The present invention relates to a shift register, and more particularly to a shift register provided in an active matrix substrate of a liquid crystal display panel or an organic EL display panel.
In recent years, liquid crystal display devices and organic EL display devices are becoming widespread which include a thin film transistor (hereinafter “TFT”) for each pixel. TFTs are made by using the semiconductor layer formed on a substrate such as a glass substrate. A substrate on which TFTs are formed is referred to as an active matrix substrate.
Conventionally, TFTs using an amorphous silicon film as the active layer (hereinafter “amorphous silicon TFTs”) and TFTs using a polycrystalline silicon film as the active layer (hereinafter “polycrystalline silicon TFTs”) are widely used as TFTs.
Since the carrier mobility of a polycrystalline silicon film is higher than an amorphous silicon film, a polycrystalline silicon TFT has a higher ON current than an amorphous silicon TFT and is capable of high-speed operation. In view of this, display panels have been developed in which not only TFTs for pixels but also some or all of TFTs for peripheral circuits such as drivers are formed by polycrystalline silicon TFTs. Drivers thus formed on an insulative substrate (typically, a glass substrate) forming a display panel may be called monolithic drivers. Drivers include a gate driver and a source driver, and only one of these may be a monolithic driver. Herein, a display panel refers to a portion of a liquid crystal display device or an organic EL display device including a display region, and does not include a backlight, a bezel, or the like, of the liquid crystal display device.
The production of polycrystalline silicon TFTs requires complicated processes such as a thermal annealing process or an ion doping process as well as a laser crystallization process for crystallizing an amorphous silicon film. Thus, currently, polycrystalline silicon TFTs are used mainly in medium and small display devices, and amorphous silicon TFTs are used in large display devices. In recent years, with increasing demands for increasing the image quality and reducing the power consumption in addition to increasing the size of display devices, proposals have been made (Patent Document No. 1, Patent Document No. 2 and Non-Patent Document No. 1) of TFTs using a micro-crystalline silicon (μc-Si) film as the active layer which have higher performance and lower manufacturing cost than amorphous TFTs. Such a TFT is called a “micro-crystalline silicon TFT”.
A micro-crystalline silicon film is a silicon film having the crystalline phase and the amorphous phase, and has a composition in which micro-crystal particles are dispersed in the amorphous phase. Each micro-crystal particle has a size (several hundreds nm or less) smaller than the size of a crystal particle included in the polycrystalline silicon film, and may be a columnar crystal.
The micro-crystalline silicon film can be formed by using a plasma CVD method, or the like, and does not require a heat treatment for crystallization, and therefore the facilities for manufacturing an amorphous silicon film can be used as they are. Since a micro-crystalline silicon film has higher carrier mobility than an amorphous silicon film, it is possible to obtain a TFT having higher performance than an amorphous silicon TFT.
For example, Patent Document No. 1 states that by using a micro-crystalline silicon film as the active layer of TFTs, it is possible to obtain an ON current that is 1.5 times that with an amorphous silicon TFT. Non-Patent Document No. 1 states that by using a semiconductor film made of micro-crystalline silicon and amorphous silicon, it is possible to obtain a TFT having an ON/OFF current ratio of 106, a mobility of about 1 cm2/Vs and a threshold value of about 5 V.
Moreover, Patent Document No. 2 discloses an inverted staggered TFT using micro-crystalline silicon.
Although micro-crystalline silicon TFTs have such advantages as described above, they have not yet been put to practical use. One reason is that a micro-crystalline silicon TFT has a high OFF current (=leak current).
It is possible to employ a multi-channel structure (referred to also as a multi-gate structure) used in polycrystalline silicon TFTs as a method for reducing the OFF current of TFTs. For example, Patent Document Nos. 3 and 4 disclose a liquid crystal display device and an organic EL display device using micro-crystalline silicon TFTs having a multi-gate channel structure. In these display devices, a multi-channel structure is employed for pixel TFTs, thereby reducing the OFF current of pixel TFTs and improving the voltage retention property of pixels.
Patent Document No. 1: Japanese Laid-Open Patent Publication No. 6-196701
Patent Document No. 2: Japanese Laid-Open Patent Publication No. 5-304171
Patent Document No. 3: Japanese Laid-Open Patent Publication No. 2005-51211
Patent Document No. 4: Japanese Laid-Open Patent Publication No. 2005-49832
Non-Patent Document No. 1: Zhongyang Xu, et al., “A Novel Thin-film Transistors With μc-Si/a-Si Dual Active Layer Structure For AM-LCD” IDW'96 Proceedings of The Third International Display Workshops VOLUME 1, 1996, p. 117-120
However, it has been found by a study of the present inventor that even if the OFF current of pixel TFTs is reduced, the display quality lowers or in some cases display cannot be produced when micro-crystalline silicon TFTs are used in the shift register forming the gate driver.
It has been found that this problem occurs because there is a large leak current in the sub-threshold region (the gate voltage Vg≧0 V) of some TFTs forming the shift register, thereby lowering the voltage of the gate electrode of the output transistor (pull-up transistor) of the shift register so that the output waveform is blunted or the output transistor is not turned ON, as will be described later.
The voltage Vds applied between the source and the drain of some TFTs forming the shift register is higher than the voltage Vds applied between the source and the drain of pixel TFTs, and may reach around 50 V at maximum for a medium liquid crystal display panel and may reach around 70 V at maximum for a large liquid crystal display panel, for example. While the problem is the OFF current when the gate voltage Vg (Vgs) is in a negative region for pixel TFTs, the gate voltage Vg (Vgs) of a TFT forming the shift register is around 0 V. For example, the relationship between the gate voltage Vg and the source-drain current Ids (referred to also as the Ids-Vg characteristics) of a micro-crystalline silicon TFT having a single-channel structure shown in
Note that the problem of TFT leak current in the sub-threshold region due to a high voltage applied as Vds described above also occurs in an amorphous silicon TFT. As the size of a liquid crystal display panel increases, techniques for forming drivers using amorphous silicon TFTs have been developed. Note that as a semiconductor material used in a TFT as an amorphous semiconductor film or a micro-crystalline semiconductor film, silicon germanium (SiGe) and silicon carbide (SiC) are known as well as silicon (Si), and have similar problems to those described above.
