The invention relates to a method and apparatus for monitoring a network of wireless short range radio-frequency devices. In particular, but not exclusively, the invention relates to apparatus for forming a network of items which can be organised in groups and enable a user to determine the presence and/or absence one or more of the items within the network. Additionally, the invention relates to apparatus for enabling determination of the proximity and/or orientation of a device within the network relative to a master device.
It is known for two or more wireless short range radio-frequency devices, or Bluetooth (trademark) devices, to form a private network known as a piconet. A piconet comprises, a master device and up to a maximum (according to the Bluetooth standard) of seven active slave devices.
The use of piconets to form ad-hoc networks to transfer data between devices is well known, however there is currently no example of using a master device to maintain and monitor a portable piconet by measuring the distance between the master and slave devices. The Bluetooth standard does not specify a mechanism for calculating the separation of devices and as such it is impossible to perform a single calculation to calculate the distance between devices in a piconet that will work on all Bluetooth enabled devices. Furthermore, there are no examples of a portable device that is able to determine the bearings of a slave Bluetooth device with respect to the master device. The currently known methods for determining the bearings require triangulation between two or more fixed devices to determine the location of a portable slave device.
To mitigate at least some of the problems in the prior art there is provided according to an aspect of the invention a wireless short range radio-frequency master device adapted to create and maintain a portable private network of wireless short range radio-frequency slave devices wherein the master device is configured to detect and register suitable slave devices for a network, and is capable of determining the proximity of any registered slave device with respect to the master device in use, the master device further being adapted to enable a user to define two or more groups of registered slave devices selected from the total number of registered slave devices and to enable a user to select a defined group of such registered slave devices as an active group, thereby forming an active portable private network of wireless short range radio frequency devices comprising the master device and selected registered slave devices within the selected group.
In a further aspect of the invention there is also provided a system for the creation of and maintaining of a portable private network of wireless short range radio-frequency devices, comprising a master device as set out in any of the above claims and one or more slave devices, that are enabled to form a portable private network when activated by the master device.
In yet another aspect of the invention there is provided a method of creating and maintaining a portable private network of wireless short range radio-frequency device, comprising a master device and one or more slave devices, the method comprising the steps of; detection of the slave devices by the master device, registration of the slave device to the master device and assigning the slave device to one or more groups, selection and activation of a group of slave devices, the group defining the active slave devices that form the portable private network.
In a further aspect of the invention there is provided a method for determining the separation between at least two portable wireless short range radio-frequency devices, comprising a master device and one or more slave devices the method comprising the steps of; detection of one or more slave devices within communication range of the master device, measurement of the received and transmitted signal strength between the master and slave devices, determination of the range of the slave devices with respect to the master device based on the measured signal strength, where the signal strength is determined by a combination of one or more of the following; a measure of the strength of the master transmitted signal as received by a slave device, a ratio of the strength of the signal received by the slave device to the strength of the signal transmitted by the master device, a ratio of the strength of the signal received by the master device to the strength of the signal transmitted by the slave device, a determination of the threshold of detection of a slave device by variation of the strength of the master transmitter signal, a determination of the path loss rate as decibel loss of signal strength between the master and slave devices, a determination of the bit error rate by measure of number of packets of data lost between the master device and a slave device, a calibration of the change in signal strength received by a slave device due to a change in the separation between the master and slave devices, by measurement of the strength of the signal received by the slave device from the master device at one or more known separations from the master device, a calibration of the slave device transmitter and receiver by querying the device for manufacturer information, comparing the response to a list of known previously calibrated devices.
In another aspect of the invention there is provided a system for determining the distance between at least two portable wireless short range radio-frequency devices, comprising a master device and one or more slave devices, the master device being configured to detect one or more slave devices within communication range of the master device, the master device being further configured to measure the received and/or transmitted signal strength between the master and slave devices, and being enabled to calculate the range between itself and the slave devices based in the measured signal strength.
According to another aspect of the invention there is provided a wireless short range radio-frequency master device for determining the positions of one or more wireless short range radio-frequency slave devices relative to the master device, wherein the master device is configured to assess the strength of the radio signal between itself and a slave device at a plurality of orientations, thereby enabling a determination of the relative position of the slave devices with respect to the master device based on the relative signal strengths at different orientations.
