SHP INHIBITOR COMPOSITIONS AND USES FOR CHIMERIC ANTIGEN RECEPTOR THERAPY

Abstract
Compositions and methods for treating diseases associated with expression of a cancer associated antigen are disclosed. The invention also relates to chimeric antigen receptor (CAR) specific to a cancer associated antigen as described herein, SHP inhibitory molecules, vectors encoding the same, and recombinant immune effector cells comprising the CARs and SHP inhibitory molecules. Methods of administering a genetically modified immune effector cell expressing a CAR that comprises an antigen binding domain that binds to a cancer associated antigen and a SHP inhibitory polypeptide are also disclosed.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 27, 2018, is named N2067-7118WO_SL.txt and is 1,566,610 bytes in size.


FIELD OF THE INVENTION

The present invention relates generally to compositions and uses of immune effector cells (e.g., T cells, NK cells) engineered to express a Chimeric Antigen Receptor (CAR) to treat a disease associated with expression of a tumor antigen.


BACKGROUND OF THE INVENTION

Adoptive cell transfer (ACT) therapy with autologous T-cells, especially with T-cells transduced with Chimeric Antigen Receptors (CARs), has shown promise in cancer clinical trials. Although CAR technology has demonstrated tremendous success in eliminating hematologic tumors, the need exists for decreasing the effect of immunosuppressive factors that exist with the microenvironment of solid tumors that reduce the activity of CAR T cells.


One type of immunosuppression that has received much attention in the field of cancer immunotherapy relates to inhibitory receptors (IRs), or checkpoint molecules (Pardoll D M. Nat Rev Cancer April; 12(4):252-64). Examples of IRs include PD-1 (programmed death 1), CTLA-4 (cytotoxic T-lymphocyte associated protein 4), Tim-3 (T-cell immunoglobulin and mucin-domain containing-3), and Lag-3 (lymphocyte activation gene-3). IRs were initially described in naturally occurring tumor infiltrating lymphocytes (TILs) or in chronic viral infections, but are known to also play a role in the suppression of CAR and TCR-engineered T cells upon infiltration into solid tumors (Moon E K et al. Clin Cancer Res August 15; 20(16):4262-73; Moon E K et al. Clin Cancer Res. 2016 Jan. 15; 22(2):436-47). Checkpoint blockade with antibodies against IRs has demonstrated success in some settings (Moon et al. 2016 supra; Topalian S L et al. N Engl J Med June 28; 366(26):2443-54; Woo S R, Turnis M E, Goldberg M V, Bankoti J, Selby M, Nirschl C J, et al. Cancer Res February 15; 72(4):917-27).


Accordingly, the need exists to develop CAR therapies that address the immunosuppressive effects of the cancer microenvironment, including CAR therapies that reduce the effects of multiple IRs simultaneously.


SUMMARY OF THE INVENTION

The present invention pertains, at least in part, to compositions and uses that improve an activity (e.g., one or more of function, persistence, cancer killing effect, or tumor infiltration) of an immune effector cell, e.g., a population of immune effector cells (e.g., T cells, NK cells). In some embodiments, the immune effector cell expresses a Chimeric Antigen Receptor molecule (e.g., a CAR polypeptide) that binds to a tumor antigen. In some embodiments, the immune effector cell comprises, or is contacted with an inhibitor of a Src homology region 2 domain-containing phosphatase (SHP). In one embodiment, the inhibitor is an inhibitor of SHP-1. In another embodiment, the inhibitor is an inhibitor of SHP-2. In one embodiment, the SHP inhibitor interferes with SHP signaling (e.g., interferes with SHP-1 signaling or SHP-2 signaling, or both), also referred to herein as an SHP inhibitor molecule (e.g., an SHP inhibitor polypeptide). Without wishing to be bound by theory, SHP inhibition is expected to interfere with the signaling of immunosuppressive factors, such as inhibitory receptors (IRs), or checkpoint molecules. In certain embodiments, the IRs present in the microenvironment of a tumor, e.g., a solid tumor can result in decreased effectiveness of a therapy, e.g., a CAR therapy.


In some embodiments, the SHP inhibitor is a dominant negative molecule that interferes with SHP signaling in a cell, e.g., an immune effector cell, e.g., an immune effector cell that expresses a CAR molecule (e.g., a CAR polypeptide) that binds to a tumor antigen. The SHP inhibitor can reduce the effects of multiple IRs simultaneously by inhibiting a signaling component of multiple IR pathways. In some embodiments, the SHP inhibitor molecule includes a mutation in the N-terminal region of the SHP, e.g., the N-SH2 region of an SHP, e.g., an SHP-1 or SHP-2. In some embodiments, the mutation is in the binding region of the N-SH2 region for an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM), e.g., an ITIM-domain present in an IR, e.g., PD-1. In some embodiments, the N-SH2 mutation is at position 30 of SHP-1, e.g., an R30K substitution in SHP-1 as described herein. Alternatively or in combination with the N-SH2 region mutation, the SHP inhibitor has a mutation in, e.g., a deletion of, part or all of the catalytic domain, e.g., the phosphatase domain, of an SHP, e.g., an SHP-1 or SHP-2. In embodiments, the SHP-inhibitor interferes with the IR-signaling pathway. For example, the SHP inhibitor molecules described herein, when expressed in an immune effector cell, e.g., a CAR-expressing immune effector cell, result in one or more of: (i) reduced immune checkpoint inhibition, e.g., IR inhibitor, (ii) reduced IR signaling, e.g., PD-1/PD-L1 signaling, (iii) increased levels of CD3z phosphorylation, (iv) increased levels of LAT phosphorylation, (v) increased phosphorylation of Lck, (vi) increased phosphorylation of ZAP70, (vii) increased expression of a cytokine, e.g., IFNγ or IL2, (viii) increased CAR and/or TCR signaling, (ix) increased killing of a tumor cell, e.g., a solid tumor cell, via a CAR molecule, in vitro and in vivo, e.g., compared to an otherwise similar cell that lacks the SHP inhibitor molecule. Accordingly, disclosed herein are, inter alia, nucleic acid compositions encoding the aforesaid SHP inhibitor polypeptides with or without a CAR molecule, immune effector cells comprising the nucleic acid compositions, vectors, as well as methods for making and using, e.g., in a CAR therapy, the aforesaid compositions.


Accordingly, in one aspect, the invention pertains to a nucleic acid composition comprising:


(a) a nucleic acid molecule encoding a chimeric antigen receptor (CAR) molecule, e.g., a CAR polypeptide; and


(b) a nucleic acid molecule encoding an SHP inhibitor molecule, e.g., an SHP polypeptide, wherein said SHP inhibitor polypeptide comprises a mutation (e.g., one or more deletions or substitutions) in an SHP polypeptide (e.g., an SHP-1 polypeptide of SEQ ID NO:1, or an SHP-2 polypeptide of SEQ ID NO:2).


In another aspect, the invention pertains to a polypeptide comprising a CAR polypeptide and a SHP inhibitor polypeptide, e.g., as described herein. In some embodiments, the polypeptide a peptide cleavage site disposed between the CAR polypeptide and the SHP inhibitor polypeptide. In some embodiments, the SHP inhibitor polypeptide comprises a mutation (e.g., one or more deletions or substitutions) in an SHP polypeptide (e.g., an SHP-1 polypeptide of SEQ ID NO:1, or an SHP-2 polypeptide of SEQ ID NO:2. In some embodiments, the peptide cleavage site is a T2A site. In some embodiments, the peptide cleavage site is a P2A site.


In some embodiments, the SHP inhibitor polypeptide of any nucleic acid composition or polypeptide disclosed herein comprises one, two or all of the following:


(i) a mutation (e.g., one or more deletions or substitutions) in an SH2 domain, e.g., an N-terminal SH2 domain or a C-terminal SH2 domain, or both, e.g., of an SHP polypeptide;


(ii) a mutation (e.g., one or more deletions or substitutions) in an ITIM-binding region of an SHP polypeptide (e.g., an ITIM-binding region of an SH2 domain, e.g., an ITIM-binding region of the N-terminal SH2 domain), or


(iii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain, e.g., the phosphatase domain of an SHP polypeptide.


In other embodiments, the SHP inhibitor polypeptide comprises the following:


(i) a mutation (e.g., one or more deletions or substitutions) in an ITIM-binding region of an SHP polypeptide (e.g., an ITIM-binding region of an SH2 domain, e.g., an ITIM-binding region of the N-terminal SH2 domain) of an SHP polypeptide, and


(ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain, e.g., the phosphatase domain of an SHP polypeptide.


In some embodiments, the CAR polypeptide is a CAR polypeptide as described herein, e.g., comprises an antigen binding domain, a transmembrane domain, and an intracellular domain as described herein.


SHP Inhibitor Molecules

Additional features or embodiments of the SHP inhibitor molecules, e.g., SHP inhibitor polypeptide as used herein, e.g., in the context of the nucleic acid compositions, polypeptides, vectors, immune effector cells, methods of use or making, include one or more of the following:


In some embodiments, the SHP inhibitor polypeptide has reduced binding, compared to a wild-type SHP, to an ITIM domain, e.g., an ITIM domain from one or more of the following proteins: PD-1, PDCD1, BTLA4, LILRB1, LAIR1, CTLA-4, KIR2DL 1, KIR2DL4, KIR2DL5, KIR3DL 1 or KIR3DL3.


In some embodiments, the binding of the SHP inhibitor polypeptide to the ITIM domain is reduced by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97%, or 99% compared to a wild-type SHP.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide or SHP-2 polypeptide) is less than 240, 220, 180, 160, 140, 120, 100, 80, 60, or 40 amino acids in length.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises amino acids 1-240, 1-220, 1-180, 1-160, 1-140, 1-120, 1-100, 1-80, 1-60, or 1-40 amino acids of SEQ ID NO: 1, or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises an N-terminal SH2 domain, e.g., corresponding to about amino acid 4 to about 100, of SEQ ID NO:1; or the C-terminal SH2 domain, e.g., corresponding to about amino acid 110 to about 213, of SEQ ID NO:1, or both, or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 3, wherein X is any amino acid except R.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 3, wherein X is K or H.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 3, wherein X is K.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises or consists of the amino acid sequence according to SEQ ID NO: 3, wherein X is any amino acid except R.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises or consists of the amino acid sequence according to SEQ ID NO: 3, wherein X is K or H.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises or consists of the amino acid sequence according to SEQ ID NO: 3, wherein X is K.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1 or 3, wherein the R at position 33 is substituted with any amino acid except R.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1 or 3, wherein the R at position 33 is substituted with glutamic acid (E).


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1, wherein the R at position 136 is substituted with any amino acid except R.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1, wherein the R at position 136 is substituted with lysine (K).


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1, wherein the C at position 453 is substituted with any amino acid except C.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1, wherein the C at position 453 is substituted with serine (S).


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1, wherein the R at position 459 is substituted with any amino acid except R.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1, wherein the R at position 459 is substituted with methionine (M).


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-1 inhibitor polypeptide) comprises the amino acid sequence of SEQ ID NO: 1, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 1, wherein one, two, three or more of the R at position 30, the R at position 33, the R at position 136, the C at position 453, and the R at position 459 is substituted with an amino acid other than that specified by SEQ ID NO: 1 at that position.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-2 inhibitor polypeptide) comprises amino acids 1-240, 1-220, 1-180, 1-160, 1-140, 1-120, 1-100, 1-80, 1-60, or 1-40 amino acids of SEQ ID NO: 2, or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-2 inhibitor polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 4, wherein X is any amino acid except R.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-2 inhibitor polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 4, wherein X is K or H.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-2 inhibitor polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 4, wherein X is K.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-2 inhibitor polypeptide) comprises or consists of a sequence according to SEQ ID NO: 4, wherein X is any amino acid except R.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-2 inhibitor polypeptide) comprises or consists of a sequence according to SEQ ID NO: 4, wherein X is K or H.


In some embodiments, the SHP inhibitor polypeptide (e.g., SHP-2 inhibitor polypeptide) comprises or consists of a sequence according to SEQ ID NO: 4, wherein X is K.


In some embodiments, the SHP inhibitor polypeptide has reduced phosphatase activity, compared to wild-type SHP, to one or more SHP substrates (e.g., substrates comprising phosphorylated tyrosine).


In some embodiments, the SHP inhibitor polypeptide has a deletion of at least part or all of the phosphatase domain.


In some embodiments, the SHP inhibitor polypeptide lacks its phosphatase domain.


In some embodiments, the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell), results in one or more of:

    • (i) increased CAR signaling;
    • (ii) increased TCR signaling;
    • (iii) reduced immune checkpoint inhibition;
    • (iv) reduced PD-1/PD-L1 signaling;
    • (v) increased levels of CD3z phosphorylation;
    • (vi) increased levels of LAT phosphorylation;
    • (vii) increased phosphorylation of Lck;
    • (viii) increased phosphorylation of ZAP70;
    • (ix) increased expression of a cytokine, e.g., IFNγ or IL2, or a combination of two, three, four, five, six or all of (i)-(ix), e.g., compared to an otherwise similar cell that lacks the SHP inhibitor polypeptide.


In some embodiments, the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell), does not result (e.g., does not substantially result, e.g., results in less than 10%, 9%, 8%, 7%, 6%, 5% or less change) in one of more of the following:

    • (i) inhibition of CAR signalling;
    • (ii) inhibition of TCR signaling;
    • (iii) promotion of immune checkpoint inhibition,
    • (iv) promotion of PD-1/PD-L1 signalling;
    • (v) inhibition of phosphorylation of CD3z;
    • (vi) inhibition of LAT (linker for activation of T cells) phosphorylation,
    • (vii) dephosphorylation of Lck (lymphocyte-specific protein tyrosine kinase), or a combination of two, three, four, five, six or all of (i)-(vii), e.g., compared to an otherwise similar cell that lacks the SHP inhibitor polypeptide.


In some embodiments, the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide (e.g., an immune effector cell that expresses PD-1), results in increased cytokine secretion and/or increases the percentage of cytokine-expressing cells, wherein the cytokine is optionally IL-2, compared to an otherwise similar cell lacking the SHP inhibitor polypeptide or an otherwise similar cell comprising a SHP inhibitor polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 10.


In some embodiments, cytokine secretion is increased by at least 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, or 20-fold.


In some embodiments, the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide (e.g., an immune effector cell that expresses PD-1), results in increased lysis, e.g., in vitro, of cancer cells that express PD-L1 and an antigen recognized by the CAR polypeptide, compared to an otherwise similar cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a SHP inhibitor polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 11.


In some embodiments, cancer cell lysis is increased at least 1.1-fold, 1.2-fold, 1.4-fold, 1.6-fold, 1.8-fold, or 2-fold compared to cancer cell lysis in response to an otherwise similar cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a SHP inhibitor polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 11.


In some embodiments, the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide (e.g., an immune effector cell that expresses PD-1), results in decreased tumor volume (e.g., of a tumor having cells expressing PD-L1 and an antigen recognized by the CAR polypeptide), e.g., in a mouse model, compared to an otherwise similar animal treated with otherwise similar immune effector cells that that lack the SHP inhibitor polypeptide or an otherwise similar cell comprising a SHP inhibitor polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 12.


In some embodiments, the tumor volume is less by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% than the tumor volume at the same timepoint in the presence of an otherwise similar cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a SHP inhibitor polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 12.


In some embodiments, the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide (e.g., an immune effector cell that expresses PD-1), results in increased T lymphocyte infiltration into a tumor, e.g., in a mouse model, compared to an otherwise similar animal treated with otherwise similar immune effector cells that that lack the SHP inhibitor polypeptide or an otherwise similar cell comprising a SHP inhibitor polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 13.


In some embodiments, T lymphocyte infiltration is increased at least 1.1-fold, 1.2-fold, 1.4-fold, 1.6-fold, 1.8-fold, 2-fold, 3-fold, 4-fold, or 5-fold and/or wherein infiltrating T lymphocytes represent at least about 10%, 20%, 30%, 40%, or 50% of cells in the tumor.


In some embodiments, the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide, results in increased phosphorylation of ZAP70, e.g., in the presence of PD-L1-expressing tumor cells, compared to an otherwise similar immune effector cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide, or a wild type SH2-N terminal fragment thereof according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 16B.


In some embodiments, the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide, results in increased expression of IFNγ or IL-2 (or increased percentage of IFNγ positive or IL-2 positive cells), e.g., in the presence of PD-L1-expressing tumor cells, compared to an otherwise similar immune effector cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide, or a wild type SH2-N terminal fragment thereof according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 17.


In some embodiments, the nucleic acid composition comprises:


(a) a nucleic acid molecule encoding a chimeric antigen receptor (CAR) polypeptide,


(b) a nucleic acid molecule encoding an SHP1 inhibitor polypeptide, wherein said SHP1 inhibitor polypeptide comprises:

    • (i) a mutation (e.g., one or more deletions or substitutions) in the ITIM-binding region (e.g., an SH2 domain, e.g., the N-terminal SH2 domain) of an SHP1 polypeptide, and
    • (ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain e.g., the phosphatase domain, of an SHP1 polypeptide, and


(c) a nucleic acid molecule encoding an SHP2 inhibitor polypeptide, wherein said SHP2 inhibitor polypeptide comprises:

    • (i) a mutation (e.g., one or more deletions or substitutions) in the ITIM-binding region (e.g., an SH2 domain, e.g., the N-terminal SH2 domain) of an SHP2 polypeptide, and
    • (ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain e.g., the phosphatase domain, of an SHP2 polypeptide.


In some embodiments, the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 41 or 42 (or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto). In some embodiments, the SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 44 or 45 (or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto). In some embodiments, the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 41 or 42, and the SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 44 or 45. In some embodiments, the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 41 and the SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 44. In some embodiments, the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 41 and the SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 45. In some embodiments, the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 42 and the SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 44. In some embodiments, the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 42 and the SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 45.


In some embodiments, the CAR polypeptide and SHP inhibitor polypeptide are encoded by a single nucleic acid molecule in the same frame and as a single polypeptide chain. In some embodiments, the nucleic acid molecule encoding the CAR polypeptide and the nucleic acid molecule encoding the SHP inhibitor polypeptide are separated by a nucleic acid sequence encoding T2A or P2A. In some embodiments, the nucleic acid molecule encoding the CAR polypeptide, the nucleic acid molecule encoding the SHP1 inhibitor polypeptide, and the nucleic acid molecule encoding the SHP2 inhibitor polypeptide are separated by a nucleic acid sequence encoding T2A or P2A.


CAR Molecules

Additional features or embodiments of the CAR molecules (e.g., CAR-containing nucleic acids (e.g., nucleic acid encoding CAR polypeptides), or CAR polypeptides (e.g., encoded CAR polypeptides), as used herein), e.g., in the context of the nucleic acid compositions, polypeptides, vectors, immune effector cells, methods of use or making, include one or more of the following:


In some embodiments, the SHP inhibitor polypeptide is attached to the N-terminus of a CAR polypeptide or the C-terminus of said CAR polypeptide.


In some embodiments, the SHP inhibitor polypeptide and the CAR polypeptide are separated by one or more peptide cleavage sites. In some embodiments, said peptide cleavage site is an auto-cleavage site or a substrate for an intracellular protease. In some embodiments, said peptide cleavage site is a T2A site. In some embodiments, said peptide cleavage site is a P2A site. In some embodiments, the nucleic acid molecule encoding the CAR polypeptide and the nucleic acid molecule encoding the SHP inhibitor polypeptide are separated by a nucleic acid sequence encoding T2A or P2A. In some embodiments, the nucleic acid molecule encoding the CAR polypeptide, the nucleic acid molecule encoding the SHP1 inhibitor polypeptide, and the nucleic acid molecule encoding the SHP2 inhibitor polypeptide are separated by a nucleic acid sequence encoding T2A or P2A.


In some embodiments, said CAR polypeptide and said SHP inhibitor polypeptide are encoded by a single nucleic acid molecule and are not expressed as a single polypeptide.


In some embodiments, the expression of said CAR polypeptide and said SHP inhibitor polypeptide is controlled by a common promoter.


In some embodiments, the nucleic acid encoding said CAR polypeptide and the nucleic acid encoding said SHP inhibitor polypeptide are separated by an internal ribosomal entry site.


In some embodiments, the expression of said CAR polypeptide and said SHP inhibitor polypeptide is controlled by separate promoters.


In some embodiments, the nucleic acid composition described herein consists of a single isolated nucleic acid.


In some embodiments, the CAR molecule (e.g., the CAR polypeptide (e.g., the encoded CAR polypeptide) or a nucleic acid encoding the CAR), comprises an antigen binding domain, a transmembrane domain, and an intracellular signaling domain.


In some embodiments, the intracellular domain of the CAR molecule comprises a primary signaling domain, a costimulatory domain, or both of a primary signaling domain and a costimulatory domain.


In some embodiments, the primary signaling domain of the CAR molecule comprises a functional signaling domain of one or more proteins selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCER1G), FcR beta (Fc Epsilon R1b), CD79a, CD79b, Fcgamma RIIa, DAP10, and DAP12, or a functional variant thereof.


In some embodiments, the costimulatory domain of the CAR molecule comprises a functional domain of one or more proteins selected from the group consisting of CD27, CD28, 4-1BB (CD137), OX40, CD28-OX40, CD28-4-1BB, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CD5, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, NKp44, NKp30, NKp46, and NKG2D, or a functional variant thereof.


In some embodiments, the antigen binding domain of the CAR molecule binds a tumor antigen. In some embodiments, the tumor antigen is selected from the group consisting of: CD19; CD123; CD22; CD30; CD171; CS-1 (also referred to as CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1 or CLECL1); CD33; epidermal growth factor receptor variant III (EGFRvIII); ganglioside G2 (GD2); ganglioside GD3 (aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); TNF receptor family member B cell maturation (BCMA); Tn antigen ((Tn Ag) or (GalNAcα-Ser/Thr)); prostate-specific membrane antigen (PSMA); Receptor tyrosine kinase-like orphan receptor 1 (ROR1); Fms-Like Tyrosine Kinase 3 (FLT3); Tumor-associated glycoprotein 72 (TAG72); CD38; CD44v6; Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2 or CD213A2); Mesothelin; Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (Testisin or PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y) antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); Stage-specific embryonic antigen-4 (SSEA-4); CD20; Folate receptor alpha; Receptor tyrosine-protein kinase ERBB2 (Her2/neu); Mucin 1, cell surface associated (MUC1); epidermal growth factor receptor (EGFR); neural cell adhesion molecule (NCAM); Prostase; prostatic acid phosphatase (PAP); elongation factor 2 mutated (ELF2M); Ephrin B2; fibroblast activation protein alpha (FAP); insulin-like growth factor 1 receptor (IGF-I receptor), carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); glycoprotein 100 (gp100); oncogene fusion protein consisting of breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog 1 (Abl) (bcr-abl); tyrosinase; ephrin type-A receptor 2 (EphA2); Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); transglutaminase 5 (TGS5); high molecular weight-melanoma-associated antigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor beta; tumor endothelial marker 1 (TEM1/CD248); tumor endothelial marker 7-related (TEM7R); claudin 6 (CLDN6); thyroid stimulating hormone receptor (TSHR); G protein-coupled receptor class C group 5, member D (GPRC5D); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (OR51E2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); Cancer/testis antigen 1 (NY-ESO-1); Cancer/testis antigen 2 (LAGE-1a); Melanoma-associated antigen 1 (MAGE-A1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); melanoma cancer testis antigen-1 (MAD-CT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; tumor protein p53 (p53); p53 mutant; prostein; survivin; telomerase; prostate carcinoma tumor antigen-1 (PCTA-1 or Galectin 8), melanoma antigen recognized by T cells 1 (MelanA or MART1); Rat sarcoma (Ras) mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (ML-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Tyrosinase-related protein 2 (TRP-2); Cytochrome P450 1B1 (CYP1B1); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS or Brother of the Regulator of Imprinted Sites), Squamous Cell Carcinoma Antigen Recognized By T Cells 3 (SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES1); lymphocyte-specific protein tyrosine kinase (LCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint 2 (SSX2); Receptor for Advanced Glycation Endproducts (RAGE-1); renal ubiquitous 1 (RU1); renal ubiquitous 2 (RU2); legumain; human papilloma virus E6 (HPV E6); human papilloma virus E7 (HPV E7); intestinal carboxyl esterase; heat shock protein 70-2 mutated (mut hsp70-2); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1); Fc fragment of IgA receptor (FCAR or CD89); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLEC12A); bone marrow stromal cell antigen 2 (BST2); EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); and immunoglobulin lambda-like polypeptide 1 (IGLL1).


In some embodiments, the tumor antigen bound by the antigen binding domain of the CAR molecule is selected from CD150, 5T4, ActRIIA, B7, BMCA, CA-125, CCNA1, CD123, CD126, CD138, CD14, CD148, CD15, CD19, CD20, CD200, CD21, CD22, CD23, CD24, CD25, CD26, CD261, CD262, CD30, CD33, CD362, CD37, CD38, CD4, CD40, CD40L, CD44, CD46, CD5, CD52, CD53, CD54, CD56, CD66a-d, CD74, CD8, CD80, CD92, CE7, CS-1, CSPG4, ED-B fibronectin, EGFR, EGFRvIII, EGP-2, EGP-4, EPHa2, ErbB2, ErbB3, ErbB4, FBP, GD2, GD3, HER1-HER2 in combination, HER2-HER3 in combination, HERV-K, HIV-1 envelope glycoprotein gp120, HIV-1 envelope glycoprotein gp41, HLA-DR, HM1.24, HMW-MAA, Her2, Her2/neu, IGF-1R, IL-11Ralpha, IL-13R-alpha2, IL-2, IL-22R-alpha, IL-6, IL-6R, Ia, Ii, L1-CAM, L1-cell adhesion molecule, Lewis Y, L1-CAM, MAGE A3, MAGE-A1, MART-1, MUC1, NKG2C ligands, NKG2D Ligands, NY-ESO-1, OEPHa2, PIGF, PSCA, PSMA, ROR1, T101, TAC, TAG72, TIM-3, TRAIL-R1, TRAIL-R1 (DR4), TRAIL-R2 (DR5), VEGF, VEGFR2, WT-1, a G-protein coupled receptor, alphafetoprotein (AFP), an angiogenesis factor, an exogenous cognate binding molecule (ExoCBM), oncogene product, anti-folate receptor, c-Met, carcinoembryonic antigen (CEA), cyclin (D1), ephrinB2, epithelial tumor antigen, estrogen receptor, fetal acethycholine e receptor, folate binding protein, gp100, hepatitis B surface antigen, kappa chain, kappa light chain, kdr, lambda chain, livin, melanoma-associated antigen, mesothelin, mouse double minute 2 homolog (MDM2), mucin 16 (MUC16), mutated p53, mutated ras, necrosis antigens, oncofetal antigen, ROR2, progesterone receptor, prostate specific antigen, tEGFR, tenascin, β2-Microglobulin, Fc Receptor-like 5 (FcRL5), or molecules expressed by HIV, HCV, HBV, or other pathogens.


In some embodiments, the tumor antigen bound by the antigen binding domain of the CAR molecule is in a solid tumor antigen, e.g., mesothelin.


In some embodiments, the tumor antigen bound by the antigen binding domain of the CAR molecule is expressed in a solid tumor that also expresses an immune checkpoint inhibitor, e.g., PD-L1.


In some embodiments, the antigen binding domain of the antigen binding domain of the CAR molecule comprises an antibody, an antibody fragment, an scFv, a Fv, a Fab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.


In some embodiments, the transmembrane domain of the CAR molecule comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, KIRDS2, OX40, CD2, CD27, LFA-1 (CD11a, CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, IL2R beta, IL2R gamma, IL7Rα, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, DNAM1 (CD226), SLAMF4


(CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, NKp44, NKp30, NKp46, NKG2D, and NKG2C, or a functional variant thereof.


In some embodiments, the antigen binding domain of the CAR molecule is connected to the transmembrane domain by a hinge region.


In some embodiments, one or both nucleic acid molecule(s) further encodes a leader sequence.


In some embodiments, one or both nucleic acid molecule(s) is DNA or RNA.


In another aspect, the invention pertains to a vector comprising a nucleic acid composition described herein, wherein the vector is selected from the group consisting of a DNA vector, an RNA vector, a plasmid, a lentivirus vector, adenoviral vector, or a retrovirus vector.


In some embodiments, the vector further comprises a promoter, e.g., wherein the promoter is chosen from an EF-1 promoter, a CMV IE gene promoter, an EF-1α promoter, an ubiquitin C promoter, or a phosphoglycerate kinase (PGK) promoter.


In some embodiments, the vector is an in vitro transcribed vector, or the vector further comprises a poly(A) tail or a 3′UTR.


Immune Effector Cells

In another aspect, the invention pertains to an immune effector cell (e.g., a population of immune effector cells) comprising a CAR molecule, e.g., a CAR polypeptide, as described herein, and an SHP inhibitor molecule, e.g., an SHP inhibitor polypeptide, as described herein.


In another aspect, the invention pertains to an immune effector cell (e.g., a population of immune effector cells) comprising


(a) a CAR molecule, e.g., a CAR polypeptide and


(b) an SHP inhibitor molecule, e.g., SHP polypeptide, wherein said SHP inhibitor polypeptide comprises:

    • (i) a mutation (e.g., one or more deletions or substitutions) in the ITIM-binding region (e.g., an SH2 domain, e.g., the N-terminal SH2 domain) of the SHP inhibitor polypeptide, and
    • (ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain e.g., the phosphatase domain.


In another aspect, the invention pertains to an immune effector cell (e.g., a population of immune effector cells), comprising


a nucleic acid composition described herein;


a vector described herein; or


a polypeptide described herein.


In some embodiments of any of the aforesaid immune effector cells, the immune effector cell is a human T cell (e.g., CD8+ T cell or CD4+ T cell) or a human NK cell, optionally, wherein the T cell is diacylglycerol kinase (DGK) and/or Ikaros deficient.


In some embodiments, the immune effector cell is derived from blood, cord blood, bone marrow, or iPSC.


In some embodiments, the immune effector cell comprises an immune checkpoint inhibitor, e.g., a receptor. In some embodiments, the checkpoint inhibitor is chosen from PD-1, PD-L1, LAG-3, TIM3, B7-H1, CD160, P1H, 2B4, CEACAM (e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5), TIGIT, CTLA-4, BTLA, or LAIR1. In one embodiment, the checkpoint inhibitor is PD-1.


Methods of Making and Using

In another aspect, the invention pertains to a method of making a CAR-expressing immune effector cell (e.g., a population of CAR-expressing immune effector cells), comprising introducing the nucleic acid composition described herein or a vector described herein, into an immune effector cell, under conditions such that the CAR polypeptide is expressed.


In some embodiments, the method of making a CAR-expressing immune effector cell further comprises:


(a) providing a population of immune effector cells (e.g., T cells or NK cells); and


(b) removing T regulatory cells from the population, thereby providing a population of T regulatory-depleted cells;


wherein steps (a) and (b) are performed prior to introducing the nucleic acid composition to the population.


In some embodiments, the T regulatory cells are removed from the cell population using an anti-CD25 antibody, or an anti-GITR antibody.


In another aspect, the invention pertains to a method of providing anti-tumor or anti-cancer cell, immunity in a subject comprising administering to the subject an effective amount of an immune effector cell described herein, e.g., wherein the cell is an autologous T cell or an allogeneic T cell, or an autologous NK cell or an allogeneic NK cell.


In another aspect, the invention pertains to a method of treating a subject having a disease (e.g., cancer) associated with expression of a tumor antigen. The method includes administering an effective amount of an SHP inhibitor, e.g., an SHP inhibitor molecule in an immune effector cell as described herein, to the subject, thereby treating the subject.


In some embodiments, the SHP inhibitor is sodium stibogluconate (SSG).


In other embodiments, the SHP inhibitor is an SHP molecule, e.g., SHP polypeptide, as described herein, in an immune effector cell, e.g., a CAR-expressing immune effector cells as described herein.


In some embodiments, the cancer cells comprise an immune checkpoint inhibitor, e.g., a ligand. In some embodiments, the checkpoint inhibitor is chosen from PD-1, PD-L1, LAG-3, TIM3, B7-H1, CD160, P1H, 2B4, CEACAM (e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5), TIGIT, CTLA-4, BTLA, or LAIR1. In one embodiment, the checkpoint inhibitor is PD-L1.


In some embodiments, the method further comprises administering an agent that increases the efficacy of the immune effector cell, thereby treating the subject.


In some embodiments, said agent is chosen from one or more of:


a protein phosphatase inhibitor;


a kinase inhibitor;


a cytokine;


an inhibitor of an immune inhibitory molecule; or


an agent that decreases the level or activity of a TREG cell.


In some embodiments, the disease associated with expression of the tumor antigen is selected from the group consisting of a proliferative disease, a precancerous condition, a cancer, and a non-cancer related indication associated with expression of the tumor antigen.


In some embodiments, the disease associated with expression of the tumor antigen is a solid tumor.


In some embodiments, the cancer is selected from the group consisting of colon cancer, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine, cancer of the esophagus, melanoma, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin lymphoma, non-Hodgkin lymphoma, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, solid tumors of childhood, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the renal pelvis, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, T-cell lymphoma, environmentally induced cancers, combinations of said cancers, and metastatic lesions of said cancers.


In some embodiments, the cancer is a hematologic cancer chosen from one or more of chronic lymphocytic leukemia (CLL), acute leukemias, acute lymphoid leukemia (ALL), B-cell acute lymphoid leukemia (B-ALL), T-cell acute lymphoid leukemia (T-ALL), chronic myelogenous leukemia (CML), B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma, hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin lymphoma, Hodgkin lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, or pre-leukemia.


In another aspect, the invention pertains to a nucleic acid composition described herein, a vector described herein, a polypeptide described herein, or an immune effector cell described herein, for use as a medicament.


In another aspect, the invention pertains to a nucleic acid composition described herein, a vector described herein, a polypeptide described herein, or an immune effector cell described herein, for use in the treatment of a disease expressing a tumor antigen.


In one aspect, disclosed herein is a composition comprising:


(a) a nucleic acid molecule encoding a chimeric antigen receptor (CAR) polypeptide and


(b) an SHP inhibitor, wherein the SHP inhibitor is chosen from:

    • (i) one or more components of a gene editing system targeting one or more sites within a gene encoding SHP (e.g., SHP1 or SHP2) or a regulatory element thereof, a nucleic acid molecule encoding the one or more components of the gene editing system, or a combination thereof, or
    • (2) an agent that has RNAi or antisense inhibition activity against SHP (e.g., SHP1 or SHP2), or a nucleic acid molecule encoding the agent.


In some embodiments, the SHP inhibitor is one or more components of a gene editing system targeting one or more sites within a gene encoding SHP (e.g., SHP1 or SHP2) or a regulatory element thereof, a nucleic acid molecule encoding the one or more components of the gene editing system, or a combination thereof. In some embodiments, the gene editing system is chosen from a CRISPR/Cas9 system, a zinc finger nuclease system, a TALEN system, or a meganuclease system. In some embodiments, the gene editing system is a CRISPR/Cas9 system. In some embodiments, the gene editing system is a zinc finger nuclease system. In some embodiments, the gene editing system is a TALEN system. In some embodiments, the gene editing system is a meganuclease system.


In some embodiments, the SHP inhibitor comprises a guide RNA (gRNA) molecule targeting a gene encoding SHP (e.g., SHP1 or SHP2) or a regulatory element thereof. In some embodiments, the SHP inhibitor comprises a gRNA molecule targeting an exon of the gene encoding SHP (e.g., SHP1 or SHP2).


In some embodiments, the SHP inhibitor is an SHP2 inhibitor. In some embodiments, the SHP2 inhibitor comprises a gRNA molecule targeting any genomic location provided in column 4 of Table 19. In some embodiments, the SHP2 inhibitor comprises a gRNA molecule targeting any genomic target sequence provided in column 6 of Table 19, or a portion thereof.


In some embodiments, the SHP inhibitor is an SHP2 inhibitor, wherein the SHP2 inhibitor comprises a gRNA molecule comprising a tracr and a crRNA. In some embodiments, the crRNA comprises a targeting domain that is complementary with a target sequence of SHP2. In some embodiments, the targeting domain comprises any nucleotide sequence provided in column 5 of Table 19. In some embodiments, the targeting domain comprises or consists of 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19. In some embodiments, the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 are the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids disposed at the 3′ end of the recited nucleotide sequence provided in column 5 of Table 19. In some embodiments, the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 are the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids disposed at the 5′ end of the recited nucleotide sequence provided in column 5 of Table 19. In some embodiments, the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 do not comprise either the 5′ or 3′ nucleic acid of the recited nucleotide sequence provided in column 5 of Table 19.


In some embodiments, the SHP inhibitor is an agent that has RNAi or antisense inhibition activity against SHP (e.g., SHP1 or SHP2), or a nucleic acid molecule encoding the agent. In some embodiments, the SHP inhibitor is an agent that mediates RNA interference, e.g., an siRNA or shRNA specific for a gene encoding SHP (e.g., SHP1 or SHP2), or a nucleic acid molecule encoding the siRNA or shRNA.


In some embodiments, the encoded CAR polypeptide comprises an antigen binding domain, a transmembrane domain, and an intracellular signaling domain. In some embodiments, the intracellular domain comprises a primary signaling domain, a costimulatory domain, or both of a primary signaling domain and a costimulatory domain. In some embodiments, the primary signaling domain comprises a functional signaling domain of one or more proteins selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCER1G), FcR beta (Fc Epsilon R1b), CD79a, CD79b, Fcgamma RIIa, DAP10, and DAP12, or a functional variant thereof. In some embodiments, the costimulatory domain comprises a functional domain of one or more proteins selected from the group consisting of CD27, CD28, 4-1BB (CD137), OX40, CD28-OX40, CD28-4-1BB, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CD5, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, NKp44, NKp30, NKp46, and NKG2D, or a functional fragment thereof.


In some embodiments, the antigen binding domain binds a tumor antigen. In some embodiments, the tumor antigen is selected from the group consisting of: CD19; CD123; CD22; CD30; CD171; CS-1 (also referred to as CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1 or CLECL1); CD33; epidermal growth factor receptor variant III (EGFRvIII); ganglioside G2 (GD2); ganglioside GD3 (aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); TNF receptor family member B cell maturation (BCMA); Tn antigen ((Tn Ag) or (GalNAcα-Ser/Thr)); prostate-specific membrane antigen (PSMA); Receptor tyrosine kinase-like orphan receptor 1 (ROR1); Fms-Like Tyrosine Kinase 3 (FLT3); Tumor-associated glycoprotein 72 (TAG72); CD38; CD44v6; Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2 or CD213A2); Mesothelin; Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (Testisin or PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y) antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); Stage-specific embryonic antigen-4 (S SEA-4); CD20; Folate receptor alpha; Receptor tyrosine-protein kinase ERBB2 (Her2/neu); Mucin 1, cell surface associated (MUC1); epidermal growth factor receptor (EGFR); neural cell adhesion molecule (NCAM); Prostase; prostatic acid phosphatase (PAP); elongation factor 2 mutated (ELF2M); Ephrin B2; fibroblast activation protein alpha (FAP); insulin-like growth factor 1 receptor (IGF-I receptor), carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); glycoprotein 100 (gp100); oncogene fusion protein consisting of breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog 1 (Abl) (bcr-abl); tyrosinase; ephrin type-A receptor 2 (EphA2); Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); transglutaminase 5 (TGS5); high molecular weight-melanoma-associated antigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor beta; tumor endothelial marker 1 (TEM1/CD248); tumor endothelial marker 7-related (TEM7R); claudin 6 (CLDN6); thyroid stimulating hormone receptor (TSHR); G protein-coupled receptor class C group 5, member D (GPRC5D); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (OR51E2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); Cancer/testis antigen 1 (NY-ESO-1); Cancer/testis antigen 2 (LAGE-1a); Melanoma-associated antigen 1 (MAGE-A1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); melanoma cancer testis antigen-1 (MAD-CT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; tumor protein p53 (p53); p53 mutant; prostein; survivin; telomerase; prostate carcinoma tumor antigen-1 (PCTA-1 or Galectin 8), melanoma antigen recognized by T cells 1 (MelanA or MART1); Rat sarcoma (Ras) mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (ML-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Tyrosinase-related protein 2 (TRP-2); Cytochrome P450 1B1 (CYP1B1); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS or Brother of the Regulator of Imprinted Sites), Squamous Cell Carcinoma Antigen Recognized By T Cells 3 (SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES1); lymphocyte-specific protein tyrosine kinase (LCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint 2 (SSX2); Receptor for Advanced Glycation Endproducts (RAGE-1); renal ubiquitous 1 (RU1); renal ubiquitous 2 (RU2); legumain; human papilloma virus E6 (HPV E6); human papilloma virus E7 (HPV E7); intestinal carboxyl esterase; heat shock protein 70-2 mutated (mut hsp70-2); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1); Fc fragment of IgA receptor (FCAR or CD89); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLEC12A); bone marrow stromal cell antigen 2 (BST2); EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); and immunoglobulin lambda-like polypeptide 1 (IGLL1). In some embodiments, the tumor antigen is selected from CD150, 5T4, ActRIIA, B7, BMCA, CA-125, CCNA1, CD123, CD126, CD138, CD14, CD148, CD15, CD19, CD20, CD200, CD21, CD22, CD23, CD24, CD25, CD26, CD261, CD262, CD30, CD33, CD362, CD37, CD38, CD4, CD40, CD40L, CD44, CD46, CD5, CD52, CD53, CD54, CD56, CD66a-d, CD74, CD8, CD80, CD92, CE7, CS-1, CSPG4, ED-B fibronectin, EGFR, EGFRvIII, EGP-2, EGP-4, EPHa2, ErbB2, ErbB3, ErbB4, FBP, GD2, GD3, HER1-HER2 in combination, HER2-HER3 in combination, HERV-K, HIV-1 envelope glycoprotein gp120, HIV-1 envelope glycoprotein gp41, HLA-DR, HM1.24, HMW-MAA, Her2, Her2/neu, IGF-1R, IL-11Ralpha, IL-13R-alpha2, IL-2, IL-22R-alpha, IL-6, IL-6R, Ia, Ii, L1-CAM, L1-cell adhesion molecule, Lewis Y, L1-CAM, MAGE A3, MAGE-A1, MART-1, MUC1, NKG2C ligands, NKG2D Ligands, NY-ESO-1, OEPHa2, PIGF, PSCA, PSMA, ROR1, T101, TAC, TAG72, TIM-3, TRAIL-R1, TRAIL-R1 (DR4), TRAIL-R2 (DR5), VEGF, VEGFR2, WT-1, a G-protein coupled receptor, alphafetoprotein (AFP), an angiogenesis factor, an exogenous cognate binding molecule (ExoCBM), oncogene product, anti-folate receptor, c-Met, carcinoembryonic antigen (CEA), cyclin (D1), ephrinB2, epithelial tumor antigen, estrogen receptor, fetal acethycholine e receptor, folate binding protein, gp100, hepatitis B surface antigen, kappa chain, kappa light chain, kdr, lambda chain, livin, melanoma-associated antigen, mesothelin, mouse double minute 2 homolog (MDM2), mucin 16 (MUC16), mutated p53, mutated ras, necrosis antigens, oncofetal antigen, ROR2, progesterone receptor, prostate specific antigen, tEGFR, tenascin, β2-Microglobulin, Fc Receptor-like 5 (FcRL5), or molecules expressed by HIV, HCV, HBV, or other pathogens. In some embodiments, the tumor antigen is a solid tumor antigen, e.g., mesothelin. In some embodiments, the tumor antigen is expressed in a solid tumor that also expresses an immune checkpoint inhibitor, e.g., PD-L1.