As described above, the use of an amorphous semiconductor film or a micro-crystalline semiconductor film provides an advantage that the manufacturing cost is lower than that when a polycrystalline semiconductor film is used, but the problem of the leak current in some TFTs forming the shift register is a problem that occurs irrespective of the type of the semiconductor film.
The present invention has been made in view of the problems described above, and a primary object thereof is to improve the characteristics of a shift register forming a monolithic gate driver.
Another object of the present invention is to provide a multi-channel TFT capable of reducing the OFF current as compared with a conventional multi-channel TFT described in Patent Document No. 3 or 4.
A shift register of the present invention is a shift register supported by an insulative substrate, wherein: the shift register includes a plurality of stages each sequentially outputting output signals; each of the plurality of stages includes a first transistor for outputting the output signals, and a plurality of second transistors whose source region or drain region is electrically connected to a gate electrode of the first transistor; and the plurality of second transistors include a multi-channel transistor having an active layer including at least two channel regions, a source region and a drain region.
In an embodiment, one of the plurality of second transistors having a highest source-drain voltage is the multi-channel transistor. Where some of the plurality of second transistors are multi-channel transistors, the source-drain voltage of a multi-channel transistor is higher than the source-drain voltage of one that is not a multi-channel transistor.
In an embodiment, all of the plurality of second transistors are the multi-channel transistors.
In an embodiment, the active layer includes a semiconductor film having an amorphous phase. The semiconductor film having an amorphous phase may be formed only by an amorphous semiconductor film, may be formed by a micro-crystalline semiconductor film, or may be formed by a layered film of an amorphous semiconductor film and a micro-crystalline semiconductor film.
In an embodiment, the semiconductor film is a micro-crystalline semiconductor film. The semiconductor film may be a polycrystalline semiconductor film.
In an embodiment, the active layer includes a polycrystalline semiconductor film.
In an embodiment, the gate electrode of the multi-channel transistor has a portion that overlaps with the source region and the drain region; an area of a portion of the gate electrode that overlaps with the drain region and an area of a portion of the gate electrode that overlaps with the source region are different from each other; and the area of the portion that is connected to the gate electrode of the first transistor is smaller than the area of the portion that is not connected to the gate electrode of the first transistor.
In an embodiment, a source region and a drain region of the first transistor have different sizes from each other, and one that is not connected to a gate bus line is smaller than one that is connected to the gate bus line.
In an embodiment, the active layer of the multi-channel transistor further includes at least one intermediate region formed between the at least two channel regions, and the at least two channel regions include a first channel region formed between the source region and the at least one intermediate region and a second channel region formed between the drain region and the at least one intermediate region; the multi-channel transistor further includes: a contact layer including a source contact region in contact with the source region, a drain contact region in contact with the drain region, and at least one intermediate contact region in contact with the at least one intermediate region; and a source electrode in contact with the source contact region, a drain electrode in contact with the drain contact region, and at least one intermediate electrode in contact with the at least one intermediate contact region; the gate electrode of the multi-channel transistor opposes the at least two channel regions and the at least one intermediate region with a gate insulating film interposed therebetween; and an entirety of a portion of the at least one intermediate electrode that is present between the first channel region and the second channel region overlaps with the gate electrode with the at least one intermediate region and the gate insulating film interposed therebetween.
In an embodiment, the gate electrode of the multi-channel transistor includes a portion that overlaps with the source region and the drain region; and an area of a portion of the gate electrode that overlaps with one of the source region and the drain region that is connected to the gate electrode of the first transistor is smaller than an area of a portion of the gate electrode that overlaps with the at least one intermediate region. When the drain region is connected to the gate electrode of the first transistor, it is preferred that at least the area of the portion of the gate electrode that overlaps with the drain region is smaller than the area of the portion of the gate electrode that overlaps with the at least one intermediate region. Then, the area of the portion of the gate electrode that overlaps with the source region may be smaller than the area of the portion of the gate electrode that overlaps with the at least one intermediate region.
In an embodiment, as seen in a direction vertical to the substrate, the at least one intermediate electrode of the multi-channel transistor includes a depressed portion, and the drain electrode includes a protruding portion in the depressed portion of the at least one intermediate electrode.
In an embodiment, as seen in a direction vertical to the substrate, the source electrode of the multi-channel transistor includes a depressed portion, and the at least one intermediate electrode includes a protruding portion in the depressed portion of the source electrode.
In an embodiment, the at least one intermediate region of the multi-channel transistor includes a first intermediate region and a second intermediate region, the at least one intermediate contact region includes a first intermediate contact region and a second intermediate contact region, and the at least one intermediate electrode includes a first intermediate electrode and a second intermediate electrode; and the at least two channel regions further include a third channel region, with the first channel region formed between the source electrode and the first intermediate electrode, the second channel region formed between the drain electrode and the second intermediate electrode, and the third channel region formed between the first intermediate electrode and the second intermediate electrode.
In an embodiment, the at least one intermediate contact region of the multi-channel transistor serves also as the at least one intermediate electrode.
That is, in an embodiment, the multi-channel transistor includes an active layer supported by a substrate including at least two channel regions, a source region, a drain region and at least one intermediate region formed between the at least two channel regions, a contact layer including a source contact region in contact with the source region, a drain contact region in contact with the drain region and at least one intermediate contact region in contact with the at least one intermediate region, a source electrode in contact with the source contact region, a drain electrode in contact with the drain contact region, and a gate electrode opposing the at least two channel regions and the at least one intermediate region with a gate insulating film interposed therebetween, wherein the at least two channel regions include a first channel region formed between the source region and the at least one intermediate region and a second channel region formed between the drain region and the at least one intermediate region, and an entirety of the portion of the at least one intermediate contact region that is present between the first channel region and the second channel region overlaps with the gate electrode with the at least one intermediate region and the gate insulating film interposed therebetween.
In an embodiment, the active layer is provided between the gate electrode and the substrate.
An active matrix substrate of the present invention includes a shift register according to any of the above paragraphs.