According to a further aspect of the invention there is provided a method for determining the bearing of one or more wireless short range radio-frequency slave devices, comprising the master device and one or more slave devices, the method comprising the steps of; the master device assessing the strength of the radio signal between itself and a slave device at an initial orientation, the master device being rotated to one or more secondary orientations with respect to the initial orientation and assessment of the strength of the radio signal between itself and a slave device at each of the secondary orientations, determining the bearing of the slave devices based on a comparison of the radio signal strengths at the initial and secondary orientations.
Preferably wherein the signal strength is determined by a combination of a combination of one or more of the following; a measure of the strength of the master transmitted signal as received by a slave device, a ratio of the strength of the signal received by the slave device to the strength of the signal transmitted by the master device, a ratio of the strength of the signal received by the master device to the strength of the signal transmitted by the slave device, a determination of the threshold of detection of a slave device by variation of the strength of the master transmitter signal, a determination of the path loss rate as decibel loss of signal strength between the master and slave devices, a determination of the bit error rate by measure of number of packets of data lost between the master device and a slave device, a calibration of the change in signal strength received by a slave device due to a change in the separation between the master and slave devices, by measurement of the strength of the signal received by the slave device from the master device at one or more known separations from the master device, a calibration of the slave device transmitter and receiver by querying the device for manufacturer information, comparing the response to a list of known previously calibrated devices.
There is also provided according to another aspect of the invention a system for determining the bearing of one or more wireless short range radio-frequency slave devices relative to a master wireless short range radio-frequency device, comprising a master device and one or more slave devices, the master device being configured to assess the strength of the radio signal between itself and a slave device at a plurality of orientations, the master device being enabled to determine the relative position of the slave devices with respect to the master device based on a comparison of the signal strengths at different orientations.
Further aspects and/or features of the invention are further set out in the other appended claims.
Further aspects, features and advantages of the invention will be apparent from the following description of preferred embodiments, presented by way of example only, and by reference to accompanying drawings wherein:
a is an example of a display of the preferred embodiment allowing a user to select the group of slave devices to form a piconet;
In the preferred embodiment the master device 12 is enabled to allow a user to select which slave devices 14 or group of devices 22, 24, 26 form a piconet 10. In the example in
a shows an example of an interface of the preferred embodiment that allows a user to register a slave device 14 and to activate a group of slave devices 14 to form a piconet 10. There is shown an example of a registration screen 32 and a group status screen 38. In the preferred embodiment both screens would be shown on the display 13 of the standard mobile telecommunications device and any user inputs would occur by known means such as, but not limited to, keypad input, touch screen recognition, voice recognition etc. The skilled person would understand that the interface is not limited to be shown on the display 13 of a standard mobile telecommunications device but may be on other forms of display and that the screens shown are examples and that other features may be displayed. The registration screen 32 is enabled to allow a user to name a slave device 14 in input field 34 and assign a sensitivity and alarm type 36 for the slave device 14. The sensitivity and alarm type 36 of the slave device 14 allows the user to personalise the monitoring of each slave device 14. A device which is not expected to be moved may be assigned a high sensitivity. The alarm type 36 may indicate what type of monitoring occurs, for example an alarm classified as Absent is triggered when the slave device 14 goes out of range of the master device 12, Threshold is triggered when the signal received by the slave device 14 drops below a given value, Motion is triggered when the difference between the previous sample and the current one exceeds a value. The group status screen 38 is enabled to allow a user select the monitoring status of the group 39, which would form the piconet 10.
Referring to
Spurious results are damped out in the calculation, but retained in the historical data, since the damping decision may be subsequently revised. In the preferred embodiment, normalising takes the result of damping and attempts to match it to a ten point proximity scale. Preferably, the user has performed a calibration of the master device 12 and each of the slave devices 14. To calibrate the master device 12 and a slave device 14, the user separates the master device 12 and slave device 14 device by a predetermined distance and measures the signal strength received by the slave device 14 at the known separation 46. The strength of the signal received at the known separations and at the known transmission strengths, as used to calibrate the normalisation of the signal. As the fall-off of the signal strength is non-linear, a ten point scale to model the fall-off of signal strength with distance is calculated and used as the normalisation function. A mathematical curve is fitted to the data points to allow the interpolation of other values. Though others means for modelling the loss of signal strength with distance may be used.
