drawback of using a protective sheath on a cannula is the reduction of manipulation freedom during operation, due to the volume of said sheath.
It has been therefore a goal for the present invention to provide a sheath as short as possible in order to facilitate manipulation during operation, but long enough to ensure a safe manipulation of the device.
A safe manipulation of a cannula 210 inserted into a sheath 100 is obtained when safety lengths between the sharp edges of the cannula and the sheath ends are respected (at both distal and proximal end 102 and 103). The sheath 100 has therefore to be as long as the cannula length plus the safety lengths. Safety length depends on the diameter of the opening at the sheath end, from where a cannula end may be accessed. Typically, a safety length of between 1 and 5 mm, preferably about 3 mm, has to be respected if the diameter of the opening at the sheath end is of about 10 mm.
The present invention provides a protective sheath 100 in which the proximal and distal portions of the cannula 210 are protected. For specific applications, the cannula 210 arranged on the hub 200 has to exceed the proximal end of the hub 203. For instance in dentistry, the proximal end of the cannula 211, protruding from the proximal end of the hub 203, perforates the carpule hold in the barrel of a syringe when said syringe is inserted inside the proximal part of the sheath 103. Therefore it is necessary to protect the user from the proximal end of the cannula 211. In the present invention the RBU, RU and RAU positions are positioned such as the proximal end and the distal end of the cannula 210 are contained inside the sheath 100.
In one embodiment of the present invention, the cannula 210 may be totally contained inside the sheath 100. Especially, in the invention, the protection of the cannula 210 is granted only by the sheath 100 and not by the hub 200.
In one aspect, the present invention aims at protecting healthcare worker from needlestick injuries. In an embodiment, the sheath does not to prevent a patient from seeing the needle prior to an injection. In another embodiment, the sheath prevents a patient from seeing the needle prior to an injection.
The Applicant found that, when the various retracted positions RBU, RU and RAU are transversally aligned, wherein the three positions are in the same cross-section, the sheath length is optimized. Aligned retracted positions allow the sheath to be the shortest possible while effectively protecting the cannula.
The provision of a short sheath results in a full adaptability of the sheath on the smallest syringes on market when still using a long cannula length.
Thus, the present invention provides a sheath 100 having an optimized sheath length, wherein at least two of the RBU, RU and RAU positions, preferably all of the RBU, RU and RAU positions are substantially transversally aligned. In a preferred embodiment, the RBU, RU and RAU are substantially transversally aligned. In another embodiment, the RBU and RU are substantially transversally aligned. In another embodiment, the RU and RAU are substantially transversally aligned. In another embodiment, the RBU and RAU are substantially transversally aligned. In one embodiment, the transversal alignment is respected for the aligned positions with a tolerance of 6 mm, preferably 5 mm, more preferably 3 mm, even more preferably 1 mm, still more preferably 0.5 mm. In other words, the absolute difference between the smallest and the greatest coordinate of the different aligned positions along the X axis does not exceed the value of said tolerance.
As disclosed in
In one embodiment, the male means 100 moves transversally respectively from the RBU position to the RU position and then to the RAU position.
In one embodiment, the male means 100 moves transversally respectively from the I position to the RBU position, the RU position and then to the RAU position.
In one embodiment, the male means 100 moves transversally respectively from the I position to the RBU position, the RU position, the E position, the RU position and then to the RAU position.
In order to better secure the use of a cannula 210 arranged on a hub 200, the transition of male means 201 of said hub 200 from a RBU position to a RU is advantageously performed via two steps:
The two-step transition between the RBU position to the RU position results in improved safety, where the cannula 210 arranged on the hub 200 inserted into the sheath 100 is less likely to protrude said sheath 100 hazardously.
Thus, in one embodiment, a structure for secondary transition means 130 includes translation/rotation guiding means formed as a hole 131 for guiding male means 201 from the RBU position to a transitory position T, and longitudinal guiding means formed as a groove 132 for guiding said male means 201 from the T position to the RU position.
In one embodiment, longitudinal guiding means 132 are one-way transition means comprising anti-return means.