A display panel of the present invention includes a shift register according to any of the above paragraphs.
According to the present invention, it is possible to improve characteristics of a shift register using TFTs in which a semiconductor film including an amorphous phase is used as an active layer.
According to the present invention, it is possible to provide a multi-channel TFT capable of reducing the OFF current as compared with conventional techniques. By using the multi-channel TFT, characteristics of a shift register are further improved.
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
Embodiments of the shift register of the present invention will now be described with reference to the drawings. Although a shift register formed integral (monolithic) with a liquid crystal display panel will be described below as an example, the present invention is not limited to this.
a) is a schematic plan view of a liquid crystal display panel 100 of an embodiment of the present invention, and
A gate driver 110 and a source driver 120 are formed integral with the active matrix substrate 101. A plurality of pixels are formed in the display region of the liquid crystal display panel 100, and regions of the active matrix substrate 101 corresponding to the pixels are denoted by reference numeral 132. Note that the source driver 120 does not need to be formed integral with the active matrix substrate 101. A separately made source driver IC, or the like, may be mounted by a known method.
As shown in
An output of the gate driver 110 is connected to the gate bus line 101G, and the gate bus lines 101G are scanned in a line-sequential manner. The output of the source driver 120 is connected to the source bus line 101S, and a display signal voltage (grayscale voltage) is supplied thereto.
Next,
Each stage of the shift register 110A includes an input terminal S, output terminals OUT, a terminal for receiving, as a clock signal CK, one of three clock signals CK1, CK2 and CK3 whose phases are different from one another, and a terminal for receiving, as a clock signal CKB, another one of CK1, CK2 and CK3. That is, for one stage of the shift register 110A, the clock signal input as the clock signal CK and the clock signal input as the clock signal CKB are different from each other. A gate start pulse GSP is input to the input terminal S, and one output terminal OUT is connected to the corresponding gate bus line 101G while the other output terminal OUT is connected to the input terminal S of the next stage.
As shown in
In the present specification, a transistor which outputs the output signal Gout is referred to as a first transistor, and a transistor whose source region or drain region is connected to the first transistor is referred to as a second transistor. In
The output signal Gout is output from each stage to the gate bus line 101G only during the pixel write period. With respect to one stage, the configuration is such that the potential of the output signal Gout is fixed to VSS over most of one frame period (the period over which all the gate bus lines 101G are sequentially selected and until the subject gate bus line is selected).
By the S signal (the output signal Gout (n−1) of the preceding stage), netA is precharged, while netB is turned Low. This prevents the potential of netA precharged from leaking through a TFT MF.
Next, when the clock signal CK is High, netA is pulled up. Then, the output signal Gout(n) is output to the (nth) gate bus line 101G, thus turning ON the pixel TFT 101T connected to the gate bus line 101G and supplying a display signal voltage to the pixel electrode 101P from the source bus line 101S. That is, the liquid crystal capacitor formed by the pixel electrode 101P, the counter electrode (not shown) and the liquid crystal layer (not shown) therebetween is charged.
Thereafter, the clock signal CK goes Low, thereby pulling down netA.
Then, the clock signal CKB goes High, thereby bringing netB to High, and pulling down the potentials of netA and Gout to VSS.
Note that during the period in which the output signal Gout(n) is not output, netA and the potential of Gout are fixed to VSS by the TFT MF and the TFT MB, respectively, using the clock signal CKB.
Herein, a TFT MC being ON brings netB, which is the line connected to the gate electrode of the pull-down transistor TFT MB, to High. While the TFT MC is ON, the potential of the output signal Gout is kept Low. A TFT MD brings netB to Low when the S signal is input to the gate electrode. In order to precharge netA by the S signal, leakage from the TFT MF is prevented by bringing netB to Low. VDD is a DC voltage and is the same potential as High of the clock signal CK.
If the conventional circuit shown in
When netA is pulled up, a large voltage (Vds) is applied between the source and the drain of the second transistors (a TFT ME and the TFT MF (being OFF)) whose source or drain region is connected to netA (particularly, the TFT MF). Then, the voltage of netA being pulled up lowers due to the leak current of the TFT whose source region or drain region is connected to netA before it is made to fall by the clock signal CK (Low) as intended.
As the voltage of netA decreases, the output signal Gout is not turned High, or the waveform of the output signal Gout is blunted, failing to supply a sufficient voltage to the pixel electrode, thus lowering the display quality.
Thus, when a shift register is formed by using micro-crystalline silicon transistors, there occur problems due to leak current in the sub-threshold region of TFTs.
In the present invention, in order to solve problems described above, a multi-channel structure is employed for the TFT ME and the TFT MF which are second transistors, of the TFTs forming the shift register.
Since the TFT MEd and the TFT MFd have the dual-channel structure, the leak current in the TFT sub-threshold region is smaller than that of the conventional TFTs ME and MF having the single-channel structure, and it is possible to solve problems described above. That is, the blunting of the waveforms of netA and the output signal Gout is suppressed as shown in
Note that although the dual-channel structure is employed herein for all of the TFT ME and the TFT MF which are second transistors, the present invention is not limited to this, and if the dual-channel structure is employed for at least one TFT of the plurality of second transistors, the leak current can be reduced for the at least one transistor. Where the dual-channel structure is employed for some TFTs of the plurality of second transistors, it is preferred that the dual-channel structure is employed for the TFT MF of which the source-drain voltage Vds is highest. The gate electrode of the TFT MF is connected to the pull-down transistor (MB), and the source electrode or the drain electrode thereof is connected to VSS or the gate electrode (netA) of the output transistor (MA). It is understood that the multi-channel structure is preferably employed for all of the plurality of second transistors in view of the characteristics. By using a triple-channel structure rather than a dual-channel structure, it is possible to further enhance the effect of reducing the leak current. Generally, where the number of channels of a TFT having a multi-channel structure is n, the leak current can generally be made 1/n. These hold for all examples to be described below.
Next, referring to
As shown in
The output signal Gout is output from each stage to the gate bus line 101G only during the pixel write period. With respect to one stage, the configuration is such that the potential of Gout is fixed to VSS over most of one frame period (the period over which all the gate bus lines 101G are sequentially selected and until the subject gate bus line is selected).