The measured proximity is calculated using the properties of the packets of data 42 transferred between the master device 12 and the slave device 14. Each packet of data 42, comprises a payload header 48, the payload 50 and access code 51. The payload header 48 contains information regarding the payload 50, including packet length 54 and the address 52 of the slave device the packet is being sent to and further information 55 as determined by the Bluetooth standard. From the information contained in the payload header 48, a comparison of the strength of the signal received by the slave device 14 to the strength of the signal transmitted can be made and therefore an estimate of the separation 46 made. In the preferred embodiment seven base algorithms to determine the separation are available. Each is based upon a different measurable parameter. These algorithms are used in different combinations with each other to calculate a value for mProx. This compensates for hardware differences and variations consequent upon the power saving strategies used by different Bluetooth devices. The base algorithms used are shown below, but it is understood that a person skilled in the art may use other valid algorithms to provide a measure of the signal strength and therefore device proximity.
Whilst the above embodiments have been described in the context of their application for use in a mobile telecommunications device for which the invention is particularly advantageous, embodiments of the invention may be applied in any system that is Bluetooth enabled. Furthermore, a person skilled in the art would be aware that the above embodiment would also be applicable to a scatternet, where a slave device 14 may simultaneously be a master device 12 for another piconet 10, thereby allowing the monitoring of more than seven active slave devices 14.
Number | Date | Country | Kind |
---|---|---|---|
0807436.1 | Apr 2008 | GB | national |
This application is a continuation of U.S. application Ser. No. 12/989,218, filed Jan. 7, 2011, which claims the benefit of PCT/GB2009/050411, filed Apr. 22, 2009, which is an International (PCT) Application that claims the benefit of U.K. Application No. 0807436.1, filed Apr. 23, 2008, now U.K. Patent No. 2459479. U.K. Application No. 1019836.4, which is now U.K. Patent No. GB 2472547, is also a national phase application claiming priority to PCT/GB2009/050411. All priority applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5898390 | Oshizawa et al. | Apr 1999 | A |
5977913 | Christ | Nov 1999 | A |
6075442 | Welch | Jun 2000 | A |
6556942 | Smith | Apr 2003 | B1 |
6611233 | Kimura | Aug 2003 | B2 |
6710719 | Jones et al. | Mar 2004 | B1 |
7019643 | Lu | Mar 2006 | B2 |
7848826 | Gila et al. | Dec 2010 | B2 |
7904718 | Giobbi et al. | Mar 2011 | B2 |
20010056305 | Moriya et al. | Dec 2001 | A1 |
20020027524 | Pippin | Mar 2002 | A1 |
20030043036 | Merrem et al. | Mar 2003 | A1 |
20030063003 | Bero et al. | Apr 2003 | A1 |
20030228846 | Berliner et al. | Dec 2003 | A1 |
20040032363 | Schantz et al. | Feb 2004 | A1 |
20040152471 | MacDonald et al. | Aug 2004 | A1 |
20040263383 | Sako | Dec 2004 | A1 |
20050032531 | Gong et al. | Feb 2005 | A1 |
20050038574 | Gila et al. | Feb 2005 | A1 |
20050093745 | Krumm et al. | May 2005 | A1 |
20050093760 | Rochelle et al. | May 2005 | A1 |
20050184908 | Richards | Aug 2005 | A1 |
20050200487 | O'Donnell et al. | Sep 2005 | A1 |
20050243936 | Agrawala et al. | Nov 2005 | A1 |
20060003776 | Natori et al. | Jan 2006 | A1 |
20060012476 | Markhovsky et al. | Jan 2006 | A1 |
20060046709 | Krumm et al. | Mar 2006 | A1 |
20060197704 | Luzzatto et al. | Sep 2006 | A1 |
20080024355 | Sun et al. | Jan 2008 | A1 |
20080070572 | Shkedi | Mar 2008 | A1 |
20080085678 | Haug | Apr 2008 | A1 |
20080113672 | Karr et al. | May 2008 | A1 |
20080125040 | Kalayjian | May 2008 | A1 |
20080198035 | Ebbe et al. | Aug 2008 | A1 |
20090011713 | Abusubaih et al. | Jan 2009 | A1 |
20090088230 | Park | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 2006090899 | Aug 2006 | WO |
WO 2007003187 | Jan 2007 | WO |
Entry |
---|
Anonymous: “Specification of the Bluetooth System 2.1+EDR. (vol. 3, 4, pp. 1, 155-160, 229-234)” [Online] Jul. 26, 2007, Bluetooth, XP002561787. |
Number | Date | Country | |
---|---|---|---|
20130059539 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12989218 | US | |
Child | 13600134 | US |