The present invention relates to a sheet feeding machine for feeding sheets from a printer and so on to a book binding apparatus.
There is a sheet feeding machine for supplying a sheet one by one to a book binding apparatus from a sheet stack which is formed by a printer or a copier and configured by plural sets of sheets collated by page order, each of which corresponds to one volume. The book binding apparatus binds the sheets fed from the sheet feeding machine for each set of sheets which corresponds to one volume (see for example Patent Document 1).
Such sheet feeding machine should feed sheets to the book binding apparatus for each set of sheets which corresponds to one volume. Therefore, information for identifying the front and last pages of a set of sheets which corresponds to one volume, for example mark, bar-cord or image, is printed on the sheet. The machine further comprises a detecting section for detecting the information so as to feed the sheets to the book binding apparatus for each set of sheets which corresponds to one volume based on the detection signal of the detecting section.
For example, the detecting section has one detector if the information is printed on the only front page, while the detecting section has two detectors if the information is printed on both front and last pages. The information may be printed on the various positions on the upper or lower side of the sheet. The position on which the information is printed depends on the contents printed on the sheet. Thus, the detector should be moved to a proper position so as to detect the information.
However, the conventional machine is not configured to easily move the detector. An operator wastes time and effort to move the detector because he or she cannot easily access the detector installed in the machine in which there is a plurality of various parts. Additionally, in the conventional machine, an operator cannot confirm the exact position of the detector. Thus, the detection error is caused if the detector is not set at the proper position.
It is an object of the present invention to provide a sheet feeding machine, in which an operator can easily move the detector to the proper position thereof and confirm the exact position thereof.
A sheet feeding machine comprises:
a housing;
a feed section for feeding a plurality of sheets placed on a sheet tray in a feed direction; and
a detecting section having at least one detector for detecting information printed on the sheet, wherein
the detecting section comprises:
the support frame is accommodated in the housing when the detector detects the sheet fed from the feed section, and
the support frame is drawn out of the housing when the detector is moved along the guide rail.
According to a preferable embodiment,
the support frame comprises:
the guide mechanism comprises:
each of the telescopic arms is attached to the horizontal members of the support frame.
According to a preferable embodiment,
the machine further comprises:
attachments for detachably attaching the guide rail to the support frame, wherein
the attachments comprise:
the detector detects the information printed on an upper side of the sheet while the guide rail is attached to the upper portion,
the detector detects the information printed on a lower side of the sheet while the guide rail is attached to the lower portion.
According to a preferable embodiment,
the machine further comprises:
a reflective arm for reflecting light emitted from the detector, and wherein
the reflective arm is detachably attached to the upper and lower portions of the attachments in such a manner that the reflective arm extends in parallel to the guide rail when the reflective arm is attached to the support frame.
According to a preferable embodiment,
each of the upper and lower portions of the attachments is pin-shaped and projects from the support frame so as to be inserted into and removed from a hole which is formed on the guide rail.
According to a preferable embodiment,
the reflective arm has a scale for confirming an exact potion of the detector.
As above described, the sheet feeding machine according to the present invention comprises the housing, the feed section for feeding the sheets placed on a sheet tray in a feed direction, and the detecting section having at least one detector for detecting information printed on the sheet. The detecting section comprises the support frame for supporting the detector, the horizontal guide rail mounted on the support frame so as to guide the detector, and the guide mechanism arranged between the housing and the support frame for guiding the support frame in such a manner that the support frame moves into and out of the housing perpendicularly to the feed direction and in the horizontal direction.
Thus, an operator can draw the support frame together with the detector out of the housing so as to easily move the detector along the guide rail without wasting time and effort. Further, an operator can confirm the exact position of the detector so as to prevent the detection error from being caused by the improper position of the detector.
A sheet feeding machine according to the present invention will be explained below with reference to the accompanying drawings.
As shown in
The feed section 2 has a pair of sheet feeding rollers 21, 21 for feeding a sheet 40 in a feed direction 11. The top sheet 40 of the sheet stack 4 placed on the sheet tray 20 is fed one by one. A belt 22 is extended between the sheet feeding rollers 21, 21. The belt 22 is circulated by the sheet feeding rollers 21, 21. A plurality of holes is provided on the belt 22, and a suction device (not shown) is arranged inside the belt 22. Thus, the sheet 40 is sucked and conveyed by the circulated belt 22 in the feed direction 11. A sensor (not shown) detects the change of the height of the sheet stack 4. The sheet tray 20 moves up and down to adjust the height of the sheet 40 based on a detection signal of the sensor so that the sheet feeding rollers 21 can feed the top sheet 40 of the sheet stack 4 one by one.
The feed section 2 has a pair of first discharge rollers 23 and a pair of second discharge rollers 24. The first and second discharge rollers 23, 24 are spaced from each other in the feed direction 11. The first discharge rollers 23 are opposed to each other vertically and rotated respectively. The second discharge rollers 24 are also opposed to each other vertically and rotated respectively. The sheet 40 is fed by the sheet feeding rollers 21, and nipped between the first discharge rollers 23, and fed in the feed direction 11 by the first discharge rollers 23, and nipped between the second discharge rollers 24, and then fed in the feed direction 11 by the second discharge rollers 24. The sheet 40 is discharged from the machine and fed toward a book binding apparatus 10.