By the S signal (the output signal Gout (n−1) of the preceding stage), netA is precharged. Then, the TFTs NH, MK and MN whose source region or drain region is connected to netA are OFF.
Next, when the clock signal CK is High, netA is pulled up. Then, the output signal Gout(n) is output to the (nth) gate bus line 101G, thus turning ON the pixel TFT 101T connected to the gate bus line 101G and supplying a display signal voltage to the pixel electrode 101P from the source bus line 101S. That is, the liquid crystal capacitor formed by the pixel electrode 101P, the counter electrode (not shown) and the liquid crystal layer (not shown) therebetween is charged.
Thereafter, by the reset signal R (the output signal Gout (n+1) of the following stage), the potentials of netA and Gout are pulled down to VSS.
Note that during the period in which the output signal Gout(n) is not output, netA and the potential of Gout are fixed to VSS by the TFT MK and TFT ML, respectively, using the clock signal CK and the clock signal CKB.
Herein, a capacitor CAP1 maintains the potential of netA and assists the output. A TFT MJ brings the potential of the output signal Gout to Low in response to the reset signal R. The TFT ML brings the potential of the output signal Gout to Low in response to the clock signal CKB. Once per frame (vertical scanning period), a clear signal CLR is supplied to all stages of the shift register to bring netA to Low for all stages during the vertical blanking interval (the interval from when the final stage of the shift register outputs to when the first stage outputs). Note that the clear signal CLR serves also as a reset signal for the final stage of the shift register.
If the conventional circuit shown in
In the present invention, in order to solve problems described above, a multi-channel structure is employed for the TFT MH, the TFT MK, the TFT MM and the TFT MN which are second transistors, of the TFTs forming the shift register.
Since the TFT MHd, the TFT MKd, the TFT MMd and the TFT MNd have the dual-channel structure, the leak current in the TFT sub-threshold region is smaller than that of the conventional TFTs MH, MK, MM and MN having the single-channel structure, and it is possible to solve problems described above.
Note that although the dual-channel structure is employed herein for all of the TFT MH, the TFT MK, the TFT MM and the TFT MN which are second transistors, the present invention is not limited to this, and if the dual-channel structure is employed for at least one TFT of the plurality of second transistors, the leak current can be reduced for the at least one transistor. Where the dual-channel structure is employed for some TFTs of the plurality of second transistors, it is preferred that the dual-channel structure is employed for the TFT MB, the TFT ML and the TFT MM of which the source-drain voltage Vds is highest. The gate electrode of the TFT MB is connected to the output of the preceding stage (Gout(n−1)), and the source electrode or the drain electrode thereof is connected to the gate electrode of the output transistor TFT MG (netA) or VSS. The gate electrode of the TFT MK is connected to the line of the clock signal CK, and the source electrode or the drain electrode thereof is connected to the gate electrode of the output transistor TFT MG (netA) or VSS. The TFT MM has its gate electrode and source electrode connected to each other (diode connection), and the output (S signal) of the preceding stage is supplied to the gate electrode thereof. The drain electrode of the TFT MM is connected to the gate electrode of the TFT MG (netA). It is understood that the multi-channel structure is preferably employed for all of the plurality of second transistors in view of the characteristics.
The present invention can be used in various types of shift registers. Examples of shift registers in which the present invention can be used will be described with reference to
a) shows a circuit diagram of one stage of another shift register of an embodiment of the present invention. This shift register is formed by cascading together a plurality of stages each having substantially the same circuit as that shown in
In
Herein, the source electrode or the drain electrode of the TFT M1 is connected to the line of the clock signal (CKA) or the gate bus line for outputting the output signal Gout. The source electrode or the drain electrode of the TFT M2d is connected to the gate electrode of the TFT M1 or VSS, and the gate electrode of the TFT M2d is connected to the output (Qn+1) of the following stage. The TFT M2d brings netA to Low at the reset timing. The drain electrode of the TFT M3d is connected to the gate electrode of the TFT M1. The output (Qn−1) of the preceding stage is input to the source electrode and the gate electrode of the TFT M3d which are connected in diode connection. The gate electrode of a TFT M4 is connected to the line of the clock signal (CKB), and the source electrode or the drain electrode is connected to the gate bus line (Gout) or VSS. The TFT M4 serves to prevent potential fluctuation of the output signal Gout when not selected. A capacitor C1 is a capacitor for assisting the output, and prevents the potential of netA from lowering when selected.
a) shows a circuit diagram of one stage of another shift register of an embodiment of the present invention.
In
Here, the source electrode or the drain electrode of the TFT M5 is connected to the line of the clock signal (CKA) or the gate bus line (Gout). The source electrode or the drain electrode of the TFT M8d is connected to the gate electrode of the TFT M5 or VSS. The gate electrode of the TFT M8d is connected to the output (Qn+1) of the following stage, and brings netA to Low at the reset timing. The drain electrode of the TFT M9d is connected to the gate electrode of the TFT M5, and the output signal (Qn−1) of the preceding stage is input to the source electrode and the gate electrode of the TFT M9d which are connected in diode connection. The source electrode or the drain electrode of TFTs M6, M7 and M10 is connected to the gate bus line (Gout) or VSS, and the gate electrodes thereof are connected to lines of clock signals whose phases are different from one another. A capacitor C2 is a capacitor for assisting the output, and prevents the potential of netA from lowering when selected.
As shown in the timing chart of
In
The source electrode or the drain electrode of the TFT M11 is connected to the line of the clock signal (CK1) or the gate bus line (OUT1, 2 or 3). The source electrode or the drain electrode of the TFT M13d is connected to the gate electrode of the TFT M11 or VSS. The gate electrode of the TFT M13d is connected to the output of the following stage (the output of the TFT M11 of the following stage). The TFT M13d brings netA to Low at the reset timing. The drain electrode of the TFT M12d is connected to the gate electrode of the TFT M11, and the output of the preceding stage (the output signal of the TFT M11 of the preceding stage) is input to the source electrode and the gate electrode of the TFT M12d which are connected in diode connection.