In some embodiments, the antigen binding domain comprises an antibody, an antibody fragment, an scFv, a Fv, a Fab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.


In some embodiments, wherein the transmembrane domain comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, KIRDS2, OX40, CD2, CD27, LFA-1 (CD11a, CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, IL2R beta, IL2R gamma, IL7Rα, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, NKp44, NKp30, NKp46, NKG2D, and NKG2C, or a functional variant thereof.


In some embodiments, the antigen binding domain is connected to the transmembrane domain by a hinge region.


In some embodiments, the composition further encodes a leader sequence.


In some embodiments, the composition comprises:


(a) a nucleic acid molecule encoding a chimeric antigen receptor (CAR) polypeptide,


(b) an SHP1 inhibitor, wherein the SHP1 inhibitor is chosen from:

    • (i) one or more components of a gene editing system targeting one or more sites within a gene encoding SHP1 or a regulatory element thereof, a nucleic acid molecule encoding the one or more components of the gene editing system, or a combination thereof, or
    • (2) an agent that has RNAi or antisense inhibition activity against SHP1, or a nucleic acid molecule encoding the agent, and


(c) an SHP2 inhibitor, wherein the SHP2 inhibitor is chosen from:

    • (i) one or more components of a gene editing system targeting one or more sites within a gene encoding SHP2 or a regulatory element thereof, a nucleic acid molecule encoding the one or more components of the gene editing system, or a combination thereof, or
    • (2) an agent that has RNAi or antisense inhibition activity against SHP2, or a nucleic acid molecule encoding the agent.


In some embodiments, the composition is DNA or RNA.


In some embodiments, the SHP inhibitor comprises:


(i) a nucleic acid molecule encoding the one or more components of the gene editing system targeting one or more sites within a gene encoding SHP (e.g., SHP1 or SHP2) or a regulatory element thereof, or


(ii) a nucleic acid molecule encoding the agent having RNAi or antisense inhibition activity against SHP (e.g., SHP1 or SHP2). In some embodiments, the nucleic acid molecule encoding the CAR polypeptide, the nucleic acid molecule encoding the one or more components of the gene editing system, and the nucleic acid molecule encoding the agent having RNAi or antisense inhibition activity are disposed on a single nucleic acid molecule. In some embodiments, the nucleic acid molecule encoding the CAR polypeptide, the nucleic acid molecule encoding the one or more components of the gene editing system, and the nucleic acid molecule encoding the agent having RNAi or antisense inhibition activity are disposed on separate nucleic acid molecules.


In one aspect, disclosed herein is a vector comprising any of the aforementioned compositions.


In one aspect, disclosed herein is a cell (e.g., a population of immune effector cells) comprising any of the aforementioned compositions or vectors. In some embodiments, the cell is chosen from a human T cell (e.g., CD8+ T cell or CD4+ T cell) or a human NK cell.


In one aspect, disclosed herein is a method of making a CAR-expressing cell (e.g., a population of CAR-expressing immune effector cells), comprising culturing any of the aforementioned cells under conditions such that the CAR polypeptide is expressed.


In one aspect, disclosed herein is a method of providing anti-tumor immunity in a subject, comprising administering to the subject an effective amount of any of the aforementioned cells. In some embodiments, the cell is an autologous T cell or an allogeneic T cell, or an autologous NK cell or an allogeneic NK cell.


In one aspect, disclosed herein is a method of treating cancer in a subject in need thereof, comprising administering to the subject an effective amount of any of the aforementioned cells, thereby treating the subject. In some embodiments, the cancer is selected from the group consisting of colon cancer, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine, cancer of the esophagus, melanoma, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, non-Hodgkin lymphoma, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, solid tumors of childhood, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the renal pelvis, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, T-cell lymphoma, environmentally induced cancers, combinations of said cancers, and metastatic lesions of said cancers. In some embodiments, the cancer is a hematologic cancer chosen from one or more of chronic lymphocytic leukemia (CLL), acute leukemias, acute lymphoid leukemia (ALL), B-cell acute lymphoid leukemia (B-ALL), T-cell acute lymphoid leukemia (T-ALL), chronic myelogenous leukemia (CML), B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma, hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin's lymphoma, Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, or pre-leukemia.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Other features and advantages of the invention will be apparent from the detailed description, drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a diagram of examples of inhibitory receptors (IRs) involved in immunosuppression of CAR T cells.



FIG. 2 shows a diagram of TCR signaling, highlighting the role of SHP1.



FIG. 3 shows graphs of tumor cell killing (top) and IFNg secretion (bottom) of anti-mesothelin CAR TIL cells recovered after CAR T cells were injected into NSG flank tumors; recovered TIL cells were treated or not treated with SSG. “cryo mesoCAR” represents T cells that were not injected but cryopreserved, “mesoCAR TIL” represents T cells that were injected, then isolated from flank tumors at the experiment endpoint.



FIG. 4 shows a graph of phosphatase activity of SHP1 WT, C453S, and R459M.



FIG. 5 shows a graph of tumor cell killing by CAR T cells transfected with mRNA encoding anti-mesothelin CAR and no SHP1, WT SHP1, C453S SHP1, or R459M SHP1.



FIG. 6 shows a graph of T cell proliferation after viral transduction of SHP1-targeting shRNA and anti-CD3/28 bead activation.



FIG. 7 shows a diagram of SHP1 activation and depicts the roles of the N-SH2 domain and ITIMs.



FIG. 8 shows the amino acid sequences of SH2-N (SEQ ID NO: 40) and SH2-N-R30K (SEQ ID NO: 41).



FIG. 9 shows a diagram of lentiviral vectors comprising SS1BBz CAR and either SH2-N SHP1 or SH2-N-R30K SHP1.



FIG. 10 shows a flow cytometry data showing cytokine secretion upon stimulation with plate-bound CD3 of CD8+ T cells transduced with CAR, CAR and SH2-N SHP1, or CAR and SH2-N-R30K SHP1. The Y-axes in 1st column is IL2 expression, in 2nd column TNFα, and 3rd column IFNg; X-axes for all dot-plots are PD1 expression.



FIG. 11 shows graphs of EMMESO (top) or EMMESO-PDL1 (bottom) cell killing by T cells transduced with CAR, CAR and SH2-N SHP1, or CAR and SH2-N-R30K SHP1.



FIG. 12 shows caliper measurements of flank tumor size after mice were injected with NTD T cells, NTD T cells and SSG, CAR T cells, CAR T cells and SSG, CAR SH2-N T cells, or CAR SH2-N-R30K T cells.



FIG. 13 shows a graph of TIL infiltration of tumors after injection with CAR T cells, CAR T cells and SSG, CAR SH2-N T cells, or CAR SH2-N-R30K T cells, measured using flow cytometry (% represents CD3+ events within viable, singlet gate).



FIG. 14 shows graphs of the frequency of PD1 expression (top) or TIM3/CEACAM1 expression (bottom) in TILs recovered from tumors injected with CAR T cells, CAR T cells and SSG, CAR SH2-N T cells, or CAR SH2-N-R30K T cells, measured using flow cytometry.



FIG. 15 shows graphs of EMMESO (top) or EMMESO-PDL1 (bottom) cell killing by CAR T cells, or TILs recovered from tumors injected with CAR T cells, CAR T cells and SSG, CAR SH2-N T cells, or CAR SH2-N-R30K T cells at various E:T ratios.



FIGS. 16A and 16B show graphs of the percentage of pZap70 positive T cells when CARGFP cells, dnSHP1 CAR cells, dnSHP2 CAR cells, or dnSHP1&2 CAR cells were co-cultured with EMMESO tumor cells (FIG. 16A) or EMMESO-PD-L1 tumor cells (FIG. 16B). Gating was on live, singlet, CAR positive T cells.



FIG. 17 shows flow cytometry plots of CARGFP cells, dnSHP1 CAR cells, dnSHP2 CAR cells, or dnSHP1&2 CAR cells that were stained for CD8 and IFNγ or IL2.





DETAILED DESCRIPTION

Compositions and uses that improve an activity (e.g., one or more of function, persistence, cancer killing effect, or tumor infiltration) of an immune effector cell, e.g., a population of immune effector cells (e.g., T cells, NK cells) are disclosed. In some embodiments, the immune effector cell expresses a Chimeric Antigen Receptor molecule (e.g., a CAR polypeptide) that binds to a tumor antigen. In some embodiments, the immune effector cell comprises, or is contacted with an inhibitor of a Src homology region 2 domain-containing phosphatase (SHP). In one embodiment, the inhibitor is an inhibitor of SHP-1. In another embodiment, the inhibitor is an inhibitor of SHP-2. In one embodiment, the SHP inhibitor interferes with SHP signaling (e.g., interferes with SHP-1 signaling or SHP-2 signaling, or both), also referred to herein as an SHP inhibitor molecule (e.g., an SHP inhibitor polypeptide). In general, the invention features, at least in part, immune cells, e.g., T-cells, containing a CAR molecule and an SHP inhibitor molecule, e.g., an SHP inhibitor polypeptide. The invention is based, at least in part, on the discovery that immune effector cells comprising one or more SHP inhibitor polypeptides result in one or more of: increased killing of tumor cells, increased cytokine release, and increased tumor infiltration in vitro and in vivo.


Without wishing to be bound by theory, SHP1 (and SHP2) regulates T cell receptor signaling, and is activated by inhibitory receptors (IRs). IR signaling down-regulates T cell function, lowering the efficacy of CAR T cell therapies in targeting and killing tumor cells. SHP inhibition is expected to interfere with the signaling of immunosuppressive factors, such as IRs, or checkpoint molecules. In certain embodiments, the IRs are present in the microenvironment of a tumor, e.g., a solid tumor, thus resulting in decreased effectiveness of a therapy, e.g., a CAR therapy, in the tumor microenvironment. SHP inhibitor molecules, e.g., polypeptides that inhibit SHP1 and/or SHP2, and, when co-expressed with a CAR in an immune effector cell, result in one or more of: increase killing of tumor cells, increase cytokine release, and increase tumor infiltration in vitro and in vivo. The SHP inhibitor molecules disclosed herein are compatible with a wide array of CARs, also described herein.


Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains.


The term “a” and “an” refers to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


The term “about” when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ±20% or in some instances ±10%, or in some instances ±5%, or in some instances ±1%, or in some instances ±0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.


The term “Chimeric Antigen Receptor” or alternatively a “CAR” refers to a set of polypeptides, typically two in the simplest embodiments, which when in an immune effector cell, provides the cell with specificity for a target cell, typically a cancer cell, and with intracellular signal generation. The terms “CAR” and “CAR molecule” are used interchangeably. In some embodiments, a CAR comprises at least an extracellular antigen binding domain, a transmembrane domain and a cytoplasmic signaling domain (also referred to herein as “an intracellular signaling domain”) comprising a functional signaling domain derived from a stimulatory molecule and/or costimulatory molecule as defined below. In some embodiments, the set of polypeptides are in the same polypeptide chain (e.g., comprise a chimeric fusion protein). In some aspects, the set of polypeptides are contiguous with each other. In some embodiments, the set of polypeptides are not contiguous with each other, e.g., are in different polypeptide chains. In some embodiments, the set of polypeptides include a dimerization switch that, upon the presence of a dimerization molecule, can couple the polypeptides to one another, e.g., can couple an antigen binding domain to an intracellular signaling domain. In one aspect, the stimulatory molecule is the zeta chain associated with the T cell receptor complex. In one aspect, the cytoplasmic signaling domain further comprises one or more functional signaling domains derived from at least one costimulatory molecule as defined below. In one aspect, the costimulatory molecule is chosen from the costimulatory molecules described herein, e.g., 4-1BB (i.e., CD137), CD27 and/or CD28. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen binding domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a stimulatory molecule. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen binding domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a costimulatory molecule and a functional signaling domain derived from a stimulatory molecule. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen binding domain, a transmembrane domain and an intracellular signaling domain comprising two functional signaling domains derived from one or more costimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen binding domain, a transmembrane domain and an intracellular signaling domain comprising at least two functional signaling domains derived from one or more costimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule. In one aspect the CAR comprises an optional leader sequence at the amino-terminus (N-ter) of the CAR fusion protein. In one aspect, the CAR further comprises a leader sequence at the N-terminus of the extracellular antigen binding domain, wherein the leader sequence is optionally cleaved from the antigen binding domain (e.g., a scFv) during cellular processing and localization of the CAR to the cellular membrane.


A CAR that comprises an antigen binding domain (e.g., a scFv, or TCR) that targets a specific tumor maker X, such as those described herein, is also referred to as XCAR. For example, a CAR that comprises an antigen binding domain that targets CD19 is referred to as CD19CAR.


The term “signaling domain” refers to the functional portion of a protein which acts by transmitting information within the cell to regulate cellular activity via defined signaling pathways by generating second messengers or functioning as effectors by responding to such messengers.


The term “antibody,” as used herein, refers to a protein, or polypeptide sequence derived from an immunoglobulin molecule which specifically binds with an antigen. Antibodies can be polyclonal or monoclonal, multiple or single chain, or intact immunoglobulins, and may be derived from natural sources or from recombinant sources. Antibodies can be tetramers of immunoglobulin molecules.


The term “antibody fragment” refers to at least one portion of an antibody, that retains the ability to specifically interact with (e.g., by binding, steric hindrance, stabilizing/destabilizing, spatial distribution) an epitope of an antigen. Examples of antibody fragments include, but are not limited to, Fab, Fab′, F(ab′)2, Fv fragments, scFv antibody fragments, disulfide-linked Fvs (sdFv), a Fd fragment consisting of the VH and CH1 domains, linear antibodies, single domain antibodies such as sdAb (either VL or VH), camelid VHH domains, multi-specific antibodies formed from antibody fragments such as a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region, and an isolated CDR or other epitope binding fragments of an antibody. An antigen binding fragment can also be incorporated into single domain antibodies, maxibodies, minibodies, nanobodies, intrabodies, diabodies, triabodies, tetrabodies, v-NAR and bis-scFv (see, e.g., Hollinger and Hudson, Nature Biotechnology 23:1126-1136, 2005). Antigen binding fragments can also be grafted into scaffolds based on polypeptides such as a fibronectin type III (Fn3) (see U.S. Pat. No. 6,703,199, which describes fibronectin polypeptide minibodies).


The term “scFv” refers to a fusion protein comprising at least one antibody fragment comprising a variable region of a light chain and at least one antibody fragment comprising a variable region of a heavy chain, wherein the light and heavy chain variable regions are contiguously linked, e.g., via a synthetic linker, e.g., a short flexible polypeptide linker, and capable of being expressed as a single chain polypeptide, and wherein the scFv retains the specificity of the intact antibody from which it is derived. Unless specified, as used herein an scFv may have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv may comprise VL-linker-VH or may comprise VH-linker-VL.


The portion of the CAR comprising an antibody or antibody fragment thereof may exist in a variety of forms where the antigen binding domain is expressed as part of a contiguous polypeptide chain including, for example, a single domain antibody fragment (sdAb), a single chain antibody (scFv), a humanized antibody or bispecific antibody (Harlow et al., 1999, In: Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: Antibodies: A Laboratory Manual, Cold Spring Harbor, N.Y.; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426). In one aspect, the antigen binding domain of a CAR composition of the invention comprises an antibody fragment. In a further aspect, the CAR comprises an antibody fragment that comprises a scFv. The precise amino acid sequence boundaries of a given CDR can be determined using any of a number of well-known schemes, including those described by Kabat et al. (1991), “Sequences of Proteins of Immunological Interest,” 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (“Kabat” numbering scheme), Al-Lazikani et al., (1997) JMB 273,927-948 (“Chothia” numbering scheme), or a combination thereof.


As used herein, the term “binding domain” or “antibody molecule” refers to a protein, e.g., an immunoglobulin chain or fragment thereof, comprising at least one immunoglobulin variable domain sequence. The term “binding domain” or “antibody molecule” encompasses antibodies and antibody fragments. In an embodiment, an antibody molecule is a multispecific antibody molecule, e.g., it comprises a plurality of immunoglobulin variable domain sequences, wherein a first immunoglobulin variable domain sequence of the plurality has binding specificity for a first epitope and a second immunoglobulin variable domain sequence of the plurality has binding specificity for a second epitope. In an embodiment, a multispecific antibody molecule is a bispecific antibody molecule. A bispecific antibody has specificity for no more than two antigens. A bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence which has binding specificity for a first epitope and a second immunoglobulin variable domain sequence that has binding specificity for a second epitope.


The portion of the CAR comprising an antibody or antibody fragment thereof may exist in a variety of forms where the antigen binding domain is expressed as part of a contiguous polypeptide chain including, for example, a single domain antibody fragment (sdAb), a single chain antibody (scFv), a humanized antibody, or bispecific antibody (Harlow et al., 1999, In: Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: Antibodies: A Laboratory Manual, Cold Spring Harbor, N.Y.; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426). In one aspect, the antigen binding domain of a CAR composition of the invention comprises an antibody fragment. In a further aspect, the CAR comprises an antibody fragment that comprises a scFv.


The term “antibody heavy chain,” refers to the larger of the two types of polypeptide chains present in antibody molecules in their naturally occurring conformations, and which normally determines the class to which the antibody belongs.


The term “antibody light chain,” refers to the smaller of the two types of polypeptide chains present in antibody molecules in their naturally occurring conformations. Kappa (κ) and lambda (λ) light chains refer to the two major antibody light chain isotypes.


The term “recombinant antibody” refers to an antibody which is generated using recombinant DNA technology, such as, for example, an antibody expressed by a bacteriophage or yeast expression system. The term should also be construed to mean an antibody which has been generated by the synthesis of a DNA molecule encoding the antibody and which DNA molecule expresses an antibody protein, or an amino acid sequence specifying the antibody, wherein the DNA or amino acid sequence has been obtained using recombinant DNA or amino acid sequence technology which is available and well known in the art.


The term “antigen” or “Ag” refers to a molecule that provokes an immune response. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells, or both. The skilled artisan will understand that any macromolecule, including virtually all proteins or peptides, can serve as an antigen. Furthermore, antigens can be derived from recombinant or genomic DNA. A skilled artisan will understand that any DNA, which comprises a nucleotide sequences or a partial nucleotide sequence encoding a protein that elicits an immune response therefore encodes an “antigen” as that term is used herein. Furthermore, one skilled in the art will understand that an antigen need not be encoded solely by a full length nucleotide sequence of a gene. It is readily apparent that the present invention includes, but is not limited to, the use of partial nucleotide sequences of more than one gene and that these nucleotide sequences are arranged in various combinations to encode polypeptides that elicit the desired immune response. Moreover, a skilled artisan will understand that an antigen need not be encoded by a “gene” at all. It is readily apparent that an antigen can be generated synthesized or can be derived from a biological sample, or might be macromolecule besides a polypeptide. Such a biological sample can include, but is not limited to a tissue sample, a tumor sample, a cell or a fluid with other biological components.


As used herein, the term “SHP inhibitor” refers to any molecule capable of inhibiting or reducing expression and/or function of SHP. In one embodiment, the SHP inhibitor is a SHP inhibitor molecule. The term “SHP inhibitor molecule” refers to a nucleic acid or a polypeptide that interferes with SHP signaling (e.g., interferes with SHP-1 signaling or SHP-2 signaling, or both), e.g., in a cell, e.g., an immune effector cells. In some embodiments, the SHP inhibitor molecule is a dominant negative molecule that interferes with SHP signaling in a cell, e.g., an immune effector cell, e.g., an immune effector cell that expresses a CAR molecule (e.g., a CAR polypeptide) that binds to a tumor antigen. The SHP inhibitor can reduce the effects of one or more IRs by inhibiting a signaling component of multiple IR pathways. The SHP inhibitor molecules described herein, when expressed in an immune effector cell, e.g., a CAR-expressing immune effector cell, can result in one or more of: (i) reduced immune checkpoint inhibition, e.g., IR inhibitor, (ii) reduced IR signaling, e.g., PD-1/PD-L1 signaling, (iii) increased levels of CD3z phosphorylation, (iv) increased levels of LAT phosphorylation, (v) increased phosphorylation of Lck, (vi) increased phosphorylation of ZAP70, (vii) increased expression of a cytokine, e.g., IFNγ or IL2, (viii) increased CAR and/or TCR signaling, (ix) increased killing of a tumor cell, e.g., a solid tumor cell, via a CAR molecule, in vitro and in vivo, e.g., compared to an otherwise similar cell that lacks the SHP inhibitor molecule.


In embodiments where the SHP inhibitor molecule is a polypeptide, also, referred to herein as an “SHP inhibitor polypeptide.” In some embodiments, the SHP inhibitor polypeptide includes an amino acid sequence derived from SHP1 (also known as: Src homology region 2 domain-containing phosphatase-1, or tyrosine-protein phosphatase non-receptor type 6) or an amino acid sequence derived from SHP2 (also known as: protein-tyrosoine phosphatase 1D (PTP-1D), protein-tyrosine phosphatase 2C (PTP-2C), or tyrosine-protein phosphatase non-receptor type 11 (PTPN11)) that inhibits the function of SHP1, SHP2, or both SHP1 and SHP2. In some embodiments, an SHP inhibitor polypeptide comprises less than 240, 220, 180, 160, 140, 120, 100, 80, 60, or 40 amino acids in length. In some embodiments, the SHP inhibitor polypeptide comprises an amino acid sequence at least 75, 80, 85, 90, 95, 99, or 100% identical to a corresponding sequence of SHP-1 or SHP-2, described herein as SEQ ID NO: 1 or SEQ ID NO:2, respectively. In some embodiments, the SHP inhibitor polypeptide comprises a single domain of SHP1 or SHP2, e.g., an SH2-N domain. In some embodiments, the SHP inhibitor polypeptide comprises one or more mutations, e.g., substitutions, insertions, or deletions, relative to the amino acid sequence of SHP1 or SHP2. In some embodiments, the SHP inhibitor polypeptide includes a mutation in the N-terminal region of the SHP, e.g., the N-SH2 region of an SHP, e.g., an SHP-1 or SHP-2. In some embodiments, the mutation is in the binding region of the N-SH2 region for an ITIM, e.g., an ITIM-domain present in an IR, e.g., PD-1. In some embodiments, the N-SH2 mutation is at position 30 of SHP-1, e.g., an R30K substitution in SHP-1 as described herein. Alternatively or in combination with the N-SH2 region mutation, the SHP inhibitor has a mutation in, e.g., a deletion of, part or all of the catalytic domain, e.g., the phosphatase domain, of an SHP, e.g., an SHP-1 or SHP-2.


The terms “SHP1 polypeptide” and “SHP2 polypeptide” refer to SHP polypeptides derived from (e.g., having an amino acid sequence identical or substantially identical to) SHP1 and SHP2, respectively.


The terms “N-SH2” and “SH2-N” refer to the N-terminal SH2 domain of SHP1 or SHP2.


The terms “N-SH2-R30K”, “SH2-N-R30K”, “N-SH2-R30K SHP1” and variants thereof refer to a SHP inhibitor polypeptide comprising an amino acid sequence derived from N-terminal SH2 domain of SHP1, further comprising a mutation at position 30 from arginine to lysine.


The term “anti-cancer effect” refers to a biological effect which can be manifested by various means, including but not limited to, e.g., a decrease in tumor volume, a decrease in the number of cancer cells, a decrease in the number of metastases, an increase in life expectancy, decrease in cancer cell proliferation, decrease in cancer cell survival, or amelioration of various physiological symptoms associated with the cancerous condition. An “anti-cancer effect” can also be manifested by the ability of the peptides, polynucleotides, cells and antibodies in prevention of the occurrence of cancer in the first place. The term “anti-tumor effect” refers to a biological effect which can be manifested by various means, including but not limited to, e.g., a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in tumor cell proliferation, or a decrease in tumor cell survival.


The term “autologous” refers to any material derived from the same individual to whom it is later to be re-introduced into the individual.


The term “allogeneic” refers to any material derived from a different animal of the same species as the individual to whom the material is introduced. Two or more individuals are said to be allogeneic to one another when the genes at one or more loci are not identical. In some aspects, allogeneic material from individuals of the same species may be sufficiently unlike genetically to interact antigenically


The term “xenogeneic” refers to a graft derived from an animal of a different species.


The term “cancer” refers to a disease characterized by the uncontrolled growth of aberrant cells. Cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body. Examples of various cancers are described herein and include but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer, renal cancer, liver cancer, brain cancer, lymphoma, leukemia, lung cancer and the like. The terms “tumor” and “cancer” are used interchangeably herein, e.g., both terms encompass solid and liquid, e.g., diffuse or circulating, tumors. As used herein, the term “cancer” or “tumor” includes premalignant, as well as malignant cancers and tumors.


“Derived from” as that term is used herein, indicates a relationship between a first and a second molecule. It generally refers to structural similarity between the first molecule and a second molecule and does not connotate or include a process or source limitation on a first molecule that is derived from a second molecule. For example, in the case of an intracellular signaling domain that is derived from a CD3zeta molecule, the intracellular signaling domain retains sufficient CD3zeta structure such that is has the required function, namely, the ability to generate a signal under the appropriate conditions. It does not connotate or include a limitation to a particular process of producing the intracellular signaling domain, e.g., it does not mean that, to provide the intracellular signaling domain, one must start with a CD3zeta sequence and delete unwanted sequence, or impose mutations, to arrive at the intracellular signaling domain.


The phrase “disease associated with expression of a tumor antigen as described herein” includes, but is not limited to, a disease associated with expression of a tumor antigen as described herein or condition associated with cells which express a tumor antigen as described herein including, e.g., proliferative diseases such as a cancer or malignancy or a precancerous condition such as a myelodysplasia, a myelodysplastic syndrome or a preleukemia; or a noncancer related indication associated with cells which express a tumor antigen as described herein. In one aspect, a cancer associated with expression of a tumor antigen as described herein is a hematological cancer. In one aspect, a cancer associated with expression of a tumor antigen as described herein is a solid cancer. Further diseases associated with expression of a tumor antigen described herein include, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases associated with expression of a tumor antigen as described herein. Non-cancer related indications associated with expression of a tumor antigen as described herein include, but are not limited to, e.g., autoimmune disease, (e.g., lupus), inflammatory disorders (allergy and asthma) and transplantation. In some embodiments, the tumor antigen-expressing cells express, or at any time expressed, mRNA encoding the tumor antigen. In an embodiment, the tumor antigen-expressing cells produce the tumor antigen protein (e.g., wild-type or mutant), and the tumor antigen protein may be present at normal levels or reduced levels. In an embodiment, the tumor antigen-expressing cells produced detectable levels of a tumor antigen protein at one point, and subsequently produced substantially no detectable tumor antigen protein.


The term “conservative sequence modifications” refers to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody or antibody fragment containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into an antibody or antibody fragment of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, one or more amino acid residues within a CAR of the invention can be replaced with other amino acid residues from the same side chain family and the altered CAR can be tested using the functional assays described herein.


The term “stimulation,” refers to a primary response induced by binding of a stimulatory molecule (e.g., a TCR/CD3 complex or CAR) with its cognate ligand (or tumor antigen in the case of a CAR) thereby mediating a signal transduction event, such as, but not limited to, signal transduction via the TCR/CD3 complex or signal transduction via the appropriate NK receptor or signaling domains of the CAR. Stimulation can mediate altered expression of certain molecules.


The term “stimulatory molecule,” refers to a molecule expressed by an immune cell (e.g., T cell, NK cell, B cell) that provides the cytoplasmic signaling sequence(s) that regulate activation of the immune cell in a stimulatory way for at least some aspect of the immune cell signaling pathway. In one aspect, the signal is a primary signal that is initiated by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide, and which leads to mediation of a T cell response, including, but not limited to, proliferation, activation, differentiation, and the like. A primary cytoplasmic signaling sequence (also referred to as a “primary signaling domain”) that acts in a stimulatory manner may contain a signaling motif which is known as immunoreceptor tyrosine-based activation motif or ITAM. Examples of an ITAM containing cytoplasmic signaling sequence that is of particular use in the invention includes, but is not limited to, those derived from CD3 zeta, common FcR gamma (FCER1G), Fc gamma RIIa, FcR beta (Fc Epsilon R1b), CD3 gamma, CD3 delta, CD3 epsilon, CD79a, CD79b, DAP10, and DAP12. In a specific CAR of the invention, the intracellular signaling domain in any one or more CARS of the invention comprises an intracellular signaling sequence, e.g., a primary signaling sequence of CD3-zeta. In a specific CAR of the invention, the primary signaling sequence of CD3-zeta is the sequence provided as SEQ ID NO:18, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like. In a specific CAR of the invention, the primary signaling sequence of CD3-zeta is the sequence as provided in SEQ ID NO:20, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.


The term “antigen presenting cell” or “APC” refers to an immune system cell such as an accessory cell (e.g., a B-cell, a dendritic cell, and the like) that displays a foreign antigen complexed with major histocompatibility complexes (MHC's) on its surface. T-cells may recognize these complexes using their T-cell receptors (TCRs). APCs process antigens and present them to T-cells.


An “intracellular signaling domain,” as the term is used herein, refers to an intracellular portion of a molecule. The intracellular signaling domain generates a signal that promotes an immune effector function of the CAR containing cell, e.g., a CART cell. Examples of immune effector function, e.g., in a CART cell, include cytolytic activity and helper activity, including the secretion of cytokines.


In an embodiment, the intracellular signaling domain can comprise a primary intracellular signaling domain. Exemplary primary intracellular signaling domains include those derived from the molecules responsible for primary stimulation, or antigen dependent simulation. In an embodiment, the intracellular signaling domain can comprise a costimulatory intracellular domain. Exemplary costimulatory intracellular signaling domains include those derived from molecules responsible for costimulatory signals, or antigen independent stimulation. For example, in the case of a CART, a primary intracellular signaling domain can comprise a cytoplasmic sequence of a T cell receptor, and a costimulatory intracellular signaling domain can comprise cytoplasmic sequence from co-receptor or costimulatory molecule.


A primary intracellular signaling domain can comprise a signaling motif which is known as an immunoreceptor tyrosine-based activation motif or ITAM. Examples of ITAM containing primary cytoplasmic signaling sequences include, but are not limited to, those derived from CD3 zeta, common FcR gamma (FCER1G), Fc gamma RIIa, FcR beta (Fc Epsilon R1b), CD3 gamma, CD3 delta, CD3 epsilon, CD79a, CD79b, DAP10, and DAP12.


The term “zeta” or alternatively “zeta chain”, “CD3-zeta” or “TCR-zeta” is defined as the protein provided as GenBank Acc. No. BAG36664.1, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like, and a “zeta stimulatory domain” or alternatively a “CD3-zeta stimulatory domain” or a “TCR-zeta stimulatory domain” is defined as the amino acid residues from the cytoplasmic domain of the zeta chain, or functional derivatives thereof, that are sufficient to functionally transmit an initial signal necessary for T cell activation. In one aspect the cytoplasmic domain of zeta comprises residues 52 through 164 of GenBank Acc. No. BAG36664.1 or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like, that are functional orthologs thereof. In one aspect, the “zeta stimulatory domain” or a “CD3-zeta stimulatory domain” is the sequence provided as SEQ ID NO:18. In one aspect, the “zeta stimulatory domain” or a “CD3-zeta stimulatory domain” is the sequence provided as SEQ ID NO:20.


The term a “costimulatory molecule” refers to a cognate binding partner on a T cell that specifically binds with a costimulatory ligand, thereby mediating a costimulatory response by the T cell, such as, but not limited to, proliferation. Costimulatory molecules are cell surface molecules other than antigen receptors or their ligands that are contribute to an efficient immune response. Costimulatory molecules include, but are not limited to an MHC class I molecule, BTLA and a Toll ligand receptor, as well as OX40, CD27, CD28, CD5, ICAM-1, LFA-1 (CD11a/CD18), ICOS (CD278), and 4-1BB (CD137). Further examples of such costimulatory molecules include CD5, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, and a ligand that specifically binds with CD83.


A costimulatory intracellular signaling domain can be the intracellular portion of a costimulatory molecule. A costimulatory molecule can be represented in the following protein families: TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), and activating NK cell receptors. Examples of such molecules include CD27, CD28, 4-1BB (CD137), OX40, CD28-OX40, CD28-4-1BB, GITR, CD30, CD40, ICOS, BAFFR, HVEM, ICAM-1, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD5, CD7, CD287, LIGHT, NKG2C, NKG2D, SLAMF7, NKp80, NKp30, NKp44, NKp46, CD160, B7-H3, and a ligand that specifically binds with CD83, and the like.


The intracellular signaling domain can comprise the entire intracellular portion, or the entire native intracellular signaling domain, of the molecule from which it is derived, or a functional fragment or derivative thereof.


The term “4-1BB” refers to a member of the TNFR superfamily with an amino acid sequence provided as GenBank Acc. No. AAA62478.2, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like; and a “4-1BB costimulatory domain” is defined as amino acid residues 214-255 of GenBank Acc. No. AAA62478.2, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like. In one aspect, the “4-1BB costimulatory domain” is the sequence provided as SEQ ID NO:14 or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.


“Immune effector cell,” as that term is used herein, refers to a cell that is involved in an immune response, e.g., in the promotion of an immune effector response. Examples of immune effector cells include T cells, e.g., alpha/beta T cells and gamma/delta T cells, B cells, natural killer (NK) cells, natural killer T (NKT) cells, mast cells, and myeloid-derived phagocytes.


“Immune effector function or immune effector response,” as that term is used herein, refers to function or response, e.g., of an immune effector cell, that enhances or promotes an immune attack of a target cell. E.g., an immune effector function or response refers a property of a T or NK cell that promotes killing or the inhibition of growth or proliferation, of a target cell. In the case of a T cell, primary stimulation and co-stimulation are examples of immune effector function or response.


The term “encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (e.g., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene, cDNA, or RNA, encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.


Unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. The phrase nucleotide sequence that encodes a protein or a RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron(s).


The term “effective amount” or “therapeutically effective amount” are used interchangeably herein, and refer to an amount of a compound, formulation, material, or composition, as described herein effective to achieve a particular biological result.


The term “endogenous” refers to any material from or produced inside an organism, cell, tissue or system.


The term “exogenous” refers to any material introduced from or produced outside an organism, cell, tissue or system.


The term “expression” refers to the transcription and/or translation of a particular nucleotide sequence driven by a promoter.


The term “transfer vector” refers to a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term “transfer vector” includes an autonomously replicating plasmid or a virus. The term should also be construed to further include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, a polylysine compound, liposome, and the like. Examples of viral transfer vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, lentiviral vectors, and the like.


The term “expression vector” refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, including cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.


The term “lentivirus” refers to a genus of the Retroviridae family Lentiviruses are unique among the retroviruses in being able to infect non-dividing cells; they can deliver a significant amount of genetic information into the DNA of the host cell, so they are one of the most efficient methods of a gene delivery vector. HIV, SIV, and FIV are all examples of lentiviruses.


The term “lentiviral vector” refers to a vector derived from at least a portion of a lentivirus genome, including especially a self-inactivating lentiviral vector as provided in Milone et al., Mol. Ther. 17(8): 1453-1464 (2009). Other examples of lentivirus vectors that may be used in the clinic, include but are not limited to, e.g., the LENTIVECTOR® gene delivery technology from Oxford BioMedica, the LENTIMAX™ vector system from Lentigen and the like. Nonclinical types of lentiviral vectors are also available and would be known to one skilled in the art.


The term “homologous” or “identity” refers to the subunit sequence identity between two polymeric molecules, e.g., between two nucleic acid molecules, such as, two DNA molecules or two RNA molecules, or between two polypeptide molecules. When a subunit position in both of the two molecules is occupied by the same monomeric subunit; e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous or identical at that position. The homology between two sequences is a direct function of the number of matching or homologous positions; e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two sequences are homologous, the two sequences are 50% homologous; if 90% of the positions (e.g., 9 of 10), are matched or homologous, the two sequences are 90% homologous.


“Humanized” forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies and antibody fragments thereof are human immunoglobulins (recipient antibody or antibody fragment) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, a humanized antibody/antibody fragment can comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications can further refine and optimize antibody or antibody fragment performance In general, the humanized antibody or antibody fragment thereof will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or a significant portion of the FR regions are those of a human immunoglobulin sequence. The humanized antibody or antibody fragment can also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321: 522-525, 1986; Reichmann et al., Nature, 332: 323-329, 1988; Presta, Curr. Op. Struct. Biol., 2: 593-596, 1992.


“Fully human” refers to an immunoglobulin, such as an antibody or antibody fragment, where the whole molecule is of human origin or consists of an amino acid sequence identical to a human form of the antibody or immunoglobulin.


The term “isolated” means altered or removed from the natural state. For example, a nucleic acid or a peptide naturally present in a living animal is not “isolated,” but the same nucleic acid or peptide partially or completely separated from the coexisting materials of its natural state is “isolated.” An isolated nucleic acid or protein can exist in substantially purified form, or can exist in a non-native environment such as, for example, a host cell.


In the context of the present invention, the following abbreviations for the commonly occurring nucleic acid bases are used. “A” refers to adenosine, “C” refers to cytosine, “G” refers to guanosine, “T” refers to thymidine, and “U” refers to uridine.


The term “operably linked” or “transcriptional control” refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter. For example, a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences can be contiguous with each other and, e.g., where necessary to join two protein coding regions, are in the same reading frame.


The term “parenteral” administration of an immunogenic composition includes, e.g., subcutaneous (s.c.), intravenous (i.v.), intramuscular (i.m.), or intrasternal injection, intratumoral, or infusion techniques.


The term “nucleic acid”, “nucleic acid molecule,” or “polynucleotide” refers to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).


The terms “peptide,” “polypeptide,” and “protein” are used interchangeably, and refer to a compound comprised of amino acid residues covalently linked by peptide bonds.


A protein or peptide must contain at least two amino acids, and no limitation is placed on the maximum number of amino acids that can comprise a protein's or peptide's sequence. Polypeptides include any peptide or protein comprising two or more amino acids joined to each other by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types. “Polypeptides” include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, among others. A polypeptide includes a natural peptide, a recombinant peptide, or a combination thereof.


The term “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a polynucleotide sequence.


The term “promoter/regulatory sequence” refers to a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulatory sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product. The promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.


The term “constitutive” promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell under most or all physiological conditions of the cell.


The term “inducible” promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell substantially only when an inducer which corresponds to the promoter is present in the cell.


The term “tissue-specific” promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide encodes or specified by a gene, causes the gene product to be produced in a cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.


The terms “cancer associated antigen” or “tumor antigen” interchangeably refers to a molecule (typically a protein, carbohydrate or lipid) that is expressed on the surface of a cancer cell, either entirely or as a fragment (e.g., MHC/peptide), and which is useful for the preferential targeting of a pharmacological agent to the cancer cell. In some embodiments, a tumor antigen is a marker expressed by both normal cells and cancer cells, e.g., a lineage marker, e.g., CD19 on B cells. In some embodiments, a tumor antigen is a cell surface molecule that is overexpressed in a cancer cell in comparison to a normal cell, for instance, 1-fold over expression, 2-fold overexpression, 3-fold overexpression or more in comparison to a normal cell. In some embodiments, a tumor antigen is a cell surface molecule that is inappropriately synthesized in the cancer cell, for instance, a molecule that contains deletions, additions or mutations in comparison to the molecule expressed on a normal cell. In some embodiments, a tumor antigen will be expressed exclusively on the cell surface of a cancer cell, entirely or as a fragment (e.g., MHC/peptide), and not synthesized or expressed on the surface of a normal cell. In some embodiments, the CARs of the present invention includes CARs comprising an antigen binding domain (e.g., antibody or antibody fragment) that binds to a MHC presented peptide. Normally, peptides derived from endogenous proteins fill the pockets of Major histocompatibility complex (MHC) class I molecules, and are recognized by T cell receptors (TCRs) on CD8 + T lymphocytes. The MHC class I complexes are constitutively expressed by all nucleated cells. In cancer, virus-specific and/or tumor-specific peptide/MHC complexes represent a unique class of cell surface targets for immunotherapy. TCR-like antibodies targeting peptides derived from viral or tumor antigens in the context of human leukocyte antigen (HLA)-A1 or HLA-A2 have been described (see, e.g., Sastry et al., J Virol. 2011 85(5):1935-1942; Sergeeva et al., Blood, 2011 117(16):4262-4272; Verma et al., J Immunol 2010 184(4):2156-2165; Willemsen et al., Gene Ther 2001 8(21):1601-1608; Dao et al., Sci Transl Med 2013 5(176):176ra33; Tassev et al., Cancer Gene Ther 2012 19(2):84-100). For example, TCR-like antibody can be identified from screening a library, such as a human scFv phage displayed library.


The term “tumor-supporting antigen” or “cancer-supporting antigen” interchangeably refer to a molecule (typically a protein, carbohydrate or lipid) that is expressed on the surface of a cell that is, itself, not cancerous, but supports the cancer cells, e.g., by promoting their growth or survival e.g., resistance to immune cells. Exemplary cells of this type include stromal cells and myeloid-derived suppressor cells (MDSCs). The tumor-supporting antigen itself need not play a role in supporting the tumor cells so long as the antigen is present on a cell that supports cancer cells.


The term “flexible polypeptide linker” or “linker” as used in the context of a scFv refers to a peptide linker that consists of amino acids such as glycine and/or serine residues used alone or in combination, to link variable heavy and variable light chain regions together. In one embodiment, the flexible polypeptide linker is a Gly/Ser linker and comprises the amino acid sequence (Gly-Gly-Gly-Ser)n, where n is a positive integer equal to or greater than 1. For example, n=1, n=2, n=3. n=4, n=5 and n=6, n=7, n=8, n=9 and n=10 (SEQ ID NO:28). In one embodiment, the flexible polypeptide linkers include, but are not limited to, (Gly4 Ser)4 (SEQ ID NO:29) or (Gly4 Ser)3 (SEQ ID NO:30). In another embodiment, the linkers include multiple repeats of (Gly2Ser), (GlySer) or (Gly3Ser) (SEQ ID NO:31). Also included within the scope of the invention are linkers described in WO2012/138475, incorporated herein by reference).