In an embodiment, tertiary transition means 160 are actuated via a rotational movement of the hub 200 inside the sheath 100, preferably via an unscrewing movement. This feature combines the entering in the final lock position of the sheath 100 with the natural gesture of the user in cannula 210 end life management. Thus, if a syringe 300 is screwed in the hub 200, the transfer into the final locked position RAU has the advantage to be automatic when the user unscrews the syringe 300.
Thus, in one embodiment, tertiary transition means 160 include rotational guiding means.
In a preferred embodiment, the final lock position of the sheath 100 can be reached only from the RU position and not from the RBU position. In another embodiment, the male means 201 moves from the ejection position to the RAU position only through the RU position. In another embodiment, the male means 201 moves from the ejection position to the RAU position without passing through the RBU position. Moreover, the male means 201 reaches the RU position from longitudinal translation guiding means 132 and not from rotational transition means, thus avoiding routing errors as guiding means 150 (used in one of the following steps, cf.
In an embodiment, the secondary locking means 140 is compulsory between the RU position and the ejection position E.
For the efficacy of the product, the hub 200 has to remain in the sheath 100. Unfortunately, as a result of the fabrication process, a gap 209 between the sheath 100 and the hub 200 in the locking area cannot be avoided, as described
Therefore, for safety improvement, the sheath 100 according to the invention may further comprise anti-slipping means.
In one embodiment, anti-slipping means include inclined planes 208 at the ends of male means 201. In one embodiment, anti-slipping means include inclined planes at strategic locations 121, 133, 171 and 172 on the walls of the sheath 100, as described in
Therefore, the slipping of the hub 200 under the sheath 100 is avoided, and the safety is improved.
In an embodiment, anti-slipping means further include at least one rib 106, located just next to any hole or groove of the sheath 100 toward the distal end 102 of said sheath 100 so that male means 201 are not likely to pass across said rib 106 if a slipping of the hub 200 within the sheath 100 occurs (
In an embodiment, anti-slipping means include means for preventing dismounting of the hub 200 from the sheath 100. Although proper use of the device is supposed, the misuse of the device has also to be taken into consideration. In this embodiment, at least one rib 107 may be added, in combination with an embossment 301 present on the hub 200 or near the distal end of the syringe 300, as depicted in
Still for a safety improvement, the distal end 102 of the sheath 100 is preferably conical or beveled. This shape results on providing a large opening for a cannula 210 which may be inadvertently bended, and in being tight enough at the distal end to avoid the fingers to access said cannula 210. In one embodiment, the proximal end 103 of the sheath 100 is not conical or beveled in order to easy the insertion of the distal end of a syringe 300. In an embodiment, the protective sheath 100 has a length adapted to protect the user from needlestick.
In one embodiment, the distal end 102 of the sheath 100 does not comprise any additional piece, such as a plug, to prevent the hub 200 to step out of the sheath 100.
In one embodiment, the sheath 100 further comprises gripping means 101, providing a good grip toward the gloves of healthcare workers. Said gripping means 101 may be for example ribs, preferably covered by a grinding or an erosion grain like VDI 20 to 30.
As shown in
More than two systems are possible, for example three, four, five or six systems. In all cases, all systems are preferably identical and regularly spaced along a path centered on the axis X.
In one embodiment, the sheath 100 of the present invention comprises female means which are in the form of holes and/or grooves in the internal surface 104 of said sheath 100.
In another embodiment, the sheath 100 of the present invention comprises anti-slipping means, including inclined planes 121, 133, 171, 172 and/or at least one rib 106; and/or at least one rib 107 for preventing dismounting of the hub 200 from said sheath 100.
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises a conical or beveled distal end.
In another embodiment, the sheath 100 of the present invention comprises gripping means 101 which are ribs covered by a grinding or an erosion grain such as VDI 20 to 30, located on the external surface 105 of said sheath 100.