Note that the shift registers shown in
In
The source electrode or the drain electrode of the TFT M15 is connected to the line of the clock signal (CKA) or the gate bus line (Gout(n)). The source electrode or the drain electrode of the TFT M16d is connected to the gate electrode of the TFT M15 or VSS. The gate electrode of the TFT M16d is connected to the output (Gout(n+1)) of the following stage. The TFT M16d brings netA to Low at the reset timing. The gate electrode of the TFT M21d is connected to the TFT M15, and the output (Gout(n−1)) of the preceding stage is input to the source electrode and the gate electrode of the TFT M21d which are connected in diode connection. The source electrode or the drain electrode of the TFT M19d is connected to the gate electrode of the TFT M15 or the gate bus line (Gout(n)), and the gate electrode of the TFT M19d is connected to the line of the clock signal (CKA). The source electrode or the drain electrode of the TFT M22d is connected to the gate electrode of the TFT M15 or VSS, and the clear signal CLR is input to the gate electrode of the TFT M22d. Once per frame (vertical scanning period), a clear signal CLR is supplied to all stages of the shift register to bring netA to Low for all stages during the vertical blanking interval (the interval from when the final stage of the shift register outputs to when the first stage outputs). Note that the clear signal CLR serves also as a reset signal for the final stage of the shift register. The source electrode or the drain electrode of a TFT M17 is connected to the gate bus line (Gout(n)) or VSS, and the gate electrode thereof is connected to the output (Gout(n−1)) of the following stage. The source electrode or the drain electrode of a TFT M18 and a TFT M20 is connected to the gate bus line (Gout(n)) or VSS, and the gate electrodes thereof are connected to lines of clock signals whose phases are different from each other.
The shift register shown in
The drain electrode of the TFT M21d is connected to the gate electrode of the TFT M15. The output (Gout(n−2)) of the stage before the preceding stage is input to the source electrode and the gate electrode of the TFT M21d which are connected in diode connection. The source electrode or the drain electrode of the TFT M18 and the TFT M20 is connected to the gate bus line (Gout(n)) or VSS, and the gate electrodes thereof are connected to lines of clock signals whose phases are equal to each other.
In
Note that the circuit shown in
The present invention can also be applied to the shift register disclosed in Japanese National Phase PCT Laid-Open Publication No. 10-500243. The disclosure of this publication is herein entirely incorporated by reference.
The source electrode or the drain electrode of the TFT M23 is connected to the line of the clock signal Φ1 or the gate bus line (Gout(n)). The gate electrode of the TFT M23 is connected to the node to be bootstrapped (netA in
Moreover, the present invention can also be applied to the shift register disclosed in Japanese Laid-Open Patent Publication No. 2005-50502. The disclosure of this publication is herein entirely incorporated by reference.
For example, in
The source electrode or the drain electrode of the TFT Q2 is connected to the line of the clock signal (CK) or the gate bus line (OUT). The drain electrode of the TFT Q1 is connected to the gate electrode of the TFT Q2. The output signal of the preceding stage, for example, is input as the input signal to the source electrode and the gate electrode of the TFT Q1 which are connected in diode connection. The source electrode or the drain electrode of the TFT Q5 is connected to the gate electrode of the TFT Q2 or the gate bus line (OUT), and the gate electrode of the TFT Q5 is connected to the line of the clock signal (CK). The source electrode or the drain electrode of the TFT Q4 is connected to the gate electrode of the TFT Q2 or VOFF (DC), and the output signal of the following stage, for example, is input as the input signal to the gate electrode of the TFT Q4. The source electrode or the drain electrode of the TFT Q3 is connected to the gate bus line (OUT) or VOFF (DC), and the output signal of the following stage, for example, is input as the input signal to the gate electrode of the TFT Q3.
While multi-channel TFTs to be used in the shift register described above may be those disclosed in Patent Document No. 3 or 4, etc., it is preferred to use multi-channel TFTs to be described below of an embodiment of the present invention.
[Multi-Channel TFT]
Embodiments of the semiconductor device of the present invention will now be described with reference to the drawings. Although a TFT including a micro-crystalline silicon film as the active layer will be described hereinbelow as an example, the present invention is not limited to this.
The TFT 10 has a dual-channel structure, and has a structure that is electrically equivalent to two TFTs connected in series as shown in the equivalent circuit diagram of
The TFT 10 includes an active layer 14 supported by a substrate (e.g., a glass substrate) 11. The active layer 14 is a semiconductor layer, and herein includes a micro-crystalline silicon film. The active layer 14 includes channel regions 14c1 and 14c2, a source region 14s, a drain region 14d, and an intermediate region 14m formed between the two channel regions 14c1 and 14c2. Although an example where there are one intermediate region 14m and two channel regions 14c1 and 14c2 is illustrated herein, the present invention is not limited to this, and there may be two or more intermediate regions and three or more channel regions.
The TFT 10 further includes: a contact layer 16 including a source contact region 16s in contact with the source region 14s, a drain contact region 16d in contact with the drain region 14d, and an intermediate contact region 16m in contact with the intermediate region 14m; a source electrode 18s in contact with the source contact region 16s, a drain electrode 18d in contact with the drain contact region 16d, and an intermediate electrode 18m in contact with the intermediate contact region 16m; and a gate electrode 12 opposing the two channel regions 14c1 and 14c2 and the intermediate region 14m with a gate insulating film 13 interposed therebetween. The intermediate electrode 18m is a so-called floating electrode which does not form an electric connection anywhere. The TFT 10 further includes a protection film 19 covering these.
The first channel region 14c1 is formed between the source region 14s and the intermediate region 14m, and the second channel region 14c2 is formed between the drain region 14d and the intermediate region 14m. The two channel regions 14c1 and 14c2, the source region 14s, the drain region 14d, and the intermediate region 14m are all formed in a single continuous active layer 14. The entirety of a portion of the intermediate electrode 18m that is present between the first channel region 14c1 and the second channel region 14c2 overlaps with the gate electrode 12 with the intermediate region 14m and the gate insulating film 13 interposed therebetween.