As used herein, a 5′ cap (also termed an RNA cap, an RNA 7-methylguanosine cap or an RNA m7G cap) is a modified guanine nucleotide that has been added to the “front” or 5′ end of a eukaryotic messenger RNA shortly after the start of transcription. The 5′ cap consists of a terminal group which is linked to the first transcribed nucleotide. Its presence is critical for recognition by the ribosome and protection from RNases. Cap addition is coupled to transcription, and occurs co-transcriptionally, such that each influences the other. Shortly after the start of transcription, the 5′ end of the mRNA being synthesized is bound by a cap-synthesizing complex associated with RNA polymerase. This enzymatic complex catalyzes the chemical reactions that are required for mRNA capping. Synthesis proceeds as a multi-step biochemical reaction. The capping moiety can be modified to modulate functionality of mRNA such as its stability or efficiency of translation.


As used herein, “in vitro transcribed RNA” refers to RNA, preferably mRNA, that has been synthesized in vitro. Generally, the in vitro transcribed RNA is generated from an in vitro transcription vector. The in vitro transcription vector comprises a template that is used to generate the in vitro transcribed RNA.


As used herein, a “poly(A)” is a series of adenosines attached by polyadenylation to the mRNA. In the preferred embodiment of a construct for transient expression, the polyA is between 50 and 5000 (SEQ ID NO: 34), preferably greater than 64, more preferably greater than 100, most preferably greater than 300 or 400. poly(A) sequences can be modified chemically or enzymatically to modulate mRNA functionality such as localization, stability or efficiency of translation.


As used herein, “polyadenylation” refers to the covalent linkage of a polyadenylyl moiety, or its modified variant, to a messenger RNA molecule. In eukaryotic organisms, most messenger RNA (mRNA) molecules are polyadenylated at the 3′ end. The 3′ poly(A) tail is a long sequence of adenine nucleotides (often several hundred) added to the pre-mRNA through the action of an enzyme, polyadenylate polymerase. In higher eukaryotes, the poly(A) tail is added onto transcripts that contain a specific sequence, the polyadenylation signal. The poly(A) tail and the protein bound to it aid in protecting mRNA from degradation by exonucleases. Polyadenylation is also important for transcription termination, export of the mRNA from the nucleus, and translation. Polyadenylation occurs in the nucleus immediately after transcription of DNA into RNA, but additionally can also occur later in the cytoplasm. After transcription has been terminated, the mRNA chain is cleaved through the action of an endonuclease complex associated with RNA polymerase. The cleavage site is usually characterized by the presence of the base sequence AAUAAA near the cleavage site. After the mRNA has been cleaved, adenosine residues are added to the free 3′ end at the cleavage site.


As used herein, “transient” refers to expression of a non-integrated transgene for a period of hours, days or weeks, wherein the period of time of expression is less than the period of time for expression of the gene if integrated into the genome or contained within a stable plasmid replicon in the host cell.


As used herein, the terms “treat”, “treatment” and “treating” refer to the reduction or amelioration of the progression, severity and/or duration of a proliferative disorder, or the amelioration of one or more symptoms (preferably, one or more discernible symptoms) of a proliferative disorder resulting from the administration of one or more therapies (e.g., one or more therapeutic agents such as a CAR of the invention). In specific embodiments, the terms “treat”, “treatment” and “treating” refer to the amelioration of at least one measurable physical parameter of a proliferative disorder, such as growth of a tumor, not necessarily discernible by the patient. In other embodiments the terms “treat”, “treatment” and “treating”-refer to the inhibition of the progression of a proliferative disorder, either physically by, e.g., stabilization of a discernible symptom, physiologically by, e.g., stabilization of a physical parameter, or both. In other embodiments the terms “treat”, “treatment” and “treating” refer to the reduction or stabilization of tumor size or cancerous cell count.


The term “signal transduction pathway” refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell. The phrase “cell surface receptor” includes molecules and complexes of molecules capable of receiving a signal and transmitting signal across the membrane of a cell.


The term “subject” is intended to include living organisms in which an immune response can be elicited (e.g., mammals, human)


The term, a “substantially purified” cell refers to a cell that is essentially free of other cell types. A substantially purified cell also refers to a cell which has been separated from other cell types with which it is normally associated in its naturally occurring state. In some instances, a population of substantially purified cells refers to a homogenous population of cells. In other instances, this term refers simply to cell that have been separated from the cells with which they are naturally associated in their natural state. In some aspects, the cells are cultured in vitro. In other aspects, the cells are not cultured in vitro.


The term “substantially identical” refers to a relationship between two sequence polymers, e.g., two polypeptides or two nucleic acids, wherein the sequences, e.g., amino acid sequences or nucleic acid sequences, of the two sequence polymers are at least 85%, 90%, 95%, 97%, 98%, or 99% identical to each other.


The term “variant” refers to a polypeptide that has a substantially identical amino acid sequence to a reference amino acid sequence, or is encoded by a substantially identical nucleotide sequence. In some embodiments, the variant is a functional variant.


The term “functional variant” refers to a polypeptide that has a substantially identical amino acid sequence to a reference amino acid sequence, or is encoded by a substantially identical nucleotide sequence, and is capable of having one or more activities of the reference amino acid sequence.


The terms “does not substantially inhibit CAR signaling”, “does not substantially inhibit TCR signaling”, “does not substantially promote immune checkpoint inhibition”, “does not substantially promote PD-1/PD-L1 signaling”, and “does not substantially inhibit phosphorylation of CD3z” refer to a state that is less than 15%, 10%, 5%, 3%, or 1% altered in the relevant parameter relative to a reference state of the relevant parameter. For example, “the expression of a SHP inhibitor polypeptide does not substantially inhibit CAR signaling” means that, in this example, when a SHP inhibitor polypeptide is expressed, CAR signaling is reduced by less than 15%, 10%, 5%, 3%, or 1% when compared to a state where the SHP inhibitor polypeptide is not expressed.


The term “therapeutic” as used herein means a treatment. A therapeutic effect is obtained by reduction, suppression, remission, or eradication of a disease state.


The term “prophylaxis” as used herein means the prevention of or protective treatment for a disease or disease state.


In the context of the present invention, “tumor antigen” or “hyperproliferative disorder antigen” or “antigen associated with a hyperproliferative disorder” refers to antigens that are common to specific hyperproliferative disorders. In certain aspects, the hyperproliferative disorder antigens of the present invention are derived from, cancers including but not limited to primary or metastatic melanoma, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkin lymphoma, Hodgkin lymphoma, leukemias, uterine cancer, cervical cancer, bladder cancer, kidney cancer and adenocarcinomas such as breast cancer, prostate cancer, ovarian cancer, pancreatic cancer, and the like.


The term “transfected” or “transformed” or “transduced” refers to a process by which exogenous nucleic acid is transferred or introduced into the host cell. A “transfected” or “transformed” or “transduced” cell is one which has been transfected, transformed or transduced with exogenous nucleic acid. The cell includes the primary subject cell and its progeny.


The term “specifically binds,” refers to an antibody, or a ligand, which recognizes and binds with a binding partner (e.g., a tumor antigen) protein present in a sample, but which antibody or ligand does not substantially recognize or bind other molecules in the sample.


“Regulatable chimeric antigen receptor (RCAR),”as that term is used herein, refers to a set of polypeptides, typically two in the simplest embodiments, which when in a RCARX cell, provides the RCARX cell with specificity for a target cell, typically a cancer cell, and with regulatable intracellular signal generation or proliferation, which can optimize an immune effector property of the RCARX cell. An RCARX cell relies at least in part, on an antigen binding domain to provide specificity to a target cell that comprises the antigen bound by the antigen binding domain. In an embodiment, an RCAR includes a dimerization switch that, upon the presence of a dimerization molecule, can couple an intracellular signaling domain to the antigen binding domain.


“Membrane anchor” or “membrane tethering domain”, as that term is used herein, refers to a polypeptide or moiety, e.g., a myristoyl group, sufficient to anchor an extracellular or intracellular domain to the plasma membrane.


“Switch domain,” as that term is used herein, e.g., when referring to an RCAR, refers to an entity, typically a polypeptide-based entity, that, in the presence of a dimerization molecule, associates with another switch domain. The association results in a functional coupling of a first entity linked to, e.g., fused to, a first switch domain, and a second entity linked to, e.g., fused to, a second switch domain. A first and second switch domain are collectively referred to as a dimerization switch. In embodiments, the first and second switch domains are the same as one another, e.g., they are polypeptides having the same primary amino acid sequence, and are referred to collectively as a homodimerization switch. In embodiments, the first and second switch domains are different from one another, e.g., they are polypeptides having different primary amino acid sequences, and are referred to collectively as a heterodimerization switch. In embodiments, the switch is intracellular. In embodiments, the switch is extracellular. In embodiments, the switch domain is a polypeptide-based entity, e.g., FKBP or FRB-based, and the dimerization molecule is small molecule, e.g., a rapalogue. In embodiments, the switch domain is a polypeptide-based entity, e.g., an scFv that binds a myc peptide, and the dimerization molecule is a polypeptide, a fragment thereof, or a multimer of a polypeptide, e.g., a myc ligand or multimers of a myc ligand that bind to one or more myc scFvs. In embodiments, the switch domain is a polypeptide-based entity, e.g., myc receptor, and the dimerization molecule is an antibody or fragments thereof, e.g., myc antibody.


“Dimerization molecule,” as that term is used herein, e.g., when referring to an RCAR, refers to a molecule that promotes the association of a first switch domain with a second switch domain. In embodiments, the dimerization molecule does not naturally occur in the subject, or does not occur in concentrations that would result in significant dimerization. In embodiments, the dimerization molecule is a small molecule, e.g., rapamycin or a rapalogue, e.g., RAD001.


The term “bioequivalent” refers to an amount of an agent other than the reference compound (e.g., RAD001), required to produce an effect equivalent to the effect produced by the reference dose or reference amount of the reference compound (e.g., RAD001). In an embodiment the effect is the level of mTOR inhibition, e.g., as measured by P70 S6 kinase inhibition, e.g., as evaluated in an in vivo or in vitro assay, e.g., as measured by an assay described herein, e.g., the Boulay assay. In an embodiment, the effect is alteration of the ratio of PD-1 positive/PD-1 negative T cells, as measured by cell sorting. In an embodiment a bioequivalent amount or dose of an mTOR inhibitor is the amount or dose that achieves the same level of P70 S6 kinase inhibition as does the reference dose or reference amount of a reference compound. In an embodiment, a bioequivalent amount or dose of an mTOR inhibitor is the amount or dose that achieves the same level of alteration in the ratio of PD-1 positive/PD-1 negative T cells as does the reference dose or reference amount of a reference compound.


The term “low, immune enhancing, dose” when used in conjunction with an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., RAD001 or rapamycin, or a catalytic mTOR inhibitor, refers to a dose of mTOR inhibitor that partially, but not fully, inhibits mTOR activity, e.g., as measured by the inhibition of P70 S6 kinase activity. Methods for evaluating mTOR activity, e.g., by inhibition of P70 S6 kinase, are discussed herein. The dose is insufficient to result in complete immune suppression but is sufficient to enhance the immune response. In an embodiment, the low, immune enhancing, dose of mTOR inhibitor results in a decrease in the number of PD-1 positive T cells and/or an increase in the number of PD-1 negative T cells, or an increase in the ratio of PD-1 negative T cells/PD-1 positive T cells. In an embodiment, the low, immune enhancing, dose of mTOR inhibitor results in an increase in the number of naive T cells. In an embodiment, the low, immune enhancing, dose of mTOR inhibitor results in one or more of the following:


an increase in the expression of one or more of the following markers: CD62Lhigh, CD127high, CD27+, and BCL2, e.g., on memory T cells, e.g., memory T cell precursors; a decrease in the expression of KLRG1, e.g., on memory T cells, e.g., memory T cell precursors; and


an increase in the number of memory T cell precursors, e.g., cells with any one or combination of the following characteristics: increased CD62Lhigh increased CD127high, increased CD27+, decreased KLRG1, and increased BCL2;


wherein any of the changes described above occurs, e.g., at least transiently, e.g., as compared to a non-treated subject.


“Refractory” as used herein refers to a disease, e.g., cancer, that does not respond to a treatment. In embodiments, a refractory cancer can be resistant to a treatment before or at the beginning of the treatment. In other embodiments, the refractory cancer can become resistant during a treatment. A refractory cancer is also called a resistant cancer.


“Relapsed” as used herein refers to the return of a disease (e.g., cancer) or the signs and symptoms of a disease such as cancer after a period of improvement, e.g., after prior treatment of a therapy, e.g., cancer therapy


Ranges: throughout this disclosure, various aspects of the invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6. As another example, a range such as 95-99% identity, includes something with 95%, 96%, 97%, 98% or 99% identity, and includes subranges such as 96-99%, 96-98%, 96-97%, 97-99%, 97-98% and 98-99% identity. This applies regardless of the breadth of the range.


SHP Inhibitor Molecules

Provided herein are compositions of matter and methods of use for the treatment of a disease such as cancer using immune effector cells (e.g., T cells, NK cells) engineered with CARs and SHP inhibitor molecules, e.g., SHP inhibitor polypeptides disclosed herein.


In one aspect, immune effector cells comprising CARs and SHP inhibitor molecules exhibit increased killing of tumor cells, increased cytokine release, and increased tumor infiltration in vitro and in vivo. Assays for said properties are described herein, e.g., in the Examples herein.


Many inhibitory receptors (IRs) are purported to signal, at least in part, via the enzyme SHP-1 (Thaventhiran T, Sethu S, Yeang H X, Laith A H, Hamdam J, Sathish J G. J Clin Cell Immunol 2012;S12:1-12) (see FIG. 1). The invention pertains, at least in part, on the discovery that interference with SHP, e.g., SHP-1 signaling, can provide an advantageous way to block one or more IRs simultaneously.


SHP1, known by its two names, Src homology region 2 domain-containing phosphatase-1 and tyrosine-protein phosphatase non-receptor type 6, is an enzyme that is encoded by the PTPN6 gene in humans (Plutzky J, Neel B G, Rosenberg R D, Eddy R L, Byers M G, Jani-Sait S, et al. Genomics 1992 July; 13(3):869-72). SHP1 is a member of the protein tyrosine phosphatase (PTP) family, a family known to regulate various cellular processes (e.g. cell growth, differentiation, mitosis, oncogenic transformation) by removing key phosphorylated tyrosine residues. SHP2, known by its names protein-tyrosine phosphatase 1D (PTP-1D), protein-tyrosine phosphatase 2C (PTP-2C), or tyrosine-protein phosphatase non-receptor type 11 (PTPN11), is a paralogue phosphatase which possesses a similar structure to SHP1, and is widely expressed in most tissues (Qu C K. Cell Res 2000 December; 10(4):279-88).


SHP1 is expressed primarily in hematopoietic cells where it regulates multiple signaling pathways. One example is the regulation of TCR (T cell receptor) signaling in T cells by SHP1 and SHP2. (Lorenz U. Immunol Rev 2009 March; 228(1):342-59; Hebeisen M, Baitsch L, Presotto D, Baumgaertner P, Romero P, Michielin O, et al. J Clin Invest March; 123(3):1044-56). SHP1 terminates TCR signaling at multiple points along the path of TCR signaling events. For example, it inhibits phosphorylation of CD3z and other adapter proteins (e.g. LAT, linker for activation of T cells) and association of signal-amplifying molecules like Zap70 (Zeta-chain-associated protein kinase 70), and dephosphorylates Lck (lymphocyte-specific protein tyrosine kinase) a key component that assists in signaling from the TCR complex (FIG. 2) (Fawcett V C, Lorenz U J Immunol 2005 Mar. 1; 174(5):2849-59; Sankarshanan M, Ma Z, Iype T, Lorenz U J Immunol 2007 Jul. 1; 179(1):483-90).


The effects of SHP1 blockade/interference using T cells from genetically engineered mice have been studied, demonstrating increased anti-tumor activity of SHP1(−/−) mouse effector T cells (Stromnes I M, Fowler C, Casamina C C, Georgopolos C M, McAfee M S, Schmitt T M, et al. J Immunol August 15; 189(4):1812-25). The ability to enhance the anti-tumor activity of human T cells using chemical inhibitors like sodium stibogluconate (SSG), an injectable medicine used to treat leshmaniasis, to block SHP1 activity has also been studied (Hebeisen et al.). However, pharmacologic block will likely be limited by side effects, due to the widespread expression and activity of SHP1.


Detailed molecular information about how SHP1 works was utilized. The catalytic site of SHP1 is normally occupied by the N-terminus of its SH2 domain (SH2-N). This self binding keeps SHP1 in its non-catalytic conformation (Poole A W, Jones M L. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 2005 November; 17(11):1323-32). SH2-N releases from the catalytic domain upon recognition of phosphorylated tyrosine motifs (pTyr) on immunoreceptor tyrosine-based inhibition motifs (ITIMs), which are located on the cytoplasmic tails of IRs like PD1 (Yaffe M B. Nat Rev Mol Cell Biol 2002 March; 3(3):177-86; Hampel K, Kaufhold I, Zacharias M, Bohmer F D, Imhof D. ChemMedChem 2006 August; 1(8):869-77) (FIG. 7). Once the SH2-domain binds to the ITIM, the catalytic activity of SHP1 is “released”.


SHP Inhibitor Polypeptide

In one aspect, the compositions, methods and uses described herein comprise an SHP inhibitor polypeptide, e.g., an SHP-1 inhibitor polypeptide or an SHP-2 inhibitor polypeptide, e.g., an SHP inhibitor polypeptide that reduces the expression and/or function of SHP, e.g., an SHP inhibitor polypeptide that reduces the function of SHP. In one aspect, the SHP inhibitor polypeptide is a dominant negative mutant of the N-terminal region of SHP-1 or SHP-2.


The invention pertains, at least in part, to a novel strategy to improve the activity, persistence, and tumoricidal activity of adoptively transferred T cells (as illustrated with CAR-expressing T cells) by cloning in a modified transgene that interrupts the catalytic activity of the phosphatase SHP-1 in T cells. The transgene encodes a small peptide based on the N-terminal region of SHP-1 (N-SH2). The region of N-SH2 that binds to phosphorylated tyrosine motifs (ITIMs) was mutated to produce the peptide called R30K. Co-expression of a CAR and N-SH2-R30K in T cells results in increased killing of tumor cells both in vitro and in vivo, using a mesothelin-targeted CAR as an example.


Full length wild-type SHP-1 sequence is provided below as SEQ ID NO: 1:











        10         20         30         40



MVRWFHRDLS GLDAETLLKG RGVHGSFLAR PSRKNQGDFS







        50         60         70         80



LSVRVGDQVT HIRIQNSGDF YDLYGGEKFA TLTELVEYYT







        90        100        110        120



QQQGVLQDRD GTIIHLKYPL NCSDPTSERW YHGHMSGGQA







       130        140        150        160



ETLLQAKGEP WTFLVRESLS QPGDFVLSVL SDQPKAGPGS







       170        180        190        200



PLRVTHIKVM CEGGRYTVGG LETFDSLTDL VEHFKKTGIE







       210        220        230        240



EASGAFVYLR QPYYATRVNA ADIENRVLEL NKKQESEDTA







       250        260        270        280



KAGFWEEFES LQKQEVKNLH QRLEGQRPEN KGKNRYKNIL







       290        300        310        320



PFDHSRVILQ GRDSNIPGSD YINANYIKNQ LLGPDENAKT







       330        340        350        360



YIASQGCLEA TVNDFWQMAW QENSRVIVMT TREVEKGRNK







       370        380        390        400



CVPYWPEVGM QRAYGPYSVT NCGEHDTTEY KLRTLQVSPL







       410        420        430        440



DNGDLIREIW HYQYLSWPDH GVPSEPGGVL SFLDQINQRQ







       450        460        470        480



ESLPHAGPII VHCSAGIGRT GTIIVIDMLM ENISTKGLDC







       490        500        510        520



DIDIQKTIQM VRAQRSGMVQ TEAQYKFIYV AIAQFIETTK







       530        540        550        560



KKLEVLQSQK GQESEYGNIT YPPAMKNAHA KASRTSSKHK







       570        580        590



EDVYENLHTK NKREEKVKKQ RSADKEKSKG SLKRK






With respect to SEQ ID NO: 1, in some embodiments, amino acids 4-100 constitute the N-terminal SH2 domain (also called the SH2 1 domain); amino acids 110-213 constitute the C-terminal SH2 domain (also called the SH2 2 domain), and amino acids 244-515 constitute the catalytic domain, e.g., the phosphatase domain.


Full length wild-type SHP-2 sequence is provided below as SEQ ID NO: 2:











        10         20         30         40



MTSRRWFHPN ITGVEAENLL LTRGVDGSFL ARPSKSNPGD







        50         60         70         80



FTLSVRRNGA VTHIKIQNTG DYYDLYGGEK FATLAELVQY







        90        100        110        120



YMEHHGQLKE KNGDVIELKY PLNCADPTSE RWFHGHLSGK







       130        140        150        160



EAEKLLTEKG KHGSFLVRES QSHPGDFVLS VRTGDDKGES







       170        180        190        200



NDGKSKVTHV MIRCQELKYD VGGGERFDSL TDLVEHYKKN







       210        220        230        240



PMVETLGTVL QLKQPLNTTR INAAEIESRV RELSKLAETT







       250        260        270        280



DKVKQGFWEE FETLQQQECK LLYSRKEGQR QENKNKNRYK







       290        300        310        320



NILPFDHTRV VLHDGDPNEP VSDYINANII MPEFETKCNN







       330        340        350        360



SKPKKSYIAT QGCLQNTVND FWRMVFQENS RVIVMTTKEV







       370        380        390        400



ERGKSKCVKY WPDEYALKEY GVMRVRNVKE SAAHDYTLRE







       410        420        430        440



LKLSKVGQAL LQGNTERTVW QYHFRTWPDH GVPSDPGGVL







       450        460        470        480



DFLEEVHHKQ ESIMDAGPVV VHCSAGIGRT GTFIVIDILI







       490        500        510        520



DIIREKGVDC DIDVPKTIQM VRSQRSGMVQ TEAQYRFIYM







       530        540        550        560



AVQHYIETLQ RRIEEEQKSK RKGHEYTNIK YSLADQTSGD







       570        580        590



QSPLPPCTPT PPCAEMREDS ARVYENVGLM QQQKSFR






With respect to SEQ ID NO: 2, in some embodiments, amino acids 6-102 constitute the N-terminal SH2 domain (also called the SH2 1 domain); amino acids 112-216 constitute the C-terminal SH2 domain (also called the SH2 1 domain), and amino acids 247-521 constitute the catalytic domain, e.g., the phosphatase domain.


A 100 amino acid N-terminal SHP-1 fragment, wherein amino acid 30 can be any amino acid, is provided below as SEQ ID NO: 3:











        10         20         30         40



MVRWFHRDLS GLDAETLLKG RGVHGSFLAX PSRKNQGDFS







        50         60         70         80



LSVRVGDQVT HIRIQNSGDF YDLYGGEKFA TLTELVEYYT







        90        100



QQQGVLQDRD GTIIHLKYPL






The amino acid sequence of a wild-type SHP-1 SH2-N peptide is provided below and in FIG. 8 as SEQ ID NO: 40:









MVRWFHRDLSGLDAETLLKGRGVHGSFLARPSRKNQGDFSLSVRVGDQVT





HIRIQNSGDFYDLYGGEKFATLTELVEYYTQQQGVLQDRDGTIIHLKYPL






The amino acid sequence of an SHP-1 SH2-N R30K peptide is provided below and in FIG. 8 as SEQ ID NO: 41:









MVRWFHRDLSGLDAETLLKGRGVHGSFLAKPSRKNQGDFSLSVRVGDQVT





HIRIQNSGDFYDLYGGEKFATLTELVEYYTQQQGVLQDRDGTIIHLKYPL






The amino acid sequence of an SHP-1 SH2-N R3OH peptide is provided below as SEQ ID NO: 42:









MVRWFHRDLSGLDAETLLKGRGVHGSFLAHPSRKNQGDFSLSVRVGDQVT





HIRIQNSGDFYDLYGGEKFATLTELVEYYTQQQGVLQDRDGTIIHLKYPL






A 102 amino acid N-terminal SHP-2 fragment, wherein amino acid 32 can be any amino acid, is provided below as SEQ ID NO: 4:











        10         20         30         40



MTSRRWFHPN ITGVEAENLL LTRGVDGSFL AXPSKSNPGD







        50         60         70         80



FTLSVRRNGA VTHIKIQNTG DYYDLYGGEK FATLAELVQY







        90        100 110 120



YMEHHGQLKE KNGDVIELKY PL







130 140 150






The amino acid sequence of a wild-type SHP-2 SH2-N peptide is provided below as SEQ ID NO: 43:









MTSRRWFHPNITGVEAENLLLTRGVDGSFLARPSKSNPGDFTLSVRRNGA





VTHIKIQNTGDYYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKY





PL






The amino acid sequence of an SHP-2 SH2-N R32K peptide is provided below as SEQ ID NO: 44:









MTSRRWFHPNITGVEAENLLLTRGVDGSFLAKPSKSNPGDFTLSVRRNGA





VTHIKIQNTGDYYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKY





PL






The amino acid sequence of an SHP-2 SH2-N R32H peptide is provided below as SEQ ID NO: 45:









MTSRRWFHPNITGVEAENLLLTRGVDGSFLAHPSKSNPGDFTLSVRRNGA





VTHIKIQNTGDYYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKY





PL






An alternative N-terminal SHP-2 fragment, wherein amino acid 32 can be any amino acid, is provided below as SEQ ID NO: 46:









MTSRRWFHPNITGVEAENLLLTRGVDGSFLAXSKSNPGDFTLSVRRNGA





VTHIKIQNTGDYYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKY





PL






In one aspect, the invention provides a number of chimeric antigen receptors (CAR) comprising an antigen binding domain (e.g., antibody or antibody fragment, TCR or TCR fragment) engineered for specific binding to a tumor antigen, e.g., a tumor antigen described herein. In one aspect, the invention provides an immune effector cell (e.g., T cell, NK cell) engineered to express a CAR and an SHP inhibitor polypeptide, wherein the engineered immune effector cell exhibits an anticancer property. In one aspect, a cell is transformed with the CAR and the SHP inhibitor polypeptide, and the CAR is expressed on the cell surface. In some embodiments, the cell (e.g., T cell, NK cell) is transduced with a viral vector encoding a CAR and a SHP inhibitor polypeptide. In some embodiments, the viral vector is a retroviral vector. In some embodiments, the viral vector is a lentiviral vector. In some such embodiments, the cell may stably express the CAR and SHP inhibitor polypeptide. In another embodiment, the cell (e.g., T cell, NK cell) is transfected with a nucleic acid, e.g., mRNA, cDNA, DNA, encoding a CAR and a SHP inhibitor polypeptide. In some such embodiments, the cell may transiently express the CAR and SHP inhibitor polypeptide. In some embodiments, the SHP inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 3, 4, 41, 42, 44, or 45 (or a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, and/or having one, two, three or more substitutions, insertions, deletions, or modifications).


In one aspect, immune effector cells engineered to co-express a CAR and an SHP inhibitor polypeptide can be administered to a patient in conjunction with one or more additional SHP inhibitory agent(s). In embodiments, the additional SHP inhibitory agent(s) may be selected from small molecules, nucleic acids, or polypeptides. In an embodiment, the additional SHP inhibitory agent is sodium stibogluconate (SSG). In an embodiment, the additional SHP inhibitory agent(s) is administered simultaneously with the engineered immune effector cells. In an embodiment, the additional SHP inhibitory agent(s) is administered a time period X prior to or after the engineered immune effector cells are administered, where time period X is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 hours, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 days.


Gene Editing Systems Targeting SHP

In one aspect, gene editing systems can be used as inhibitors of SHP. Also contemplated by the present invention are the uses of a nucleic acid molecule encoding one or more components of a gene editing system targeting SHP.


CRISPR/Cas9 Gene Editing Systems

Naturally-occurring CRISPR/Cas systems are found in approximately 40% of sequenced eubacteria genomes and 90% of sequenced archaea. Grissa et al. (2007) BMC Bioinformatics 8: 172. This system is a type of prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Barrangou et al. (2007) Science 315: 1709-1712; Marragini et al. (2008) Science 322: 1843-1845.


The CRISPR/Cas system has been modified for use in gene editing (silencing, enhancing or changing specific genes) in eukaryotes such as mice or primates. Wiedenheft et al. (2012) Nature 482: 331-8. This is accomplished by, for example, introducing into the eukaryotic cell a plasmid containing a specifically designed CRISPR and one or more appropriate Cas. In other embodiments, the reagents can also be introduced into the cell directly, e.g., gRNA molecule and Cas protein (e.g., precomplexed as a ribonuclear protein complex (RNP)).


The CRISPR sequence, sometimes called a CRISPR locus, comprises alternating repeats and spacers. In a naturally-occurring CRISPR, the spacers usually comprise sequences foreign to the bacterium such as a plasmid or phage sequence. In an exemplary CRISPR/Cas system targeting SHP1 or SHP2, the spacers are derived from the gene sequence of SHP1 or SHP2, or a sequence of its regulatory elements. In other exemplary embodiments, an engineered CRISPR/Cas system selected for SHP1 or SHP2 may be utilized which comprises a gRNA molecule comprising a targeting domain sequence complementary to a target sequence of a SHP1 or SHP2 gene or regulatory element, and comprising a Cas molecule, for example a Cas9 molecule such as S. pyogenes Cas9.


RNA from the CRISPR locus is constitutively expressed and processed into small RNAs. These comprise a spacer flanked by a repeat sequence. The RNAs guide other Cas proteins to silence exogenous genetic elements at the RNA or DNA level. Horvath et al. (2010) Science 327: 167-170; Makarova et al. (2006) Biology Direct 1: 7. The spacers thus serve as templates for RNA molecules, analogously to siRNAs. Pennisi (2013) Science 341: 833-836.


As these naturally occur in many different types of bacteria, the exact arrangements of the CRISPR and structure, function and number of Cas genes and their product differ somewhat from species to species. Haft et al. (2005) PLoS Comput. Biol. 1: e60; Kunin et al. (2007) Genome Biol. 8: R61; Mojica et al. (2005) J. Mol. Evol. 60: 174-182; Bolotin et al. (2005) Microbiol. 151: 2551-2561; Pourcel et al. (2005) Microbiol. 151: 653-663; and Stern et al. (2010) Trends. Genet. 28: 335-340. For example, the Cse (Cas subtype, E. coli) proteins (e.g., CasA) form a functional complex, Cascade, that processes CRISPR RNA transcripts into spacer-repeat units that Cascade retains. Brouns et al. (2008) Science 321: 960-964. In other prokaryotes, Cas6 processes the CRISPR transcript. The CRISPR-based phage inactivation in E. coli requires Cascade and Cas3, but not Cas1 or Cas2. The Cmr (Cas RAMP module) proteins in Pyrococcus furiosus and other prokaryotes form a functional complex with small CRISPR RNAs that recognizes and cleaves complementary target RNAs. A simpler CRISPR system relies on the protein Cas9, which is a nuclease with two active cutting sites, one for each strand of the double helix. Combining Cas9 and modified CRISPR locus RNA can be used in a system for gene editing. Pennisi (2013) Science 341: 833-836.


The CRISPR/Cas system can thus be used to modify, e.g., delete one or more nucleic acids, e.g., a gene encoding SHP1 or SHP2, or a regulatory element of a gene encoding SHP1 or SHP2, or introduce a premature stop which thus decreases expression of a functional SHP1 or SHP2. The CRISPR/Cas system can alternatively be used like RNA interference, turning off a gene encoding SHP1 or SHP2 in a reversible fashion. In a mammalian cell, for example, the RNA can guide the Cas protein to a promoter of a gene encoding SHP1 or SHP2, sterically blocking RNA polymerases.


CRISPR/Cas systems for gene editing in eukaryotic cells typically involve (1) a guide RNA molecule (gRNA) comprising a targeting domain (which is capable of hybridizing to the genomic DNA target sequence), and sequence which is capable of binding to a Cas, e.g., Cas9 enzyme, and (2) a Cas, e.g., Cas9, protein. The targeting domain and the sequence which is capable of binding to a Cas, e.g., Cas9 enzyme, may be disposed on the same or different molecules. If disposed on different molecules, each includes a hybridization domain which allows the molecules to associate, e.g., through hybridization.


Artificial CRISPR/Cas systems can be generated which inhibit a gene encoding SHP1 or SHP2, using technology known in the art, e.g., that are described in WO2017093969, herein incorporated by reference in its entirety.


Other artificial CRISPR/Cas systems that are known in the art may also be generated which inhibit a gene encoding SHP1 or SHP2, e.g., that described in U.S. Publication No. 20140068797, WO2015/048577, Cong (2013) Science 339: 819-823, Tsai (2014) Nature Biotechnol., 32:6 569-576, U.S. Pat. Nos. 8,871,445; 8,865,406; 8,795,965; 8,771,945; and 8,697,359, the contents of which are hereby incorporated by reference in their entirety. Such systems can be generated which inhibit a gene encoding SHP1 or SHP2, by, for example, engineering a CRISPR/Cas system to include a gRNA molecule comprising a targeting domain that hybridizes to a sequence of a target gene, e.g., a gene encoding SHP1 or SHP2. In embodiments, the gRNA comprises a targeting domain which is fully complementarity to 15-25 nucleotides, e.g., 20 nucleotides, of a target gene, e.g., a gene encoding SHP1 or SHP2. In embodiments, the 15-25 nucleotides, e.g., 20 nucleotides, of a target gene, e.g., a gene encoding SHP1 or SHP2, are disposed immediately 5′ to a protospacer adjacent motif (PAM) sequence recognized by the Cas protein of the CRISPR/Cas system (e.g., where the system comprises a S. pyogenes Cas9 protein, the PAM sequence comprises NGG, where N can be any of A, T, G or C).


In an embodiment, the CRISPR/Cas system of the present invention comprises Cas9, e.g., S. pyogenes Cas9, and a gRNA comprising a targeting domain which hybridizes to a sequence of a gene encoding SHP1 or SHP2. In an embodiment, the CRISPR/Cas system comprises a nucleic acid encoding a gRNA specific for a gene encoding SHP1 or SHP2, and a nucleic acid encoding a Cas protein, e.g., Cas9, e.g., S. pyogenes Cas9. In an embodiment, the CRISPR/Cas system comprises a gRNA specific for a gene encoding SHP1 or SHP2, and a nucleic acid encoding a Cas protein, e.g., Cas9, e.g., S. pyogenes Cas9.


In one embodiment, the gene editing system is a CRISPR system comprising one or more gRNA molecules targeting a nucleic acid molecule encoding SHP2 or a regulatory element of a nucleic acid molecule encoding SHP2, e.g., a gene encoding SHP2 or a regulatory element of a gene encoding SHP2. In one embodiment, the gene editing system is a CRISPR system comprising one or more gRNA molecules targeting the exon of SHP2. In one embodiment, the gene editing system is a CRISPR system comprising one or more gRNA molecules targeting a genomic location provided in column 4 of Table 19. In one embodiment, the gene editing system is a CRISPR system comprising one or more gRNA molecules targeting a genomic target sequence provided in column 6 of Table 19, or a portion thereof.


In one embodiment, the gene editing system is a CRISPR system comprising one or more gRNA molecules. In one embodiment, the gRNA molecule comprises a tracr and a crRNA, wherein the crRNA comprises a targeting domain that is complementary with a target sequence of SHP2, e.g., human SHP2. In one embodiment, the targeting domain comprises any nucleotide sequence provided in column 5 of Table 19. In one embodiment, the targeting domain comprises or consists of 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19. In one embodiment, the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 are the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids disposed at the 3′ end of the recited nucleotide sequence provided in column 5 of Table 19. In one embodiment, the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 are the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids disposed at the 5′ end of the recited nucleotide sequence provided in column 5 of Table 19. In one embodiment, the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 do not comprise either the 5′ or 3′ nucleic acid of the recited nucleotide sequence provided in column 5 of Table 19.