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
In another embodiment, the sheath 100 of the present invention comprises:
A primary transition means comprises a groove 110 (in the preferred embodiment shown in
A primary locking means 120 comprises a lug, located between two holes opening to both internal and external surfaces 104 and 105 of the sheath 100. This lug, in complement to the walls of the sheath 100 which prevent male means 201 to go further toward the distal end 102 of the sheath 100, maintains said male means 201 in the RBU position.
A secondary transition means 130 comprises two guiding means:
A translation/rotation guiding means 131 consists in a hole (represented as 111 and 134) and a wall of the sheath 100, being designed as to present a curved and smooth shape so that when longitudinally moving male means 201 from the RBU position toward the proximal end 103 of the sheath 100, said male means 201 slightly rotate to move to the T position (
A longitudinal translation guiding means 132 is made by an inclined plane directed toward the interior of the sheath 100, located next to the T position regarding the X axis. Said longitudinal guiding means 132 comprises at its proximal and distal ends holes 134 and 135 opening both to the external and internal surface of the sheath 100, as described in
The slope of the inclined planes directed toward the interior of the sheath 100 ranges preferably from 10% to 30%, more preferably of about 20%, to promote smooth transition from one position to another.
The secondary blocking means 140 is formed of a lug 140, configured so that male means 201 may be maintained in longitudinal distal abutment in the position RU. Male means 201 are further radially maintained in the position RU by on the one hand a wall of the sheath 100, and on the other hand tertiary transition means 160. The secondary blocking means 140 is designed so that the passage forth from the position RU to the position E and back from the position E to the position RU requires a force high enough to push the lug apart.
A guiding means is provided that comprises a longitudinal groove 150 which opens to both internal and external surface 104 and 105 of the sheath 100 in a first part, and to only the internal surface 104 of said sheath 100 in a second part 152. Between these two parts, the guiding means comprises an inclined plane 151 directed toward the interior of the sheath 100, to allow a smooth transition from the first part of the groove to the second part 152. The second part 152 of the groove ends up substantially at the distal end 102 of the sheath 100, approximately at the beginning of the conical distal end of said sheath 100. Male means 201 may be stopped by the end of the guide means, and/or optionally by the return of the sheath wall inside the sheath 100, at its distal end 102.
The groove of the guiding means 150 preferably opens to the internal surface 104 and not to the external surface 105 of the sheath 100. This feature provides reinforcement for the guiding of male means 201 with the matter which covers the bottom of the grooves and which forms the grooves. However, it is possible to make the grooves open to both internal and external surfaces 104 and 105 of the sheath 100, or to make the grooves open to both internal and external surfaces 104 and 105 in a first part and open to only the internal surface 104 in a second part.
The tertiary transition means is formed of a lug 160 having an inclined plane so that male means 201 may move from the position RU to the position RAU, via a force high enough to put said lug apart. Once in the position RAU, the lug 160, by means of the final locking means in the form of a surface 170 of the lug 160, prevents said male means 201 to step back. Thus, the lug, via its surfaces at 160 and 170, is both a transition and locking means.
In the position RAU, male means 201 are further immobilized via the walls of the sheath 100. The hub 200 is therefore definitely locked in the RAU position, and cannot go forward or backward with regard to the sheath 100.
Injection System
The present invention further relates to an injection system, comprising a sheath 100 and a hub 200, inserted within said sheath 100.
The hub 200 has an overall shape of a cylinder having a longitudinal axis X′, as described in
In one embodiment, the reception means 204 is a thread allowing a clipping or a screwing of the distal end of a syringe 300. This thread may be sectioned by two longitudinal slots, for ensuring a clipping by pulling away the two threaded parts forming each a jaw, during the positioning of the hub 200 on the syringe distal end.
In one embodiment, wherein the hub comprises a cannula 210, said cannula 210 protrudes both distal end 202 and the bottom 205 of the reception means 204. When the distal end of a syringe 300 is engaged in the reception means 204, the cannula 210 is thus in fluid communication with the content of said syringe 300 via its proximal end 211. In other words, the content of the syringe 300 may be flowed through the cannula 210 from the proximal end 211. The content of said syringe 300 may be for example a pharmaceutical composition, which may be contained within a cartridge 400 or the barrel of said syringe 300, depending on the syringe type. In another embodiment the cannula may comprise two separate parts (i.e. two cannulae) one protruding outside of the distal end of the hub and one protruding outside of the proximal end of the hub; said two cannulae being fluidly connected inside the hub.