Although the entirety of the intermediate electrode 18m herein overlaps with the gate electrode 12 with the intermediate region 14m and the gate insulating film 13 interposed therebetween, the present invention is not limited to this. For example, where the intermediate electrode 18m is provided so as to extend to the outside of the region between the first channel region 14c1 and the second channel region 14c2 which are located on opposite sides thereof, e.g., where it extends in the up-down direction in
The TFT 10 differs from the TFT described in Patent Document Nos. 3 and 4 (TFT 90 shown in
Note that as is clear from the cross-sectional structure shown in
The active layer 14 of the TFT 10 is formed by a micro-crystalline silicon film or a layered film of a micro-crystalline silicon film and an amorphous silicon film, and can be manufactured using a conventional process for manufacturing an amorphous silicon TFT. A micro-crystalline silicon film can be formed by using a plasma CVD method similar to a method of making an amorphous silicon film using a silane gas diluted with a hydrogen gas as the material gas, for example.
A micro-crystalline silicon film will now be described in detail.
A micro-crystalline silicon film has a structure in which the crystalline silicon phase and the amorphous silicon phase are mixed. The volume percentage of the amorphous phase in the micro-crystalline silicon film can be controlled in the range of 5% or more and 95% or less, for example. Note that the volume percentage of the amorphous phase is preferably 5% or more and 40% or less, and it is possible to thereby effectively improve the ON/OFF ratio of the TFT. When Raman scattered spectroscopy using visible light is performed on a micro-crystalline silicon film, the spectrum has the highest peak at the wavelength of 520 cm−1, which is the peak of crystalline silicon, and has a broad peak at the wavelength of 480 cm−1, which is the peak of amorphous silicon. The peak height of amorphous silicon in the vicinity of 480 cm−1 is 1/30 or more and 1 or less, for example, of the peak height of crystalline silicon seen in the vicinity of 520 cm−1.
For the purpose of comparison, when Raman scattered spectroscopy is performed on a polycrystalline silicon film, hardly any amorphous component is observed with the peak height for amorphous silicon being substantially zero. Note that there are cases where the amorphous phase remains locally depending on crystallization conditions when forming the polycrystalline silicon film, but even in such cases, the volume percentage of the amorphous phase in the polycrystalline silicon film is generally less than 5%, with the peak height for amorphous silicon by Raman scattered spectroscopy being generally less than 1/30 of the peak height for polycrystalline silicon.
A micro-crystalline silicon film includes crystal particles and amorphous phase. A thin amorphous layer (hereinafter referred to as an “incubation layer”) may be formed on the substrate side of the micro-crystalline silicon film. The thickness of the incubation layer is some nm, for example, though it depends on the deposition conditions of the micro-crystalline silicon film. Note however that there are cases where substantially no incubation layer is observed depending on the deposition conditions and the deposition method of the micro-crystalline silicon film, e.g., particularly, cases where high-density plasma CVD is used.
Crystal particles included in a micro-crystalline silicon film are typically smaller than crystal particles forming a polycrystalline silicon film. Observing a cross section of a micro-crystalline silicon film using a transmission electron microscope (TEM) shows that the average particle diameter of the crystal particles is generally 2 nm or more and 300 nm or less. Crystal particles may be in such a form that it extends in a columnar shape from the incubation layer to the upper surface of the micro-crystalline silicon film. When the diameter of the crystal particles is about 10 nm and when the volume percentage of the crystal particles with respect to the entire micro-crystalline silicon film is 60% or more and 85% or less, it is possible to obtain a high-quality micro-crystalline silicon film with few defects in the film.
Micro-crystalline silicon includes crystal particles and therefore has a higher carrier mobility than amorphous silicon but has a smaller bandgap and is likely to have defects formed in the film as compared with amorphous silicon. Therefore, a micro-crystalline silicon TFT has a problem that the OFF current is large. With the TFT 10 of an embodiment of the present invention, the OFF current of the TFT can be reduced by the novel multi-gate structure.
A structure of a TFT 90 of Reference Example will now be described with reference to
A gate electrode 92 of the TFT 90 is branched into two, and has two gate branch portions 92a and 92b. Active layers 94a and 94b corresponding respectively to the two gate branch portions 92a and 92b are formed separately with a gate insulating film 93 which covers the gate electrode 92 interposed therebetween. The active layer 94a includes a source region 94s, a first channel region 94c1 and a first intermediate region 94ma formed therein, and the active layer 94b includes a drain region 94d, a second channel region 94c2 and a second intermediate region 94mb formed therein. A source electrode 98s is formed so as to oppose the source region 94s with a source contact layer 96s interposed therebetween, and a drain electrode 98d is formed so as to oppose the drain region 94d with a drain contact layer 96d interposed therebetween. The TFT 90 further includes a protection film 99 covering these.
An intermediate electrode 98m of the TFT 90 is formed so as to oppose the intermediate region 94ma with an intermediate contact layer 96ma interposed therebetween and oppose the intermediate region 94mb with an intermediate contact layer 96mb interposed therebetween. The intermediate electrode 98m is formed so as to bridge between the two active layers 94a and 94b and between two gate branch portions 92a and 92b, and the portion of the intermediate electrode 98m that is present between the first channel region 94c1 and the second channel region 94c2 includes a portion that does not overlap with any of the active layers 94a and 94b and the gate electrode 92.
Although the equivalent circuit of the TFT 90 is the same as the equivalent circuit of the TFT 10 shown in
First, the TFT 10 can reduce the OFF current more than the TFT 90. The reason will be described below.
As shown in
In contrast, as shown in
As is clear from
Next, referring to
Here, the dual-channel structure is a structure similar to that of the TFT 10 shown in
First, observing results of
As is clear from
Table 1 below shows values of source-drain OFF current for a case where the gate voltage is 0 V and the source-drain voltage Vds is 40 V and those for a case where the gate voltage is −29 V and the source-drain voltage Vds is 10 V.