TABLE 19







gRNAs targeting SHP2















Column 2

Column 4
Column 5

Column 6



Column 1
Target
Column 3
Genomic
gRNA targeting
SEQ
Genomic target
SEQ ID


Target
region
Strand
location (hg38)
domain sequence
ID NO
sequence
NO





PTPN11
EXON
+
chr12: 112418712-112418737
GCGCGCAGCU
1946
GCGCGCAGC
2698






CACACCUGGC

TCACACCTG






GGCCG

GCGGCCG





PTPN11
EXON
+
chr12: 112418720-112418745
CUCACACCUG
1947
CTCACACCT
2699






GCGGCCGCGG

GGCGGCCGC






UUUCC

GGTTTCC





PTPN11
EXON
+
chr12: 112418723-112418748
ACACCUGGCG
1948
ACACCTGGC
2700






GCCGCGGUU

GGCCGCGGT






UCCAGG

TTCCAGG





PTPN11
EXON
+
chr12: 112418731-112418756
CGGCCGCGGU
1949
CGGCCGCGG
2701






UUCCAGGAG

TTTCCAGGA






GAAGCA

GGAAGCA





PTPN11
EXON
+
chr12: 112418740-112418765
UUUCCAGGA
1950
TTTCCAGGA
2702






GGAAGCAAG

GGAAGCAAG






GAUGCUU

GATGCTT





PTPN11
EXON
+
chr12: 112418753-112418778
GCAAGGAUG
1951
GCAAGGATG
2703






CUUUGGACA

CTTTGGACA






CUGUGCG

CTGTGCG





PTPN11
EXON
+
chr12: 112418764-112418789
UUGGACACU
1952
TTGGACACT
2704






GUGCGUGGC

GTGCGTGGC






GCCUCCG

GCCTCCG





PTPN11
EXON
+
chr12: 112418787-112418812
CGCGGAGCCC
1953
CGCGGAGCC
2705






CCGCGCUGCC

CCCGCGCTG






AUUCC

CCATTCC





PTPN11
EXON
+
chr12: 112418798-112418823
CGCGCUGCCA
1954
CGCGCTGCC
2706






UUCCCGGCCG

ATTCCCGGC






UCGCU

CGTCGCT





PTPN11
EXON
+
chr12: 112418812-112418837
CGGCCGUCGC
1955
CGGCCGTCG
2707






UCGGUCCUCC

CTCGGTCCT






GCUGA

CCGCTGA





PTPN11
EXON
+
chr12: 112418813-112418838
GGCCGUCGCU
1956
GGCCGTCGC
2708






CGGUCCUCCG

TCGGTCCTC






CUGAC

CGCTGAC





PTPN11
EXON
+
chr12: 112418820-112418845
GCUCGGUCCU
1957
GCTCGGTCC
2709






CCGCUGACGG

TCCGCTGAC






GAAGC

GGGAAGC





PTPN11
EXON
+
chr12: 112418826-112418851
UCCUCCGCUG
1958
TCCTCCGCT
2710






ACGGGAAGC

GACGGGAAG






AGGAAG

CAGGAAG





PTPN11
EXON
+
chr12: 112418829-112418854
UCCGCUGACG
1959
TCCGCTGAC
2711






GGAAGCAGG

GGGAAGCAG






AAGUGG

GAAGTGG





PTPN11
EXON
+
chr12: 112418832-112418857
GCUGACGGG
1960
GCTGACGGG
2712






AAGCAGGAA

AAGCAGGAA






GUGGCGG

GTGGCGG





PTPN11
EXON
+
chr12: 112418833-112418858
CUGACGGGA
1961
CTGACGGGA
2713






AGCAGGAAG

AGCAGGAAG






UGGCGGC

TGGCGGC





PTPN11
EXON
+
chr12: 112418845-112418870
AGGAAGUGG
1962
AGGAAGTGG
2714






CGGCGGGCG

CGGCGGGCG






UCGCGAG

TCGCGAG





PTPN11
EXON
+
chr12: 112418856-112418881
GCGGGCGUC
1963
GCGGGCGTC
2715






GCGAGCGGU

GCGAGCGGT






GACAUCA

GACATCA





PTPN11
EXON
+
chr12: 112418857-112418882
CGGGCGUCGC
1964
CGGGCGTCG
2716






GAGCGGUGA

CGAGCGGTG






CAUCAC

ACATCAC





PTPN11
EXON
+
chr12: 112418858-112418883
GGGCGUCGC
1965
GGGCGTCGC
2717






GAGCGGUGA

GAGCGGTGA






CAUCACG

CATCACG





PTPN11
EXON
+
chr12: 112418859-112418884
GGCGUCGCG
1966
GGCGTCGCG
2718






AGCGGUGAC

AGCGGTGAC






AUCACGG

ATCACGG





PTPN11
EXON
+
chr12: 112418865-112418890
GCGAGCGGU
1967
GCGAGCGGT
2719






GACAUCACG

GACATCACG






GGGGCGA

GGGGCGA





PTPN11
EXON
+
chr12: 112418868-112418893
AGCGGUGAC
1968
AGCGGTGAC
2720






AUCACGGGG

ATCACGGGG






GCGACGG

GCGACGG





PTPN11
EXON
+
chr12: 112418874-112418899
GACAUCACG
1969
GACATCACG
2721






GGGGCGACG

GGGGCGACG






GCGGCGA

GCGGCGA





PTPN11
EXON
+
chr12: 112418875-112418900
ACAUCACGG
1970
ACATCACGG
2722






GGGCGACGG

GGGCGACGG






CGGCGAA

CGGCGAA





PTPN11
EXON
+
chr12: 112418878-112418903
UCACGGGGG
1971
TCACGGGGG
2723






CGACGGCGGC

CGACGGCGG






GAAGGG

CGAAGGG





PTPN11
EXON
+
chr12: 112418879-112418904
CACGGGGGC
1972
CACGGGGGC
2724






GACGGCGGC

GACGGCGGC






GAAGGGC

GAAGGGC





PTPN11
EXON
+
chr12: 112418880-112418905
ACGGGGGCG
1973
ACGGGGGCG
2725






ACGGCGGCG

ACGGCGGCG






AAGGGCG

AAGGGCG





PTPN11
EXON
+
chr12: 112418881-112418906
CGGGGGCGA
1974
CGGGGGCGA
2726






CGGCGGCGA

CGGCGGCGA






AGGGCGG

AGGGCGG





PTPN11
EXON
+
chr12: 112418884-112418909
GGGCGACGG
1975
GGGCGACGG
2727






CGGCGAAGG

CGGCGAAGG






GCGGGGG

GCGGGGG





PTPN11
EXON
+
chr12: 112418887-112418912
CGACGGCGGC
1976
CGACGGCGG
2728






GAAGGGCGG

CGAAGGGCG






GGGCGG

GGGGCGG





PTPN11
EXON
+
chr12: 112418890-112418915
CGGCGGCGA
1977
CGGCGGCGA
2729






AGGGCGGGG

AGGGCGGGG






GCGGAGG

GCGGAGG





PTPN11
EXON
+
chr12: 112418900-112418925
GGGCGGGGG
1978
GGGCGGGGG
2730






CGGAGGAGG

CGGAGGAGG






AGCGAGC

AGCGAGC





PTPN11
EXON
+
chr12: 112418901-112418926
GGCGGGGGC
1979
GGCGGGGGC
2731






GGAGGAGGA

GGAGGAGGA






GCGAGCC

GCGAGCC





PTPN11
EXON
+
chr12: 112418905-112418930
GGGGCGGAG
1980
GGGGCGGAG
2732






GAGGAGCGA

GAGGAGCGA






GCCGGGC

GCCGGGC





PTPN11
EXON
+
chr12: 112418906-112418931
GGGCGGAGG
1981
GGGCGGAGG
2733






AGGAGCGAG

AGGAGCGAG






CCGGGCC

CCGGGCC





PTPN11
EXON
+
chr12: 112418907-112418932
GGCGGAGGA
1982
GGCGGAGGA
2734






GGAGCGAGC

GGAGCGAGC






CGGGCCG

CGGGCCG





PTPN11
EXON
+
chr12: 112418908-112418933
GCGGAGGAG
1983
GCGGAGGAG
2735






GAGCGAGCC

GAGCGAGCC






GGGCCGG

GGGCCGG





PTPN11
EXON
+
chr12: 112418909-112418934
CGGAGGAGG
1984
CGGAGGAGG
2736






AGCGAGCCG

AGCGAGCCG






GGCCGGG

GGCCGGG





PTPN11
EXON
+
chr12: 112418927-112418952
GGCCGGGGG
1985
GGCCGGGGG
2737






GCAGCUGCAC

GCAGCTGCA






AGUCUC

CAGTCTC





PTPN11
EXON
+
chr12: 112418928-112418953
GCCGGGGGG
1986
GCCGGGGGG
2738






CAGCUGCACA

CAGCTGCAC






GUCUCC

AGTCTCC





PTPN11
EXON
+
chr12: 112418937-112418962
CAGCUGCACA
1987
CAGCTGCAC
2739






GUCUCCGGG

AGTCTCCGG






AUCCCC

GATCCCC





PTPN11
EXON
+
chr12: 112418942-112418967
GCACAGUCUC
1988
GCACAGTCT
2740






CGGGAUCCCC

CCGGGATCC






AGGCC

CCAGGCC





PTPN11
EXON
+
chr12: 112418945-112418970
CAGUCUCCGG
1989
CAGTCTCCG
2741






GAUCCCCAGG

GGATCCCCA






CCUGG

GGCCTGG





PTPN11
EXON
+
chr12: 112418946-112418971
AGUCUCCGG
1990
AGTCTCCGG
2742






GAUCCCCAGG

GATCCCCAG






CCUGGA

GCCTGGA





PTPN11
EXON
+
chr12: 112418947-112418972
GUCUCCGGG
1991
GTCTCCGGG
2743






AUCCCCAGGC

ATCCCCAGG






CUGGAG

CCTGGAG





PTPN11
EXON
+
chr12: 112418948-112418973
UCUCCGGGA
1992
TCTCCGGGA
2744






UCCCCAGGCC

TCCCCAGGC






UGGAGG

CTGGAGG





PTPN11
EXON
+
chr12: 112418949-112418974
CUCCGGGAUC
1993
CTCCGGGAT
2745






CCCAGGCCUG

CCCCAGGCC






GAGGG

TGGAGGG





PTPN11
EXON
+
chr12: 112418960-112418985
CCAGGCCUGG
1994
CCAGGCCTG
2746






AGGGGGGUC

GAGGGGGGT






UGUGCG

CTGTGCG





PTPN11
EXON
+
chr12: 112418964-112418989
GCCUGGAGG
1995
GCCTGGAGG
2747






GGGGUCUGU

GGGGTCTGT






GCGCGGC

GCGCGGC





PTPN11
EXON
+
chr12: 112418968-112418993
GGAGGGGGG
1996
GGAGGGGGG
2748






UCUGUGCGC

TCTGTGCGC






GGCCGGC

GGCCGGC





PTPN11
EXON
+
chr12: 112418985-112419010
CGGCCGGCUG
1997
CGGCCGGCT
2749






GCUCUGCCCC

GGCTCTGCC






GCGUC

CCGCGTC





PTPN11
EXON
+
chr12: 112418995-112419020
GCUCUGCCCC
1998
GCTCTGCCC
2750






GCGUCCGGUC

CGCGTCCGG






CCGAG

TCCCGAG





PTPN11
EXON
+
chr12: 112418996-112419021
CUCUGCCCCG
1999
CTCTGCCCC
2751






CGUCCGGUCC

GCGTCCGGT






CGAGC

CCCGAGC





PTPN11
EXON
+
chr12: 112419006-112419031
CGUCCGGUCC
2000
CGTCCGGTC
2752






CGAGCGGGCC

CCGAGCGGG






UCCCU

CCTCCCT





PTPN11
EXON
+
chr12: 112419007-112419032
GUCCGGUCCC
2001
GTCCGGTCC
2753






GAGCGGGCC

CGAGCGGGC






UCCCUC

CTCCCTC





PTPN11
EXON
+
chr12: 112419034-112419059
GCCAGCCCGA
2002
GCCAGCCCG
2754






UGUGACCGA

ATGTGACCG






GCCCAG

AGCCCAG





PTPN11
EXON
+
chr12: 112419047-112419072
GACCGAGCCC
2003
GACCGAGCC
2755






AGCGGAGCC

CAGCGGAGC






UGAGCA

CTGAGCA





PTPN11
EXON
+
chr12: 112419052-112419077
AGCCCAGCGG
2004
AGCCCAGCG
2756






AGCCUGAGC

GAGCCTGAG






AAGGAG

CAAGGAG





PTPN11
EXON
+
chr12: 112419053-112419078
GCCCAGCGGA
2005
GCCCAGCGG
2757






GCCUGAGCA

AGCCTGAGC






AGGAGC

AAGGAGC





PTPN11
EXON
+
chr12: 112419063-112419088
GCCUGAGCA
2006
GCCTGAGCA
2758






AGGAGCGGG

AGGAGCGGG






UCCGUCG

TCCGTCG





PTPN11
EXON
+
chr12: 112419069-112419094
GCAAGGAGC
2007
GCAAGGAGC
2759






GGGUCCGUC

GGGTCCGTC






GCGGAGC

GCGGAGC





PTPN11
EXON
+
chr12: 112419072-112419097
AGGAGCGGG
2008
AGGAGCGGG
2760






UCCGUCGCGG

TCCGTCGCG






AGCCGG

GAGCCGG





PTPN11
EXON
+
chr12: 112419073-112419098
GGAGCGGGU
2009
GGAGCGGGT
2761






CCGUCGCGGA

CCGTCGCGG






GCCGGA

AGCCGGA





PTPN11
EXON
+
chr12: 112419076-112419101
GCGGGUCCG
2010
GCGGGTCCG
2762






UCGCGGAGCC

TCGCGGAGC






GGAGGG

CGGAGGG





PTPN11
EXON
+
chr12: 112419077-112419102
CGGGUCCGUC
2011
CGGGTCCGT
2763






GCGGAGCCG

CGCGGAGCC






GAGGGC

GGAGGGC





PTPN11
EXON
+
chr12: 112419080-112419105
GUCCGUCGCG
2012
GTCCGTCGC
2764






GAGCCGGAG

GGAGCCGGA






GGCGGG

GGGCGGG





PTPN11
EXON
+
chr12: 112419095-112419120
GGAGGGCGG
2013
GGAGGGCGG
2765






GAGGAACAU

GAGGAACAT






GACAUCG

GACATCG





PTPN11
EXON
+
chr12: 112419098-112419123
GGGCGGGAG
2014
GGGCGGGAG
2766






GAACAUGAC

GAACATGAC






AUCGCGG

ATCGCGG





PTPN11
EXON
+
chr12: 112419103-112419128
GGAGGAACA
2015
GGAGGAACA
2767






UGACAUCGC

TGACATCGC






GGAGGUG

GGAGGTG





PTPN11
EXON
+
chr12: 112419113-112419138
GACAUCGCG
2016
GACATCGCG
2768






GAGGUGAGG

GAGGTGAGG






AGCCCCG

AGCCCCG





PTPN11
EXON
+
chr12: 112419114-112419139
ACAUCGCGG
2017
ACATCGCGG
2769






AGGUGAGGA

AGGTGAGGA






GCCCCGA

GCCCCGA





PTPN11
EXON
+
chr12: 112419115-112419140
CAUCGCGGA
2018
CATCGCGGA
2770






GGUGAGGAG

GGTGAGGAG






CCCCGAG

CCCCGAG





PTPN11
EXON

chr12: 112418729-112418754
CUUCCUCCUG
2019
CTTCCTCCTG
2771






GAAACCGCG

GAAACCGCG






GCCGCC

GCCGCC





PTPN11
EXON

chr12: 112418737-112418762
CAUCCUUGCU
2020
CATCCTTGCT
2772






UCCUCCUGGA

TCCTCCTGG






AACCG

AAACCG





PTPN11
EXON

chr12: 112418746-112418771
UGUCCAAAG
2021
TGTCCAAAG
2773






CAUCCUUGCU

CATCCTTGCT






UCCUCC

TCCTCC





PTPN11
EXON

chr12: 112418786-112418811
GAAUGGCAG
2022
GAATGGCAG
2774






CGCGGGGGC

CGCGGGGGC






UCCGCGG

TCCGCGG





PTPN11
EXON

chr12: 112418789-112418814
CGGGAAUGG
2023
CGGGAATGG
2775






CAGCGCGGG

CAGCGCGGG






GGCUCCG

GGCTCCG





PTPN11
EXON

chr12: 112418797-112418822
GCGACGGCCG
2024
GCGACGGCC
2776






GGAAUGGCA

GGGAATGGC






GCGCGG

AGCGCGG





PTPN11
EXON

chr12: 112418798-112418823
AGCGACGGCC
2025
AGCGACGGC
2777






GGGAAUGGC

CGGGAATGG






AGCGCG

CAGCGCG





PTPN11
EXON

chr12: 112418799-112418824
GAGCGACGG
2026
GAGCGACGG
2778






CCGGGAAUG

CCGGGAATG






GCAGCGC

GCAGCGC





PTPN11
EXON

chr12: 112418800-112418825
CGAGCGACG
2027
CGAGCGACG
2779






GCCGGGAAU

GCCGGGAAT






GGCAGCG

GGCAGCG





PTPN11
EXON

chr12: 112418808-112418833
CGGAGGACC
2028
CGGAGGACC
2780






GAGCGACGG

GAGCGACGG






CCGGGAA

CCGGGAA





PTPN11
EXON

chr12: 112418813-112418838
GUCAGCGGA
2029
GTCAGCGGA
2781






GGACCGAGC

GGACCGAGC






GACGGCC

GACGGCC





PTPN11
EXON

chr12: 112418814-112418839
CGUCAGCGG
2030
CGTCAGCGG
2782






AGGACCGAG

AGGACCGAG






CGACGGC

CGACGGC





PTPN11
EXON

chr12: 112418818-112418843
UUCCCGUCAG
2031
TTCCCGTCA
2783






CGGAGGACC

GCGGAGGAC






GAGCGA

CGAGCGA





PTPN11
EXON

chr12: 112418830-112418855
CGGACUUCCU
2032
CGGACTTCC
2784






GCUUCCCGUC

TGCTTCCCGT






AGCGG

CAGCGG





PTPN11
EXON

chr12: 112418833-112418858
CGGCGGACU
2033
CGGCGGACT
2785






UCCUGCUUCC

TCCTGCTTCC






CGUCAG

CGTCAG





PTPN11
EXON

chr12: 112418927-112418952
GAGACUGUG
2034
GAGACTGTG
2786






CAGCUGCGG

CAGCTGCGG






GGGCCGG

GGGCCGG





PTPN11
EXON

chr12: 112418932-112418957
UCCCGGAGAC
2035
TCCCGGAGA
2787






UGUGCAGCU

CTGTGCAGC






GCGGGG

TGCGGGG





PTPN11
EXON

chr12: 112418954-112418979
GACCCCCCUC
2036
GACCCCCCT
2788






CAGGCCUGG

CCAGGCCTG






GGAUCC

GGGATCC





PTPN11
EXON

chr12: 112418961-112418986
GCGCACAGAC
2037
GCGCACAGA
2789






CCCCCUCCAG

CCCCCCTCC






GCCUG

AGGCCTG





PTPN11
EXON

chr12: 112418962-112418987
CGCGCACAGA
2038
CGCGCACAG
2790






CCCCCCUCCA

ACCCCCCTC






GGCCU

CAGGCCT





PTPN11
EXON

chr12: 112418963-112418988
CCGCGCACAG
2039
CCGCGCACA
2791






ACCCCCCUCC

GACCCCCCT






AGGCC

CCAGGCC





PTPN11
EXON

chr12: 112418968-112418993
GCCGGCCGCG
2040
GCCGGCCGC
2792






CACAGACCCC

GCACAGACC






CCUCC

CCCCTCC





PTPN11
EXON

chr12: 112418991-112419016
GGACCGGAC
2041
GGACCGGAC
2793






GCGGGGCAG

GCGGGGCAG






AGCCAGC

AGCCAGC





PTPN11
EXON

chr12: 112419004-112419029
GGAGGCCCGC
2042
GGAGGCCCG
2794






UCGGGACCG

CTCGGGACC






GACGCG

GGACGCG





PTPN11
EXON

chr12: 112419005-112419030
GGGAGGCCC
2043
GGGAGGCCC
2795






GCUCGGGACC

GCTCGGGAC






GGACGC

CGGACGC





PTPN11
EXON

chr12: 112419006-112419031
AGGGAGGCC
2044
AGGGAGGCC
2796






CGCUCGGGAC

CGCTCGGGA






CGGACG

CCGGACG





PTPN11
EXON

chr12: 112419012-112419037
GGCCCGAGG
2045
GGCCCGAGG
2797






GAGGCCCGCU

GAGGCCCGC






CGGGAC

TCGGGAC





PTPN11
EXON

chr12: 112419017-112419042
GGGCUGGCCC
2046
GGGCTGGCC
2798






GAGGGAGGC

CGAGGGAGG






CCGCUC

CCCGCTC





PTPN11
EXON

chr12: 112419018-112419043
CGGGCUGGCC
2047
CGGGCTGGC
2799






CGAGGGAGG

CCGAGGGAG






CCCGCU

GCCCGCT





PTPN11
EXON

chr12: 112419027-112419052
CGGUCACAUC
2048
CGGTCACAT
2800






GGGCUGGCCC

CGGGCTGGC






GAGGG

CCGAGGG





PTPN11
EXON

chr12: 112419030-112419055
GCUCGGUCAC
2049
GCTCGGTCA
2801






AUCGGGCUG

CATCGGGCT






GCCCGA

GGCCCGA





PTPN11
EXON

chr12: 112419031-112419056
GGCUCGGUC
2050
GGCTCGGTC
2802






ACAUCGGGC

ACATCGGGC






UGGCCCG

TGGCCCG





PTPN11
EXON

chr12: 112419038-112419063
UCCGCUGGGC
2051
TCCGCTGGG
2803






UCGGUCACA

CTCGGTCAC






UCGGGC

ATCGGGC





PTPN11
EXON

chr12: 112419042-112419067
AGGCUCCGCU
2052
AGGCTCCGC
2804






GGGCUCGGU

TGGGCTCGG






CACAUC

TCACATC





PTPN11
EXON

chr12: 112419043-112419068
CAGGCUCCGC
2053
CAGGCTCCG
2805






UGGGCUCGG

CTGGGCTCG






UCACAU

GTCACAT





PTPN11
EXON

chr12: 112419052-112419077
CUCCUUGCUC
2054
CTCCTTGCTC
2806






AGGCUCCGCU

AGGCTCCGC






GGGCU

TGGGCT





PTPN11
EXON

chr12: 112419057-112419082
ACCCGCUCCU
2055
ACCCGCTCC
2807






UGCUCAGGC

TTGCTCAGG






UCCGCU

CTCCGCT





PTPN11
EXON

chr12: 112419058-112419083
GACCCGCUCC
2056
GACCCGCTC
2808






UUGCUCAGG

CTTGCTCAG






CUCCGC

GCTCCGC





PTPN11
EXON

chr12: 112419067-112419092
UCCGCGACGG
2057
TCCGCGACG
2809






ACCCGCUCCU

GACCCGCTC






UGCUC

CTTGCTC





PTPN11
EXON

chr12: 112419085-112419110
UUCCUCCCGC
2058
TTCCTCCCGC
2810






CCUCCGGCUC

CCTCCGGCT






CGCGA

CCGCGA





PTPN11
EXON

chr12: 112419096-112419121
GCGAUGUCA
2059
GCGATGTCA
2811






UGUUCCUCCC

TGTTCCTCCC






GCCCUC

GCCCTC





PTPN11
EXON
+
chr12: 112446271-112446296
UAAGAUGGU
2060
TAAGATGGT
2812






UUCACCCAAA

TTCACCCAA






UAUCAC

ATATCAC





PTPN11
EXON
+
chr12: 112446276-112446301
UGGUUUCAC
2061
TGGTTTCAC
2813






CCAAAUAUC

CCAAATATC






ACUGGUG

ACTGGTG





PTPN11
EXON
+
chr12: 112446279-112446304
UUUCACCCAA
2062
TTTCACCCA
2814






AUAUCACUG

AATATCACT






GUGUGG

GGTGTGG





PTPN11
EXON
+
chr12: 112446304-112446329
AGGCAGAAA
2063
AGGCAGAAA
2815






ACCUACUGU

ACCTACTGT






UGACAAG

TGACAAG





PTPN11
EXON
+
chr12: 112446313-112446338
ACCUACUGU
2064
ACCTACTGT
2816






UGACAAGAG

TGACAAGAG






GAGUUGA

GAGTTGA





PTPN11
EXON
+
chr12: 112446324-112446349
ACAAGAGGA
2065
ACAAGAGGA
2817






GUUGAUGGC

GTTGATGGC






AGUUUUU

AGTTTTT





PTPN11
EXON
+
chr12: 112446329-112446354
AGGAGUUGA
2066
AGGAGTTGA
2818






UGGCAGUUU

TGGCAGTTT






UUUGGCA

TTTGGCA





PTPN11
EXON
+
chr12: 112446349-112446374
UGGCAAGGC
2067
TGGCAAGGC
2819






CUAGUAAAA

CTAGTAAAA






GUAACCC

GTAACCC





PTPN11
EXON
+
chr12: 112446371-112446396
CCCUGGAGAC
2068
CCCTGGAGA
2820






UUCACACUU

CTTCACACTT






UCCGUU

TCCGTT





PTPN11
EXON
+
chr12: 112446379-112446404
ACUUCACACU
2069
ACTTCACAC
2821






UUCCGUUAG

TTTCCGTTAG






GUAAGU

GTAAGT





PTPN11
EXON

chr12: 112446287-112446312
UUCUGCCUCC
2070
TTCTGCCTCC
2822






ACACCAGUG

ACACCAGTG






AUAUUU

ATATTT





PTPN11
EXON

chr12: 112446288-112446313
UUUCUGCCUC
2071
TTTCTGCCTC
2823






CACACCAGUG

CACACCAGT






AUAUU

GATATT





PTPN11
EXON

chr12: 112446317-112446342
GCCAUCAACU
2072
GCCATCAAC
2824






CCUCUUGUCA

TCCTCTTGTC






ACAGU

AACAGT





PTPN11
EXON

chr12: 112446360-112446385
UGAAGUCUC
2073
TGAAGTCTC
2825






CAGGGUUAC

CAGGGTTAC






UUUUACU

TTTTACT





PTPN11
EXON

chr12: 112446374-112446399
CCUAACGGA
2074
CCTAACGGA
2826






AAGUGUGAA

AAGTGTGAA






GUCUCCA

GTCTCCA





PTPN11
EXON

chr12: 112446375-112446400
ACCUAACGG
2075
ACCTAACGG
2827






AAAGUGUGA

AAAGTGTGA






AGUCUCC

AGTCTCC





PTPN11
EXON
+
chr12: 112450298-112450323
UUCCAAUGG
2076
TTCCAATGG
2828






ACUAUUUUA

ACTATTTTA






GAAGAAA

GAAGAAA





PTPN11
EXON
+
chr12: 112450331-112450356
UCACCCACAU
2077
TCACCCACA
2829






CAAGAUUCA

TCAAGATTC






GAACAC

AGAACAC





PTPN11
EXON
+
chr12: 112450352-112450377
ACACUGGUG
2078
ACACTGGTG
2830






AUUACUAUG

ATTACTATG






ACCUGUA

ACCTGTA





PTPN11
EXON
+
chr12: 112450355-112450380
CUGGUGAUU
2079
CTGGTGATT
2831






ACUAUGACC

ACTATGACC






UGUAUGG

TGTATGG





PTPN11
EXON
+
chr12: 112450356-112450381
UGGUGAUUA
2080
TGGTGATTA
2832






CUAUGACCU

CTATGACCT






GUAUGGA

GTATGGA





PTPN11
EXON
+
chr12: 112450357-112450382
GGUGAUUAC
2081
GGTGATTAC
2833






UAUGACCUG

TATGACCTG






UAUGGAG

TATGGAG





PTPN11
EXON
+
chr12: 112450375-112450400
UAUGGAGGG
2082
TATGGAGGG
2834






GAGAAAUUU

GAGAAATTT






GCCACUU

GCCACTT





PTPN11
EXON
+
chr12: 112450384-112450409
GAGAAAUUU
2083
GAGAAATTT
2835






GCCACUUUG

GCCACTTTG






GCUGAGU

GCTGAGT





PTPN11
EXON
+
chr12: 112450399-112450424
UUGGCUGAG
2084
TTGGCTGAG
2836






UUGGUCCAG

TTGGTCCAG






UAUUACA

TATTACA





PTPN11
EXON
+
chr12: 112450409-112450434
UGGUCCAGU
2085
TGGTCCAGT
2837






AUUACAUGG

ATTACATGG






AACAUCA

AACATCA





PTPN11
EXON
+
chr12: 112450410-112450435
GGUCCAGUA
2086
GGTCCAGTA
2838






UUACAUGGA

TTACATGGA






ACAUCAC

ACATCAC





PTPN11
EXON
+
chr12: 112450430-112450455
AUCACGGGC
2087
ATCACGGGC
2839






AAUUAAAAG

AATTAAAAG






AGAAGAA

AGAAGAA





PTPN11
EXON
+
chr12: 112450485-112450510
GAACUGUGC
2088
GAACTGTGC
2840






AGAUCCUACC

AGATCCTAC






UCUGAA

CTCTGAA





PTPN11
EXON

chr12: 112450303-112450328
CUCCAUUUCU
2089
CTCCATTTCT
2841






UCUAAAAUA

TCTAAAATA






GUCCAU

GTCCAT





PTPN11
EXON

chr12: 112450337-112450362
UCACCAGUG
2090
TCACCAGTG
2842






UUCUGAAUC

TTCTGAATCT






UUGAUGU

TGATGT





PTPN11
EXON

chr12: 112450338-112450363
AUCACCAGU
2091
ATCACCAGT
2843






GUUCUGAAU

GTTCTGAAT






CUUGAUG

CTTGATG





PTPN11
EXON

chr12: 112450374-112450399
AGUGGCAAA
2092
AGTGGCAAA
2844






UUUCUCCCCU

TTTCTCCCCT






CCAUAC

CCATAC





PTPN11
EXON

chr12: 112450397-112450422
UAAUACUGG
2093
TAATACTGG
2845






ACCAACUCAG

ACCAACTCA






CCAAAG

GCCAAAG





PTPN11
EXON

chr12: 112450416-112450441
UUGCCCGUG
2094
TTGCCCGTG
2846






AUGUUCCAU

ATGTTCCAT






GUAAUAC

GTAATAC





PTPN11
EXON

chr12: 112450483-112450508
CAGAGGUAG
2095
CAGAGGTAG
2847






GAUCUGCAC

GATCTGCAC






AGUUCAG

AGTTCAG





PTPN11
EXON

chr12: 112450501-112450526
AAAAUGUUA
2096
AAAATGTTA
2848






CUGACCUUUC

CTGACCTTTC






AGAGGU

AGAGGT





PTPN11
EXON

chr12: 112450505-112450530
CACUAAAAU
2097
CACTAAAAT
2849






GUUACUGAC

GTTACTGAC






CUUUCAG

CTTTCAG





PTPN11
EXON
+
chr12: 112453178-112453203
UUUUUAAAA
2098
TTTTTAAAA
2850






ACUUUAGGU

ACTTTAGGT






GGUUUCA

GGTTTCA





PTPN11
EXON
+
chr12: 112453190-112453215
UUAGGUGGU
2099
TTAGGTGGT
2851






UUCAUGGAC

TTCATGGAC






AUCUCUC

ATCTCTC





PTPN11
EXON
+
chr12: 112453191-112453216
UAGGUGGUU
2100
TAGGTGGTT
2852






UCAUGGACA

TCATGGACA






UCUCUCU

TCTCTCT





PTPN11
EXON
+
chr12: 112453223-112453248
AAGCAGAGA
2101
AAGCAGAGA
2853






AAUUAUUAA

AATTATTAA






CUGAAAA

CTGAAAA





PTPN11
EXON
+
chr12: 112453232-112453257
AAUUAUUAA
2102
AATTATTAA
2854






CUGAAAAAG

CTGAAAAAG






GAAAACA

GAAAACA





PTPN11
EXON
+
chr12: 112453268-112453293
UUGUACGAG
2103
TTGTACGAG
2855






AGAGCCAGA

AGAGCCAGA






GCCACCC

GCCACCC





PTPN11
EXON
+
chr12: 112453295-112453320
GAGAUUUUG
2104
GAGATTTTG
2856






UUCUUUCUG

TTCTTTCTGT






UGCGCAC

GCGCAC





PTPN11
EXON
+
chr12: 112453307-112453332
UUUCUGUGC
2105
TTTCTGTGCG
2857






GCACUGGUG

CACTGGTGA






AUGACAA

TGACAA





PTPN11
EXON
+
chr12: 112453308-112453333
UUCUGUGCG
2106
TTCTGTGCG
2858






CACUGGUGA

CACTGGTGA






UGACAAA

TGACAAA





PTPN11
EXON
+
chr12: 112453309-112453334
UCUGUGCGC
2107
TCTGTGCGC
2859






ACUGGUGAU

ACTGGTGAT






GACAAAG

GACAAAG





PTPN11
EXON
+
chr12: 112453322-112453347
GUGAUGACA
2108
GTGATGACA
2860






AAGGGGAGA

AAGGGGAGA






GCAAUGA

GCAATGA





PTPN11
EXON
+
chr12: 112453360-112453385
GUGACCCAU
2109
GTGACCCAT
2861






GUUAUGAUU

GTTATGATT






CGCUGUC

CGCTGTC





PTPN11
EXON

chr12: 112453284-112453309
AAGAACAAA
2110
AAGAACAAA
2862






AUCUCCAGG

ATCTCCAGG






GUGGCUC

GTGGCTC





PTPN11
EXON

chr12: 112453290-112453315
CACAGAAAG
2111
CACAGAAAG
2863






AACAAAAUC

AACAAAATC






UCCAGGG

TCCAGGG





PTPN11
EXON

chr12: 112453293-112453318
GCGCACAGA
2112
GCGCACAGA
2864






AAGAACAAA

AAGAACAAA






AUCUCCA

ATCTCCA





PTPN11
EXON

chr12: 112453294-112453319
UGCGCACAG
2113
TGCGCACAG
2865






AAAGAACAA

AAAGAACAA






AAUCUCC

AATCTCC





PTPN11
EXON

chr12: 112453367-112453392
TTTACCTGA
2114
UUUACCUGA
2866






CAGCGAAUC

CAGCGAATC






AUAACAU

ATAACAT





PTPN11
EXON

chr12: 112453368-112453393
AUUUACCUG
2115
ATTTACCTG
2867






ACAGCGAAU

ACAGCGAAT






CAUAACA

CATAACA





PTPN11
EXON
+
chr12: 112454555-112454580
CUUGAAAGG
2116
CTTGAAAGG
2868






AACUGAAAU

AACTGAAAT






ACGACGU

ACGACGT





PTPN11
EXON
+
chr12: 112454558-112454583
GAAAGGAAC
2117
GAAAGGAAC
2869






UGAAAUACG

TGAAATACG






ACGUUGG

ACGTTGG





PTPN11
EXON
+
chr12: 112454561-112454586
AGGAACUGA
2118
AGGAACTGA
2870






AAUACGACG

AATACGACG






UUGGUGG

TTGGTGG





PTPN11
EXON
+
chr12: 112454568-112454593
GAAAUACGA
2119
GAAATACGA
2871






CGUUGGUGG

CGTTGGTGG






AGGAGAA

AGGAGAA





PTPN11
EXON
+
chr12: 112454593-112454618
CGGUUUGAU
2120
CGGTTTGAT
2872






UCUUUGACA

TCTTTGACA






GAUCUUG

GATCTTG





PTPN11
EXON
+
chr12: 112454617-112454642
GUGGAACAU
2121
GTGGAACAT
2873






UAUAAGAAG

TATAAGAAG






AAUCCUA

AATCCTA





PTPN11
EXON
+
chr12: 112454620-112454645
GAACAUUAU
2122
GAACATTAT
2874






AAGAAGAAU

AAGAAGAAT






CCUAUGG

CCTATGG





PTPN11
EXON
+
chr12: 112454629-112454654
AAGAAGAAU
2123
AAGAAGAAT
2875






CCUAUGGUG

CCTATGGTG






GAAACAU

GAAACAT





PTPN11
EXON
+
chr12: 112454630-112454655
AGAAGAAUC
2124
AGAAGAATC
2876






CUAUGGUGG

CTATGGTGG






AAACAUU

AAACATT





PTPN11
EXON
+
chr12: 112454653-112454678
UUGGGUACA
2125
TTGGGTACA
2877






GUACUACAA

GTACTACAA






CUCAAGC

CTCAAGC





PTPN11
EXON
+
chr12: 112454665-112454690
CUACAACUCA
2126
CTACAACTC
2878






AGCAGGUGA

AAGCAGGTG






GCAGAU

AGCAGAT





PTPN11
EXON

chr12: 112454641-112454666
GUACUGUAC
2127
GTACTGTAC
2879






CCAAUGUUU

CCAATGTTT






CCACCAU

CCACCAT





PTPN11
EXON
+
chr12: 112456016-112456041
CUGAGACCAC
2128
CTGAGACCA
2880






AGAUAAAGU

CAGATAAAG






CAAACA

TCAAACA





PTPN11
EXON
+
chr12: 112456023-112456048
CACAGAUAA
2129
CACAGATAA
2881






AGUCAAACA

AGTCAAACA






AGGCUUU

AGGCTTT





PTPN11
EXON
+
chr12: 112456024-112456049
ACAGAUAAA
2130
ACAGATAAA
2882






GUCAAACAA

GTCAAACAA






GGCUUUU

GGCTTTT





PTPN11
EXON
+
chr12: 112456036-112456061
AAACAAGGC
2131
AAACAAGGC
2883






UUUUGGGAA

TTTTGGGAA






GAAUUUG

GAATTTG





PTPN11
EXON

chr12: 112455952-112455977
CAGCAUUUA
2132
CAGCATTTA
2884






UACGAGUCG

TACGAGTCG






UGUUAAG

TGTTAAG





PTPN11
EXON

chr12: 112455953-112455978
GCAGCAUUU
2133
GCAGCATTT
2885






AUACGAGUC

ATACGAGTC






GUGUUAA

GTGTTAA





PTPN11
EXON

chr12: 112455954-112455979
AGCAGCAUU
2134
AGCAGCATT
2886






UAUACGAGU

TATACGAGT






CGUGUUA

CGTGTTA





PTPN11
EXON

chr12: 112456025-112456050
CAAAAGCCU
2135
CAAAAGCCT
2887






UGUUUGACU

TGTTTGACTT






UUAUCUG

TATCTG





PTPN11
EXON
+
chr12: 112472931-112472956
CUUUCUUUCC
2136
CTTTCTTTCC
2888






AGACACUAC

AGACACTAC






AACAAC

AACAAC





PTPN11
EXON
+
chr12: 112472961-112472986
UGCAAACUU
2137
TGCAAACTT
2889






CUCUACAGCC

CTCTACAGC






GAAAAG

CGAAAAG





PTPN11
EXON
+
chr12: 112472962-112472987
GCAAACUUC
2138
GCAAACTTC
2890






UCUACAGCCG

TCTACAGCC






AAAAGA

GAAAAGA





PTPN11
EXON
+
chr12: 112472969-112472994
UCUCUACAGC
2139
TCTCTACAG
2891






CGAAAAGAG

CCGAAAAGA






GGUCAA

GGGTCAA





PTPN11
EXON

chr12: 112472942-112472967
UUUGCACUCC
2140
TTTGCACTCC
2892






UGUUGUUGU

TGTTGTTGTA






AGUGUC

GTGTC





PTPN11
EXON

chr12: 112472981-112473006
GUUUUCUUG
2141
GTTTTCTTGC
2893






CCUUUGACCC

CTTTGACCCT






UCUUUU

CTTTT





PTPN11
EXON

chr12: 112473035-112473060
AGCGGAAUA
2142
AGCGGAATA
2894






UUGAUACUU

TTGATACTT






ACAGGGC

ACAGGGC





PTPN11
EXON
+
chr12: 112477636-112477661
UCUUUUUCU
2143
TCTTTTTCTT
2895






UCUAGUUGA

CTAGTTGAT






UCAUACC

CATACC





PTPN11
EXON
+
chr12: 112477637-112477662
CUUUUUCUU
2144
CTTTTTCTTC
2896






CUAGUUGAU

TAGTTGATC






CAUACCA

ATACCA





PTPN11
EXON
+
chr12: 112477653-112477678
AUCAUACCA
2145
ATCATACCA
2897






GGGUUGUCC

GGGTTGTCC






UACACGA

TACACGA





PTPN11
EXON
+
chr12: 112477703-112477728
GAUUACAUC
2146
GATTACATC
2898






AAUGCAAAU

AATGCAAAT






AUCAUCA

ATCATCA





PTPN11
EXON

chr12: 112477662-112477687
GGAUCACCA
2147
GGATCACCA
2899






UCGUGUAGG

TCGTGTAGG






ACAACCC

ACAACCC





PTPN11
EXON

chr12: 112477672-112477697
AGGCUCAUU
2148
AGGCTCATT
2900






GGGAUCACC

GGGATCACC






AUCGUGU

ATCGTGT





PTPN11
EXON

chr12: 112477688-112477713
UGAUGUAAU
2149
TGATGTAAT
2901






CUGAAACAG

CTGAAACAG






GCUCAUU

GCTCATT





PTPN11
EXON

chr12: 112477689-112477714
UUGAUGUAA
2150
TTGATGTAA
2902






UCUGAAACA

TCTGAAACA






GGCUCAU

GGCTCAT





PTPN11
EXON

chr12: 112477697-112477722
UAUUUGCAU
2151
TATTTGCATT
2903






UGAUGUAAU

GATGTAATC






CUGAAAC

TGAAAC





PTPN11
EXON
+
chr12: 112477890-112477915
CCAAAAAGA
2152
CCAAAAAGA
2904






GUUACAUUG

GTTACATTG






CCACACA

CCACACA





PTPN11
EXON
+
chr12: 112477907-112477932
GCCACACAAG
2153
GCCACACAA
2905






GCUGCCUGCA

GGCTGCCTG






AAACA

CAAAACA





PTPN11
EXON
+
chr12: 112477921-112477946
CCUGCAAAAC
2154
CCTGCAAAA
2906






ACGGUGAAU

CACGGTGAA






GACUUU

TGACTTT





PTPN11
EXON
+
chr12: 112477924-112477949
GCAAAACAC
2155
GCAAAACAC
2907






GGUGAAUGA

GGTGAATGA






CUUUUGG

CTTTTGG





PTPN11
EXON
+
chr12: 112477928-112477953
AACACGGUG
2156
AACACGGTG
2908






AAUGACUUU

AATGACTTT






UGGCGGA

TGGCGGA





PTPN11
EXON
+
chr12: 112477976-112478001
GUGAUUGUC
2157
GTGATTGTC
2909






AUGACAACG

ATGACAACG






AAAGAAG

AAAGAAG





PTPN11
EXON
+
chr12: 112477983-112478008
UCAUGACAA
2158
TCATGACAA
2910






CGAAAGAAG

CGAAAGAAG






UGGAGAG

TGGAGAG





PTPN11
EXON
+
chr12: 112477988-112478013
ACAACGAAA
2159
ACAACGAAA
2911






GAAGUGGAG

GAAGTGGAG






AGAGGAA

AGAGGAA





PTPN11
EXON

chr12: 112477846-112477871
GGUUUCAAA
2160
GGTTTCAAA
2912






UUCAGGCUA

TTCAGGCTA






GAAAUUU

GAAATTT





PTPN11
EXON

chr12: 112477859-112477884
AAUUGUUGC
2161
AATTGTTGC
2913






ACUUGGUUU

ACTTGGTTTC






CAAAUUC

AAATTC





PTPN11
EXON

chr12: 112477872-112477897
TTTTTGGGCT
2162
UUUUUGGGC
2914






UUUGAAUUG

TTGAATTGTT






UUGCACU

GCACT





PTPN11
EXON

chr12: 112477892-112477917
CUUGUGUGG
2163
CTTGTGTGG
2915






CAAUGUAAC

CAATGTAAC






UCUUUUU

TCTTTTT





PTPN11
EXON

chr12: 112477893-112477918
CCUUGUGUG
2164
CCTTGTGTG
2916






GCAAUGUAA

GCAATGTAA






CUCUUUU

CTCTTTT





PTPN11
EXON

chr12: 112477911-112477936
ACCGUGUUU
2165
ACCGTGTTTT
2917






UGCAGGCAG

GCAGGCAGC






CCUUGUG

CTTGTG





PTPN11
EXON

chr12: 112477924-112477949
CCAAAAGUC
2166
CCAAAAGTC
2918






AUUCACCGU

ATTCACCGT






GUUUUGC

GTTTTGC





PTPN11
EXON

chr12: 112477963-112477988
CAUGACAAU
2167
CATGACAAT
2919






CACUCGGGA

CACTCGGGA






GUUUUCU

GTTTTCT





PTPN11
EXON

chr12: 112477974-112477999
UCUUUCGUU
2168
TCTTTCGTTG
2920






GUCAUGACA

TCATGACAA






AUCACUC

TCACTC





PTPN11
EXON

chr12: 112477975-112478000
UUCUUUCGU
2169
TTCTTTCGTT
2921






UGUCAUGAC

GTCATGACA






AAUCACU

ATCACT





PTPN11
EXON
+
chr12: 112482066-112482091
CUUCCAGAG
2170
CTTCCAGAG
2922






UAAAUGUGU

TAAATGTGT






CAAAUAC

CAAATAC





PTPN11
EXON
+
chr12: 112482095-112482120
CUGAUGAGU
2171
CTGATGAGT
2923






AUGCUCUAA

ATGCTCTAA






AAGAAUA

AAGAATA





PTPN11
EXON
+
chr12: 112482111-112482136
AAAAGAAUA
2172
AAAAGAATA
2924






UGGCGUCAU

TGGCGTCAT






GCGUGUU

GCGTGTT





PTPN11
EXON
+
chr12: 112482169-112482194
ACGCUAAGA
2173
ACGCTAAGA
2925






GAACUUAAA

GAACTTAAA






CUUUCAA

CTTTCAA





PTPN11
EXON
+
chr12: 112482173-112482198
UAAGAGAAC
2174
TAAGAGAAC
2926






UUAAACUUU

TTAAACTTTC






CAAAGGU

AAAGGT





PTPN11
EXON

chr12: 112482072-112482097
AGGCCAGUA
2175
AGGCCAGTA
2927






UUUGACACA

TTTGACACA






UUUACUC

TTTACTC





PTPN11
EXON

chr12: 112482097-112482122
CAUAUUCUU
2176
CATATTCTTT
2928






UUAGAGCAU

TAGAGCATA






ACUCAUC

CTCATC





PTPN11
EXON

chr12: 112482158-112482183
AGUUCUCUU
2177
AGTTCTCTTA
2929






AGCGUAUAG

GCGTATAGT






UCAUGAG

CATGAG





PTPN11
EXON
+
chr12: 112486456-112486481
UUCUUGGCU
2178
TTCTTGGCTC
2930






CUACUCCAGG

TACTCCAGG






GGAAUA

GGAATA





PTPN11
EXON
+
chr12: 112486465-112486490
CUACUCCAGG
2179
CTACTCCAG
2931






GGAAUACGG

GGGAATACG






AGAGAA

GAGAGAA





PTPN11
EXON
+
chr12: 112486470-112486495
CCAGGGGAA
2180
CCAGGGGAA
2932






UACGGAGAG

TACGGAGAG






AACGGUC

AACGGTC





PTPN11
EXON
+
chr12: 112486485-112486510
GAGAACGGU
2181
GAGAACGGT
2933






CUGGCAAUA

CTGGCAATA






CCACUUU

CCACTTT





PTPN11
EXON
+
chr12: 112486491-112486516
GGUCUGGCA
2182
GGTCTGGCA
2934






AUACCACUU