In an embodiment, the hub is used to move between the various position implemented in the sheath, to hold the cannula and, optionally, to fluidly connected the cannulae; however the hub is not design to protect the user from the cannula.
The hub 200 has an external diameter 206 slightly inferior to the diameter of the internal surface 104 of the sheath 100.
In one embodiment, the hub 200 further comprises at least one, or two, three, four, five or six; preferably two male means 201 diametrically opposite regarding the axis X′. In one embodiment, the hub 200 further comprises at least one male means 201. In a preferred embodiment, the hub 200 further comprises at least two male means 201 diametrically opposite regarding the axis X′. In another embodiment, the hub 200 further comprises at least three male means 201 regularly spaced on the circumference of the hub 200. In another embodiment, the hub 200 further comprises at least four male means 201 regularly spaced on the circumference of the hub 200. In another embodiment, the hub 200 further comprises at least five male means 201 regularly spaced on the circumference of the hub 200. In another embodiment, the hub 200 further comprises at least six male means 201 regularly spaced on the circumference of the hub 200. At these male means, the diameter 207 is greater than the diameter of the internal surface 104 of the sheath 100, and preferably substantially identical (permitting a variation of 10%, 5%, or 1% for example), or slightly inferior, to the diameter of the external surface 105 of the sheath 100.
In an embodiment, the hub 200 does not contain a U-shaped channel or groove around the male means 201.
The hub 200 is intended to be introduced at the proximal end 103 of the sheath 100, so that the axes X and X′ line up. Male means 201 are thus advantageously adapted to be inserted in female means of the sheath 100.
In one embodiment, male means 201 of the hub 200 are outwards projections such as bosses.
In one embodiment, male means 201 of the hub 200 are bosses.
In an embodiment, the injection system of the invention comprises a sheath 100 and a hub 200 inserted in said sheath 100, wherein male means 201 are in a RBU position.
In an embodiment, the injection system of the invention is delivered to the user with the male means 201 in a RBU position.
In an embodiment, the sheath 100 of the present invention is not self-deploying.
The I position is thus used during the manufacturing and assembly of the injection system of the invention.
Syringe
This invention also relates to a syringe 300, preferably to a dental syringe for the injection of a pharmaceutical composition, for instance, of a local anesthetic agent, comprised within a cartridge 400 or the barrel of said syringe 300; said syringe 300 being equipped with a sheath 100 protecting an injection needle or cannula 210 arranged on a hub 200, or being equipped with an injection system according to the invention comprising a sheath 100, a hub 200 and a cannula 210 (
In one embodiment, no other piece than the sheath 100 is intended to protect the cannula 210: in other words, the sheath 100 is the only safety part for the protection of the cannula 210.
In one embodiment, no spring is involved in the protection of the cannula 210, for example in an automatic passage from an extended position to a retracted position, preventing thus a hazardous release of said spring.
The hub 200 is intended to be positioned at the distal end of the syringe 300, and is aimed at ensuring the entry of the proximal end 211 of the cannula 210 within the cartridge 400 or barrel containing the pharmaceutical composition. In one embodiment, the hub 200 is screwed on the distal end of the syringe 300.
In another embodiment, the hub 200 and the syringe 300 are integrally jointly formed.
In one embodiment, the syringe 300 is a standard syringe.
In another preferred embodiment, the syringe 300 is designed to hold a cartridge 400.
In the embodiment, wherein the syringe 300 is designed to hold a cartridge 400, said syringe is equipped with at least one means to hold a cartridge 400. Preferably, the syringe 300 is equipped in a first section of a first means to hold a cartridge 400, and is equipped in a second section of a second means to hold said cartridge 400, said means being complementary to safely hold said cartridge 400.