As can be seen from the results of Table 1, where Vds is 40 V, the OFF current when the gate voltage Vg is 0 V can be reduced by one or two orders of magnitude by employing a dual-channel structure or a triple-channel structure, as compared with a single-channel structure. On the other hand, where Vds is 10 V, the OFF current when the gate voltage Vg is −29 V can be reduced by about one order of magnitude by employing a dual-channel structure or a triple-channel structure, as compared with a single-channel structure.
As described above, it can be seen that the OFF current of a TFT can be effectively reduced by employing a multi-channel structure of the present invention. That is, with the present invention, it is possible to reduce the leak current in the OFF region as well as the leak current in the sub-threshold region of a TFT. Therefore, by forming a shift register using TFTs of the present invention, it is possible to improve the characteristics of the shift register. By using TFTs of the present invention as pixel TFTs, as described in Patent Document No. 3 or 4, it is possible to improve the voltage retention characteristics of pixels.
Employing a multi-channel structure of the present invention provides an advantage that a TFT can be made smaller than a TFT having a conventional multi-channel structure.
Reference is made again to
The length of the TFT 10 in the channel direction (the direction from the source electrode 18s to the drain electrode 18d) is given as 2L1+2L2+L3, as can be seen from
In contrast, the length of the TFT 90 in the channel direction (the direction from the source electrode 98s to the drain electrode 98d) is given as 2L1+2L2+2L4+L5, as can be seen from
Thus, by employing the novel dual-channel structure of the present invention, TFTs can be made smaller.
Next, referring to
First, as shown in
Next, as shown in
The deposition of the SiNx film 13 is performed under conditions including a substrate temperature: 300° C., a pressure: 50-300 Pa and a power density: 10-20 mW/cm2, using a deposition chamber having a parallel plate (capacitive coupling) electrode structure, for example. A mixed gas of silane (SiH4), ammonium (NH3) and nitrogen (N2) is used as the gas for deposition.
The deposition of the micro-crystalline silicon film 14 is performed under conditions including a substrate temperature: 250-350° C., a pressure: 0.5-5 Pa and a power density: 100-200 mW/cm2, using an ICP-type high-density PECVD, and a silane gas diluted with a hydrogen gas is used as the gas for deposition. The flow rate between silane (SiH4) and hydrogen (H2) is set to 1:1-1:10.
The deposition of the N+ silicon film 16 is performed under conditions including a substrate temperature: 250-300° C., a pressure: 50-300 Pa and a power density: 10-20 mW/cm2 using a deposition chamber having a parallel plate (capacitive coupling) electrode structure. A mixed gas of silane (SiH4), hydrogen (H2) and phosphine (PH3) is used as the gas for deposition.
Thereafter, the micro-crystalline silicon film 14 and the N+ silicon film 16 are patterned, thereby obtaining the active layer 14 and the contact layer 16, as shown in
Next, as shown in
By etching the contact layer (N+ silicon film) 16 by a dry etching method using a mask (e.g., a photoresist layer) which is used for etching the metal film, it is divided into the source contact region 16s, the drain contact region 16d and the intermediate contact region 16m. In this process, a portion of the active layer (micro-crystalline silicon film) 14 is also etched (channel etching). The remaining film thickness of the active layer 14 is about 40 nm.
Next, as shown in
Moreover, as shown in
The active matrix substrate 101 having the TFT 10 connected to the pixel electrode 24 is obtained as described above.
Next, referring to
a) is a schematic plan view of a TFT 10A, and
The TFT 10A shown in
A feature of the TFT 10A is that the area of the portion of the gate electrode 12 that overlaps with the drain region is smaller than the area of the portion of the gate electrode 12 that overlaps with the source region.
As shown in
In the TFT 10A shown in
Thus, since the drain electrode 18da, the intermediate electrode 18ma and the source electrode 18sa of the TFT 10A shown in
Note that even if the configuration on the left side of the intermediate electrode 18ma of the TFT 10A in
Even if the configuration on the right side of the intermediate electrode 18ma of the TFT 10A in
Thus, also when one of the right side or the left side of the intermediate electrode 18ma of the TFT 10A shown in
As described above, by setting the area of the portion of the gate electrode 12 that overlaps with the drain region to be small, it is possible to reduce the OFF current of the TFT.
Note that the TFT 10B shown in
As can be seen from
Note that the magnitude of the OFF current depends on the area of the portion of the gate electrode 12 that overlaps with the drain region, and in that sense the relative magnitude with respect to the area of the portion of the gate electrode 12 that overlaps with the source region is not important. Note however that if the area of the portion of the gate electrode 12 that overlaps with the drain region is set to be small in order to reduce the OFF current of the TFT, an asymmetric configuration is obtained where the area of the portion of the gate electrode 12 that overlaps with the drain region is smaller than the area of the portion of the gate electrode 12 that overlaps with the source region.
As is well known in the art, the characteristics of a TFT depend on the channel width, and it is preferred that the channel width is large. By providing the U-shaped depressed portions 18ma2 and 18sa1 as in the intermediate electrode 18ma and the source electrode 18sa shown in
Next, referring to
a) shows a schematic plan view of a TFT 10C of an embodiment of the present invention. The TFT 10C has a dual-channel structure as does the TFT 10 shown in
b) shows a schematic plan view of a TFT 10D of an embodiment of the present invention. The TFT 10D has a triple-channel structure including two intermediate electrodes 18md1 and 18md2, as opposed to the TFT 10A shown in
Note that although not shown, a first intermediate contact region is formed in the contact layer under the first intermediate electrode 18md1, and a first intermediate region is formed in the active layer under the first intermediate contact region. A second intermediate contact region is formed in the contact layer under the second intermediate electrode 18md2, and a second intermediate region is formed in the active layer under the second intermediate contact region.