ATACCACTT






UCGGACC

TCGGACC





PTPN11
EXON
+
chr12: 112486495-112486520
UGGCAAUAC
2183
TGGCAATAC
2935






CACUUUCGG

CACTTTCGG






ACCUGGC

ACCTGGC





PTPN11
EXON
+
chr12: 112486502-112486527
ACCACUUUCG
2184
ACCACTTTC
2936






GACCUGGCCG

GGACCTGGC






GACCA

CGGACCA





PTPN11
EXON
+
chr12: 112486520-112486545
CGGACCACGG
2185
CGGACCACG
2937






CGUGCCCAGC

GCGTGCCCA






GACCC

GCGACCC





PTPN11
EXON
+
chr12: 112486521-112486546
GGACCACGGC
2186
GGACCACGG
2938






GUGCCCAGCG

CGTGCCCAG






ACCCU

CGACCCT





PTPN11
EXON
+
chr12: 112486522-112486547
GACCACGGCG
2187
GACCACGGC
2939






UGCCCAGCGA

GTGCCCAGC






CCCUG

GACCCTG





PTPN11
EXON
+
chr12: 112486523-112486548
ACCACGGCGU
2188
ACCACGGCG
2940






GCCCAGCGAC

TGCCCAGCG






CCUGG

ACCCTGG





PTPN11
EXON
+
chr12: 112486531-112486556
GUGCCCAGCG
2189
GTGCCCAGC
2941






ACCCUGGGG

GACCCTGGG






GCGUGC

GGCGTGC





PTPN11
EXON
+
chr12: 112486540-112486565
GACCCUGGG
2190
GACCCTGGG
2942






GGCGUGCUG

GGCGTGCTG






GACUUCC

GACTTCC





PTPN11
EXON
+
chr12: 112486543-112486568
CCUGGGGGC
2191
CCTGGGGGC
2943






GUGCUGGAC

GTGCTGGAC






UUCCUGG

TTCCTGG





PTPN11
EXON
+
chr12: 112486546-112486571
GGGGGCGUG
2192
GGGGGCGTG
2944






CUGGACUUCC

CTGGACTTC






UGGAGG

CTGGAGG





PTPN11
EXON
+
chr12: 112486561-112486586
UUCCUGGAG
2193
TTCCTGGAG
2945






GAGGUGCAC

GAGGTGCAC






CAUAAGC

CATAAGC





PTPN11
EXON
+
chr12: 112486573-112486598
GUGCACCAU
2194
GTGCACCAT
2946






AAGCAGGAG

AAGCAGGAG






AGCAUCA

AGCATCA





PTPN11
EXON
+
chr12: 112486580-112486605
AUAAGCAGG
2195
ATAAGCAGG
2947






AGAGCAUCA

AGAGCATCA






UGGAUGC

TGGATGC





PTPN11
EXON
+
chr12: 112486581-112486606
UAAGCAGGA
2196
TAAGCAGGA
2948






GAGCAUCAU

GAGCATCAT






GGAUGCA

GGATGCA





PTPN11
EXON
+
chr12: 112486585-112486610
CAGGAGAGC
2197
CAGGAGAGC
2949






AUCAUGGAU

ATCATGGAT






GCAGGGC

GCAGGGC





PTPN11
EXON
+
chr12: 112486591-112486616
AGCAUCAUG
2198
AGCATCATG
2950






GAUGCAGGG

GATGCAGGG






CCGGUCG

CCGGTCG





PTPN11
EXON
+
chr12: 112486602-112486627
UGCAGGGCC
2199
TGCAGGGCC
2951






GGUCGUGGU

GGTCGTGGT






GCACUGC

GCACTGC





PTPN11
EXON
+
chr12: 112486627-112486652
AGGUGACAG
2200
AGGTGACAG
2952






CUCCUGCUGC

CTCCTGCTG






CCCUCU

CCCCTCT





PTPN11
EXON
+
chr12: 112486659-112486684
AGCCUGUCCC
2201
AGCCTGTCC
2953






UGUCUCCUA

CTGTCTCCTA






GCGCCC

GCGCCC





PTPN11
EXON
+
chr12: 112486660-112486685
GCCUGUCCCU
2202
GCCTGTCCC
2954






GUCUCCUAGC

TGTCTCCTA






GCCCA

GCGCCCA





PTPN11
EXON
+
chr12: 112486700-112486725
UACCCACUCC
2203
TACCCACTC
2955






UAGCUCUUU

CTAGCTCTTT






AACUGU

AACTGT





PTPN11
EXON
+
chr12: 112486723-112486748
GUAGGAAGA
2204
GTAGGAAGA
2956






AUUUAAUAU

ATTTAATAT






CUGUUUG

CTGTTTG





PTPN11
EXON
+
chr12: 112486744-112486769
UUUGAGGCA
2205
TTTGAGGCA
2957






UAGAGCAAC

TAGAGCAAC






UGCAUUG

TGCATTG





PTPN11
EXON
+
chr12: 112486745-112486770
UUGAGGCAU
2206
TTGAGGCAT
2958






AGAGCAACU

AGAGCAACT






GCAUUGA

GCATTGA





PTPN11
EXON
+
chr12: 112486762-112486787
UGCAUUGAG
2207
TGCATTGAG
2959






GGACAUUUU

GGACATTTT






GAUCCCA

GATCCCA





PTPN11
EXON
+
chr12: 112486797-112486822
CUCCUAGACC
2208
CTCCTAGAC
2960






CUACAGCACU

CCTACAGCA






GCCAU

CTGCCAT





PTPN11
EXON
+
chr12: 112486803-112486828
GACCCUACAG
2209
GACCCTACA
2961






CACUGCCAUU

GCACTGCCA






GGCCA

TTGGCCA





PTPN11
EXON
+
chr12: 112486809-112486834
ACAGCACUGC
2210
ACAGCACTG
2962






CAUUGGCCA

CCATTGGCC






UGGCCA

ATGGCCA





PTPN11
EXON
+
chr12: 112486895-112486920
AGUUGUGCA
2211
AGTTGTGCA
2963






UUAAACAAC

TTAAACAAC






UUCAUCC

TTCATCC





PTPN11
EXON

chr12: 112486473-112486498
CCAGACCGUU
2212
CCAGACCGT
2964






CUCUCCGUAU

TCTCTCCGTA






UCCCC

TTCCCC





PTPN11
EXON

chr12: 112486506-112486531
GCCGUGGUCC
2213
GCCGTGGTC
2965






GGCCAGGUCC

CGGCCAGGT






GAAAG

CCGAAAG





PTPN11
EXON

chr12: 112486517-112486542
UCGCUGGGC
2214
TCGCTGGGC
2966






ACGCCGUGG

ACGCCGTGG






UCCGGCC

TCCGGCC





PTPN11
EXON

chr12: 112486522-112486547
CAGGGUCGC
2215
CAGGGTCGC
2967






UGGGCACGCC

TGGGCACGC






GUGGUC

CGTGGTC





PTPN11
EXON

chr12: 112486527-112486552
GCCCCCAGGG
2216
GCCCCCAGG
2968






UCGCUGGGC

GTCGCTGGG






ACGCCG

CACGCCG





PTPN11
EXON

chr12: 112486537-112486562
AGUCCAGCAC
2217
AGTCCAGCA
2969






GCCCCCAGGG

CGCCCCCAG






UCGCU

GGTCGCT





PTPN11
EXON

chr12: 112486538-112486563
AAGUCCAGC
2218
AAGTCCAGC
2970






ACGCCCCCAG

ACGCCCCCA






GGUCGC

GGGTCGC





PTPN11
EXON

chr12: 112486545-112486570
CUCCAGGAA
2219
CTCCAGGAA
2971






GUCCAGCACG

GTCCAGCAC






CCCCCA

GCCCCCA





PTPN11
EXON

chr12: 112486546-112486571
CCUCCAGGAA
2220
CCTCCAGGA
2972






GUCCAGCACG

AGTCCAGCA






CCCCC

CGCCCCC





PTPN11
EXON

chr12: 112486566-112486591
CUCCUGCUUA
2221
CTCCTGCTTA
2973






UGGUGCACC

TGGTGCACC






UCCUCC

TCCTCC





PTPN11
EXON

chr12: 112486581-112486606
UGCAUCCAU
2222
TGCATCCAT
2974






GAUGCUCUCC

GATGCTCTC






UGCUUA

CTGCTTA





PTPN11
EXON

chr12: 112486612-112486637
GCUGUCACCU
2223
GCTGTCACC
2975






GCAGUGCACC

TGCAGTGCA






ACGAC

CCACGAC





PTPN11
EXON

chr12: 112486641-112486666
ACAGGCUGU
2224
ACAGGCTGT
2976






GGCCUAGAG

GGCCTAGAG






GGGCAGC

GGGCAGC





PTPN11
EXON

chr12: 112486648-112486673
GACAGGGAC
2225
GACAGGGAC
2977






AGGCUGUGG

AGGCTGTGG






CCUAGAG

CCTAGAG





PTPN11
EXON

chr12: 112486649-112486674
AGACAGGGA
2226
AGACAGGGA
2978






CAGGCUGUG

CAGGCTGTG






GCCUAGA

GCCTAGA





PTPN11
EXON

chr12: 112486650-112486675
GAGACAGGG
2227
GAGACAGGG
2979






ACAGGCUGU

ACAGGCTGT






GGCCUAG

GGCCTAG





PTPN11
EXON

chr12: 112486658-112486683
GGCGCUAGG
2228
GGCGCTAGG
2980






AGACAGGGA

AGACAGGGA






CAGGCUG

CAGGCTG





PTPN11
EXON

chr12: 112486664-112486689
GCCCUGGGCG
2229
GCCCTGGGC
2981






CUAGGAGAC

GCTAGGAGA






AGGGAC

CAGGGAC





PTPN11
EXON

chr12: 112486669-112486694
AGCAAGCCCU
2230
AGCAAGCCC
2982






GGGCGCUAG

TGGGCGCTA






GAGACA

GGAGACA





PTPN11
EXON

chr12: 112486670-112486695
AAGCAAGCCC
2231
AAGCAAGCC
2983






UGGGCGCUA

CTGGGCGCT






GGAGAC

AGGAGAC





PTPN11
EXON

chr12: 112486677-112486702
UAGGUAAAA
2232
TAGGTAAAA
2984






GCAAGCCCUG

GCAAGCCCT






GGCGCU

GGGCGCT





PTPN11
EXON

chr12: 112486684-112486709
GAGUGGGUA
2233
GAGTGGGTA
2985






GGUAAAAGC

GGTAAAAGC






AAGCCCU

AAGCCCT





PTPN11
EXON

chr12: 112486685-112486710
GGAGUGGGU
2234
GGAGTGGGT
2986






AGGUAAAAG

AGGTAAAAG






CAAGCCC

CAAGCCC





PTPN11
EXON

chr12: 112486701-112486726
UACAGUUAA
2235
TACAGTTAA
2987






AGAGCUAGG

AGAGCTAGG






AGUGGGU

AGTGGGT





PTPN11
EXON

chr12: 112486705-112486730
UUCCUACAG
2236
TTCCTACAG
2988






UUAAAGAGC

TTAAAGAGC






UAGGAGU

TAGGAGT





PTPN11
EXON

chr12: 112486706-112486731
CUUCCUACAG
2237
CTTCCTACA
2989






UUAAAGAGC

GTTAAAGAG






UAGGAG

CTAGGAG





PTPN11
EXON

chr12: 112486711-112486736
AAAUUCUUC
2238
AAATTCTTC
2990






CUACAGUUA

CTACAGTTA






AAGAGCU

AAGAGCT





PTPN11
EXON

chr12: 112486786-112486811
GUAGGGUCU
2239
GTAGGGTCT
2991






AGGAGAAAU

AGGAGAAAT






AUGCCUU

ATGCCTT





PTPN11
EXON

chr12: 112486787-112486812
UGUAGGGUC
2240
TGTAGGGTC
2992






UAGGAGAAA

TAGGAGAAA






UAUGCCU

TATGCCT





PTPN11
EXON

chr12: 112486802-112486827
GGCCAAUGG
2241
GGCCAATGG
2993






CAGUGCUGU

CAGTGCTGT






AGGGUCU

AGGGTCT





PTPN11
EXON

chr12: 112486808-112486833
GGCCAUGGCC
2242
GGCCATGGC
2994






AAUGGCAGU

CAATGGCAG






GCUGUA

TGCTGTA





PTPN11
EXON

chr12: 112486809-112486834
UGGCCAUGG
2243
TGGCCATGG
2995






CCAAUGGCA

CCAATGGCA






GUGCUGU

GTGCTGT





PTPN11
EXON

chr12: 112486821-112486846
AGCAUGUUG
2244
AGCATGTTG
2996






CCAUGGCCAU

CCATGGCCA






GGCCAA

TGGCCAA





PTPN11
EXON

chr12: 112486828-112486853
UUAACUGAG
2245
TTAACTGAG
2997






CAUGUUGCC

CATGTTGCC






AUGGCCA

ATGGCCA





PTPN11
EXON

chr12: 112486834-112486859
GCUGUUUUA
2246
GCTGTTTTA
2998






ACUGAGCAU

ACTGAGCAT






GUUGCCA

GTTGCCA





PTPN11
EXON

chr12: 112486890-112486915
AAGUUGUUU
2247
AAGTTGTTT
2999






AAUGCACAA

AATGCACAA






CUUCUGG

CTTCTGG





PTPN11
EXON

chr12: 112486893-112486918
AUGAAGUUG
2248
ATGAAGTTG
3000






UUUAAUGCA

TTTAATGCA






CAACUUC

CAACTTC





PTPN11
EXON
+
chr12: 112488426-112488451
GUCCUUCUGC
2249
GTCCTTCTGC
3001






CCGCAGUGCU

CCGCAGTGC






GGAAU

TGGAAT





PTPN11
EXON
+
chr12: 112488430-112488455
UUCUGCCCGC
2250
TTCTGCCCG
3002






AGUGCUGGA

CAGTGCTGG






AUUGGC

AATTGGC





PTPN11
EXON
+
chr12: 112488435-112488460
CCCGCAGUGC
2251
CCCGCAGTG
3003






UGGAAUUGG

CTGGAATTG






CCGGAC

GCCGGAC





PTPN11
EXON
+
chr12: 112488436-112488461
CCGCAGUGCU
2252
CCGCAGTGC
3004






GGAAUUGGC

TGGAATTGG






CGGACA

CCGGACA





PTPN11
EXON
+
chr12: 112488483-112488508
UUCUUAUUG
2253
TTCTTATTGA
3005






ACAUCAUCA

CATCATCAG






GAGAGAA

AGAGAA





PTPN11
EXON
+
chr12: 112488486-112488511
UUAUUGACA
2254
TTATTGACA
3006






UCAUCAGAG

TCATCAGAG






AGAAAGG

AGAAAGG





PTPN11
EXON
+
chr12: 112488487-112488512
UAUUGACAU
2255
TATTGACAT
3007






CAUCAGAGA

CATCAGAGA






GAAAGGU

GAAAGGT





PTPN11
EXON
+
chr12: 112488495-112488520
UCAUCAGAG
2256
TCATCAGAG
3008






AGAAAGGUG

AGAAAGGTG






GGUCAUC

GGTCATC





PTPN11
EXON
+
chr12: 112488498-112488523
UCAGAGAGA
2257
TCAGAGAGA
3009






AAGGUGGGU

AAGGTGGGT






CAUCUGG

CATCTGG





PTPN11
EXON
+
chr12: 112488499-112488524
CAGAGAGAA
2258
CAGAGAGAA
3010






AGGUGGGUC

AGGTGGGTC






AUCUGGU

ATCTGGT





PTPN11
EXON

chr12: 112488431-112488456
GGCCAAUUCC
2259
GGCCAATTC
3011






AGCACUGCG

CAGCACTGC






GGCAGA

GGGCAGA





PTPN11
EXON

chr12: 112488438-112488463
CCUGUCCGGC
2260
CCTGTCCGG
3012






CAAUUCCAGC

CCAATTCCA






ACUGC

GCACTGC





PTPN11
EXON

chr12: 112488439-112488464
CCCUGUCCGG
2261
CCCTGTCCG
3013






CCAAUUCCAG

GCCAATTCC






CACUG

AGCACTG





PTPN11
EXON

chr12: 112488457-112488482
AUCAAUCAC
2262
ATCAATCAC
3014






AAUGAACGU

AATGAACGT






CCCUGUC

CCCTGTC





PTPN11
EXON
+
chr12: 112489037-112489062
AUUGACGUU
2263
ATTGACGTT
3015






CCCAAAACCA

CCCAAAACC






UCCAGA

ATCCAGA





PTPN11
EXON
+
chr12: 112489042-112489067
CGUUCCCAAA
2264
CGTTCCCAA
3016






ACCAUCCAGA

AACCATCCA






UGGUG

GATGGTG





PTPN11
EXON
+
chr12: 112489051-112489076
AACCAUCCAG
2265
AACCATCCA
3017






AUGGUGCGG

GATGGTGCG






UCUCAG

GTCTCAG





PTPN11
EXON
+
chr12: 112489056-112489081
UCCAGAUGG
2266
TCCAGATGG
3018






UGCGGUCUC

TGCGGTCTC






AGAGGUC

AGAGGTC





PTPN11
EXON
+
chr12: 112489057-112489082
CCAGAUGGU
2267
CCAGATGGT
3019






GCGGUCUCA

GCGGTCTCA






GAGGUCA

GAGGTCA





PTPN11
EXON
+
chr12: 112489061-112489086
AUGGUGCGG
2268
ATGGTGCGG
3020






UCUCAGAGG

TCTCAGAGG






UCAGGGA

TCAGGGA





PTPN11
EXON
+
chr12: 112489097-112489122
GAAGCACAG
2269
GAAGCACAG
3021






UACCGAUUU

TACCGATTT






AUCUAUA

ATCTATA





PTPN11
EXON
+
chr12: 112489100-112489125
GCACAGUACC
2270
GCACAGTAC
3022






GAUUUAUCU

CGATTTATCT






AUAUGG

ATATGG





PTPN11
EXON
+
chr12: 112489132-112489157
GCAUUAUAU
2271
GCATTATAT
3023






UGAAACACU

TGAAACACT






ACAGCGC

ACAGCGC





PTPN11
EXON
+
chr12: 112489148-112489173
CUACAGCGCA
2272
CTACAGCGC
3024






GGAUUGAAG

AGGATTGAA






AAGAGC

GAAGAGC





PTPN11
EXON
+
chr12: 112489161-112489186
UUGAAGAAG
2273
TTGAAGAAG
3025






AGCAGGUAC

AGCAGGTAC






CAGCCUG

CAGCCTG





PTPN11
EXON
+
chr12: 112489162-112489187
UGAAGAAGA
2274
TGAAGAAGA
3026






GCAGGUACC

GCAGGTACC






AGCCUGA

AGCCTGA





PTPN11
EXON
+
chr12: 112489166-112489191
GAAGAGCAG
2275
GAAGAGCAG
3027






GUACCAGCCU

GTACCAGCC






GAGGGC

TGAGGGC





PTPN11
EXON

chr12: 112489017-112489042
UCAAUAUCG
2276
TCAATATCG
3028






CAGUCAACAC

CAGTCAACA






CUACGA

CCTACGA





PTPN11
EXON

chr12: 112489049-112489074
GAGACCGCAC
2277
GAGACCGCA
3029






CAUCUGGAU

CCATCTGGA






GGUUUU

TGGTTTT





PTPN11
EXON

chr12: 112489050-112489075
UGAGACCGC
2278
TGAGACCGC
3030






ACCAUCUGG

ACCATCTGG






AUGGUUU

ATGGTTT





PTPN11
EXON

chr12: 112489056-112489081
GACCUCUGA
2279
GACCTCTGA
3031






GACCGCACCA

GACCGCACC






UCUGGA

ATCTGGA





PTPN11
EXON

chr12: 112489060-112489085
CCCUGACCUC
2280
CCCTGACCT
3032






UGAGACCGC

CTGAGACCG






ACCAUC

CACCATC





PTPN11
EXON

chr12: 112489093-112489118
GAUAAAUCG
2281
GATAAATCG
3033






GUACUGUGC

GTACTGTGC






UUCUGUC

TTCTGTC





PTPN11
EXON

chr12: 112489111-112489136
AUGCUGGAC
2282
ATGCTGGAC
3034






CGCCAUAUA

CGCCATATA






GAUAAAU

GATAAAT





PTPN11
EXON

chr12: 112489132-112489157
GCGCUGUAG
2283
GCGCTGTAG
3035






UGUUUCAAU

TGTTTCAAT






AUAAUGC

ATAATGC





PTPN11
EXON
+
chr12: 112502127-112502152
CUCUUCCAAA
2284
CTCTTCCAA
3036






UUUCAGAAA

ATTTCAGAA






AGCAAG

AAGCAAG





PTPN11
EXON
+
chr12: 112502132-112502157
CCAAAUUUC
2285
CCAAATTTC
3037






AGAAAAGCA

AGAAAAGCA






AGAGGAA

AGAGGAA





PTPN11
EXON
+
chr12: 112502133-112502158
CAAAUUUCA
2286
CAAATTTCA
3038






GAAAAGCAA

GAAAAGCAA






GAGGAAA

GAGGAAA





PTPN11
EXON
+
chr12: 112502167-112502192
UAUACAAAU
2287
TATACAAAT
3039






AUUAAGUAU

ATTAAGTAT






UCUCUAG

TCTCTAG





PTPN11
EXON
+
chr12: 112502180-112502205
AGUAUUCUC
2288
AGTATTCTCT
3040






UAGCGGACC

AGCGGACCA






AGACGAG

GACGAG





PTPN11
EXON
+
chr12: 112502245-112502270
CCCUGUGCAG
2289
CCCTGTGCA
3041






AGUAAGUAG

GAGTAAGTA






UGCUGA

GTGCTGA





PTPN11
EXON

chr12: 112502135-112502160
CCUUUCCUCU
2290
CCTTTCCTCT
3042






UGCUUUUCU

TGCTTTTCTG






GAAAUU

AAATT





PTPN11
EXON

chr12: 112502199-112502224
GAGAGGGCU
2291
GAGAGGGCT
3043






CUGAUCUCCA

CTGATCTCC






CUCGUC

ACTCGTC





PTPN11
EXON

chr12: 112502220-112502245
UGGCGUUGG
2292
TGGCGTTGG
3044






AGUACAAGG

AGTACAAGG






CGGGAGA

CGGGAGA





PTPN11
EXON

chr12: 112502221-112502246
GUGGCGUUG
2293
GTGGCGTTG
3045






GAGUACAAG

GAGTACAAG






GCGGGAG

GCGGGAG





PTPN11
EXON

chr12: 112502226-112502251
ACAGGGUGG
2294
ACAGGGTGG
3046






CGUUGGAGU

CGTTGGAGT






ACAAGGC

ACAAGGC





PTPN11
EXON

chr12: 112502227-112502252
CACAGGGUG
2295
CACAGGGTG
3047






GCGUUGGAG

GCGTTGGAG






UACAAGG

TACAAGG





PTPN11
EXON

chr12: 112502230-112502255
CUGCACAGG
2296
CTGCACAGG
3048






GUGGCGUUG

GTGGCGTTG






GAGUACA

GAGTACA





PTPN11
EXON

chr12: 112502239-112502264
CUACUUACUC
2297
CTACTTACTC
3049






UGCACAGGG

TGCACAGGG






UGGCGU

TGGCGT





PTPN11
EXON

chr12: 112502245-112502270
UCAGCACUAC
2298
TCAGCACTA
3050






UUACUCUGC

CTTACTCTGC






ACAGGG

ACAGGG





PTPN11
EXON

chr12: 112502248-112502273
CCUUCAGCAC
2299
CCTTCAGCA
3051






UACUUACUC

CTACTTACTC






UGCACA

TGCACA





PTPN11
EXON

chr12: 112502249-112502274
UCCUUCAGCA
2300
TCCTTCAGC
3052






CUACUUACUC

ACTACTTAC






UGCAC

TCTGCAC





PTPN11
EXON
+
chr12: 112504704-112504729
GACAGUGCU
2301
GACAGTGCT
3053






AGAGUCUAU

AGAGTCTAT






GAAAACG

GAAAACG





PTPN11
EXON
+
chr12: 112504705-112504730
ACAGUGCUA
2302
ACAGTGCTA
3054






GAGUCUAUG

GAGTCTATG






AAAACGU

AAAACGT





PTPN11
EXON
+
chr12: 112504769-112504794
CCUGCCAAAA
2303
CCTGCCAAA
3055






CUUCAGCACA

ACTTCAGCA






GAAAU

CAGAAAT





PTPN11
EXON

chr12: 112504693-112504718
ACUCUAGCAC
2304
ACTCTAGCA
3056






UGUCUUCUC

CTGTCTTCTC






UCAUUC

TCATTC





PTPN11
EXON

chr12: 112504736-112504761
UCUGAAACU
2305
TCTGAAACT
3057






UUUCUGCUG

TTTCTGCTGT






UUGCAUC

TGCATC





PTPN11
EXON

chr12: 112504772-112504797
CCUAUUUCU
2306
CCTATTTCTG
3058






GUGCUGAAG

TGCTGAAGT






UUUUGGC

TTTGGC





PTPN11
EXON

chr12: 112504776-112504801
AAUACCUAU
2307
AATACCTAT
3059






UUCUGUGCU

TTCTGTGCTG






GAAGUUU

AAGTTT





PTPN11
EXON
+
chr12: 112505869-112505894
AGAAAGUUU
2308
AGAAAGTTT
3060






AUGUGAAGA

ATGTGAAGA






CAGAAUU

CAGAATT





PTPN11
EXON
+
chr12: 112505875-112505900
UUUAUGUGA
2309
TTTATGTGA
3061






AGACAGAAU

AGACAGAAT






UUGGAUU

TTGGATT





PTPN11
EXON
+
chr12: 112505879-112505904
UGUGAAGAC
2310
TGTGAAGAC
3062






AGAAUUUGG

AGAATTTGG






AUUUGGA

ATTTGGA





PTPN11
EXON
+
chr12: 112505891-112505916
AUUUGGAUU
2311
ATTTGGATTT
3063






UGGAAGGCU

GGAAGGCTT






UGCAAUG

GCAATG





PTPN11
EXON
+
chr12: 112506051-112506076
AUUUUAUAG
2312
ATTTTATAG
3064






AAUUUGUUU

AATTTGTTTG






GAAAUUG

AAATTG





PTPN11
EXON
+
chr12: 112506089-112506114
AUUGUGCGC
2313
ATTGTGCGC
3065






UGUAUUUUG

TGTATTTTGC






CAGAUUA

AGATTA





PTPN11
EXON
+
chr12: 112506090-112506115
UUGUGCGCU
2314
TTGTGCGCT
3066






GUAUUUUGC

GTATTTTGC






AGAUUAU

AGATTAT





PTPN11
EXON
+
chr12: 112506091-112506116
UGUGCGCUG
2315
TGTGCGCTG
3067






UAUUUUGCA

TATTTTGCA






GAUUAUG

GATTATG





PTPN11
EXON
+
chr12: 112506111-112506136
UUAUGGGGA
2316
TTATGGGGA
3068






UUCAAAUUC

TTCAAATTCT






UAGUAAU

AGTAAT





PTPN11
EXON
+
chr12: 112506171-112506196
GUUUAAUUU
2317
GTTTAATTTT
3069






UUUUUUUCC

TTTTTTCCTC






UCAUUGU

ATTGT





PTPN11
EXON
+
chr12: 112506172-112506197
UUUAAUUUU
2318
TTTAATTTTT
3070






UUUUUUCCU

TTTTTCCTCA






CAUUGUU

TTGTT





PTPN11
EXON
+
chr12: 112506173-112506198
UUAAUUUUU
2319
TTAATTTTTT
3071






UUUUUCCUC

TTTTCCTCAT






AUUGUUG

TGTTG





PTPN11
EXON
+
chr12: 112506195-112506220
UUGGGGAUG
2320
TTGGGGATG
3072






AUGAGAAGA

ATGAGAAGA






AAUGAUU

AATGATT





PTPN11
EXON
+
chr12: 112506196-112506221
UGGGGAUGA
2321
TGGGGATGA
3073






UGAGAAGAA

TGAGAAGAA






AUGAUUU

ATGATTT





PTPN11
EXON
+
chr12: 112506263-112506288
UCAUUUACC
2322
TCATTTACC
3074






AUCAUGUAU

ATCATGTAT






CCAGUAG

CCAGTAG





PTPN11
EXON
+
chr12: 112506280-112506305
UCCAGUAGU
2323
TCCAGTAGT
3075






GGAUAAUUC

GGATAATTC






AUUUUGA

ATTTTGA





PTPN11
EXON
+
chr12: 112506293-112506318
AAUUCAUUU
2324
AATTCATTTT
3076






UGAUGGCUU

GATGGCTTC






CUAUUUU

TATTTT





PTPN11
EXON
+
chr12: 112506348-112506373
GACUGUCAG
2325
GACTGTCAG
3077






AAGUUGACC

AAGTTGACC






UUUGCAC

TTTGCAC





PTPN11
EXON
+
chr12: 112506378-112506403
UUAAAGAGU
2326
TTAAAGAGT
3078






CAUAGAAAA

CATAGAAAA






AGAAUCA

AGAATCA





PTPN11
EXON
+
chr12: 112506395-112506420
AAGAAUCAU
2327
AAGAATCAT
3079






GGAUAUUUA

GGATATTTA






UGAAUUA

TGAATTA





PTPN11
EXON
+
chr12: 112506402-112506427
AUGGAUAUU
2328
ATGGATATT
3080






UAUGAAUUA

TATGAATTA






AGGUAAG

AGGTAAG





PTPN11
EXON
+
chr12: 112506407-112506432
UAUUUAUGA
2329
TATTTATGA
3081






AUUAAGGUA

ATTAAGGTA






AGAGGUG

AGAGGTG





PTPN11
EXON
+
chr12: 112506453-112506478
UUCCAGCCGU
2330
TTCCAGCCG
3082






UGACCAAUU

TTGACCAAT






AUAGUU

TATAGTT





PTPN11
EXON
+
chr12: 112506475-112506500
GUUCGGCUG
2331
GTTCGGCTG
3083






UUGACUGAG

TTGACTGAG






AAGUUUG

AAGTTTG





PTPN11
EXON
+
chr12: 112506478-112506503
CGGCUGUUG
2332
CGGCTGTTG
3084






ACUGAGAAG

ACTGAGAAG






UUUGUGG

TTTGTGG





PTPN11
EXON
+
chr12: 112506479-112506504
GGCUGUUGA
2333
GGCTGTTGA
3085






CUGAGAAGU

CTGAGAAGT






UUGUGGU

TTGTGGT





PTPN11
EXON
+
chr12: 112506537-112506562
AAUAAUUGU
2334
AATAATTGT
3086






CUUGUACUU

CTTGTACTTA






AGAAAAA

GAAAAA





PTPN11
EXON
+
chr12: 112506563-112506588
GGCGUCUAU
2335
GGCGTCTAT
3087






GAAUGACCA

GAATGACCA






GUGUUUU

GTGTTTT





PTPN11
EXON
+
chr12: 112506605-112506630
UGACAAACU
2336
TGACAAACT
3088






UAUCCCAAA

TATCCCAAA






ACUUUAG

ACTTTAG





PTPN11
EXON
+
chr12: 112506647-112506672
CCCCCAACUG
2337
CCCCCAACT
3089






UUAGUCAAU

GTTAGTCAA






CUGAGC

TCTGAGC





PTPN11
EXON
+
chr12: 112506648-112506673
CCCCAACUGU
2338
CCCCAACTG
3090






UAGUCAAUC

TTAGTCAAT






UGAGCU

CTGAGCT





PTPN11
EXON
+
chr12: 112506657-112506682
UUAGUCAAU
2339
TTAGTCAAT
3091






CUGAGCUGG

CTGAGCTGG






GCUCAGC

GCTCAGC





PTPN11
EXON
+
chr12: 112506658-112506683
UAGUCAAUC
2340
TAGTCAATC
3092






UGAGCUGGG

TGAGCTGGG






CUCAGCU

CTCAGCT





PTPN11
EXON
+
chr12: 112506681-112506706
CUGGGCUGU
2341
CTGGGCTGT
3093






UCUUCUGCCA

TCTTCTGCCA






GCCUGC

GCCTGC





PTPN11
EXON
+
chr12: 112506684-112506709
GGCUGUUCU
2342
GGCTGTTCTT
3094






UCUGCCAGCC

CTGCCAGCC






UGCAGG

TGCAGG





PTPN11
EXON
+
chr12: 112506696-112506721
GCCAGCCUGC
2343
GCCAGCCTG
3095






AGGUGGCCA

CAGGTGGCC






CUCAUG

ACTCATG





PTPN11
EXON
+
chr12: 112506704-112506729
GCAGGUGGC
2344
GCAGGTGGC
3096






CACUCAUGU

CACTCATGT






GGUCAGC

GGTCAGC





PTPN11
EXON
+
chr12: 112506708-112506733
GUGGCCACUC
2345
GTGGCCACT
3097






AUGUGGUCA

CATGTGGTC






GCAGGU

AGCAGGT





PTPN11
EXON
+
chr12: 112506711-112506736
GCCACUCAUG
2346
GCCACTCAT
3098






UGGUCAGCA

GTGGTCAGC






GGUCGG

AGGTCGG





PTPN11
EXON
+
chr12: 112506720-112506745
GUGGUCAGC
2347
GTGGTCAGC
3099






AGGUCGGCG

AGGTCGGCG






GAGAGAC

GAGAGAC





PTPN11
EXON
+
chr12: 112506721-112506746
UGGUCAGCA
2348
TGGTCAGCA
3100






GGUCGGCGG

GGTCGGCGG






AGAGACU

AGAGACT





PTPN11
EXON
+
chr12: 112506725-112506750
CAGCAGGUC
2349
CAGCAGGTC
3101






GGCGGAGAG

GGCGGAGAG






ACUGGGA

ACTGGGA





PTPN11
EXON
+
chr12: 112506729-112506754
AGGUCGGCG
2350
AGGTCGGCG
3102






GAGAGACUG

GAGAGACTG






GGAUGGC

GGATGGC





PTPN11
EXON
+
chr12: 112506730-112506755
GGUCGGCGG
2351
GGTCGGCGG
3103






AGAGACUGG

AGAGACTGG






GAUGGCU

GATGGCT





PTPN11
EXON
+
chr12: 112506788-112506813
UCCUUCUUCG
2352
TCCTTCTTCG
3104






UGUAGUCUC

TGTAGTCTCT






UUUCAG

TTCAG





PTPN11
EXON
+
chr12: 112506793-112506818
CUUCGUGUA
2353
CTTCGTGTA
3105






GUCUCUUUC

GTCTCTTTCA






AGUGGCC

GTGGCC





PTPN11
EXON
+
chr12: 112506797-112506822
GUGUAGUCU
2354
GTGTAGTCT
3106






CUUUCAGUG

CTTTCAGTG






GCCUGGC

GCCTGGC





PTPN11
EXON
+
chr12: 112506801-112506826
AGUCUCUUU
2355
AGTCTCTTTC
3107






CAGUGGCCU

AGTGGCCTG






GGCUGGC

GCTGGC





PTPN11
EXON
+
chr12: 112506802-112506827
GUCUCUUUC
2356
GTCTCTTTCA
3108






AGUGGCCUG

GTGGCCTGG






GCUGGCA

CTGGCA





PTPN11
EXON
+
chr12: 112506858-112506883
GCUCCCAAGA
2357
GCTCCCAAG
3109






GCUCAAAAG

AGCTCAAAA






CAGAAA

GCAGAAA





PTPN11
EXON
+
chr12: 112506863-112506888
CAAGAGCUC
2358
CAAGAGCTC
3110






AAAAGCAGA

AAAAGCAGA






AAUGGCC

AATGGCC





PTPN11
EXON
+
chr12: 112506966-112506991
AUGAUGAUG
2359
ATGATGATG
3111






AUGAUGAUG

ATGATGATG






AUGAUGA

ATGATGA





PTPN11
EXON
+
chr12: 112506991-112507016
UGGUUUUUU
2360
TGGTTTTTTC
3112






CUAAUCAGA

TAATCAGAA






AGAAAGC

GAAAGC





PTPN11
EXON
+
chr12: 112506992-112507017
GGUUUUUUC
2361
GGTTTTTTCT
3113






UAAUCAGAA

AATCAGAAG






GAAAGCU

AAAGCT





PTPN11
EXON
+
chr12: 112506993-112507018
GUUUUUUCU
2362
GTTTTTTCTA
3114






AAUCAGAAG

ATCAGAAGA






AAAGCUG

AAGCTG





PTPN11
EXON
+
chr12: 112507047-112507072
ACAAGCCCAG
2363
ACAAGCCCA
3115






CUCAGAUUC

GCTCAGATT






AAGAAA

CAAGAAA





PTPN11
EXON
+
chr12: 112507048-112507073
CAAGCCCAGC
2364
CAAGCCCAG
3116






UCAGAUUCA

CTCAGATTC






AGAAAA

AAGAAAA





PTPN11
EXON
+
chr12: 112507061-112507086
GAUUCAAGA
2365
GATTCAAGA
3117






AAAGGGUGU

AAAGGGTGT






GAAGUAG

GAAGTAG





PTPN11
EXON
+
chr12: 112507074-112507099
GGUGUGAAG
2366
GGTGTGAAG
3118






UAGAGGUGC

TAGAGGTGC






AGUUAAG

AGTTAAG





PTPN11
EXON
+
chr12: 112507075-112507100
GUGUGAAGU
2367
GTGTGAAGT
3119






AGAGGUGCA

AGAGGTGCA






GUUAAGU

GTTAAGT





PTPN11
EXON
+
chr12: 112507076-112507101
UGUGAAGUA
2368
TGTGAAGTA
3120






GAGGUGCAG

GAGGTGCAG






UUAAGUG

TTAAGTG





PTPN11
EXON
+
chr12: 112507077-112507102
GUGAAGUAG
2369
GTGAAGTAG
3121






AGGUGCAGU

AGGTGCAGT






UAAGUGG

TAAGTGG





PTPN11
EXON
+
chr12: 112507078-112507103
UGAAGUAGA
2370
TGAAGTAGA
3122






GGUGCAGUU

GGTGCAGTT






AAGUGGG

AAGTGGG





PTPN11
EXON
+
chr12: 112507097-112507122
AGUGGGGGG
2371
AGTGGGGGG
3123






CCACUAGUCU

CCACTAGTC






AACAGA

TAACAGA





PTPN11
EXON
+
chr12: 112507115-112507140
UAACAGACG
2372
TAACAGACG
3124






GUCACAACCA

GTCACAACC






GUGCCA

AGTGCCA





PTPN11
EXON
+
chr12: 112507125-112507150
UCACAACCAG
2373
TCACAACCA
3125






UGCCAUGGA

GTGCCATGG






AAACCA

AAAACCA





PTPN11
EXON
+
chr12: 112507160-112507185
CAAAAGCAG
2374
CAAAAGCAG
3126






AAGUUGCUA

AAGTTGCTA






GUGACCU

GTGACCT





PTPN11
EXON
+
chr12: 112507161-112507186
AAAAGCAGA
2375
AAAAGCAGA
3127






AGUUGCUAG

AGTTGCTAG






UGACCUU

TGACCTT





PTPN11
EXON
+
chr12: 112507187-112507212
GGAAGCCGA
2376
GGAAGCCGA
3128






AGCUGCUUA

AGCTGCTTA






CAGUAGC

CAGTAGC





PTPN11
EXON
+
chr12: 112507188-112507213
GAAGCCGAA
2377
GAAGCCGAA
3129






GCUGCUUAC

GCTGCTTAC






AGUAGCU

AGTAGCT





PTPN11
EXON
+
chr12: 112507223-112507248
GAAAGUCAG
2378
GAAAGTCAG
3130






ACUAAGAAA

ACTAAGAAA






UAAAGAG

TAAAGAG





PTPN11
EXON
+
chr12: 112507224-112507249
AAAGUCAGA
2379
AAAGTCAGA
3131






CUAAGAAAU

CTAAGAAAT






AAAGAGA

AAAGAGA





PTPN11
EXON
+
chr12: 112507275-112507300
UUUCUGCUA
2380
TTTCTGCTAG
3132






GCCCUGAGCC

CCCTGAGCC






UAUUUU

TATTTT





PTPN11
EXON
+
chr12: 112507288-112507313
UGAGCCUAU
2381
TGAGCCTAT
3133






UUUUGGAAC

TTTTGGAAC






CAGCACU

CAGCACT





PTPN11
EXON
+
chr12: 112507289-112507314
GAGCCUAUU
2382
GAGCCTATT
3134






UUUGGAACC

TTTGGAACC






AGCACUU

AGCACTT





PTPN11
EXON
+
chr12: 112507290-112507315
AGCCUAUUU
2383
AGCCTATTTT
3135






UUGGAACCA

TGGAACCAG






GCACUUG

CACTTG





PTPN11
EXON
+
chr12: 112507307-112507332
AGCACUUGG
2384
AGCACTTGG
3136






GGAAACUGA

GGAAACTGA






UCUUGUG

TCTTGTG





PTPN11
EXON
+
chr12: 112507311-112507336
CUUGGGGAA
2385
CTTGGGGAA
3137






ACUGAUCUU

ACTGATCTT






GUGAGGA

GTGAGGA





PTPN11
EXON
+
chr12: 112507322-112507347
UGAUCUUGU
2386
TGATCTTGT
3138






GAGGAUGGA

GAGGATGGA






UGUGUUU

TGTGTTT





PTPN11
EXON
+
chr12: 112507323-112507348
GAUCUUGUG
2387
GATCTTGTG
3139






AGGAUGGAU

AGGATGGAT






GUGUUUA

GTGTTTA





PTPN11
EXON
+
chr12: 112507330-112507355
UGAGGAUGG
2388
TGAGGATGG
3140






AUGUGUUUA

ATGTGTTTA






GGGACAC

GGGACAC





PTPN11
EXON
+
chr12: 112507331-112507356
GAGGAUGGA
2389
GAGGATGGA
3141






UGUGUUUAG

TGTGTTTAG






GGACACA

GGACACA





PTPN11
EXON
+
chr12: 112507358-112507383
GCUUUUGAG
2390
GCTTTTGAG
3142






AGCAGCACCA

AGCAGCACC






CCCCAC

ACCCCAC





PTPN11
EXON
+
chr12: 112507359-112507384
CUUUUGAGA
2391
CTTTTGAGA
3143






GCAGCACCAC

GCAGCACCA






CCCACU

CCCCACT





PTPN11
EXON
+
chr12: 112507360-112507385
UUUUGAGAG
2392
TTTTGAGAG
3144






CAGCACCACC

CAGCACCAC






CCACUG

CCCACTG





PTPN11
EXON
+
chr12: 112507375-112507400
CACCCCACUG
2393
CACCCCACT
3145






GGGCAUCCCC

GGGGCATCC






AGACU

CCAGACT





PTPN11
EXON
+
chr12: 112507376-112507401
ACCCCACUGG
2394
ACCCCACTG
3146






GGCAUCCCCA

GGGCATCCC






GACUU

CAGACTT





PTPN11
EXON
+
chr12: 112507404-112507429
AAACGUGAC
2395
AAACGTGAC
3147






UCUUUCUUA

TCTTTCTTAA






AUGCCAC

TGCCAC





PTPN11
EXON
+
chr12: 112507405-112507430
AACGUGACU
2396
AACGTGACT
3148






CUUUCUUAA

CTTTCTTAAT






UGCCACU

GCCACT





PTPN11
EXON
+
chr12: 112507416-112507441
UUCUUAAUG
2397
TTCTTAATGC
3149






CCACUGGGU

CACTGGGTT






UUUAGUC

TTAGTC





PTPN11
EXON
+
chr12: 112507430-112507455
GGGUUUUAG
2398
GGGTTTTAG
3150






UCAGGCCACA

TCAGGCCAC






GUGAGA

AGTGAGA





PTPN11
EXON
+
chr12: 112507445-112507470
CACAGUGAG
2399
CACAGTGAG
3151






AAGGAACAG

AAGGAACAG






CCCUAAC

CCCTAAC





PTPN11
EXON
+
chr12: 112507457-112507482
GAACAGCCCU
2400
GAACAGCCC
3152






AACAGGCCUC

TAACAGGCC






CAGCC

TCCAGCC





PTPN11
EXON
+
chr12: 112507571-112507596
GCCUCAUAU
2401
GCCTCATAT
3153






GUUGAAUCA

GTTGAATCA






UCCAGUG

TCCAGTG





PTPN11
EXON
+
chr12: 112507595-112507620
GCGGAUAUU
2402
GCGGATATT
3154






UCAAUGAAA

TCAATGAAA






AUAUCAU

ATATCAT





PTPN11
EXON
+
chr12: 112507611-112507636
AAAUAUCAU
2403
AAATATCAT
3155






UGGUUGACU

TGGTTGACT






UUUGUGA

TTTGTGA





PTPN11
EXON
+
chr12: 112507625-112507650
GACUUUUGU
2404
GACTTTTGT
3156






GAUGGUAAU

GATGGTAAT






AAUGCUA

AATGCTA





PTPN11
EXON
+
chr12: 112507647-112507672
CUAUGGCAU
2405
CTATGGCAT
3157






CUUUGCCAU

CTTTGCCAT






GAAGUUG

GAAGTTG





PTPN11
EXON
+
chr12: 112507656-112507681
CUUUGCCAU
2406
CTTTGCCAT
3158






GAAGUUGUG

GAAGTTGTG






GCCUCCU

GCCTCCT





PTPN11
EXON
+
chr12: 112507672-112507697
UGGCCUCCUU
2407
TGGCCTCCTT
3159






GGAUUCUUC

GGATTCTTCT






UGACUU

GACTT





PTPN11
EXON
+
chr12: 112507683-112507708
GAUUCUUCU
2408
GATTCTTCTG
3160






GACUUUGGC

ACTTTGGCTT






UUCUGAA

CTGAA





PTPN11
EXON
+
chr12: 112507687-112507712
CUUCUGACU
2409
CTTCTGACTT
3161






UUGGCUUCU

TGGCTTCTG






GAAAGGA

AAAGGA





PTPN11
EXON
+
chr12: 112507704-112507729
UGAAAGGAA
2410
TGAAAGGAA
3162






GGCCUAGAU

GGCCTAGAT






CCAGCCC

CCAGCCC





PTPN11
EXON
+
chr12: 112507707-112507732
AAGGAAGGC
2411
AAGGAAGGC
3163






CUAGAUCCA

CTAGATCCA






GCCCUGG

GCCCTGG





PTPN11
EXON
+
chr12: 112507723-112507748
CAGCCCUGGU
2412
CAGCCCTGG
3164






GGUAGUUCC

TGGTAGTTC






UUUCUG

CTTTCTG





PTPN11
EXON
+
chr12: 112507747-112507772
GAGGUCUCU
2413
GAGGTCTCT
3165






CAGUCCCUUG

CAGTCCCTT






AGACUU

GAGACTT





PTPN11
EXON
+
chr12: 112507748-112507773
AGGUCUCUC
2414
AGGTCTCTC
3166






AGUCCCUUG

AGTCCCTTG






AGACUUU

AGACTTT





PTPN11
EXON
+
chr12: 112507749-112507774
GGUCUCUCA
2415
GGTCTCTCA
3167






GUCCCUUGA

GTCCCTTGA






GACUUUG

GACTTTG





PTPN11
EXON
+
chr12: 112507757-112507782
AGUCCCUUG
2416
AGTCCCTTG
3168






AGACUUUGG

AGACTTTGG






GGUAGUU

GGTAGTT





PTPN11
EXON
+
chr12: 112507843-112507868
UGAACUUUG
2417
TGAACTTTG
3169






AAUUGCUUC

AATTGCTTC






AGAACAC

AGAACAC





PTPN11
EXON
+
chr12: 112507848-112507873
UUUGAAUUG
2418
TTTGAATTG
3170






CUUCAGAAC

CTTCAGAAC






ACAGGUG

ACAGGTG





PTPN11
EXON
+
chr12: 112507856-112507881
GCUUCAGAA
2419
GCTTCAGAA
3171






CACAGGUGU

CACAGGTGT






GGCCUGA

GGCCTGA





PTPN11
EXON
+
chr12: 112507871-112507896
UGUGGCCUG
2420
TGTGGCCTG
3172






AAGGUAUUC

AAGGTATTC






CCUUAUU

CCTTATT





PTPN11
EXON
+