In one embodiment, first means to hold the cartridge 400 are self demolding clips 303, presenting a protrusion to hold said cartridge 400, said protrusion being flexible enough to allow the insertion of said cartridge 400 (
In one embodiment, the second means to hold the cartridge 400 is the bottom of the syringe 304, as described in
By these means, the cartridge 400 is totally immobilized in radial direction once inserted into the self demolding clip, avoiding thus to fall out of the syringe 300.
The cartridge 400 is immobilized in axial direction via a blocking means 305. An axial immobilization is of great importance for the present invention, since active aspiration is therefore allowed by suction of the rear piston 401 of the cartridge 400. This is particularly useful in dental care, during anesthesia for instance. The dentist loads a cartridge containing the anesthetic agent in a syringe and inserts then the needle tip into the gum. If the needle tip is inserted into a blood vessel, a depression will immediately aspirate blood into the cartridge. The dentist, in order to avoid an injection of anesthetics into a blood vessel, will be averted by the change of the anesthetic color.
Instead of axially fixing the rear of the cartridge 400 as it is the case in common syringes, the cartridge 400 is advantageously maintained at its neck 402, so that the length of the cartridge 400 does no longer play a role in the aspiration process. The syringe of the invention is therefore adaptable on cartridges having different lengths.
In one embodiment, the blocking means 305 is a clip, as shown in
The blocking means 305 is advantageously flexible, allowing the cartridge insertion. When the cartridge 400 is pushed into the end position, the cartridge head will push the blocking means 305 up (
An advantage of using such a flexible blocking means is the provision of passive aspiration. The blocking means 305 may indeed be slightly pushed upward during each pressure on the plunger 310 of the syringe 300, and will then come back to its initial position creating a depression in the cannula 210. Preferably, the blocking means 305 allows the cartridge 400 to travel between 1 and 5 mm, more preferably between 2 and 4 mm, to assure passive aspiration.
During active aspiration, the plunger 310 of the syringe 300 may be provided with a fixation connecting said plunger to the rear piston 401 of the cartridge 400 to assure the pulling of said rear piston of said cartridge. Such a fixation is for example a barb or a harpoon, or any other means adaptable to the rear piston of a cartridge.
In a preferred embodiment, the syringe plunger 310 is able to create a depression in the cartridge 400, aspirating thus the cartridge rear piston 401 and causing a depression in the cannula 210.
In this embodiment, the syringe plunger 310 is preferably provided with a plunger seal 312, as described in
The plunger 312 seal creates a depression between the syringe plunger 310 and the rear piston 401 of the cartridge 400 when the user pulls on the syringe piston, which results in an aspiration in the cartridge 400.
The plunger seal 312 comprises advantageously lips which may bend backwards (i.e. towards the proximal part of the plunger), allowing an easier introduction into the cartridge 400 without destroying the seal area. When pushing the plunger 310 in the cartridge 400, the air between the cartridge rear piston 401 and the vacuum plunger seal 312 expels since the lips can fold back, allowing the air to leave the space.
Whereas the fixation of a plunger to the rear piston of a cartridge has generally to be adapted in function of the cartridge type, an advantage of using such a plunger seal 312 is the adaptability on several types of cartridge.
In one embodiment, the vacuum plunger seal 312 is overmolded on the plunger 310.
Chirurgical instruments are manipulated with latex gloves. During the operation the gloves get wet and the friction forces of the gloves rubbers are reduced.
When using a plastic part with wet gloves the finger slipping could introduce injuries to the patient. In order to increase the grip, soft overmolding may be installed in the thumb area 311, and in the grip area 302 of the syringe 300, as depicted
Material for these grips may be for example SEBS, TPU, TPE, preferably SEBS (Kraiburg Thermoplast W, Soloplast TH, etc.).
In combination with the gripping means 101 of the sheath 100, the syringe of the invention provides a comfortable and safe use.
In one embodiment, the syringe of the invention is a disposable syringe, and allows preferably only a single use.