For each of the three channels of the TFT 10D, the portion that serves as the drain electrode is a protruding portion (the protruding portions of the intermediate electrodes 18md1 and 18md2 and the protruding portion of the drain electrode 18dd) and the area thereof that that overlaps with the gate electrode 12 is small, thus providing a significant effect of reducing the OFF current. The area of the portion of the gate electrode 12 that overlaps with the drain region and the area of the portion of the gate electrode 12 that overlaps with the source region are each smaller than the area of the portion of the gate electrode 12 that overlaps with the intermediate region. For each of the three channels, the portion that serves as the source electrode has a U-shaped depressed portion, and the protruding portion of the intermediate electrode 18md1, 18md2 or the protruding portion of the drain electrode 18dd is present in each depressed portion. Therefore, the three channel regions have a large width, and have desirable TFT characteristics. Where the TFT 10D is used as the second transistor of the shift register described above, it is preferred that the drain electrode 18dd is connected to netA (the gate electrode of the first transistor).
c) shows a schematic plan view of a TFT 10E of an embodiment of the present invention. The TFT 10E has a triple-channel structure including two intermediate electrodes 18me1 and 18me2, as does the TFT 10D shown in FIG. 28(b). That is, a first channel region is formed between a source electrode 18se and the first intermediate electrode 18me1, a second channel region is formed between a drain electrode 18de and the second intermediate electrode 18me2, and a third channel region is formed between the first intermediate electrode 18me1 and the second intermediate electrode 18me2. The second intermediate electrode 18me2 has an H shape, and has a U-shaped depressed portion on the drain side and on the source side. The protruding portion of the drain electrode 18de is present in one of the depressed portions of the second intermediate electrode 18me2, and one end of the rectangular first intermediate electrode 18me1 is present in the other depressed portion of the second intermediate electrode 18me2. The source electrode 18se has a U-shaped depressed portion, and the other end of the first intermediate electrode 18me1 is present in the depressed portion of the source electrode 18se.
The TFT 10E also has a configuration where the area of the portion of the gate electrode 12 that overlaps with the drain region is smaller than the area of the portion of the gate electrode 12 that overlaps with the source region, and has an advantage that the OFF current is small. The area of the portion of the gate electrode 12 that overlaps with the drain region and the area of the portion of the gate electrode 12 that overlaps with the source region are each smaller than the area of the portion of the gate electrode 12 that overlaps with the intermediate region. Where the TFT 10E is used as the second transistor of the shift register described above, it is preferred that the drain electrode 18de is connected to netA (the gate electrode of the first transistor).
Referring to
a) shows a schematic cross-sectional view of a TFT 10F of an embodiment of the present invention. While the TFT 10 shown in
The TFT 10F is made by adding a step of forming an etch stop layer 17 after the deposition of the micro-crystalline silicon film 14 in the manufacturing process of the TFT 10 shown in
With the presence of the etch stop layer 17, the active layer (micro-crystalline silicon film) 14 is not etched when the contact layer (N+ silicon film) 16 is etched so as to divide it into the source contact region 16s, the drain contact region 16d and the intermediate contact region 16m. Therefore, there is an advantage that the thickness of the active layer 14 can be controlled in the deposition step. There is also an advantage that the active layer 14 is not damaged by the etching. Moreover, there is also an advantage that the process stability is high because the gate insulating film 13, the active layer 14 and the etch stop layer 17 can be deposited continuously.
The TFT of an embodiment of the present invention may be a top gate type (staggered type) TFT as shown in
A TFT 10G shown in
Thus, employing a top gate type provides an advantage that the vicinity of the uppermost surface of the active layer 14 formed from the micro-crystalline silicon film can be used as a channel region. When a micro-crystalline silicon film is formed on a substrate, a layer made of amorphous phase which is called an “incubation layer” may be formed in the lowermost layer. Particularly, since the portion in contact with the substrate is formed in the initial period of deposition, it is likely to include voids and has a low mobility. By employing a top gate type, no incubation layer is included in the channel region, and it is therefore possible to make full use of the high mobility of the micro-crystalline silicon film.
A TFT 10H shown in
Also having a top gate structure, as does the TFT 10G, the TFT 10H provides an advantage that the vicinity of the uppermost surface of the active layer 14h formed from the micro-crystalline silicon film can be used as a channel region. Moreover, in the TFT 10H, since the intermediate contact region 16mh serves also as an intermediate electrode, there is an advantage that the step of forming the intermediate electrode can be omitted. The configuration where the intermediate contact region serves also as an intermediate electrode is not limited to the TFT 10H, but may also be applied to other TFTs described above.
As described above, the TFT of an embodiment of the present invention may be of either the bottom gate type or the top gate type, and is capable of reducing the OFF current. By including a micro-crystalline silicon film as the active layer, the TFT of an embodiment of the present invention can have a high mobility and a low OFF current. The effect is obtained not only when only a micro-crystalline silicon film is provided as the active layer, but also when a layered film of a micro-crystalline silicon film and an amorphous silicon film is provided. Note that in order to make use of the high mobility of the micro-crystalline silicon film, it is preferred that a micro-crystalline silicon film is provided closer to the gate electrode than an amorphous silicon film so that a channel is formed in the micro-crystalline silicon film. Although the TFT of an embodiment of the present invention has been described herein with an example of a semiconductor film made only of silicon, the embodiment of the present invention is not limited by the type of the semiconductor film, and can be applied to TFTs having other micro-crystalline semiconductor films, e.g., micro-crystalline SiGe films and micro-crystalline SiC films, with which it is desirable to reduce the OFF current. Note that although the use of amorphous silicon or micro-crystalline silicon is advantageous in terms of the mass productivity as described above, polycrystalline silicon may also be used.
The semiconductor device of the present invention can be widely applied to devices having thin film transistors, including circuit substrates such as active matrix substrates, display devices such as liquid crystal display devices, organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, image sensing devices such as flat panel X-ray image sensor devices, and electronic devices such as image input devices and fingerprint reader devices.
10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H TFT
11 Substrate (glass substrate)
12 Gate electrode
13 Gate insulating film
14 Active layer (semiconductor layer)
14
c
1, 14c2 Channel region
14
s Source region
14
d Drain region
14
m Intermediate region
16 Contact layer
16
s Source contact region
16
d Drain contact region
16
m Intermediate contact region
17 Etch stop layer
18
s Source electrode
18
d Drain electrode
18
m Intermediate electrode
19 Protection film
Number | Date | Country | Kind |
---|---|---|---|
2008-297297 | Nov 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/006227 | 11/19/2009 | WO | 00 | 6/7/2011 |