chr12: 112507872-112507897
GUGGCCUGA
2421
GTGGCCTGA
3173






AGGUAUUCC

AGGTATTCC






CUUAUUA

CTTATTA





PTPN11
EXON
+
chr12: 112508001-112508026
CAUCGACUCA
2422
CATCGACTC
3174






UUCUCCAUU

ATTCTCCATT






UUGCUU

TTGCTT





PTPN11
EXON
+
chr12: 112508028-112508053
GUUUUGUCU
2423
GTTTTGTCTT
3175






UGACUUGAC

GACTTGACT






UUGACUU

TGACTT





PTPN11
EXON
+
chr12: 112508029-112508054
UUUUGUCUU
2424
TTTTGTCTTG
3176






GACUUGACU

ACTTGACTT






UGACUUU

GACTTT





PTPN11
EXON
+
chr12: 112508030-112508055
UUUGUCUUG
2425
TTTGTCTTGA
3177






ACUUGACUU

CTTGACTTG






GACUUUG

ACTTTG





PTPN11
EXON
+
chr12: 112508031-112508056
UUGUCUUGA
2426
TTGTCTTGAC
3178






CUUGACUUG

TTGACTTGA






ACUUUGG

CTTTGG





PTPN11
EXON
+
chr12: 112508135-112508160
AGAUCAGUU
2427
AGATCAGTT
3179






GCUUUUAUA

GCTTTTATAC






CUCAGAA

TCAGAA





PTPN11
EXON
+
chr12: 112508151-112508176
UACUCAGAA
2428
TACTCAGAA
3180






UGGAAAUAC

TGGAAATAC






CUGAUCU

CTGATCT





PTPN11
EXON
+
chr12: 112508200-112508225
GAUUUCAUU
2429
GATTTCATTT
3181






UAGAUUUCC

AGATTTCCC






CUCCACG

TCCACG





PTPN11
EXON
+
chr12: 112508234-112508259
AACUAUCAU
2430
AACTATCAT
3182






GUUCUUAUG

GTTCTTATGT






UAAACUU

AAACTT





PTPN11
EXON
+
chr12: 112508240-112508265
CAUGUUCUU
2431
CATGTTCTTA
3183






AUGUAAACU

TGTAAACTT






UAGGCCA

AGGCCA





PTPN11
EXON
+
chr12: 112508263-112508288
CAAGGCCAG
2432
CAAGGCCAG
3184






AGUUAUCAU

AGTTATCAT






AGUCCCU

AGTCCCT





PTPN11
EXON
+
chr12: 112508272-112508297
AGUUAUCAU
2433
AGTTATCAT
3185






AGUCCCUAG

AGTCCCTAG






GUUGCUA

GTTGCTA





PTPN11
EXON
+
chr12: 112508288-112508313
AGGUUGCUA
2434
AGGTTGCTA
3186






CGGCUUAUC

CGGCTTATC






AUGUGCU

ATGTGCT





PTPN11
EXON
+
chr12: 112508295-112508320
UACGGCUUA
2435
TACGGCTTA
3187






UCAUGUGCU

TCATGTGCTT






UGGUAAA

GGTAAA





PTPN11
EXON
+
chr12: 112508305-112508330
CAUGUGCUU
2436
CATGTGCTT
3188






GGUAAAAGG

GGTAAAAGG






UGAUCGC

TGATCGC





PTPN11
EXON
+
chr12: 112508336-112508361
UCAGACGAG
2437
TCAGACGAG
3189






UUUACUUUA

TTTACTTTAC






CAUGAGA

ATGAGA





PTPN11
EXON
+
chr12: 112508343-112508368
AGUUUACUU
2438
AGTTTACTTT
3190






UACAUGAGA

ACATGAGAT






UGGAAUC

GGAATC





PTPN11
EXON
+
chr12: 112508351-112508376
UUACAUGAG
2439
TTACATGAG
3191






AUGGAAUCA

ATGGAATCA






GGCAGAG

GGCAGAG





PTPN11
EXON
+
chr12: 112508355-112508380
AUGAGAUGG
2440
ATGAGATGG
3192






AAUCAGGCA

AATCAGGCA






GAGAGGC

GAGAGGC





PTPN11
EXON
+
chr12: 112508356-112508381
UGAGAUGGA
2441
TGAGATGGA
3193






AUCAGGCAG

ATCAGGCAG






AGAGGCU

AGAGGCT





PTPN11
EXON
+
chr12: 112508363-112508388
GAAUCAGGC
2442
GAATCAGGC
3194






AGAGAGGCU

AGAGAGGCT






GGGAUGA

GGGATGA





PTPN11
EXON
+
chr12: 112508376-112508401
AGGCUGGGA
2443
AGGCTGGGA
3195






UGAUGGAGA

TGATGGAGA






AAGCUCG

AAGCTCG





PTPN11
EXON
+
chr12: 112508401-112508426
AGGUGAAGU
2444
AGGTGAAGT
3196






UUUAAAAAA

TTTAAAAAA






AAAGUUG

AAAGTTG





PTPN11
EXON
+
chr12: 112508406-112508431
AAGUUUUAA
2445
AAGTTTTAA
3197






AAAAAAAGU

AAAAAAAGT






UGUGGAA

TGTGGAA





PTPN11
EXON
+
chr12: 112508421-112508446
AGUUGUGGA
2446
AGTTGTGGA
3198






AAGGAAAGU

AAGGAAAGT






UCCAAAG

TCCAAAG





PTPN11
EXON
+
chr12: 112508424-112508449
UGUGGAAAG
2447
TGTGGAAAG
3199






GAAAGUUCC

GAAAGTTCC






AAAGAGG

AAAGAGG





PTPN11
EXON
+
chr12: 112508433-112508458
GAAAGUUCC
2448
GAAAGTTCC
3200






AAAGAGGUG

AAAGAGGTG






GUUUCUG

GTTTCTG





PTPN11
EXON
+
chr12: 112508450-112508475
GGUUUCUGA
2449
GGTTTCTGA
3201






GGAAGUCAG

GGAAGTCAG






AGCGCCC

AGCGCCC





PTPN11
EXON
+
chr12: 112508451-112508476
GUUUCUGAG
2450
GTTTCTGAG
3202






GAAGUCAGA

GAAGTCAGA






GCGCCCA

GCGCCCA





PTPN11
EXON
+
chr12: 112508470-112508495
CGCCCAGGGC
2451
CGCCCAGGG
3203






CAGAGCAGU

CCAGAGCAG






CAGUAA

TCAGTAA





PTPN11
EXON
+
chr12: 112508471-112508496
GCCCAGGGCC
2452
GCCCAGGGC
3204






AGAGCAGUC

CAGAGCAGT






AGUAAU

CAGTAAT





PTPN11
EXON
+
chr12: 112508480-112508505
CAGAGCAGU
2453
CAGAGCAGT
3205






CAGUAAUGG

CAGTAATGG






GUGAAUG

GTGAATG





PTPN11
EXON
+
chr12: 112508488-112508513
UCAGUAAUG
2454
TCAGTAATG
3206






GGUGAAUGA

GGTGAATGA






GGUUGUU

GGTTGTT





PTPN11
EXON
+
chr12: 112508496-112508521
GGGUGAAUG
2455
GGGTGAATG
3207






AGGUUGUUU

AGGTTGTTT






GGAAAGU

GGAAAGT





PTPN11
EXON
+
chr12: 112508512-112508537
UUGGAAAGU
2456
TTGGAAAGT
3208






CGGUGUGAC

CGGTGTGAC






AGACACA

AGACACA





PTPN11
EXON
+
chr12: 112508530-112508555
AGACACAUG
2457
AGACACATG
3209






GAUGCCAUC

GATGCCATC






UACUUCU

TACTTCT





PTPN11
EXON
+
chr12: 112508537-112508562
UGGAUGCCA
2458
TGGATGCCA
3210






UCUACUUCU

TCTACTTCTA






AGGUUGC

GGTTGC





PTPN11
EXON
+
chr12: 112508540-112508565
AUGCCAUCU
2459
ATGCCATCT
3211






ACUUCUAGG

ACTTCTAGG






UUGCUGG

TTGCTGG





PTPN11
EXON
+
chr12: 112508541-112508566
UGCCAUCUAC
2460
TGCCATCTA
3212






UUCUAGGUU

CTTCTAGGTT






GCUGGU

GCTGGT





PTPN11
EXON
+
chr12: 112508577-112508602
AUGCACAAU
2461
ATGCACAAT
3213






AUUCCAUAG

ATTCCATAG






CUCACUG

CTCACTG





PTPN11
EXON
+
chr12: 112508599-112508624
CUGAGGAUU
2462
CTGAGGATT
3214






UUAAAAUUA

TTAAAATTA






UAAGCAU

TAAGCAT





PTPN11
EXON
+
chr12: 112508613-112508638
AUUAUAAGC
2463
ATTATAAGC
3215






AUAGGAUUU

ATAGGATTT






UAUAUUU

TATATTT





PTPN11
EXON
+
chr12: 112508614-112508639
UUAUAAGCA
2464
TTATAAGCA
3216






UAGGAUUUU

TAGGATTTT






AUAUUUU

ATATTTT





PTPN11
EXON
+
chr12: 112508615-112508640
UAUAAGCAU
2465
TATAAGCAT
3217






AGGAUUUUA

AGGATTTTA






UAUUUUG

TATTTTG





PTPN11
EXON
+
chr12: 112508631-112508656
UAUAUUUUG
2466
TATATTTTGG
3218






GGGUGAAAG

GGTGAAAGA






AAUUAUC

ATTATC





PTPN11
EXON
+
chr12: 112508640-112508665
GGGUGAAAG
2467
GGGTGAAAG
3219






AAUUAUCUG

AATTATCTG






GCACAUU

GCACATT





PTPN11
EXON
+
chr12: 112508646-112508671
AAGAAUUAU
2468
AAGAATTAT
3220






CUGGCACAU

CTGGCACAT






UAGGUAU

TAGGTAT





PTPN11
EXON
+
chr12: 112508707-112508732
AUAACUUUU
2469
ATAACTTTTT
3221






UUUAAAAAA

TTAAAAAAA






AACUAAA

ACTAAA





PTPN11
EXON
+
chr12: 112508728-112508753
UAAAAGGCG
2470
TAAAAGGCG
3222






CUUCAUGUCC

CTTCATGTCC






AGUGUG

AGTGTG





PTPN11
EXON
+
chr12: 112508746-112508771
CAGUGUGUG
2471
CAGTGTGTG
3223






GCCCUUCUGA

GCCCTTCTG






AACUUA

AAACTTA





PTPN11
EXON
+
chr12: 112508770-112508795
AUGGUCAUC
2472
ATGGTCATC
3224






UCUCCCACUG

TCTCCCACT






AAACCA

GAAACCA





PTPN11
EXON
+
chr12: 112508785-112508810
ACUGAAACC
2473
ACTGAAACC
3225






AAGGUCUUU

AAGGTCTTT






UCAAAUG

TCAAATG





PTPN11
EXON
+
chr12: 112508793-112508818
CAAGGUCUU
2474
CAAGGTCTT
3226






UUCAAAUGU

TTCAAATGT






GGCUAAA

GGCTAAA





PTPN11
EXON
+
chr12: 112508794-112508819
AAGGUCUUU
2475
AAGGTCTTT
3227






UCAAAUGUG

TCAAATGTG






GCUAAAU

GCTAAAT





PTPN11
EXON
+
chr12: 112508795-112508820
AGGUCUUUU
2476
AGGTCTTTTC
3228






CAAAUGUGG

AAATGTGGC






CUAAAUG

TAAATG





PTPN11
EXON
+
chr12: 112508801-112508826
UUUCAAAUG
2477
TTTCAAATG
3229






UGGCUAAAU

TGGCTAAAT






GGGGAUG

GGGGATG





PTPN11
EXON
+
chr12: 112508809-112508834
GUGGCUAAA
2478
GTGGCTAAA
3230






UGGGGAUGA

TGGGGATGA






GGAGACA

GGAGACA





PTPN11
EXON
+
chr12: 112508810-112508835
UGGCUAAAU
2479
TGGCTAAAT
3231






GGGGAUGAG

GGGGATGAG






GAGACAC

GAGACAC





PTPN11
EXON
+
chr12: 112508814-112508839
UAAAUGGGG
2480
TAAATGGGG
3232






AUGAGGAGA

ATGAGGAGA






CACGGGU

CACGGGT





PTPN11
EXON
+
chr12: 112508824-112508849
UGAGGAGAC
2481
TGAGGAGAC
3233






ACGGGUAGG

ACGGGTAGG






ACUUUCU

ACTTTCT





PTPN11
EXON
+
chr12: 112508860-112508885
CAUUCUUUA
2482
CATTCTTTAA
3234






AAGAGCCAA

AGAGCCAAG






GUUGCUU

TTGCTT





PTPN11
EXON
+
chr12: 112508861-112508886
AUUCUUUAA
2483
ATTCTTTAA
3235






AGAGCCAAG

AGAGCCAAG






UUGCUUC

TTGCTTC





PTPN11
EXON
+
chr12: 112508862-112508887
UUCUUUAAA
2484
TTCTTTAAA
3236






GAGCCAAGU

GAGCCAAGT






UGCUUCG

TGCTTCG





PTPN11
EXON
+
chr12: 112508873-112508898
GCCAAGUUG
2485
GCCAAGTTG
3237






CUUCGGGGA

CTTCGGGGA






AACAGCC

AACAGCC





PTPN11
EXON
+
chr12: 112508880-112508905
UGCUUCGGG
2486
TGCTTCGGG
3238






GAAACAGCC

GAAACAGCC






AGGAAAA

AGGAAAA





PTPN11
EXON
+
chr12: 112508899-112508924
GGAAAAUGG
2487
GGAAAATGG
3239






UCAAGAUUA

TCAAGATTA






UUUUUAG

TTTTTAG





PTPN11
EXON
+
chr12: 112508911-112508936
AGAUUAUUU
2488
AGATTATTTT
3240






UUAGAGGUU

TAGAGGTTA






AUUUUAU

TTTTAT





PTPN11
EXON
+
chr12: 112508912-112508937
GAUUAUUUU
2489
GATTATTTTT
3241






UAGAGGUUA

AGAGGTTAT






UUUUAUU

TTTATT





PTPN11
EXON
+
chr12: 112508913-112508938
AUUAUUUUU
2490
ATTATTTTTA
3242






AGAGGUUAU

GAGGTTATT






UUUAUUG

TTATTG





PTPN11
EXON
+
chr12: 112508955-112508980
UAACAUCUU
2491
TAACATCTT
3243






GAGUUAUUU

GAGTTATTTT






UUAAUUC

TAATTC





PTPN11
EXON
+
chr12: 112508956-112508981
AACAUCUUG
2492
AACATCTTG
3244






AGUUAUUUU

AGTTATTTTT






UAAUUCA

AATTCA





PTPN11
EXON
+
chr12: 112508957-112508982
ACAUCUUGA
2493
ACATCTTGA
3245






GUUAUUUUU

GTTATTTTTA






AAUUCAG

ATTCAG





PTPN11
EXON
+
chr12: 112508958-112508983
CAUCUUGAG
2494
CATCTTGAG
3246






UUAUUUUUA

TTATTTTTAA






AUUCAGG

TTCAGG





PTPN11
EXON
+
chr12: 112508964-112508989
GAGUUAUUU
2495
GAGTTATTTT
3247






UUAAUUCAG

TAATTCAGG






GGGGAUG

GGGATG





PTPN11
EXON
+
chr12: 112508969-112508994
AUUUUUAAU
2496
ATTTTTAATT
3248






UCAGGGGGA

CAGGGGGAT






UGUGGAA

GTGGAA





PTPN11
EXON
+
chr12: 112509013-112509038
GUUUUGUUG
2497
GTTTTGTTGT
3249






UAGCUUAGU

AGCTTAGTA






AUCCAUA

TCCATA





PTPN11
EXON
+
chr12: 112509014-112509039
UUUUGUUGU
2498
TTTTGTTGTA
3250






AGCUUAGUA

GCTTAGTAT






UCCAUAA

CCATAA





PTPN11
EXON
+
chr12: 112509076-112509101
GCAGCUUUU
2499
GCAGCTTTT
3251






GUUUUCUGU

GTTTTCTGTA






AUGUUGU

TGTTGT





PTPN11
EXON
+
chr12: 112509077-112509102
CAGCUUUUG
2500
CAGCTTTTGT
3252






UUUUCUGUA

TTTCTGTATG






UGUUGUU

TTGTT





PTPN11
EXON
+
chr12: 112509078-112509103
AGCUUUUGU
2501
AGCTTTTGTT
3253






UUUCUGUAU

TTCTGTATGT






GUUGUUG

TGTTG





PTPN11
EXON
+
chr12: 112509079-112509104
GCUUUUGUU
2502
GCTTTTGTTT
3254






UUCUGUAUG

TCTGTATGTT






UUGUUGG

GTTGG





PTPN11
EXON
+
chr12: 112509108-112509133
UCAACUUUC
2503
TCAACTTTC
3255






ACACAUAGC

ACACATAGC






AAGCACA

AAGCACA





PTPN11
EXON
+
chr12: 112509124-112509149
GCAAGCACA
2504
GCAAGCACA
3256






UGGCCUCCCU

TGGCCTCCC






GAUGUC

TGATGTC





PTPN11
EXON
+
chr12: 112509138-112509163
UCCCUGAUG
2505
TCCCTGATG
3257






UCAGGAUGC

TCAGGATGC






CUUUGUU

CTTTGTT





PTPN11
EXON
+
chr12: 112509254-112509279
CUAAAAAUU
2506
CTAAAAATT
3258






UGUUCCUUU

TGTTCCTTTT






UUCACUA

TCACTA





PTPN11
EXON
+
chr12: 112509255-112509280
UAAAAAUUU
2507
TAAAAATTT
3259






GUUCCUUUU

GTTCCTTTTT






UCACUAU

CACTAT





PTPN11
EXON
+
chr12: 112509269-112509294
UUUUUCACU
2508
TTTTTCACTA
3260






AUGGGCAGU

TGGGCAGTT






UCACACA

CACACA





PTPN11
EXON
+
chr12: 112509290-112509315
CACAAGGCA
2509
CACAAGGCA
3261






AAAACUAUU

AAAACTATT






GAACAGU

GAACAGT





PTPN11
EXON
+
chr12: 112509429-112509454
UGAUUCUUU
2510
TGATTCTTTT
3262






UAUUAAUAA

ATTAATAAA






AAGCUAA

AGCTAA





PTPN11
EXON
+
chr12: 112509430-112509455
GAUUCUUUU
2511
GATTCTTTTA
3263






AUUAAUAAA

TTAATAAAA






AGCUAAU

GCTAAT





PTPN11
EXON
+
chr12: 112509436-112509461
UUUAUUAAU
2512
TTTATTAATA
3264






AAAAGCUAA

AAAGCTAAT






UGGGAAA

GGGAAA





PTPN11
EXON
+
chr12: 112509553-112509578
UUUAUUGAU
2513
TTTATTGATA
3265






AAAUCUAUC

AATCTATCC






CUUUAAA

TTTAAA





PTPN11
EXON
+
chr12: 112509566-112509591
CUAUCCUUU
2514
CTATCCTTTA
3266






AAAAGGAAU

AAAGGAATA






ACGUUUU

CGTTTT





PTPN11
EXON
+
chr12: 112509744-112509769
AAUAGUUUA
2515
AATAGTTTA
3267






UGUAGAGAA

TGTAGAGAA






ACAUUAG

ACATTAG





PTPN11
EXON
+
chr12: 112509775-112509800
UUAAUUGUC
2516
TTAATTGTCT
3268






UCCCCACCUA

CCCCACCTA






UAUUUA

TATTTA





PTPN11
EXON
+
chr12: 112509776-112509801
UAAUUGUCU
2517
TAATTGTCTC
3269






CCCCACCUAU

CCCACCTAT






AUUUAU

ATTTAT





PTPN11
EXON
+
chr12: 112509847-112509872
AGUAAAAGU
2518
AGTAAAAGT
3270






GUAUUUGUA

GTATTTGTA






AACUGUA

AACTGTA





PTPN11
EXON
+
chr12: 112509848-112509873
GUAAAAGUG
2519
GTAAAAGTG
3271






UAUUUGUAA

TATTTGTAA






ACUGUAU

ACTGTAT





PTPN11
EXON
+
chr12: 112509862-112509887
GUAAACUGU
2520
GTAAACTGT
3272






AUGGGAACU

ATGGGAACT






AAAAAUU

AAAAATT





PTPN11
EXON
+
chr12: 112509888-112509913
GGAAUAAAA
2521
GGAATAAAA
3273






CCAUUUUCU

CCATTTTCTT






UAUAUGA

ATATGA





PTPN11
EXON

chr12: 112505821-112505846
GGGAGAGGG
2522
GGGAGAGGG
3274






UGAAAGUCC

TGAAAGTCC






ACAUCUG

ACATCTG





PTPN11
EXON

chr12: 112505822-112505847
AGGGAGAGG
2523
AGGGAGAGG
3275






GUGAAAGUC

GTGAAAGTC






CACAUCU

CACATCT





PTPN11
EXON

chr12: 112505823-112505848
UAGGGAGAG
2524
TAGGGAGAG
3276






GGUGAAAGU

GGTGAAAGT






CCACAUC

CCACATC





PTPN11
EXON

chr12: 112505840-112505865
UCUGUUCUU
2525
TCTGTTCTTG
3277






GAUCUUUUU

ATCTTTTTAG






AGGGAGA

GGAGA





PTPN11
EXON

chr12: 112505841-112505866
GUCUGUUCU
2526
GTCTGTTCTT
3278






UGAUCUUUU

GATCTTTTTA






UAGGGAG

GGGAG





PTPN11
EXON

chr12: 112505846-112505871
CUUGCGUCU
2527
CTTGCGTCT
3279






GUUCUUGAU

GTTCTTGATC






CUUUUUA

TTTTTA





PTPN11
EXON

chr12: 112505847-112505872
UCUUGCGUC
2528
TCTTGCGTCT
3280






UGUUCUUGA

GTTCTTGATC






UCUUUUU

TTTTT





PTPN11
EXON

chr12: 112505929-112505954
AUGGUUUCA
2529
ATGGTTTCA
3281






AAUUUUGCU

AATTTTGCTT






UAUCAAA

ATCAAA





PTPN11
EXON

chr12: 112505953-112505978
GAGUUAAAA
2530
GAGTTAAAA
3282






UACAGUGGU

TACAGTGGT






CUUUAAA

CTTTAAA





PTPN11
EXON

chr12: 112505964-112505989
CAGGUAUUG
2531
CAGGTATTG
3283






UUGAGUUAA

TTGAGTTAA






AAUACAG

AATACAG





PTPN11
EXON

chr12: 112505988-112506013
CUGAGGAAA
2532
CTGAGGAAA
3284






UGAGUAAUU

TGAGTAATT






GGGAAGC

GGGAAGC





PTPN11
EXON

chr12: 112505995-112506020
UUCUUAUCU
2533
TTCTTATCTG
3285






GAGGAAAUG

AGGAAATGA






AGUAAUU

GTAATT





PTPN11
EXON

chr12: 112505996-112506021
CUUCUUAUC
2534
CTTCTTATCT
3286






UGAGGAAAU

GAGGAAATG






GAGUAAU

AGTAAT





PTPN11
EXON

chr12: 112506010-112506035
UGUAGAGAU
2535
TGTAGAGAT
3287






GAUUUCUUC

GATTTCTTCT






UUAUCUG

TATCTG





PTPN11
EXON

chr12: 112506164-112506189
GGAAAAAAA
2536
GGAAAAAAA
3288






AAAUUAAAC

AAATTAAAC






UGGUUAA

TGGTTAA





PTPN11
EXON

chr12: 112506165-112506190
AGGAAAAAA
2537
AGGAAAAAA
3289






AAAAUUAAA

AAAATTAAA






CUGGUUA

CTGGTTA





PTPN11
EXON

chr12: 112506171-112506196
ACAAUGAGG
2538
ACAATGAGG
3290






AAAAAAAAA

AAAAAAAAA






AUUAAAC

ATTAAAC





PTPN11
EXON

chr12: 112506190-112506215
UUUCUUCUC
2539
TTTCTTCTCA
3291






AUCAUCCCCA

TCATCCCCA






ACAAUG

ACAATG





PTPN11
EXON

chr12: 112506245-112506270
UAAAUGAGA
2540
TAAATGAGA
3292






UUGUUCUCA

TTGTTCTCAC






CUUUUCU

TTTTCT





PTPN11
EXON

chr12: 112506273-112506298
GAAUUAUCC
2541
GAATTATCC
3293






ACUACUGGA

ACTACTGGA






UACAUGA

TACATGA





PTPN11
EXON

chr12: 112506284-112506309
GCCAUCAAA
2542
GCCATCAAA
3294






AUGAAUUAU

ATGAATTAT






CCACUAC

CCACTAC





PTPN11
EXON

chr12: 112506324-112506349
CUCAGGCACU
2543
CTCAGGCAC
3295






GGCUUAAUU

TGGCTTAAT






CUCAUU

TCTCATT





PTPN11
EXON

chr12: 112506340-112506365
GUCAACUUC
2544
GTCAACTTC
3296






UGACAGUCU

TGACAGTCT






CAGGCAC

CAGGCAC





PTPN11
EXON

chr12: 112506346-112506371
GCAAAGGUC
2545
GCAAAGGTC
3297






AACUUCUGA

AACTTCTGA






CAGUCUC

CAGTCTC





PTPN11
EXON

chr12: 112506367-112506392
CUAUGACUC
2546
CTATGACTC
3298






UUUAAUGCC

TTTAATGCC






AGUGCAA

AGTGCAA





PTPN11
EXON

chr12: 112506458-112506483
AGCCGAACU
2547
AGCCGAACT
3299






AUAAUUGGU

ATAATTGGT






CAACGGC

CAACGGC





PTPN11
EXON

chr12: 112506462-112506487
CAACAGCCGA
2548
CAACAGCCG
3300






ACUAUAAUU

AACTATAAT






GGUCAA

TGGTCAA





PTPN11
EXON

chr12: 112506469-112506494
UCUCAGUCA
2549
TCTCAGTCA
3301






ACAGCCGAAC

ACAGCCGAA






UAUAAU

CTATAAT





PTPN11
EXON

chr12: 112506520-112506545
CAAUUAUUC
2550
CAATTATTC
3302






AAAUGCAAA

AAATGCAAA






GAAAAUA

GAAAATA





PTPN11
EXON

chr12: 112506581-112506606
UCGUUGUUU
2551
TCGTTGTTTT
3303






UGGCGACCA

GGCGACCAA






AAAACAC

AAACAC





PTPN11
EXON

chr12: 112506597-112506622
AACCCUAUUC
2552
AACCCTATT
3304






AAACAGUCG

CAAACAGTC






UUGUUU

GTTGTTT





PTPN11
EXON

chr12: 112506620-112506645
CCAAAAAAA
2553
CCAAAAAAA
3305






UUCGGUGAU

TTCGGTGAT






UUCAAAA

TTCAAAA





PTPN11
EXON

chr12: 112506621-112506646
UCCAAAAAA
2554
TCCAAAAAA
3306






AUUCGGUGA

ATTCGGTGA






UUUCAAA

TTTCAAA





PTPN11
EXON

chr12: 112506646-112506671
GAGUCUAAC
2555
GAGTCTAAC
3307






UGAUUGUCA

TGATTGTCA






ACCCCCG

ACCCCCG





PTPN11
EXON

chr12: 112506650-112506675
GGUCGAGUC
2556
GGTCGAGTC
3308






UAACUGAUU

TAACTGATT






GUCAACC

GTCAACC





PTPN11
EXON

chr12: 112506651-112506676
GGGUCGAGU
2557
GGGTCGAGT
3309






CUAACUGAU

CTAACTGAT






UGUCAAC

TGTCAAC





PTPN11
EXON

chr12: 112506652-112506677
CGGGUCGAG
2558
CGGGTCGAG
3310






UCUAACUGA

TCTAACTGA






UUGUCAA

TTGTCAA





PTPN11
EXON

chr12: 112506653-112506678
UCGGGUCGA
2559
TCGGGTCGA
3311






GUCUAACUG

GTCTAACTG






AUUGUCA

ATTGTCA





PTPN11
EXON

chr12: 112506700-112506725
UGGUGUACU
2560
TGGTGTACT
3312






CACCGGUGG

CACCGGTGG






ACGUCCG

ACGTCCG





PTPN11
EXON

chr12: 112506704-112506729
CGACUGGUG
2561
CGACTGGTG
3313






UACUCACCGG

TACTCACCG






UGGACG

GTGGACG





PTPN11
EXON

chr12: 112506715-112506740
AGGCGGCUG
2562
AGGCGGCTG
3314






GACGACUGG

GACGACTGG






UGUACUC

TGTACTC





PTPN11
EXON

chr12: 112506773-112506798
GCUUCUUCCU
2563
GCTTCTTCCT
3315






CUCUGAGUCC

CTCTGAGTC






UGACG

CTGACG





PTPN11
EXON

chr12: 112506781-112506806
UCUGAUGUG
2564
TCTGATGTG
3316






CUUCUUCCUC

CTTCTTCCTC






UCUGAG

TCTGAG





PTPN11
EXON

chr12: 112506792-112506817
CGGUGACUU
2565
CGGTGACTT
3317






UCUCUGAUG

TCTCTGATGT






UGCUUCU

GCTTCT





PTPN11
EXON

chr12: 112506819-112506844
CUCUCCAGAU
2566
CTCTCCAGA
3318






CGAUGGGAC

TCGATGGGA






GGUCGG

CGGTCGG





PTPN11
EXON

chr12: 112506841-112506866
AACCCUCGAG
2567
AACCCTCGA
3319






ACUCGACGU

GACTCGACG






ACACUC

TACACTC





PTPN11
EXON

chr12: 112506864-112506889
ACCGGUAAA
2568
ACCGGTAAA
3320






GACGAAAAC

GACGAAAAC






UCGAGAA

TCGAGAA





PTPN11
EXON

chr12: 112506865-112506890
GACCGGUAA
2569
GACCGGTAA
3321






AGACGAAAA

AGACGAAAA






CUCGAGA

CTCGAGA





PTPN11
EXON

chr12: 112506889-112506914
AGACCUGAA
2570
AGACCTGAA
3322






UUCAAAAGU

TTCAAAAGT






CUUCCGG

CTTCCGG





PTPN11
EXON

chr12: 112506894-112506919
UGUUAAGAC
2571
TGTTAAGAC
3323






CUGAAUUCA

CTGAATTCA






AAAGUCU

AAAGTCT





PTPN11
EXON

chr12: 112506912-112506937
UCAUCUUCCC
2572
TCATCTTCCC
3324






UGUGACACU

TGTGACACT






GUUAAG

GTTAAG





PTPN11
EXON

chr12: 112506930-112506955
AGUAGUAGU
2573
AGTAGTAGT
3325






UAUCUCCCUU

TATCTCCCTT






CAUCUU

CATCTT





PTPN11
EXON

chr12: 112506931-112506956
UAGUAGUAG
2574
TAGTAGTAG
3326






UUAUCUCCCU

TTATCTCCCT






UCAUCU

TCATCT





PTPN11
EXON

chr12: 112506941-112506966
GUAGUAGUA
2575
GTAGTAGTA
3327






GUAGUAGUA

GTAGTAGTA






GUUAUCU

GTTATCT





PTPN11
EXON

chr12: 112506942-112506967
AGUAGUAGU
2576
AGTAGTAGT
3328






AGUAGUAGU

AGTAGTAGT






AGUUAUC

AGTTATC





PTPN11
EXON

chr12: 112507028-112507053
CGAACACUG
2577
CGAACACTG
3329






AACAAAUCA

AACAAATCA






UUCAUCU

TTCATCT





PTPN11
EXON

chr12: 112507029-112507054
CCGAACACUG
2578
CCGAACACT
3330






AACAAAUCA

GAACAAATC






UUCAUC

ATTCATC





PTPN11
EXON

chr12: 112507055-112507080
GUGUGGGAA
2579
GTGTGGGAA
3331






AAGAACUUA

AAGAACTTA






GACUCGA

GACTCGA





PTPN11
EXON

chr12: 112507056-112507081
AGUGUGGGA
2580
AGTGTGGGA
3332






AAAGAACUU

AAAGAACTT






AGACUCG

AGACTCG





PTPN11
EXON

chr12: 112507109-112507134
UGGUUGUGA
2581
TGGTTGTGA
3333






CCGUCUGUU

CCGTCTGTT






AGACUAG

AGACTAG





PTPN11
EXON

chr12: 112507134-112507159
UAAUAUCCU
2582
TAATATCCTT
3334






UGGUUUUCC

GGTTTTCCAT






AUGGCAC

GGCAC





PTPN11
EXON

chr12: 112507140-112507165
UUUUGCUAA
2583
TTTTGCTAAT
3335






UAUCCUUGG

ATCCTTGGTT






UUUUCCA

TTCCA





PTPN11
EXON

chr12: 112507150-112507175
CAACUUCUGC
2584
CAACTTCTG
3336






UUUUGCUAA

CTTTTGCTAA






UAUCCU

TATCCT





PTPN11
EXON

chr12: 112507185-112507210
UACUGUAAG
2585
TACTGTAAG
3337






CAGCUUCGGC

CAGCTTCGG






UUCCCA

CTTCCCA





PTPN11
EXON

chr12: 112507195-112507220
UUGUCCCAGC
2586
TTGTCCCAG
3338






UACUGUAAG

CTACTGTAA






CAGCUU

GCAGCTT





PTPN11
EXON

chr12: 112507255-112507280
AGAAAUCAU
2587
AGAAATCAT
3339






UCAGGAAGC

TCAGGAAGC






UUCUUGA

TTCTTGA





PTPN11
EXON

chr12: 112507269-112507294
GGCUCAGGG
2588
GGCTCAGGG
3340






CUAGCAGAA

CTAGCAGAA






AUCAUUC

ATCATTC





PTPN11
EXON

chr12: 112507288-112507313
AGUGCUGGU
2589
AGTGCTGGT
3341






UCCAAAAAU

TCCAAAAAT






AGGCUCA

AGGCTCA





PTPN11
EXON

chr12: 112507289-112507314
AAGUGCUGG
2590
AAGTGCTGG
3342






UUCCAAAAA

TTCCAAAAA






UAGGCUC

TAGGCTC





PTPN11
EXON

chr12: 112507295-112507320
UUCCCCAAGU
2591
TTCCCCAAG
3343






GCUGGUUCC

TGCTGGTTC






AAAAAU

CAAAAAT





PTPN11
EXON

chr12: 112507308-112507333
UCACAAGAU
2592
TCACAAGAT
3344






CAGUUUCCCC

CAGTTTCCC






AAGUGC

CAAGTGC





PTPN11
EXON

chr12: 112507377-112507402
CAAGUCUGG
2593
CAAGTCTGG
3345






GGAUGCCCCA

GGATGCCCC






GUGGGG

AGTGGGG





PTPN11
EXON

chr12: 112507380-112507405
UCCCAAGUCU
2594
TCCCAAGTC
3346






GGGGAUGCC

TGGGGATGC






CCAGUG

CCCAGTG





PTPN11
EXON

chr12: 112507381-112507406
UUCCCAAGUC
2595
TTCCCAAGT
3347






UGGGGAUGC

CTGGGGATG






CCCAGU

CCCCAGT





PTPN11
EXON

chr12: 112507382-112507407
UUUCCCAAG
2596
TTTCCCAAG
3348






UCUGGGGAU

TCTGGGGAT






GCCCCAG

GCCCCAG





PTPN11
EXON

chr12: 112507394-112507419
GAAAGAGUC
2597
GAAAGAGTC
3349






ACGUUUCCCA

ACGTTTCCC






AGUCUG

AAGTCTG





PTPN11
EXON

chr12: 112507395-112507420
AGAAAGAGU
2598
AGAAAGAGT
3350






CACGUUUCCC

CACGTTTCC






AAGUCU

CAAGTCT





PTPN11
EXON

chr12: 112507396-112507421
AAGAAAGAG
2599
AAGAAAGAG
3351






UCACGUUUCC

TCACGTTTCC






CAAGUC

CAAGTC





PTPN11
EXON

chr12: 112507428-112507453
UCACUGUGG
2600
TCACTGTGG
3352






CCUGACUAA

CCTGACTAA






AACCCAG

AACCCAG





PTPN11
EXON

chr12: 112507447-112507472
CUGUUAGGG
2601
CTGTTAGGG
3353






CUGUUCCUUC

CTGTTCCTTC






UCACUG

TCACTG





PTPN11
EXON

chr12: 112507466-112507491
AUUCAACCU
2602
ATTCAACCT
3354






GGCUGGAGG

GGCTGGAGG






CCUGUUA

CCTGTTA





PTPN11
EXON

chr12: 112507467-112507492
CAUUCAACCU
2603
CATTCAACC
3355






GGCUGGAGG

TGGCTGGAG






CCUGUU

GCCTGTT





PTPN11
EXON

chr12: 112507476-112507501
AAAUGAGCU
2604
AAATGAGCT
3356






CAUUCAACCU

CATTCAACC






GGCUGG

TGGCTGG





PTPN11
EXON

chr12: 112507479-112507504
CAAAAAUGA
2605
CAAAAATGA
3357






GCUCAUUCA

GCTCATTCA






ACCUGGC

ACCTGGC





PTPN11
EXON

chr12: 112507483-112507508
ACAACAAAA
2606
ACAACAAAA
3358






AUGAGCUCA

ATGAGCTCA






UUCAACC

TTCAACC





PTPN11
EXON

chr12: 112507513-112507538
UAGAACAUU
2607
TAGAACATT
3359






AGCAAAUCU

AGCAAATCT






UACUGGU

TACTGGT





PTPN11
EXON

chr12: 112507517-112507542
AAUGUAGAA
2608
AATGTAGAA
3360






CAUUAGCAA

CATTAGCAA






AUCUUAC

ATCTTAC





PTPN11
EXON

chr12: 112507550-112507575
AGGCAAAGA
2609
AGGCAAAGA
3361






GGGAUGUCU

GGGATGTCT






UUGGAGA

TTGGAGA





PTPN11
EXON

chr12: 112507556-112507581
CAUAUGAGG
2610
CATATGAGG
3362






CAAAGAGGG

CAAAGAGGG






AUGUCUU

ATGTCTT





PTPN11
EXON

chr12: 112507566-112507591
GAUGAUUCA
2611
GATGATTCA
3363






ACAUAUGAG

ACATATGAG






GCAAAGA

GCAAAGA





PTPN11
EXON

chr12: 112507567-112507592
GGAUGAUUC
2612
GGATGATTC
3364






AACAUAUGA

AACATATGA






GGCAAAG

GGCAAAG





PTPN11
EXON

chr12: 112507575-112507600
UCCGCACUGG
2613
TCCGCACTG
3365






AUGAUUCAA

GATGATTCA






CAUAUG

ACATATG





PTPN11
EXON

chr12: 112507593-112507618
GAUAUUUUC
2614
GATATTTTC
3366






AUUGAAAUA

ATTGAAATA






UCCGCAC

TCCGCAC





PTPN11
EXON

chr12: 112507664-112507689
AGAAUCCAA
2615
AGAATCCAA
3367






GGAGGCCAC

GGAGGCCAC






AACUUCA

AACTTCA





PTPN11
EXON

chr12: 112507678-112507703
AAGCCAAAG
2616
AAGCCAAAG
3368






UCAGAAGAA

TCAGAAGAA






UCCAAGG

TCCAAGG





PTPN11
EXON

chr12: 112507681-112507706
CAGAAGCCA
2617
CAGAAGCCA
3369






AAGUCAGAA

AAGTCAGAA






GAAUCCA

GAATCCA





PTPN11
EXON

chr12: 112507718-112507743
AGGAACUAC
2618
AGGAACTAC
3370






CACCAGGGCU

CACCAGGGC






GGAUCU

TGGATCT





PTPN11
EXON

chr12: 112507725-112507750
CUCAGAAAG
2619
CTCAGAAAG
3371






GAACUACCAC

GAACTACCA






CAGGGC

CCAGGGC





PTPN11
EXON

chr12: 112507729-112507754
AGACCUCAG
2620
AGACCTCAG
3372






AAAGGAACU

AAAGGAACT






ACCACCA

ACCACCA





PTPN11
EXON

chr12: 112507730-112507755
GAGACCUCA
2621
GAGACCTCA
3373






GAAAGGAAC

GAAAGGAAC






UACCACC

TACCACC





PTPN11
EXON

chr12: 112507743-112507768
CUCAAGGGA
2622
CTCAAGGGA
3374






CUGAGAGAC

CTGAGAGAC






CUCAGAA

CTCAGAA





PTPN11
EXON

chr12: 112507763-112507788
CAGCCAAACU
2623
CAGCCAAAC
3375






ACCCCAAAGU

TACCCCAAA






CUCAA

GTCTCAA





PTPN11
EXON

chr12: 112507764-112507789
GCAGCCAAAC
2624
GCAGCCAAA
3376






UACCCCAAAG

CTACCCCAA






UCUCA

AGTCTCA





PTPN11
EXON

chr12: 112507791-112507816
CUGAUAUAC
2625
CTGATATAC
3377






AUUUUGUCA

ATTTTGTCA






GUGAGAA

GTGAGAA





PTPN11
EXON

chr12: 112507819-112507844
AAGGAAUAU
2626
AAGGAATAT
3378






UGGGGGGUG

TGGGGGGTG






GAGGUGG

GAGGTGG





PTPN11
EXON

chr12: 112507820-112507845
CAAGGAAUA
2627
CAAGGAATA
3379






UUGGGGGGU

TTGGGGGGT






GGAGGUG

GGAGGTG





PTPN11
EXON

chr12: 112507821-112507846
UCAAGGAAU
2628
TCAAGGAAT
3380






AUUGGGGGG

ATTGGGGGG






UGGAGGU

TGGAGGT





PTPN11
EXON

chr12: 112507822-112507847
UUCAAGGAA
2629
TTCAAGGAA
3381






UAUUGGGGG

TATTGGGGG






GUGGAGG

GTGGAGG





PTPN11
EXON

chr12: 112507825-112507850
AAGUUCAAG
2630
AAGTTCAAG
3382






GAAUAUUGG

GAATATTGG






GGGGUGG

GGGGTGG





PTPN11
EXON

chr12: 112507828-112507853
UCAAAGUUC
2631
TCAAAGTTC
3383






AAGGAAUAU

AAGGAATAT






UGGGGGG

TGGGGGG





PTPN11
EXON

chr12: 112507831-112507856
AAUUCAAAG
2632
AATTCAAAG
3384






UUCAAGGAA

TTCAAGGAA






UAUUGGG

TATTGGG





PTPN11
EXON

chr12: 112507832-112507857
CAAUUCAAA
2633
CAATTCAAA
3385






GUUCAAGGA

GTTCAAGGA






AUAUUGG

ATATTGG





PTPN11
EXON

chr12: 112507833-112507858
GCAAUUCAA
2634
GCAATTCAA
3386






AGUUCAAGG

AGTTCAAGG






AAUAUUG

AATATTG





PTPN11
EXON

chr12: 112507834-112507859
AGCAAUUCA
2635
AGCAATTCA
3387






AAGUUCAAG

AAGTTCAAG






GAAUAUU

GAATATT





PTPN11
EXON

chr12: 112507835-112507860
AAGCAAUUC
2636
AAGCAATTC
3388






AAAGUUCAA

AAAGTTCAA






GGAAUAU

GGAATAT





PTPN11
EXON

chr12: 112507843-112507868
GUGUUCUGA
2637
GTGTTCTGA
3389






AGCAAUUCA

AGCAATTCA






AAGUUCA

AAGTTCA





PTPN11
EXON

chr12: 112507879-112507904
ACUUCCCUAA
2638
ACTTCCCTA
3390






UAAGGGAAU

ATAAGGGAA






ACCUUC

TACCTTC





PTPN11
EXON

chr12: 112507891-112507916
GACAGCAGU
2639
GACAGCAGT
3391






GACACUUCCC

GACACTTCC






UAAUAA

CTAATAA





PTPN11
EXON

chr12: 112507892-112507917
AGACAGCAG
2640
AGACAGCAG
3392






UGACACUUCC

TGACACTTC






CUAAUA

CCTAATA





PTPN11
EXON

chr12: 112507948-112507973
AAGCUUCUU
2641
AAGCTTCTT
3393






GCUGCAAAU

GCTGCAAAT






ACUGAAC

ACTGAAC





PTPN11
EXON

chr12: 112508018-112508043
AAGUCAAGA
2642
AAGTCAAGA
3394






CAAAACCAA

CAAAACCAA






AGCAAAA

AGCAAAA





PTPN11
EXON

chr12: 112508074-112508099
UUUGUACAA
2643
TTTGTACAA
3395






UCAAACUCU

TCAAACTCT






UGUGUGC

TGTGTGC





PTPN11
EXON

chr12: 112508127-112508152
AUAAAAGCA
2644
ATAAAAGCA
3396






ACUGAUCUU

ACTGATCTT






AAGCAAC

AAGCAAC





PTPN11
EXON

chr12: 112508171-112508196
UCUUAUAAC
2645
TCTTATAAC
3397






AAAACUAGC

AAAACTAGC






CAAGAUC

CAAGATC





PTPN11
EXON

chr12: 112508219-112508244
CAUGAUAGU
2646
CATGATAGT
3398






UUGCUGACC

TTGCTGACC






UCGUGGA

TCGTGGA





PTPN11
EXON

chr12: 112508220-112508245
ACAUGAUAG
2647
ACATGATAG
3399






UUUGCUGAC

TTTGCTGAC






CUCGUGG

CTCGTGG





PTPN11
EXON

chr12: 112508223-112508248
AGAACAUGA
2648
AGAACATGA
3400






UAGUUUGCU

TAGTTTGCT






GACCUCG

GACCTCG





PTPN11
EXON

chr12: 112508265-112508290
CUAGGGACU
2649
CTAGGGACT
3401






AUGAUAACU

ATGATAACT






CUGGCCU

CTGGCCT





PTPN11
EXON

chr12: 112508271-112508296
AGCAACCUA
2650
AGCAACCTA
3402






GGGACUAUG

GGGACTATG






AUAACUC

ATAACTC





PTPN11
EXON

chr12: 112508287-112508312
GCACAUGAU
2651
GCACATGAT
3403






AAGCCGUAG

AAGCCGTAG






CAACCUA

CAACCTA





PTPN11
EXON

chr12: 112508288-112508313
AGCACAUGA
2652
AGCACATGA
3404






UAAGCCGUA

TAAGCCGTA






GCAACCU

GCAACCT





PTPN11
EXON

chr12: 112508443-112508468
CUGACUUCCU
2653
CTGACTTCCT
3405






CAGAAACCAC

CAGAAACCA






CUCUU

CCTCTT





PTPN11
EXON

chr12: 112508475-112508500
ACCCAUUACU
2654
ACCCATTAC
3406






GACUGCUCU

TGACTGCTC






GGCCCU

TGGCCCT





PTPN11
EXON

chr12: 112508476-112508501
CACCCAUUAC
2655
CACCCATTA
3407






UGACUGCUC

CTGACTGCT






UGGCCC

CTGGCCC





PTPN11
EXON

chr12: 112508482-112508507
CUCAUUCACC
2656
CTCATTCAC
3408






CAUUACUGA

CCATTACTG






CUGCUC

ACTGCTC





PTPN11
EXON

chr12: 112508546-112508571
UACCCACCAG
2657
TACCCACCA
3409






CAACCUAGA

GCAACCTAG






AGUAGA

AAGTAGA





PTPN11
EXON

chr12: 112508592-112508617
UAAUUUUAA
2658
TAATTTTAA
3410






AAUCCUCAG

AATCCTCAG






UGAGCUA

TGAGCTA





PTPN11
EXON

chr12: 112508692-112508717
AAAAAGUUA
2659
AAAAAGTTA
3411






UUAAGACUG

TTAAGACTG






UGAAAUU

TGAAATT





PTPN11
EXON

chr12: 112508748-112508773