In this embodiment, the syringe 300 may have the particularity to be conveniently broken after use, in order to separate the sticking part from the non-sticking part. In one embodiment, the sticking part comprises the cannula 210 covered by the sheath 100, the sheath 100, the hub 200 and a optionally the distal end of the syringe 300 which is engaged in the reception means 204 of the hub 200, and the non-sticking part comprises substantially the totality of the syringe 300 which may comprise a cartridge 400.
This has the advantage to reduce the volume of sticking waste having a high risk of contamination, which has to be withdrawn in special containers whose decontamination and destruction are cost intensive. Another advantage is to avoid the congestion of the low volume waste boxes used by medical personal operating in reduced space.
Further to make the end of life of the syringe comfortable, another advantage of such a breakable syringe is the increased difficulty to uncover the cannula 210 after use. The cannula 210 may not be accidentally pushed out of the sheath 100 and become exposed, rendering a needlestick injury even less likely to happen.
A means for an easy and defined breakage is for example a precut 306, made of a series of perforations, or one or more circumferential grooves, located substantially at the distal end of the syringe 300, for example in the last 3 cm, 2 cm, 1 cm or 5 mm of said syringe 300. Preferably, a means for an easy and defined breakage is a circumferential groove, as depicted in
In the embodiment wherein the syringe 300 is disposable, and wherein the final locked position for the hub 200 in the sheath 100 is reached via an unscrewing movement, the invention provides a really convenient end of life by an unscrewing movement followed by a break.
This invention also relates to a syringe 300 as described above, said syringe 300 being preferably equipped with a clip 305 as described above, and said syringe 300 being equipped with no sheath 100 and no injection system according to the invention.
In one embodiment, the syringe 300 of the present invention comprises a cartridge 400 which is immobilized in radial direction via demolding clips 303 and the back of the syringe 304.
In one embodiment, the syringe 300 of the present invention comprises a plunger 310 equipped with a plunger seal 312 comprising lips, wherein said lips may bend backwards for an easier introduction into the cartridge 400, said plunger seal 312 being optionally overmolded on the plunger 310.
In one embodiment, the syringe 300 of the present invention comprises soft overmoldings installed in the thumb area 311 and in the grip area 302 of said syringe 300.
In one embodiment, the syringe 300 of the present invention comprises a precut 306 located substantially at the distal end of the syringe 300, made of a series of perforations or one or more circumferential grooves, preferably one circumferential groove.
In another embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
In one embodiment, the syringe 300 of the present invention comprises the following features:
This invention further relates to a manufacturing device, preferably a mould or an assembly machine, for manufacturing a sheath 100, a hub 200, and/or a syringe 300 according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
PCT/EP2012/058160 | May 2012 | WO | international |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/059310 | 5/3/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/164475 | 11/7/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4834717 | Haber | May 1989 | A |
4994045 | Ranford | Feb 1991 | A |
5135455 | King | Aug 1992 | A |
5232457 | Grim | Aug 1993 | A |
5312370 | Talonn et al. | May 1994 | A |
5405326 | Haber | Apr 1995 | A |
6669671 | Mohammad | Dec 2003 | B1 |
8128594 | Chang | Mar 2012 | B1 |
20030141210 | Yanke | Jul 2003 | A1 |
20040181247 | Kehr | Sep 2004 | A1 |
20050171486 | Hochman | Aug 2005 | A1 |
20060184113 | Jouvin | Aug 2006 | A1 |
20110082428 | Huang | Apr 2011 | A1 |
20110118667 | Zaiken | May 2011 | A1 |
20110319832 | Chun | Dec 2011 | A1 |
20120289905 | Julian | Nov 2012 | A1 |
20130331794 | Ekman | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
1 603 612 | Oct 2009 | EP |
2 324 875 | May 2011 | EP |
2 852 250 | Sep 2004 | FR |
2006105006 | Oct 2006 | WO |
Entry |
---|
International Search Report, dated Jun. 19, 2013, from corresponding PCT application. |
Number | Date | Country | |
---|---|---|---|
20150119813 A1 | Apr 2015 | US |