1. Field of the Invention
The present invention generally relates to semiconductor equipment, and more particularly to a showerhead.
2. Description of Related Art
Semiconductor manufacturing equipment is commonly used in the production of semiconductor components. The semiconductor manufacturing equipment typically has a reaction chamber. The reaction gases which are required by the semiconductor manufacturing process can be provided into the reaction chamber by the showerhead of the reaction chamber.
Referring to
By the needs of the semiconductor process, the conventional showerhead 100 disposed within the reaction chamber has to bear high temperature and corrosion caused by reaction gases, such that the life-time of the conventional showerhead 100 is decreased. For example, high temperature, thermal cycling, and corrosion caused by reaction gases may damage the soldering portions for sealing the clearances between the gas tubes 120 and the openings of the bottom portion 110. The cooling fluid within the first space 191 may leak into the inside of the reaction chamber. Thus, the process yields are affected by the cooling fluid.
For the reason that there are some disadvantages of the prior art mentioned above, there exists a need to propose a novel showerhead. The showerhead has better ability for bearing high temperature, thermal cycling, and corrosion caused by reaction gases. The showerhead has longer life-time, and the cooling fluid will not leak into the inside of the reaction chamber and affect the process yields.
Accordingly, the present invention has been made in order to meet such a need described above, and it is an object of the present invention to provide a novel showerhead. The showerhead has better ability for bearing high temperature, thermal cycling, and corrosion caused by reaction gases. The showerhead has longer life-time, and the cooling fluid will not leak into the inside of the reaction chamber and affect the process yields.
In order to achieve the above object, the present invention provides a showerhead. The showerhead includes a bottom portion, at least one plate, and a top portion. The bottom portion includes a plurality of gas tubes which are integratedly formed on the bottom portion. The gas tubes include at least one first gas tube. The at least one plate includes a first plate. The first plate includes a plurality of first openings, wherein the gas tubes pass through the first openings. The top portion is coupled to the bottom portion for forming at least one inner space.
According to the showerhead of the present invention, gas tubes are integratedly formed on the bottom portion. There are no clearances between the gas tubes and the bottom portion, such that the leakage caused by clearances between the gas tubes and the bottom portion is avoided. Therefore, the showerhead has better ability for bearing high temperature, thermal cycling, and corrosion caused by reaction gases. Thus, the showerhead has longer life-time, and the cooling fluid will not leak into the inside of the reaction chamber.
The detailed description of the present invention will be discussed in the following embodiments, which are not intended to limit the scope of the present invention, and can be adapted for other applications. While drawings are illustrated in detail, it is appreciated that the quantity of the disclosed components may be greater or less than that disclosed, except where expressly restricting the amount of the components.
Moreover, the showerhead 200 includes a first space 291 and a second space 292, wherein the fluid which flows into the second space 292 can flow into the inside of a reaction chamber through the gas tubes 211. On the other hand, the fluid which flows into the first space 291 will not flow into the inside of the reaction chamber. Therefore, cooling fluid, such as water, can flow into the first space 291 for cooling the showerhead 200.
In this embodiment, the gas tubes 211 are integratedly formed on the bottom portion 210 by a mechanical process, wherein the mechanical process can include many kinds of processing methods, such as machining, electric discharge machining, casting, or any other processing method. Any processing method which is capable of integratedly forming the gas tubes 211 on the bottom portion 210 is possible to be used. Different processing methods should be considered based on the real conditions. Although the mechanical process is used in this embodiment, the gas tubes can also be integratedly formed on the bottom portion 210 by a chemical process or another processing method.
Referring to
The bottom portion 310 includes at least one first gas tube 311 and at least one second gas tube 312, wherein the first gas tube 311 and the second gas tube 312 are integratedly formed on the bottom portion 310. The first gas tube 311 and the second gas tube 312 have different lengths. The second gas tube 312 passes through the first opening of the first plate 330 and the second opening of the second plate 340. Thus, the second gas tube 312 reaches the third space 393. The fluid which flows into the third space 393 can flow into the inside of a reaction chamber through the second gas tube 312. The first gas tube 311 passes through the first opening of the first plate 330 and reaches the second space 392. The fluid which flows into the second space 392 can flow into the inside of a reaction chamber through the first gas tube 311.
In this embodiment, the showerhead 300 includes a first space 391, a second space 392, and a third space 393, but is not limited to this. According to the same design concept, by using gas tubes having different lengths, the showerhead 300 can include a plurality of space based on the real needs.
According to the showerhead of the present invention, gas tubes are integratedly formed on the bottom portion. There are no clearances between the gas tubes and the bottom portion, such that the leakage caused by clearances between the gas tubes and the bottom portion is avoided. Therefore, the showerhead has better ability for bearing high temperature, thermal cycling, and corrosion caused by reaction gases. Thus, the showerhead has longer life-time, and the cooling fluid will not leak into the inside of the reaction chamber.
Although specific embodiments have been illustrated and described, it will be appreciated by those skilled in the art that various modifications may be made without departing from the scope of the present invention, which is intended to be limited solely by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
99102945 A | Feb 2010 | TW | national |
This application is a divisional of U.S. application Ser. No. 12/757,932, filed on Apr. 9, 2010 and entitled METHOD FOR MAKING A SHOWERHEAD, which claims priority to Taiwan Patent Application No. 099102945, filed on Feb. 2, 2010, the entire contents both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6412125 | Ito et al. | Jul 2002 | B1 |
6463658 | Larsson | Oct 2002 | B1 |
7846292 | Han et al. | Dec 2010 | B2 |
20020059904 | Doppelhammer | May 2002 | A1 |
20030000469 | Pyo | Jan 2003 | A1 |
20030054099 | Jurgensen et al. | Mar 2003 | A1 |
20050001072 | Bolus et al. | Jan 2005 | A1 |
20050217580 | DeDontney et al. | Oct 2005 | A1 |
20050258280 | Goto et al. | Nov 2005 | A1 |
20070200013 | Hsiao | Aug 2007 | A1 |
20090211707 | Chao et al. | Aug 2009 | A1 |
20090266911 | Kim et al. | Oct 2009 | A1 |
20110048325 | Choi et al. | Mar 2011 | A1 |
20120085747 | Chao et al. | Apr 2012 | A1 |
20130112383 | Hanamachi | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2585473 | Oct 2007 | CA |
0245561 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20130277459 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12757932 | Apr 2010 | US |
Child | 13920744 | US |