CAUAAGUUU
2660
CATAAGTTT
3412






CAGAAGGGC

CAGAAGGGC






CACACAC

CACACAC





PTPN11
EXON

chr12: 112508759-112508784
GGAGAGAUG
2661
GGAGAGATG
3413






ACCAUAAGU

ACCATAAGT






UUCAGAA

TTCAGAA





PTPN11
EXON

chr12: 112508760-112508785
GGGAGAGAU
2662
GGGAGAGAT
3414






GACCAUAAG

GACCATAAG






UUUCAGA

TTTCAGA





PTPN11
EXON

chr12: 112508785-112508810
CAUUUGAAA
2663
CATTTGAAA
3415






AGACCUUGG

AGACCTTGG






UUUCAGU

TTTCAGT





PTPN11
EXON

chr12: 112508786-112508811
ACAUUUGAA
2664
ACATTTGAA
3416






AAGACCUUG

AAGACCTTG






GUUUCAG

GTTTCAG





PTPN11
EXON

chr12: 112508795-112508820
CAUUUAGCC
2665
CATTTAGCC
3417






ACAUUUGAA

ACATTTGAA






AAGACCU

AAGACCT





PTPN11
EXON

chr12: 112508877-112508902
UCCUGGCUG
2666
TCCTGGCTG
3418






UUUCCCCGAA

TTTCCCCGA






GCAACU

AGCAACT





PTPN11
EXON

chr12: 112508899-112508924
CUAAAAAUA
2667
CTAAAAATA
3419






AUCUUGACC

ATCTTGACC






AUUUUCC

ATTTTCC





PTPN11
EXON

chr12: 112509036-112509061
AUGUCUAUA
2668
ATGTCTATA
3420






GUCUAAGUU

GTCTAAGTT






UCCCUUA

TCCCTTA





PTPN11
EXON

chr12: 112509074-112509099
AACAUACAG
2669
AACATACAG
3421






AAAACAAAA

AAAACAAAA






GCUGCAC

GCTGCAC





PTPN11
EXON

chr12: 112509139-112509164
UAACAAAGG
2670
TAACAAAGG
3422






CAUCCUGACA

CATCCTGAC






UCAGGG

ATCAGGG





PTPN11
EXON

chr12: 112509142-112509167
UCCUAACAA
2671
TCCTAACAA
3423






AGGCAUCCU

AGGCATCCT






GACAUCA

GACATCA





PTPN11
EXON

chr12: 112509143-112509168
AUCCUAACA
2672
ATCCTAACA
3424






AAGGCAUCC

AAGGCATCC






UGACAUC

TGACATC





PTPN11
EXON

chr12: 112509158-112509183
UAAGGGCAA
2673
TAAGGGCAA
3425






AUACAGAUC

ATACAGATC






CUAACAA

CTAACAA





PTPN11
EXON

chr12: 112509180-112509205
GGAAAAAAG
2674
GGAAAAAAG
3426






AUUUCAACA

ATTTCAACA






AAAUUAA

AAATTAA





PTPN11
EXON

chr12: 112509181-112509206
AGGAAAAAA
2675
AGGAAAAAA
3427






GAUUUCAAC

GATTTCAAC






AAAAUUA

AAAATTA





PTPN11
EXON

chr12: 112509206-112509231
AUUUUGGAA
2676
ATTTTGGAA
3428






CUUUUCAAG

CTTTTCAAG






AGGAAGA

AGGAAGA





PTPN11
EXON

chr12: 112509213-112509238
AAACUAUAU
2677
AAACTATAT
3429






UUUGGAACU

TTTGGAACT






UUUCAAG

TTTCAAG





PTPN11
EXON

chr12: 112509227-112509252
AUGAAAGAU
2678
ATGAAAGAT
3430






ACAAUAAAC

ACAATAAAC






UAUAUUU

TATATTT





PTPN11
EXON

chr12: 112509270-112509295
UUGUGUGAA
2679
TTGTGTGAA
3431






CUGCCCAUAG

CTGCCCATA






UGAAAA

GTGAAAA





PTPN11
EXON

chr12: 112509377-112509402
UUAUUAAUU
2680
TTATTAATTA
3432






ACAUGAUUU

CATGATTTG






GAGGCUU

AGGCTT





PTPN11
EXON

chr12: 112509383-112509408
GGCAAAUUA
2681
GGCAAATTA
3433






UUAAUUACA

TTAATTACA






UGAUUUG

TGATTTG





PTPN11
EXON

chr12: 112509409-112509434
AAUCACAAU
2682
AATCACAAT
3434






UAGGUCAUA

TAGGTCATA






AAUAAAC

AATAAAC





PTPN11
EXON

chr12: 112509424-112509449
UUUUAUUAA
2683
TTTTATTAAT
3435






UAAAAGAAU

AAAAGAATC






CACAAUU

ACAATT





PTPN11
EXON

chr12: 112509469-112509494
GUAGGUCUA
2684
GTAGGTCTA
3436






GUCAUCAGC

GTCATCAGC






UUAAUCA

TTAATCA





PTPN11
EXON

chr12: 112509470-112509495
UGUAGGUCU
2685
TGTAGGTCT
3437






AGUCAUCAG

AGTCATCAG






CUUAAUC

CTTAATC





PTPN11
EXON

chr12: 112509492-112509517
CAUAUACUG
2686
CATATACTG
3438






CAGGAAAAU

CAGGAAAAT






UAAUUGU

TAATTGT





PTPN11
EXON

chr12: 112509507-112509532
UCUGGUACA
2687
TCTGGTACA
3439






AUACUUCAU

ATACTTCAT






AUACUGC

ATACTGC





PTPN11
EXON

chr12: 112509530-112509555
AAAUAUUAC
2688
AAATATTAC
3440






AUAUCUUUU

ATATCTTTTA






AAUACUC

ATACTC





PTPN11
EXON

chr12: 112509573-112509598
ACAUCCUAA
2689
ACATCCTAA
3441






AACGUAUUC

AACGTATTC






CUUUUAA

CTTTTAA





PTPN11
EXON

chr12: 112509683-112509708
GACUACAUA
2690
GACTACATA
3442






AUAUACGUG

ATATACGTG






GGCAAAA

GGCAAAA





PTPN11
EXON

chr12: 112509691-112509716
UGCAAAUAG
2691
TGCAAATAG
3443






ACUACAUAA

ACTACATAA






UAUACGU

TATACGT





PTPN11
EXON

chr12: 112509692-112509717
UUGCAAAUA
2692
TTGCAAATA
3444






GACUACAUA

GACTACATA






AUAUACG

ATATACG





PTPN11
EXON

chr12: 112509788-112509813
GCGCUAACAC
2693
GCGCTAACA
3445






CCAUAAAUA

CCCATAAAT






UAGGUG

ATAGGTG





PTPN11
EXON

chr12: 112509789-112509814
UGCGCUAAC
2694
TGCGCTAAC
3446






ACCCAUAAA

ACCCATAAA






UAUAGGU

TATAGGT





PTPN11
EXON

chr12: 112509790-112509815
UUGCGCUAA
2695
TTGCGCTAA
3447






CACCCAUAAA

CACCCATAA






UAUAGG

ATATAGG





PTPN11
EXON

chr12: 112509793-112509818
CAGUUGCGC
2696
CAGTTGCGC
3448






UAACACCCAU

TAACACCCA






AAAUAU

TAAATAT





PTPN11
EXON

chr12: 112509900-112509925
CGACAAAUG
2697
CGACAAATG
3449






CCAUCAUAU

CCATCATAT






AAGAAAA

AAGAAAA









gRNA molecule scaffolds for use in connection with particular Cas molecules are known in the art. Exemplary gRNA molecules, particularly useful in combination with an s. pyogenes Cas9 molecule, include, e.g., dgRNA molecule comprising, e.g., consisting of, a first nucleic acid sequence having the sequence of:


nnnnnnnnnnnnnnnnnnnnGUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO: 47),


where the “n”s refer to the residues of the targeting domain, e.g., as described herein, and may consist of 15-25 nucleotides, e.g., consists of 20 nucleotides; and a second nucleic acid sequence having the exemplary sequence of: AACUUACCAAGGAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAA CUUGAAAAAGUGGCACCGAGUCGGUGC, optionally with 1, 2, 3, 4, 5, 6, or 7 (e.g., 4 or 7, e.g., 7) additional U nucleotides at the 3′ end (SEQ ID NO: 48).


The second nucleic acid molecule may alternatively consist of a fragment of the sequence above, wherein such fragment is capable of hybridizing to the first nucleic acid. An example of such second nucleic acid molecule is:


AACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAA AAGUGGCACCGAGUCGGUGC, optionally with 1, 2, 3, 4, 5, 6, or 7 (e.g., 4 or 7, e.g., 7) additional U nucleotides at the 3′ end (SEQ ID NO: 49).


Another exemplary gRNA molecule, e.g., a sgRNA molecule, particularly for use with an S. pyogenes Cas9 molecule, comprises, e.g., consists of a first nucleic acid having the sequence:


nnnnnnnnnnnnnnnnnnnGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGG CUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO: 50), where the “n”s refer to the residues of the targeting domain, e.g., as described herein, and may consist of 15-25 nucleotides, e.g., consist of 20 nucleotides, optionally with 1, 2, 3, 4, 5, 6, or 7 (e.g., 4 or 7, e.g., 4) additional U nucleotides at the 3′ end.


TALEN Gene Editing Systems

TALENs are produced artificially by fusing a TAL effector DNA binding domain to a DNA cleavage domain. Transcription activator-like effects (TALEs) can be engineered to bind any desired DNA sequence, including a portion of the HLA or TCR gene. By combining an engineered TALE with a DNA cleavage domain, a restriction enzyme can be produced which is specific to any desired DNA sequence, including a HLA or TCR sequence. These can then be introduced into a cell, wherein they can be used for genome editing. Boch (2011) Nature Biotech. 29: 135-6; and Boch et al. (2009) Science 326: 1509-12; Moscou et al. (2009) Science 326: 3501.


TALEs are proteins secreted by Xanthomonas bacteria. The DNA binding domain contains a repeated, highly conserved 33-34 amino acid sequence, with the exception of the 12th and 13th amino acids. These two positions are highly variable, showing a strong correlation with specific nucleotide recognition. They can thus be engineered to bind to a desired DNA sequence.


To produce a TALEN, a TALE protein is fused to a nuclease (N), which is, for example, a wild-type or mutated Fold endonuclease. Several mutations to FokI have been made for its use in TALENs; these, for example, improve cleavage specificity or activity. Cermak et al. (2011) Nucl. Acids Res. 39: e82; Miller et al. (2011) Nature Biotech. 29: 143-8; Hockemeyer et al. (2011) Nature Biotech. 29: 731-734; Wood et al. (2011) Science 333: 307; Doyon et al. (2010) Nature Methods 8: 74-79; Szczepek et al. (2007) Nature Biotech. 25: 786-793; and Guo et al. (2010) J. Mol. Biol. 200: 96.


The FokI domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALE DNA binding domain and the FokI cleavage domain and the number of bases between the two individual TALEN binding sites appear to be important parameters for achieving high levels of activity. Miller et al. (2011) Nature Biotech. 29: 143-8.


A TALEN specific for a gene encoding SHP1 or SHP2, can be used inside a cell to produce a double-stranded break (DSB). A mutation can be introduced at the break site if the repair mechanisms improperly repair the break via non-homologous end joining. For example, improper repair may introduce a frame shift mutation.


TALENs specific to sequences in a gene encoding SHP1 or SHP2 can be constructed using any method known in the art, including various schemes using modular components. Zhang et al. (2011) Nature Biotech. 29: 149-53; Geibler et al. (2011) PLoS ONE 6: e19509; U.S. Pat. Nos. 8,420,782; 8,470,973, the contents of which are hereby incorporated by reference in their entirety.


Zinc Finger Nucleases

“ZFN” or “Zinc Finger Nuclease” refers to a zinc finger nuclease, an artificial nuclease which can be used to modify, e.g., delete one or more nucleic acids of, a desired nucleic acid sequence, e.g., a gene encoding SHP1 or SHP2.


Like a TALEN, a ZFN comprises a Fold nuclease domain (or derivative thereof) fused to a DNA-binding domain. In the case of a ZFN, the DNA-binding domain comprises one or more zinc fingers. Carroll et al. (2011) Genetics Society of America 188: 773-782; and Kim et al. (1996) Proc. Natl. Acad. Sci. USA 93: 1156-1160.


A zinc finger is a small protein structural motif stabilized by one or more zinc ions. A zinc finger can comprise, for example, Cys2His2, and can recognize an approximately 3-bp sequence. Various zinc fingers of known specificity can be combined to produce multi-finger polypeptides which recognize about 6, 9, 12, 15 or 18-bp sequences. Various selection and modular assembly techniques are available to generate zinc fingers (and combinations thereof) recognizing specific sequences, including phage display, yeast one-hybrid systems, bacterial one-hybrid and two-hybrid systems, and mammalian cells.


Like a TALEN, a ZFN must dimerize to cleave DNA. Thus, a pair of ZFNs are required to target non-palindromic DNA sites. The two individual ZFNs must bind opposite strands of the DNA with their nucleases properly spaced apart. Bitinaite et al. (1998) Proc. Natl. Acad. Sci. USA 95: 10570-5.


Also like a TALEN, a ZFN can create a double-stranded break in the DNA, which can create a frame-shift mutation if improperly repaired, leading to a decrease in the expression of a gene encoding SHP1 or SHP2, in a cell. ZFNs can also be used with homologous recombination to mutate a gene encoding SHP1 or SHP2.


ZFNs specific to sequences in a gene encoding SHP1 or SHP2 can be constructed using any method known in the art. See, e.g., Provasi (2011) Nature Med. 18: 807-815; Torikai (2013) Blood 122: 1341-1349; Cathomen et al. (2008) Mol. Ther. 16: 1200-7; and Guo et al. (2010) J. Mol. Biol. 400: 96; U.S. Patent Publication 2011/0158957; and U.S. Patent Publication 2012/0060230, the contents of which are hereby incorporated by reference in their entirety. In embodiments, The ZFN gene editing system may also comprise nucleic acid encoding one or more components of the ZFN gene editing system, e.g., a ZFN gene editing system targeted to a gene encoding SHP1 or SHP2.


Double-Stranded RNA, e.g., siRNA or shRNA, targeting SHP1 or SHP2


According to the present invention, double stranded RNA (“dsRNA”), e.g., siRNA or shRNA can be used to decrease the expression of SHP1 or SHP2. Also contemplated by the present invention are the uses of a nucleic acid encoding said dsRNA inhibitors of a gene encoding SHP1 or SHP2.


In an embodiment, the SHP inhibitor is a nucleic acid, e.g., a dsRNA, e.g., a siRNA or shRNA specific for a nucleic acid encoding SHP1 or SHP2.


An aspect of the invention provides a composition comprising a dsRNA, e.g., a siRNA or shRNA, comprising at least 15 contiguous nucleotides, e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 contiguous nucleotides, e.g., 21 contiguous nucleotides. It is understood that some of the target sequences and/or shRNA molecules are presented as DNA, but the dsRNA agents targeting these sequences or comprising these sequences can be RNA, or any nucleotide, modified nucleotide or substitute disclosed herein and/or known in the art, provided that the molecule can still mediate RNA interference.


In embodiments, the SHP inhibitor is a nucleic acid, e.g., DNA, encoding a dsRNA inhibitor, e.g., shRNA or siRNA, of any of the above embodiments. In embodiments, the nucleic acid, e.g., DNA, is disposed on a vector, e.g., any conventional expression system, e.g., as described herein, e.g., a lentiviral vector.


CAR Molecules

In one aspect, the antigen binding domain of a CAR described herein is a scFv antibody fragment. In one aspect, such antibody fragments are functional in that they retain the equivalent binding affinity, e.g., they bind the same antigen with comparable affinity, as the IgG antibody from which it is derived. In other embodiments, the antibody fragment has a lower binding affinity, e.g., it binds the same antigen with a lower binding affinity than the antibody from which it is derived, but is functional in that it provides a biological response described herein. In one embodiment, the CAR molecule comprises an antibody fragment that has a binding affinity KD of 10−4 M to 10−8 M, e.g., 10−5 M to 10−7 M, e.g., 10−6 M or 10−7 M, for the target antigen. In one embodiment, the antibody fragment has a binding affinity that is at least five-fold, 10-fold, 20-fold, 30-fold, 50-fold, 100-fold or 1,000-fold less than a reference antibody, e.g., an antibody described herein.


In one aspect such antibody fragments are functional in that they provide a biological response that can include, but is not limited to, activation of an immune response, inhibition of signal-transduction origination from its target antigen, inhibition of kinase activity, and the like, as will be understood by a skilled artisan.


In one aspect, the antigen binding domain of the CAR is a scFv antibody fragment that is humanized compared to the murine sequence of the scFv from which it is derived.


In one aspect, the antigen binding domain of a CAR of the invention (e.g., a scFv) is encoded by a nucleic acid molecule whose sequence has been codon optimized for expression in a mammalian cell. In one aspect, entire CAR construct of the invention is encoded by a nucleic acid molecule whose entire sequence has been codon optimized for expression in a mammalian cell. Codon optimization refers to the discovery that the frequency of occurrence of synonymous codons (i.e., codons that code for the same amino acid) in coding DNA is biased in different species. Such codon degeneracy allows an identical polypeptide to be encoded by a variety of nucleotide sequences. A variety of codon optimization methods is known in the art, and include, e.g., methods disclosed in at least U.S. Pat. Nos. 5,786,464 and 6,114,148.


In one aspect, the CARs of the invention combine an antigen binding domain of a specific antibody with an intracellular signaling molecule. For example, in some aspects, the intracellular signaling molecule includes, but is not limited to, CD3-zeta chain, 4-1BB and CD28 signaling modules, a functional variant thereof, and combinations thereof. In one aspect, the antigen binding domain binds to a tumor antigen as described herein.


Furthermore, the present invention provides CARs and CAR-expressing cells and their use in medicaments or methods for treating, among other diseases, cancer or any malignancy or autoimmune diseases involving cells or tissues which express a tumor antigen as described herein.


In one aspect, the CAR of the invention can be used to eradicate a normal cell that express a tumor antigen as described herein, thereby applicable for use as a cellular conditioning therapy prior to cell transplantation. In one aspect, the normal cell that expresses a tumor antigen as described herein is a normal stem cell and the cell transplantation is a stem cell transplantation.


In one aspect, the invention provides an immune effector cell (e.g., T cell, NK cell) engineered to express a chimeric antigen receptor (CAR), wherein the engineered immune effector cell exhibits an antitumor property. A preferred antigen is a cancer associated antigen (i.e., tumor antigen) described herein. In one aspect, the antigen binding domain of the CAR comprises a partially humanized antibody fragment. In one aspect, the antigen binding domain of the CAR comprises a partially humanized scFv. Accordingly, the invention provides CARs that comprises a humanized antigen binding domain and is engineered into a cell, e.g., a T cell or a NK cell, and methods of their use for adoptive therapy.


In one aspect, the CARs of the invention comprise at least one intracellular domain selected from the group of a CD137 (4-1BB) signaling domain, a CD28 signaling domain, a CD27 signal domain, a CD3zeta signal domain, a functional variant thereof, and any combination thereof. In one aspect, the CARs of the invention comprise at least one intracellular signaling domain is from one or more costimulatory molecule(s) other than a CD137 (4-1BB) or CD28.


Sequences of some examples of various components of CARs of the instant invention is listed in Table 1, where aa stands for amino acids, and na stands for nucleic acids that encode the corresponding peptide.









TABLE 1







Sequences of various components of CAR (aa—amino acids, na—nucleic acids


that encodes the corresponding protein)









SEQ




ID


NO
description
Sequence












400
EF-1
CGTGAGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCC



promoter
ACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGG




TGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCG




TGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATA




TAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTG




CCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTG




GCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCAC




CTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAG




TGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCC




TCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGT




GCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAA




GTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTT




TTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACT




GGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCG




TCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCC




ACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCT




GGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGC




AAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGC




CGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGG




CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAG




GGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTA




CCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAG




TACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTT




TCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCA




CTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCT




TGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTC




CATTTCAGGTGTCGTGA





401
Leader (aa)
MALPVTALLLPLALLLHAARP





402
Leader (na)
ATGGCCCTGCCTGTGACAGCCCTGCTGCTGCCTCTGGCTCTGCTGC




TGCATGCCGCTAGACCC





403
CD 8 hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD



(aa)





404
CD8 hinge
ACCACGACGCCAGCGCCGCGACCACCAACACCGGCGCCCACCAT



(na)
CGCGTCGCAGCCCCTGTCCCTGCGCCCAGAGGCGTGCCGGCCAGC




GGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGCCTGTG




AT





405
Ig4 hinge (aa)
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV




SQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQ




DWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEM




TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKM





406
Ig4 hinge
GAGAGCAAGTACGGCCCTCCCTGCCCCCCTTGCCCTGCCCCCGAG



(na)
TTCCTGGGCGGACCCAGCGTGTTCCTGTTCCCCCCCAAGCCCAAG




GACACCCTGATGATCAGCCGGACCCCCGAGGTGACCTGTGTGGTG




GTGGACGTGTCCCAGGAGGACCCCGAGGTCCAGTTCAACTGGTAC




GTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCCGGGA




GGAGCAGTTCAATAGCACCTACCGGGTGGTGTCCGTGCTGACCGT




GCTGCACCAGGACTGGCTGAACGGCAAGGAATACAAGTGTAAGG




TGTCCAACAAGGGCCTGCCCAGCAGCATCGAGAAAACCATCAGC




AAGGCCAAGGGCCAGCCTCGGGAGCCCCAGGTGTACACCCTGCC




CCCTAGCCAAGAGGAGATGACCAAGAACCAGGTGTCCCTGACCT




GCCTGGTGAAGGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGG




AGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCT




GTGCTGGACAGCGACGGCAGCTTCTTCCTGTACAGCCGGCTGACC




GTGGACAAGAGCCGGTGGCAGGAGGGCAACGTCTTTAGCTGCTC




CGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGAGCC




TGAGCCTGTCCCTGGGCAAGATG





407
IgD hinge
RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKK



(aa)
EKEKEEQEERETKTPECPSHTQPLGVYLLTPAVQDLWLRDKATFTCF




VVGSDLKDAHLTWEVAGKVPTGGVEEGLLERHSNGSQSQHSRLTLP




RSLWNAGTSVTCTLNHPSLPPQRLMALREPAAQAPVKLSLNLLASSD




PPEAASWLLCEVSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGST




TFWAWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVSYVTDH





408
IgD hinge
AGGTGGCCCGAAAGTCCCAAGGCCCAGGCATCTAGTGTTCCTACT



(na)
GCACAGCCCCAGGCAGAAGGCAGCCTAGCCAAAGCTACTACTGC




ACCTGCCACTACGCGCAATACTGGCCGTGGCGGGGAGGAGAAGA




AAAAGGAGAAAGAGAAAGAAGAACAGGAAGAGAGGGAGACCAA




GACCCCTGAATGTCCATCCCATACCCAGCCGCTGGGCGTCTATCT




CTTGACTCCCGCAGTACAGGACTTGTGGCTTAGAGATAAGGCCAC




CTTTACATGTTTCGTCGTGGGCTCTGACCTGAAGGATGCCCATTTG




ACTTGGGAGGTTGCCGGAAAGGTACCCACAGGGGGGGTTGAGGA




AGGGTTGCTGGAGCGCCATTCCAATGGCTCTCAGAGCCAGCACTC




AAGACTCACCCTTCCGAGATCCCTGTGGAACGCCGGGACCTCTGT




CACATGTACTCTAAATCATCCTAGCCTGCCCCCACAGCGTCTGAT




GGCCCTTAGAGAGCCAGCCGCCCAGGCACCAGTTAAGCTTAGCCT




GAATCTGCTCGCCAGTAGTGATCCCCCAGAGGCCGCCAGCTGGCT




CTTATGCGAAGTGTCCGGCTTTAGCCCGCCCAACATCTTGCTCAT




GTGGCTGGAGGACCAGCGAGAAGTGAACACCAGCGGCTTCGCTC




CAGCCCGGCCCCCACCCCAGCCGGGTTCTACCACATTCTGGGCCT




GGAGTGTCTTAAGGGTCCCAGCACCACCTAGCCCCCAGCCAGCCA




CATACACCTGTGTTGTGTCCCATGAAGATAGCAGGACCCTGCTAA




ATGCTTCTAGGAGTCTGGAGGTTTCCTACGTGACTGACCATT





10
GS
GGGGSGGGGS



hinge/linker



(aa)





11
GS
GGTGGCGGAGGTTCTGGAGGTGGAGGTTCC



hinge/linker



(na)





12
CD8TM (aa)
IYIWAPLAGTCGVLLLSLVITLYC





13
CD8 TM (na)
ATCTACATCTGGGCGCCCTTGGCCGGGACTTGTGGGGTCCTTCTC




CTGTCACTGGTTATCACCCTTTACTGC





14
4-1BB
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL



intracellular



domain (aa)





15
4-1BB
AAACGGGGCAGAAAGAAACTCCTGTATATATTCAAACAACCATTT



intracellular
ATGAGACCAGTACAAACTACTCAAGAGGAAGATGGCTGTAGCTG



domain (na)
CCGATTTCCAGAAGAAGAAGAAGGAGGATGTGAACTG





16
CD27 (aa)
QRRKYRSNKGESPVEPAEPCRYSCPREEEGSTIPIQEDYRKPEPACSP





17
CD27 (na)
AGGAGTAAGAGGAGCAGGCTCCTGCACAGTGACTACATGAACAT




GACTCCCCGCCGCCCCGGGCCCACCCGCAAGCATTACCAGCCCTA




TGCCCCACCACGCGACTTCGCAGCCTATCGCTCC





18
CD3-zeta
RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEM



(aa)
GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




QGLSTATKDTYDALHMQALPPR





19
CD3-zeta
AGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACAAGCA



(na)
GGGCCAGAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAG




AGGAGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTGAG




ATGGGGGGAAAGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTA




CAATGAACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGAGA




TTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGATGGC




CTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCC




CTTCACATGCAGGCCCTGCCCCCTCGC





20
CD3-zeta
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM



(aa)
GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




QGLSTATKDTYDALHMQALPPR





21
CD3-zeta
AGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACCAGCA



(na)
GGGCCAG




AACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTA




CGATGTTT




TGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAAAGCCG




AGAAGGA




AGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAG




ATGGCGG




AGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGC




AAGGGGC




ACGATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCT




ACGACGC




CCTTCACATGCAGGCCCTGCCCCCTCGC





22
linker
GGGGS





23
linker
GGTGGCGGAGGTTCTGGAGGTGGAGGTTCC





24
PD-1
Pgwfldspdrpwnpptfspallvvtegdnatftcsfsntsesfvlnwyrmspsnqtdklaafpedrsqpg



extracellular
qdcrfrvtqlpngrdfhmsvvrarrndsgtylcgaislapkaqikeslraelrvterraevptahpspsprpa



domain (aa)
gqfqtlv





25
PD-1
Cccggatggtttctggactctccggatcgcccgtggaatcccccaaccttctcaccggcactcttggttgtgac



extracellular
tgagggcgataatgcgaccttcacgtgctcgttctccaacacctccgaatcattcgtgctgaactggtaccgca



domain (na)
tgagcccgtcaaaccagaccgacaagctcgccgcgtttccggaagatcggtcgcaaccgggacaggattgt




cggttccgcgtgactcaactgccgaatggcagagacttccacatgagcgtggtccgcgctaggcgaaacga




ctccgggacctacctgtgcggagccatctcgctggcgcctaaggcccaaatcaaagagagcttgagggccg




aactgagagtgaccgagcgcagagctgaggtgccaactgcacatccatccccatcgcctcggcctgcggg




gcagtttcagaccctggtc





26
PD-1 CAR
Malpvtalllplalllhaarppgwfldspdrpwnpptfspallvvtegdnatftcsfsntsesfvlnwyrms



(aa) with
psnqtdklaafpedrsqpgqdcrfrvtqlpngrdfhmsvvrarrndsgtylcgaislapkaqikeslraelr



signal
vterraevptahpspsprpagqfqtlvtttpaprpptpaptiasqplslrpeacrpaaggavhtrgldfacdiy




iwaplagtcgvlllslvitlyckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsad




apaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdkmaeayseigm




kgerrrgkghdglyqglstatkdtydalhmqalppr





27
PD-1 CAR
Atggccctccctgtcactgccctgcttctccccctcgcactcctgctccacgccgctagaccacccggatggt



(na)
ttctggactctccggatcgcccgtggaatcccccaaccttctcaccggcactcttggttgtgactgagggcgat




aatgcgaccttcacgtgctcgttctccaacacctccgaatcattcgtgctgaactggtaccgcatgagcccgtc




aaaccagaccgacaagctcgccgcgtttccggaagatcggtcgcaaccgggacaggattgtcggttccgcg




tgactcaactgccgaatggcagagacttccacatgagcgtggtccgcgctaggcgaaacgactccgggacc




tacctgtgcggagccatctcgctggcgcctaaggcccaaatcaaagagagcttgagggccgaactgagagt




gaccgagcgcagagctgaggtgccaactgcacatccatccccatcgcctcggcctgcggggcagtttcaga




ccctggtcacgaccactccggcgccgcgcccaccgactccggccccaactatcgcgagccagcccctgtc




gctgaggccggaagcatgccgccctgccgccggaggtgctgtgcatacccggggattggacttcgcatgc




gacatctacatttgggctcctctcgccggaacttgtggcgtgctccttctgtccctggtcatcaccctgtactgca




agcggggtcggaaaaagcttctgtacattttcaagcagcccttcatgaggcccgtgcaaaccacccaggagg




aggacggttgctcctgccggttccccgaagaggaagaaggaggttgcgagctgcgcgtgaagttctcccgg




agcgccgacgcccccgcctataagcagggccagaaccagctgtacaacgaactgaacctgggacggcgg




gaagagtacgatgtgctggacaagcggcgcggccgggaccccgaaatgggcgggaagcctagaagaaa




gaaccctcaggaaggcctgtataacgagctgcagaaggacaagatggccgaggcctactccgaaattggg




atgaagggagagcggcggaggggaaaggggcacgacggcctgtaccaaggactgtccaccgccaccaa




ggacacatacgatgccctgcacatgcaggcccttccccctcgc





28
linker
(Gly-Gly-Gly-Ser)n, where n = 1-10





29
linker
(Gly4 Ser)4





30
linker
(Gly4 Ser)3





31
linker
(Gly3Ser)





32
polyA
(aaaaaaaaaa)n, where n = 200





33
polyA
(aaaaaaaaaa)n, where n = 15





34
polyA
(aaaaaaaaaa)n, where n = 500





35
polyA
(tttttttttt)n, where n = 10





36
polyA
(tttttttttt)n where n = 500





37
polyA
(aaaaaaaaaa)n, where n = 500





38
polyA
(aaaaaaaaaa)n, where n = 40





39
PD1 CAR

Pgwfldspdrpwnpptfspallvvtegdnatftcsfsntsesfvlnwvrmspsnqtdklaafpedrsqpg




(aa)

qdcrfrvtqlpngrdfhmsvvrarrndsgtvlcgaislapkaqikeslraelrvterraevptahpspsprpa






gqfqtlvtttpaprpptpaptiasqplslrpeacrpaaggavhtrgldfacdiviwaplagtcgvlllslvitly





ckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsadapaykqgqnqlynelnlgr




reeydvldkrrgrdpemggkprrknpqeglynelqkdkmaeayseigmkgerrrgkghdglyqglst




atkdtydalhmqalppr





427
CD28
RSKRSRLLHSDX1MX2MTPRRPGPTRKHYQPYAPPRDFAAYRS



costimulatory
(wherein X1 and X2 can be any amino acid)



domain (aa)





428
CD28
RSKRSRLLHSDYMFMTPRRPGPTRKHYQPYAPPRDFAAYRS



costimulatory



domain (aa)





429
CD28
RSKRSRLLHSDFMNMTPRRPGPTRKHYQPYAPPRDFAAYRS



costimulatory



domain (aa)





430
CD28
RSKRSRLLHSDFMFMTPRRPGPTRKHYQPYAPPRDFAAYRS



costimulatory



domain (aa)





5
CD28
RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS



costimulatory



domain (aa)





6
CD28
aggagtaagaggagcaggctcctgcacagtgactacatgaacatgactccccgccgccccgggcccacccg



costimulatory
caagcattaccagccctatgccccaccacgcgacttcgcagcctatcgctcc



domain (na)





7
CD28
aggagtaagaggagcaggctcctgcacagtgactacatgttcatgactccccgccgccccgggcccaccc



costimulatory
gcaagcattaccagccctatgccccaccacgcgacttcgcagcctatcgctcc



domain (na)





8
CD28
aggagtaagaggagcaggctcctgcacagtgacttcatgaacatgactccccgccgccccgggcccaccc



costimulatory
gcaagcattaccagccctatgccccaccacgcgacttcgcagcctatcgctcc



domain (na)





9
CD28
aggagtaagaggagcaggctcctgcacagtgacttcatgttcatgactccccgccgccccgggcccacccg



costimulatory
caagcattaccagccctatgccccaccacgcgacttcgcagcctatcgctcc



domain (na)









Cancer Associated Antigens

In certain aspects, the present invention provides immune effector cells (e.g., T cells, NK cells) that are engineered to contain one or more CARs that direct the immune effector cells to cancer. This is achieved through an antigen binding domain on the CAR that is specific for a cancer associated antigen. There are two classes of cancer associated antigens (tumor antigens) that can be targeted by the CARs of the instant invention: (1) cancer associated antigens that are expressed on the surface of cancer cells; and (2) cancer associated antigens that itself is intracellar, however, a fragment of such antigen (peptide) is presented on the surface of the cancer cells by MHC (major histocompatibility complex).