The machine comprises a detecting section 3. The detecting section 3 is disposed between the first and second discharge rollers 23, 24. The detecting section 3 has first and second detectors 30, 31. It is necessary to identify the front and last pages of a set of sheets 40 which corresponds to one volume, because the sheet stack 4 is configured by plural sets of sheets 40. Thus, information to be detected by the detectors 30, 31 is printed on the sheet 40 so as to identify the front and last pages.
As shown in
When the detector 30 does not detect the next first mark 41 (on the front page) right after detecting the second mark 42 (on the last page), the detector 30 sends a detection error signal to stop the machine. In this embodiment, two detectors 30, 31 are arranged for independently detecting the front and last pages, so that the accuracy of the detection of the error can be improved.
The detectors 30, 31 emit light and detect amount of the light reflected from the sheet 40 so as to detect the first and second marks 41, 42. When the first and second marks 41, 42 are printed on the upper side of the sheets 40, the first and second detectors 30, 31 are disposed above the sheets 40. The first detector 30 is arranged in such a manner that the first mark 41 can pass underneath the first detector 30. The second detector 31 is arranged in such a manner that the second mark 42 can pass underneath the second detector 31.
As shown in
As shown in
A reflective arm 34 is attached to the support frame 32 and disposed beneath the guide rail 33. The reflective arm 34 extends in parallel to the guide rail 33. The light emitted from the detectors 30, 31 is reflected by the upper side of the reflective arm 34. The reflective arm 34 has a scale at its front side. An operator can confirm the exact position of the detectors 30, 31 by use of the scale of the reflective arm 34. The detectors 30, 31 can be disposed properly in such a manner that the marks 41, 42 printed on the sheet 40 can pass underneath the detectors 30, 31.
The detecting section 3 has a guide mechanism 35 for guiding the support frame 32 perpendicularly to the feed direction 11 and in the horizontal direction 323. The support frame 32 can be moved into and out of the housing 1 by use of the guide mechanism 35. In this embodiment, the support frame 32 can pass through an opening 12 formed in the side wall of the housing 1 (
In this embodiment, the guide mechanism 35 comprises an upper and lower horizontal telescopic arms which are actuated perpendicularly to the feed direction 11. Each of the telescopic arms 35 comprises a first fixed rail 351 mounted on the horizontal member 320 of the support frame 32, a second fixed rail 352 mounted on the housing 1, and a slider 350 attached to the first and second fixed rails 351, 352. The slider 350 can slide along the first and second fixed rails 351, 352. Each of the telescopic arms 35 can be contracted by superimposing the first and second fixed rails 351, 352 and sliders 350 (
While the support frame 32 is accommodated in the housing 1 by contracting the telescopic arms 35, the detectors 30, 31 can detect the marks 41, 42 of the sheet 40. On the other hand, while the support frame 32 is drawing out of the housing 1 by expanding the telescopic arms 35, an operator can easily move the detectors 30, 31 at the outside of the housing 1 to position the detectors 30, 31. When the position of the marks 41, 42 are changed, an operator can draw the support frame 32 out of the housing 1 and easily adjust the positions of the detectors 30, 31 along the guide rail 33 at the outside of the housing 1. Thus, the operator can easily move the detectors 30, 31 and confirm the position thereof. A handle 322 is mounted on the support frame 32 in such a manner that the support frame 32 can be easily moved into and out of the housing 1.
As shown in
In case that the marks 41, 42 is printed on the lower side of the sheet 40, at first, the guide rail 33 and the reflective arm 34 are removed from the support frame 32 (
Although, in this embodiment, the guide mechanism 35 comprises the telescopic arms having the first and second fixed rails 351, 352 and sliders 350, another means may be used as the guide mechanism 35. For example, the another means may comprise the first fixed rails 351 mounted on the support frame 32 and the second fixed rails 352 mounted on the housing 1, and the first and second rails 351, 352 are engaged with each other for slide movement.
Although, in this embodiment, the detectors 30, 31 emits light toward the marks 41, 42, the constructions of the detectors 30, 31 are not limited to this embodiment. For example, if the information is a bar-code, bar-code readers should be used as the detectors 30, 31. If the front and last pages are identified based on contents printed on the sheet 40, CCD cameras may be used as the detectors 30, 31. If only one of the front and last page should be detected, a single detector is used for detecting information.
Although, in this embodiment, the attachments 36, 37 comprise the pin-shape members 36, 37 and the holes 330, 340, another means may be used. For example, a velvet fastener, a combination of bolt and nut and so on can be used as the attachments 36, 37.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/071880 | 9/26/2011 | WO | 00 | 6/26/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/046295 | 4/4/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5260583 | Rye | Nov 1993 | A |
6846121 | Bouverie et al. | Jan 2005 | B2 |
7187457 | Kobayashi | Mar 2007 | B2 |
20040252353 | Sano et al. | Dec 2004 | A1 |
20070144373 | Okura et al. | Jun 2007 | A1 |
20120001386 | Nishikata et al. | Jan 2012 | A1 |
20130099142 | Bouverie et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
55-135052 | Oct 1980 | JP |
2002-067408 | Mar 2002 | JP |
2005-012782 | Jan 2005 | JP |
2005-119797 | May 2005 | JP |
2007-167975 | Jul 2007 | JP |
Entry |
---|
International Search Report for PCT/JP2011/071880, Mailing Date of Nov. 1, 2011. |
International Preliminary Report on Patentability (form PCT/IB/373) dated Apr. 1, 2014, issued in International Application No. PCT/JP2011/071880 and form PCT/ISA/237 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20130270766 A1 | Oct 2013 | US |