Accordingly, the present invention provides CARs that target the following cancer associated antigens (tumor antigens): CD19, CD123, CD22, CD30, CD171, CS-1, CLL-1 (CLECL1), CD33, EGFRvIII, GD2, GD3, BCMA, Tn Ag, PSMA, ROR1, FLT3, FAP, TAG72, CD38, CD44v6, CEA, EPCAM, B7H3, KIT, IL-13Ra2, Mesothelin, IL-11Ra, PSCA, VEGFR2, LewisY, CD24, PDGFR-beta, PRSS21, SSEA-4, CD20, Folate receptor alpha, ERBB2 (Her2/neu), MUC1, EGFR, NCAM, Prostase, PAP, ELF2M, Ephrin B2, IGF-I receptor, CAIX, LMP2, gp100, bcr-abl, tyrosinase, EphA2, Fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, Folate receptor beta, TEM1/CD248, TEM7R, CLDN6, TSHR, GPRC5D, CXORF61, CD97, CD179a, ALK, Polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TARP, WT1, NY-ESO-1, LAGE-1a, legumain, HPV E6,E7, MAGE-A1, MAGE A1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53, p53 mutant, prostein, survivin and telomerase, PCTA-1/Galectin 8, MelanA/MART1, Ras mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, TRP-2, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, RAGE-1, human telomerase reverse transcriptase, RU1, RU2, intestinal carboxyl esterase, mut hsp70-2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, and IGLL1.


Tumor-Supporting Antigens

A CAR described herein can comprise an antigen binding domain (e.g., antibody or antibody fragment, TCR or TCR fragment) that binds to a tumor-supporting antigen (e.g., a tumor-supporting antigen as described herein). In some embodiments, the tumor-supporting antigen is an antigen present on a stromal cell or a myeloid-derived suppressor cell (MDSC). Stromal cells can secrete growth factors to promote cell division in the microenvironment. MDSC cells can inhibit T cell proliferation and activation. Without wishing to be bound by theory, in some embodiments, the CAR-expressing cells destroy the tumor-supporting cells, thereby indirectly inhibiting tumor growth or survival.


In embodiments, the stromal cell antigen is chosen from one or more of: bone marrow stromal cell antigen 2 (BST2), fibroblast activation protein (FAP) and tenascin. In an embodiment, the FAP-specific antibody is, competes for binding with, or has the same CDRs as, sibrotuzumab. In embodiments, the MDSC antigen is chosen from one or more of: CD33, CD11b, C14, CD15, and CD66b. Accordingly, in some embodiments, the tumor-supporting antigen is chosen from one or more of: bone marrow stromal cell antigen 2 (BST2), fibroblast activation protein (FAP) or tenascin, CD33, CD11b, C14, CD15, and CD66b.


Exemplary Chimeric Antigen Receptor (CAR)

The present invention encompasses a recombinant DNA construct comprising sequences encoding a CAR, wherein the CAR comprises an antigen binding domain (e.g., antibody or antibody fragment, TCR or TCR fragment) that binds specifically to a cancer associated antigen described herein, wherein the sequence of the antigen binding domain is contiguous with and in the same reading frame as a nucleic acid sequence encoding an intracellular signaling domain. The intracellular signaling domain can comprise a costimulatory signaling domain and/or a primary signaling domain, e.g., a zeta chain. The costimulatory signaling domain refers to a portion of the CAR comprising at least a portion of the intracellular domain of a costimulatory molecule.


In specific aspects, a CAR construct of the invention comprises a scFv domain, wherein the scFv may be preceded by an optional leader sequence such as provided in SEQ ID NO: 401, and followed by an optional hinge sequence such as provided in SEQ ID NO:403 or SEQ ID NO:405 or SEQ ID NO:407 or SEQ ID NO:10, a transmembrane region such as provided in SEQ ID NO:12, an intracellular signaling domain that includes SEQ ID NO:14, 16, 427-430, or 5, and a CD3 zeta sequence that includes SEQ ID NO:18 or SEQ ID NO:20, e.g., wherein the domains are contiguous with and in the same reading frame to form a single fusion protein.


In one aspect, an exemplary CAR constructs comprise an optional leader sequence (e.g., a leader sequence described herein), an extracellular antigen binding domain (e.g., an antigen binding domain described herein), a hinge (e.g., a hinge region described herein), a transmembrane domain (e.g., a transmembrane domain described herein), and an intracellular stimulatory domain (e.g., an intracellular stimulatory domain described herein). In one aspect, an exemplary CAR construct comprises an optional leader sequence (e.g., a leader sequence described herein), an extracellular antigen binding domain (e.g., an antigen binding domain described herein), a hinge (e.g., a hinge region described herein), a transmembrane domain (e.g., a transmembrane domain described herein), an intracellular costimulatory signaling domain (e.g., a costimulatory signaling domain described herein) and/or an intracellular primary signaling domain (e.g., a primary signaling domain described herein).


An exemplary leader sequence is provided as SEQ ID NO: 401. An exemplary hinge/spacer sequence is provided as SEQ ID NO: 403 or SEQ ID NO:405 or SEQ ID NO:407 or SEQ ID NO:10. An exemplary transmembrane domain sequence is provided as SEQ ID NO:12. An exemplary sequence of the intracellular signaling domain of CD28 is provided as SEQ ID NOs: 427-430 and 5. An exemplary CD3zeta domain sequence is provided as SEQ ID NO: 18 or SEQ ID NO:20.


In one aspect, the present invention encompasses a recombinant nucleic acid construct comprising a nucleic acid molecule encoding a CAR, wherein the nucleic acid molecule comprises the nucleic acid sequence encoding an antigen binding domain, e.g., described herein, that is contiguous with and in the same reading frame as a nucleic acid sequence encoding an intracellular signaling domain


In one aspect, the present invention encompasses a recombinant nucleic acid construct comprising a nucleic acid molecule encoding a CAR, wherein the nucleic acid molecule comprises a nucleic acid sequence encoding an antigen binding domain, wherein the sequence is contiguous with and in the same reading frame as the nucleic acid sequence encoding an intracellular signaling domain. An exemplary intracellular signaling domain that can be used in the CAR includes, but is not limited to, one or more intracellular signaling domains of, e.g., CD3-zeta, CD28, CD27, 4-1BB, a functional variant thereof, and the like. In some instances, the CAR can comprise any combination of CD3-zeta, CD28, 4-1BB, and the like.


The nucleic acid sequences coding for the desired molecules can be obtained using recombinant methods known in the art, such as, for example by screening libraries from cells expressing the nucleic acid molecule, by deriving the nucleic acid molecule from a vector known to include the same, or by isolating directly from cells and tissues containing the same, using standard techniques. Alternatively, the nucleic acid of interest can be produced synthetically, rather than cloned.


The present invention includes retroviral and lentiviral vector constructs expressing a CAR that can be directly transduced into a cell.


The present invention also includes an RNA construct that can be directly transfected into a cell. A method for generating mRNA for use in transfection involves in vitro transcription (IVT) of a template with specially designed primers, followed by polyA addition, to produce a construct containing 3′ and 5′ untranslated sequence (“UTR”) (e.g., a 3′ and/or 5′ UTR described herein), a 5′ cap (e.g., a 5′ cap described herein) and/or Internal Ribosome Entry Site (IRES) (e.g., an IRES described herein), the nucleic acid to be expressed, and a polyA tail, typically 50-2000 bases in length (SEQ ID NO:32). RNA so produced can efficiently transfect different kinds of cells. In one embodiment, the template includes sequences for the CAR. In an embodiment, an RNA CAR vector is transduced into a cell, e.g., a T cell or a NK cell, by electroporation.


Antigen Binding Domain

In one aspect, the CAR of the invention comprises a target-specific binding element otherwise referred to as an antigen binding domain. The choice of moiety depends upon the type and number of ligands that define the surface of a target cell. For example, the antigen binding domain may be chosen to recognize a ligand that acts as a cell surface marker on target cells associated with a particular disease state. Thus, examples of cell surface markers that may act as ligands for the antigen binding domain in a CAR of the invention include those associated with viral, bacterial and parasitic infections, autoimmune disease and cancer cells.


In one aspect, the CAR-mediated T-cell response can be directed to an antigen of interest by way of engineering an antigen binding domain that specifically binds a desired antigen into the CAR.


In one aspect, the portion of the CAR comprising the antigen binding domain comprises an antigen binding domain that targets a tumor antigen, e.g., a tumor antigen described herein.


The antigen binding domain can be any domain that binds to the antigen including but not limited to a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, and a functional fragment thereof, including but not limited to a single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain (VHH) of camelid derived nanobody, and to an alternative scaffold known in the art to function as antigen binding domain, such as a recombinant fibronectin domain, a T cell receptor (TCR), or a fragment there of, e.g., single chain TCR, and the like. In some instances, it is beneficial for the antigen binding domain to be derived from the same species in which the CAR will ultimately be used in. For example, for use in humans, it may be beneficial for the antigen binding domain of the CAR to comprise human or humanized residues for the antigen binding domain of an antibody or antibody fragment.


In one embodiment, an antigen binding domain against CD22 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Haso et al., Blood, 121(7): 1165-1174 (2013); Wayne et al., Clin Cancer Res 16(6): 1894-1903 (2010); Kato et al., Leuk Res 37(1):83-88 (2013); Creative BioMart (creativebiomart.net): MOM-18047-S(P).


In one embodiment, an antigen binding domain against CS-1 is an antigen binding portion, e.g., CDRs, of Elotuzumab (BMS), see e.g., Tai et al., 2008, Blood 112(4):1329-37; Tai et al., 2007, Blood. 110(5):1656-63.


In one embodiment, an antigen binding domain against CLL-1 is an antigen binding portion, e.g., CDRs, of an antibody available from R&D, ebiosciences, Abcam, for example, PE-CLL1-hu Cat #353604 (BioLegend); and PE-CLL1 (CLEC12A) Cat #562566 (BD).


In one embodiment, an antigen binding domain against CD33 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Bross et al., Clin Cancer Res 7(6):1490-1496 (2001) (Gemtuzumab Ozogamicin, hP67.6), Caron et al., Cancer Res 52(24):6761-6767 (1992) (Lintuzumab, HuM195), Lapusan et al., Invest New Drugs 30(3):1121-1131 (2012) (AVE9633), Aigner et al., Leukemia 27(5): 1107-1115 (2013) (AMG330, CD33 BiTE), Dutour et al., Adv hematol 2012:683065 (2012), and Pizzitola et al., Leukemia doi:10.1038/Lue.2014.62 (2014).


In one embodiment, an antigen binding domain against GD2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Mujoo et al., Cancer Res. 47(4):1098-1104 (1987); Cheung et al., Cancer Res 45(6):2642-2649 (1985), Cheung et al., J Clin Oncol 5(9):1430-1440 (1987), Cheung et al., J Clin Oncol 16(9):3053-3060 (1998), Handgretinger et al., Cancer Immunol Immunother 35(3):199-204 (1992). In some embodiments, an antigen binding domain against GD2 is an antigen binding portion of an antibody selected from mAb 14.18, 14G2a, ch14.18, hu14.18, 3F8, hu3F8, 3G6, 8B6, 60C3, 10B8, ME36.1, and 8H9, see e.g., WO2012033885, WO2013040371, WO2013192294, WO2013061273, WO2013123061, WO2013074916, and WO201385552. In some embodiments, an antigen binding domain against GD2 is an antigen binding portion of an antibody described in US Publication No.: 20100150910 or PCT Publication No.: WO 2011160119.


In one embodiment, an antigen binding domain against BCMA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., WO2012163805, WO200112812, and WO2003062401.


In one embodiment, an antigen binding domain against Tn antigen is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 8,440,798, Brooks et al., PNAS 107(22):10056-10061 (2010), and Stone et al., OncoImmunology 1(6):863-873(2012).


In one embodiment, an antigen binding domain against PSMA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Parker et al., Protein Expr Purif 89(2):136-145 (2013), US 20110268656 (J591 ScFv); Frigerio et al, European J Cancer 49(9):2223-2232 (2013) (scFvD2B); WO 2006125481 (mAbs 3/A12, 3/E7 and 3/F11) and single chain antibody fragments (scFv A5 and D7).


In one embodiment, an antigen binding domain against ROR1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Hudecek et al., Clin Cancer Res 19(12):3153-3164 (2013); WO 2011159847; and US20130101607.


In one embodiment, an antigen binding domain against FLT3 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., WO2011076922, U.S. Pat. No. 5,777,084, EP0754230, US20090297529, and several commercial catalog antibodies (R&D, ebiosciences, Abcam).


In one embodiment, an antigen binding domain against TAG72 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Hombach et al., Gastroenterology 113(4):1163-1170 (1997); and Abcam ab691.


In one embodiment, an antigen binding domain against FAP is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Ostermann et al., Clinical Cancer Research 14:4584-4592 (2008) (FAP5), US Pat. Publication No. 2009/0304718; sibrotuzumab (see e.g., Hofheinz et al., Oncology Research and Treatment 26(1), 2003); and Tran et al., J Exp Med 210(6):1125-1135 (2013).


In one embodiment, an antigen binding domain against CD38 is an antigen binding portion, e.g., CDRs, of daratumumab (see, e.g., Groen et al., Blood 116(21):1261-1262 (2010); MOR202 (see, e.g., U.S. Pat. No. 8,263,746); or antibodies described in U.S. Pat. No. 8,362,211.


In one embodiment, an antigen binding domain against CD44v6 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Casucci et al., Blood 122(20):3461-3472 (2013).


In one embodiment, an antigen binding domain against CEA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Chmielewski et al., Gastroenterology 143(4):1095-1107 (2012).


In one embodiment, an antigen binding domain against EPCAM is an antigen binding portion, e.g., CDRS, of an antibody selected from MT110, EpCAM-CD3 bispecific Ab (see, e.g., clinicaltrials.gov/ct2/show/NCT00635596); Edrecolomab; 3622W94; ING-1; and adecatumumab (MT201).


In one embodiment, an antigen binding domain against PRSS21 is an antigen binding portion, e.g., CDRs, of an antibody described in U.S. Pat. No. 8,080,650.


In one embodiment, an antigen binding domain against B7H3 is an antigen binding portion, e.g., CDRs, of an antibody MGA271 (Macrogenics).


In one embodiment, an antigen binding domain against KIT is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 7,915,391, US20120288506, and several commercial catalog antibodies.


In one embodiment, an antigen binding domain against IL-13Ra2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., WO2008/146911, WO2004087758, several commercial catalog antibodies, and WO2004087758.


In one embodiment, an antigen binding domain against CD30 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 7,090,843 B1, and EP0805871.


In one embodiment, an antigen binding domain against GD3 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. Nos. 7,253,263; 8,207,308; US 20120276046; EP1013761; WO2005035577; and U.S. Pat. No. 6,437,098.


In one embodiment, an antigen binding domain against CD171 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Hong et al., J Immunother 37(2):93-104 (2014).


In one embodiment, an antigen binding domain against IL-11Ra is an antigen binding portion, e.g., CDRs, of an antibody available from Abcam (cat #ab55262) or Novus Biologicals (cat #EPR5446). In another embodiment, an antigen binding domain again IL-11Ra is a peptide, see, e.g., Huang et al., Cancer Res 72(1):271-281 (2012).


In one embodiment, an antigen binding domain against PSCA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Morgenroth et al., Prostate 67(10):1121-1131 (2007) (scFv 7F5); Nejatollahi et al., J of Oncology 2013(2013), article ID 839831 (scFv C5-II); and US Pat Publication No. 20090311181.


In one embodiment, an antigen binding domain against VEGFR2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Chinnasamy et al., J Clin Invest 120(11):3953-3968 (2010).


In one embodiment, an antigen binding domain against LewisY is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Kelly et al., Cancer Biother Radiopharm 23(4):411-423 (2008) (hu3S193 Ab (scFvs)); Dolezal et al., Protein Engineering 16(1):47-56 (2003) (NC10 scFv).


In one embodiment, an antigen binding domain against CD24 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Maliar et al., Gastroenterology 143(5):1375-1384 (2012).


In one embodiment, an antigen binding domain against PDGFR-beta is an antigen binding portion, e.g., CDRs, of an antibody Abcam ab32570.


In one embodiment, an antigen binding domain against SSEA-4 is an antigen binding portion, e.g., CDRs, of antibody MC813 (Cell Signaling), or other commercially available antibodies.


In one embodiment, an antigen binding domain against CD20 is an antigen binding portion, e.g., CDRs, of the antibody Rituximab, Ofatumumab, Ocrelizumab, Veltuzumab, or GA101.


In one embodiment, an antigen binding domain against Folate receptor alpha is an antigen binding portion, e.g., CDRs, of the antibody IMGN853, or an antibody described in US20120009181; U.S. Pat. No. 4,851,332, LK26: U.S. Pat. No. 5,952,484.


In one embodiment, an antigen binding domain against ERBB2 (Her2/neu) is an antigen binding portion, e.g., CDRs, of the antibody trastuzumab, or pertuzumab.


In one embodiment, an antigen binding domain against MUC1 is an antigen binding portion, e.g., CDRs, of the antibody SAR566658.


In one embodiment, the antigen binding domain against EGFR is antigen binding portion, e.g., CDRs, of the antibody cetuximab, panitumumab, zalutumumab, nimotuzumab, or matuzumab.


In one embodiment, an antigen binding domain against NCAM is an antigen binding portion, e.g., CDRs, of the antibody clone 2-2B: MAB5324 (EMD Millipore)


In one embodiment, an antigen binding domain against Ephrin B2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Abengozar et al., Blood 119(19):4565-4576 (2012).


In one embodiment, an antigen binding domain against IGF-I receptor is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 8,344,112 B2; EP2322550 A1; WO 2006/138315, or PCT/US2006/022995.


In one embodiment, an antigen binding domain against CAIX is an antigen binding portion, e.g., CDRs, of the antibody clone 303123 (R&D Systems).


In one embodiment, an antigen binding domain against LMP2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 7,410,640, or US20050129701.


In one embodiment, an antigen binding domain against gp100 is an antigen binding portion, e.g., CDRs, of the antibody HMB45, NKIbetaB, or an antibody described in WO2013165940, or US20130295007


In one embodiment, an antigen binding domain against tyrosinase is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 5,843,674; or US19950504048.


In one embodiment, an antigen binding domain against EphA2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Yu et al., Mol Ther 22(1):102-111 (2014).


In one embodiment, an antigen binding domain against GD3 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. Nos. 7,253,263; 8,207,308; US 20120276046; EP1013761 A3; 20120276046; WO2005035577; or U.S. Pat. No. 6,437,098.


In one embodiment, an antigen binding domain against fucosyl GM1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., US20100297138; or WO2007/067992.


In one embodiment, an antigen binding domain against sLe is an antigen binding portion, e.g., CDRs, of the antibody G193 (for lewis Y), see Scott A M et al, Cancer Res 60: 3254-61 (2000), also as described in Neeson et al, J Immunol May 2013 190 (Meeting Abstract Supplement) 177.10.


In one embodiment, an antigen binding domain against GM3 is an antigen binding portion, e.g., CDRs, of the antibody CA 2523449 (mAb 14F7).


In one embodiment, an antigen binding domain against HMWMAA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Kmiecik et al., Oncoimmunology 3(1):e27185 (2014) (PMID: 24575382) (mAb9.2.27); U.S. Pat. No. 6,528,481; WO2010033866; or US 20140004124.


In one embodiment, an antigen binding domain against o-acetyl-GD2 is an antigen binding portion, e.g., CDRs, of the antibody 8B6.


In one embodiment, an antigen binding domain against TEM1/CD248 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Marty et al., Cancer Lett 235(2):298-308 (2006); Zhao et al., J Immunol Methods 363(2):221-232 (2011).


In one embodiment, an antigen binding domain against CLDN6 is an antigen binding portion, e.g., CDRs, of the antibody IMAB027 (Ganymed Pharmaceuticals), see e.g., clinicaltrial.gov/show/NCT02054351.


In one embodiment, an antigen binding domain against TSHR is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 8,603,466; U.S. Pat. No. 8,501,415; or U.S. Pat. No. 8,309,693.


In one embodiment, an antigen binding domain against GPRC5D is an antigen binding portion, e.g., CDRs, of the antibody FAB6300A (R&D Systems); or LS-A4180 (Lifespan Biosciences).


In one embodiment, an antigen binding domain against CD97 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 6,846,911;de Groot et al., J Immunol 183(6):4127-4134 (2009); or an antibody from R&D:MAB3734.


In one embodiment, an antigen binding domain against ALK is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Mino-Kenudson et al., Clin Cancer Res 16(5):1561-1571 (2010).


In one embodiment, an antigen binding domain against polysialic acid is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Nagae et al., J Biol Chem 288(47):33784-33796 (2013).


In one embodiment, an antigen binding domain against PLAC1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Ghods et al., Biotechnol Appl Biochem 2013 doi:10.1002/bab.1177.


In one embodiment, an antigen binding domain against GloboH is an antigen binding portion of the antibody VK9; or an antibody described in, e.g., Kudryashov V et al, Glycoconj J. 15(3):243-9 (1998), Lou et al., Proc Natl Acad Sci USA 111(7):2482-2487 (2014); MBr1: Bremer E-G et al. J Biol Chem 259:14773-14777 (1984).


In one embodiment, an antigen binding domain against NY-BR-1 is an antigen binding portion, e.g., CDRs of an antibody described in, e.g., Jager et al., Appl Immunohistochem Mol Morphol 15(1):77-83 (2007).


In one embodiment, an antigen binding domain against WT-1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Dao et al., Sci Transl Med 5(176):176ra33 (2013); or WO2012/135854.


In one embodiment, an antigen binding domain against MAGE-A1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Willemsen et al., J Immunol 174(12):7853-7858 (2005) (TCR-like scFv).


In one embodiment, an antigen binding domain against sperm protein 17 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Song et al., Target Oncol 2013 Aug. 14 (PMID: 23943313); Song et al., Med Oncol 29(4):2923-2931 (2012).


In one embodiment, an antigen binding domain against Tie 2 is an antigen binding portion, e.g., CDRs, of the antibody AB33 (Cell Signaling Technology).


In one embodiment, an antigen binding domain against MAD-CT-2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., PMID: 2450952; U.S. Pat. No. 7,635,753.


In one embodiment, an antigen binding domain against Fos-related antigen 1 is an antigen binding portion, e.g., CDRs, of the antibody 12F9 (Novus Biologicals).


In one embodiment, an antigen binding domain against MelanA/MART1 is an antigen binding portion, e.g., CDRs, of an antibody described in, EP2514766 A2; or U.S. Pat. No. 7,749,719.


In one embodiment, an antigen binding domain against sarcoma translocation breakpoints is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Luo et al, EMBO Mol. Med. 4(6):453-461 (2012).


In one embodiment, an antigen binding domain against TRP-2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Wang et al, J Exp Med. 184(6):2207-16 (1996).


In one embodiment, an antigen binding domain against CYP1B1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Maecker et al, Blood 102 (9): 3287-3294 (2003).


In one embodiment, an antigen binding domain against RAGE-1 is an antigen binding portion, e.g., CDRs, of the antibody MAB5328 (EMD Millipore).


In one embodiment, an antigen binding domain against human telomerase reverse transcriptase is an antigen binding portion, e.g., CDRs, of the antibody cat no: LS-B95-100 (Lifespan Biosciences)


In one embodiment, an antigen binding domain against intestinal carboxyl esterase is an antigen binding portion, e.g., CDRs, of the antibody 4F12: cat no: LS-B6190-50 (Lifespan Biosciences).


In one embodiment, an antigen binding domain against mut hsp70-2 is an antigen binding portion, e.g., CDRs, of the antibody Lifespan Biosciences: monoclonal: cat no: LS-C133261-100 (Lifespan Biosciences).


In one embodiment, an antigen binding domain against CD79a is an antigen binding portion, e.g., CDRs, of the antibody Anti-CD79a antibody [HM47/A9] (ab3121), available from Abcam; antibody CD79A Antibody #3351 available from Cell Signaling Technology; or antibody HPA017748-Anti-CD79A antibody produced in rabbit, available from Sigma Aldrich.


In one embodiment, an antigen binding domain against CD79b is an antigen binding portion, e.g., CDRs, of the antibody polatuzumab vedotin, anti-CD79b described in Dornan et al., “Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma” Blood. 2009 Sep. 24; 114(13):2721-9. doi: 10.1182/blood-2009-02-205500. Epub 2009 Jul. 24, or the bispecific antibody Anti-CD79b/CD3 described in “4507 Pre-Clinical Characterization of T Cell-Dependent Bispecific Antibody Anti-CD79b/CD3 As a Potential Therapy for B Cell Malignancies” Abstracts of 56th ASH Annual Meeting and Exposition, San Francisco, Calif. Dec. 6-9 2014.


In one embodiment, an antigen binding domain against CD72 is an antigen binding portion, e.g., CDRs, of the antibody J3-109 described in Myers, and Uckun, “An anti-CD72 immunotoxin against therapy-refractory B-lineage acute lymphoblastic leukemia.” Leuk Lymphoma. 1995 June; 18(1-2):119-22, or anti-CD72 (10D6.8.1, mIgG1) described in Polson et al., “Antibody-Drug Conjugates for the Treatment of Non-Hodgkin's Lymphoma: Target and Linker-Drug Selection” Cancer Res Mar. 15, 2009 69; 2358.


In one embodiment, an antigen binding domain against LAIR1 is an antigen binding portion, e.g., CDRs, of the antibody ANT-301 LAIR1 antibody, available from ProSpec; or anti-human CD305 (LAIR1) Antibody, available from BioLegend.


In one embodiment, an antigen binding domain against FCAR is an antigen binding portion, e.g., CDRs, of the antibody CD89/FCARAntibody (Catalog #10414-H08H), available from Sino Biological Inc.


In one embodiment, an antigen binding domain against LILRA2 is an antigen binding portion, e.g., CDRs, of the antibody LILRA2 monoclonal antibody (M17), clone 3C7, available from Abnova, or Mouse Anti-LILRA2 antibody, Monoclonal (2D7), available from Lifespan Biosciences.


In one embodiment, an antigen binding domain against CD300LF is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-CMRF35-like molecule 1 antibody, Monoclonal[UP-D2], available from BioLegend, or Rat Anti-CMRF35-like molecule 1 antibody, Monoclonal[234903], available from R&D Systems.


In one embodiment, an antigen binding domain against CLEC12A is an antigen binding portion, e.g., CDRs, of the antibody Bispecific T cell Engager (BiTE) scFv-antibody and ADC described in Noordhuis et al., “Targeting of CLEC12A In Acute Myeloid Leukemia by Antibody-Drug-Conjugates and Bispecific CLL-1xCD3 BiTE Antibody” 53rd ASH Annual Meeting and Exposition, Dec. 10-13, 2011, and MCLA-117 (Merus).


In one embodiment, an antigen binding domain against BST2 (also called CD317) is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-CD317 antibody, Monoclonal[3H4], available from Antibodies-Online or Mouse Anti-CD317 antibody, Monoclonal[696739], available from R&D Systems.


In one embodiment, an antigen binding domain against EMR2 (also called CD312) is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-CD312 antibody, Monoclonal[LS-B8033] available from Lifespan Biosciences, or Mouse Anti-CD312 antibody, Monoclonal[494025] available from R&D Systems.


In one embodiment, an antigen binding domain against LY75 is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-Lymphocyte antigen 75 antibody, Monoclonal[HD30] available from EMD Millipore or Mouse Anti-Lymphocyte antigen 75 antibody, Monoclonal[A15797] available from Life Technologies.


In one embodiment, an antigen binding domain against GPC3 is an antigen binding portion, e.g., CDRs, of the antibody hGC33 described in Nakano K, Ishiguro T, Konishi H, et al. Generation of a humanized anti-glypican 3 antibody by CDR grafting and stability optimization. Anticancer Drugs. 2010 November; 21(10):907-916, or MDX-1414, HN3, or YP7, all three of which are described in Feng et al., “Glypican-3 antibodies: a new therapeutic target for liver cancer.” FEBS Lett. 2014 Jan. 21; 588(2):377-82.


In one embodiment, an antigen binding domain against FCRL5 is an antigen binding portion, e.g., CDRs, of the anti-FcRL5 antibody described in Elkins et al., “FcRL5 as a target of antibody-drug conjugates for the treatment of multiple myeloma” Mol Cancer Ther. 2012 October; 11(10):2222-32.


In one embodiment, an antigen binding domain against IGLL1 is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-Immunoglobulin lambda-like polypeptide 1 antibody, Monoclonal[AT1G4] available from Lifespan Biosciences, Mouse Anti-Immunoglobulin lambda-like polypeptide 1 antibody, Monoclonal[HSL11] available from BioLegend.


In one embodiment, the antigen binding domain comprises one, two three (e.g., all three) heavy chain CDRs, HC CDR1, HC CDR2 and HC CDR3, from an antibody listed above, and/or one, two, three (e.g., all three) light chain CDRs, LC CDR1, LC CDR2 and LC CDR3, from an antibody listed above. In one embodiment, the antigen binding domain comprises a heavy chain variable region and/or a variable light chain region of an antibody listed above.


In another aspect, the antigen binding domain comprises a humanized antibody or an antibody fragment. In some aspects, a non-human antibody is humanized, where specific sequences or regions of the antibody are modified to increase similarity to an antibody naturally produced in a human or fragment thereof. In one aspect, the antigen binding domain is humanized.


A humanized antibody can be produced using a variety of techniques known in the art, including but not limited to, CDR-grafting (see, e.g., European Patent No. EP 239,400; International Publication No. WO 91/09967; and U.S. Pat. Nos. 5,225,539, 5,530,101, and 5,585,089, each of which is incorporated herein in its entirety by reference), veneering or resurfacing (see, e.g., European Patent Nos. EP 592,106 and EP 519,596; Padlan, 1991, Molecular Immunology, 28(4/5):489-498; Studnicka et al., 1994, Protein Engineering, 7(6):805-814; and Roguska et al., 1994, PNAS, 91:969-973, each of which is incorporated herein by its entirety by reference), chain shuffling (see, e.g., U.S. Pat. No. 5,565,332, which is incorporated herein in its entirety by reference), and techniques disclosed in, e.g., U.S. Patent Application Publication No. US2005/0042664, U.S. Patent Application Publication No. US2005/0048617, U.S. Pat. Nos. 6,407,213, 5,766,886, International Publication No. WO 9317105, Tan et al., J. Immunol., 169:1119-25 (2002), Caldas et al., Protein Eng., 13(5):353-60 (2000), Morea et al., Methods, 20(3):267-79 (2000), Baca et al., J. Biol. Chem., 272(16):10678-84 (1997), Roguska et al., Protein Eng., 9(10):895-904 (1996), Couto et al., Cancer Res., 55 (23 Supp):5973s-5977s (1995), Couto et al., Cancer Res., 55(8):1717-22 (1995), Sandhu J S, Gene, 150(2):409-10 (1994), and Pedersen et al., J. Mol. Biol., 235(3):959-73 (1994), each of which is incorporated herein in its entirety by reference. Often, framework residues in the framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, for example improve, antigen binding. These framework substitutions are identified by methods well-known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Pat. No. 5,585,089; and Riechmann et al., 1988, Nature, 332:323, which are incorporated herein by reference in their entireties.)


A humanized antibody or antibody fragment has one or more amino acid residues remaining in it from a source which is nonhuman. These nonhuman amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. As provided herein, humanized antibodies or antibody fragments comprise one or more CDRs from nonhuman immunoglobulin molecules and framework regions wherein the amino acid residues comprising the framework are derived completely or mostly from human germline. Multiple techniques for humanization of antibodies or antibody fragments are well-known in the art and can essentially be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody, i.e., CDR-grafting (EP 239,400; PCT Publication No. WO 91/09967; and U.S. Pat. Nos. 4,816,567; 6,331,415; 5,225,539; 5,530,101; 5,585,089; 6,548,640, the contents of which are incorporated herein by reference herein in their entirety). In such humanized antibodies and antibody fragments, substantially less than an intact human variable domain has been substituted by the corresponding sequence from a nonhuman species. Humanized antibodies are often human antibodies in which some CDR residues and possibly some framework (FR) residues are substituted by residues from analogous sites in rodent antibodies. Humanization of antibodies and antibody fragments can also be achieved by veneering or resurfacing (EP 592,106; EP 519,596; Padlan, 1991, Molecular Immunology, 28(4/5):489-498; Studnicka et al., Protein Engineering, 7(6):805-814 (1994); and Roguska et al., PNAS, 91:969-973 (1994)) or chain shuffling (U.S. Pat. No. 5,565,332), the contents of which are incorporated herein by reference herein in their entirety.


The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is to reduce antigenicity. According to the so-called “best-fit” method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987), the contents of which are incorporated herein by reference herein in their entirety). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (see, e.g., Nicholson et al. Mol. Immun 34 (16-17): 1157-1165 (1997); Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993), the contents of which are incorporated herein by reference herein in their entirety). In some embodiments, the framework region, e.g., all four framework regions, of the heavy chain variable region are derived from a VH4_4-59 germline sequence. In one embodiment, the framework region can comprise, one, two, three, four or five modifications, e.g., substitutions, e.g., from the amino acid at the corresponding murine sequence. In one embodiment, the framework region, e.g., all four framework regions of the light chain variable region are derived from a VK3_1.25 germline sequence. In one embodiment, the framework region can comprise, one, two, three, four or five modifications, e.g., substitutions, e.g., from the amino acid at the corresponding murine sequence.


In some aspects, the portion of a CAR composition of the invention that comprises an antibody fragment is humanized with retention of high affinity for the target antigen and other favorable biological properties. According to one aspect of the invention, humanized antibodies and antibody fragments are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, e.g., the analysis of residues that influence the ability of the candidate immunoglobulin to bind the target antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody or antibody fragment characteristic, such as increased affinity for the target antigen, is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.


A humanized antibody or antibody fragment may retain a similar antigenic specificity as the original antibody, e.g., in the present invention, the ability to bind human a cancer associated antigen as described herein. In some embodiments, a humanized antibody or antibody fragment may have improved affinity and/or specificity of binding to human a cancer associated antigen as described herein.


In one aspect, the antigen binding domain of the invention is characterized by particular functional features or properties of an antibody or antibody fragment. For example, in one aspect, the portion of a CAR composition of the invention that comprises an antigen binding domain specifically binds a tumor antigen as described herein.


In one aspect, the anti-cancer associated antigen as described herein binding domain is a fragment, e.g., a single chain variable fragment (scFv). In one aspect, the anti-cancer associated antigen as described herein binding domain is a Fv, a Fab, a (Fab′)2, or a bi-functional (e.g. bi-specific) hybrid antibody (e.g., Lanzavecchia et al., Eur. J. Immunol. 17, 105 (1987)). In one aspect, the antibodies and fragments thereof of the invention binds a cancer associated antigen as described herein protein with wild-type or enhanced affinity.


In some instances, scFvs can be prepared according to method known in the art (see, for example, Bird et al., (1988) Science 242:423-426 and Huston et al., (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). ScFv molecules can be produced by linking VH and VL regions together using flexible polypeptide linkers. The scFv molecules comprise a linker (e.g., a Ser-Gly linker) with an optimized length and/or amino acid composition. The linker length can greatly affect how the variable regions of a scFv fold and interact. In fact, if a short polypeptide linker is employed (e.g., between 5-10 amino acids) intrachain folding is prevented. Interchain folding is also required to bring the two variable regions together to form a functional epitope binding site. For examples of linker orientation and size see, e.g., Hollinger et al. 1993 Proc Natl Acad. Sci. U.S.A. 90:6444-6448, U.S. Patent Application Publication Nos. 2005/0100543, 2005/0175606, 2007/0014794, and PCT publication Nos. WO2006/020258 and WO2007/024715, is incorporated herein by reference.


An scFv can comprise a linker of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more amino acid residues between its VL and VH regions. The linker sequence may comprise any naturally occurring amino acid. In some embodiments, the linker sequence comprises amino acids glycine and serine. In another embodiment, the linker sequence comprises sets of glycine and serine repeats such as (Gly4Ser)n, where n is a positive integer equal to or greater than 1 (SEQ ID NO:22). In one embodiment, the linker can be (Gly4Ser)4 (SEQ ID NO:29) or (Gly4Ser)3(SEQ ID NO:30). Variation in the linker length may retain or enhance activity, giving rise to superior efficacy in activity studies.


In another aspect, the antigen binding domain is a T cell receptor (“TCR”), or a fragment thereof, for example, a single chain TCR (scTCR). Methods to make such TCRs are known in the art. See, e.g., Willemsen R A et al, Gene Therapy 7: 1369-1377 (2000); Zhang T et al, Cancer Gene Ther 11: 487-496 (2004); Aggen et al, Gene Ther. 19(4):365-74 (2012) (references are incorporated herein by its entirety). For example, scTCR can be engineered that contains the Vα and Vβ genes from a T cell clone linked by a linker (e.g., a flexible peptide). This approach is very useful to cancer associated target that itself is intracellar, however, a fragment of such antigen (peptide) is presented on the surface of the cancer cells by MHC.


In one embodiment, an antigen binding domain against EGFRvIII is an antigen binding portion, e.g., CDRs, of a CAR, antibody or antigen-binding fragment thereof described in, e.g., PCT publication WO2014/130657 or US2014/0322275A1. In one embodiment, the CAR molecule comprises an EGFRvIII CAR, or an antigen binding domain according to Table 2 or SEQ ID NO:11 of WO 2014/130657, incorporated herein by reference, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical thereto). The amino acid and nucleotide sequences encoding the EGFRvIII CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO 2014/130657.


In one embodiment, an antigen binding domain against mesothelin is an antigen binding portion, e.g., CDRs, of an antibody, antigen-binding fragment or CAR described in, e.g., PCT publication WO2015/090230. In one embodiment, an antigen binding domain against mesothelin is an antigen binding portion, e.g., CDRs, of an antibody, antigen-binding fragment, or CAR described in, e.g., PCT publication WO1997/025068, WO1999/028471, WO2005/014652, WO2006/099141, WO2009/045957, WO2009/068204, WO2013/142034, WO2013/040557, or WO2013/063419.


In an embodiment, the CAR molecule comprises a mesothelin CAR described herein, e.g., a mesothelin CAR described in WO 2015/090230, incorporated herein by reference. In embodiments, the mesothelin CAR comprises an amino acid, or has a nucleotide sequence shown in Tables 2 or 3, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid mesothelin CAR sequences). In one embodiment, the CAR molecule comprises a mesothelin CAR, or an antigen binding domain according to Tables 2-3 of WO 2015/090230, incorporated herein by reference and included in adapted form below, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical thereto). The amino acid and nucleotide sequences encoding the mesothelin CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO 2015/090230.









TABLE 2 







Amino Acid Sequences of Human scFvs and CARs (bold underline is the leader


sequence and grey box is a linker sequence). In the case of the scFvs,the


remaining amino acids are the heavy chain variable region and light chain


variable regions, with each of the HC CDRs (HC CDR1, HC CDR2, HC CDR3)and


LC CDRs (LC CDR1, LC CDR2,LCCDR3) underlined). In the case of the CARs,the


further remaining amino acids are the remaining amino acids of the CARs.)









SEQ




ID




NO:
Description
Amino Acid Sequence





431 
M1 (ScFv
QVQLQQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQ



domain)
APGQGLEWMGRINPNSGGTKYAQKFQGRVTMTRDTSISTAYMELSRLRSEDTAVYYCARG






embedded image






CRASQSVSSNFAWYQQRPGQAPRLLIYDASNRATGIPPRFSGSGSGTDFTLTISSLEPED




FAAYYCHQRSNWLYTFGQGTKVDIK





432
M1 (full) >ZA53- 27BC (M11


embedded image





ZA53-
CRASQSVSSNFAWYQQRPGQAPRLLIYDASNRATGIPPRFSGSGSGTDFTLTISSLEPED



27BC
FAAYYCHQRSNWLYTFGQGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



R001-A11
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED



126161)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR





433
M2 (ScFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQ



domain)
APGQGLEWMGWINPNSGGTKYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARD






embedded image






SVGDRVTITCQASQDISNSLNWYQQKAGKAPKLLIYDASTLETGVPSRFSGSGSGTDFSF




TISSLQPEDIATYYCQQHDNLPLTFGQGTKVEIK





434
M2 (full) >FA56- 26RC (M2


embedded image





FA56-
SVGDRVTITCQASQDISNSLNWYQQKAGKAPKLLIYDASTLETGVPSRFSGSGSGTDFSF



26RC
TISSLQPEDIATYYCQQHDNLPLTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEA



R001-A10
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMR



126162)
PVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVL




DKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





435
M3 (ScFv
QVQLVQSGAEVKKPGAPVKVSCKASGYTFTGYYMHWVRQ



domain)
APGQGLEWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARG






embedded image






TITCRASQSINTYLNWYQHKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQ




PEDFATYYCQQSFSPLTFGGGTKLEIK





436
M3 >VA58- 21LC (M3


embedded image





VA58-
TITCRASQSINTYLNWYQHKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQ



21LC
PEDFATYYCQQSFSPLTFGGGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG



R001-A1
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQE



126163)
EDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRD




PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





437
M4 (ScFv
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQ



domain)
VPGKGLVWVSRINTDGSTTTYADSVEGRFTISRDNAKNTLYLQMNSLRDDDTAVYYCVGG






embedded image







SQSISDRLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFAV





YYCQQYGHLPMYTFGQGTKVEIK





438
M4 >DP37- 07IC (M4


embedded image





DP37-

SQSISDRLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFAV




07IC
YYCQQYGHLPMYTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT



R001-C6
RGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGC



126164)
SCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG




GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHM




QALPPR





439
M5 (ScFv
QVQLVQSGAEVEKPGASVKVSCKASGYTFTDYYMHWVRQ



domain)
APGQGLEWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCASG






embedded image







ASQSIRYYLSWYQQKPGKAPKLLIYTASILQNGVPSRFSGSGSGTDFTLTISSLQPEDFA





TYYCLQTYTTPDFGPGTKVEIK





440
M5 >XP31- 20LC 


embedded image





(M5

ASQSIRYYLSWYQQKPGKAPKLLIYTASILQNGVPSRFSGSGSGTDFTLTISSLQPEDFA




XP31-
TYYCLQTYTTPDFGPGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR



20LC
GLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCS



R001-B4
CRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG



126165)
KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ




ALPPR





441
M6 (ScFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQ



domain)
APGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARY






embedded image






SVGDRVTITCRASQGVGRWLAWYQQKPGTAPKLLIYAASTLQSGVPSRFSGSGSGTDFTL




TINNLQPEDFATYYCQQANSFPLTFGGGTRLEIK





442
M6 >FE10- 06ID 


embedded image





(M6
SVGDRVTITCRASQGVGRWLAWYQQKPGTAPKLLIYAASTLQSGVPSRFSGSGSGTDFTL



46FE10-
TINNLQPEDFATYYCQQANSFPLTFGGGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEA



06ID
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMR



R001-A4
PVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVL



126166)
DKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





443
M7 (ScFv
QVQLVQSGGGWQPGRSLRLSCAASGFTFSSYAMHWVRQ



domain)
APGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARW






embedded image






AILSCRASQSVYTKYLGWYQQKPGQAPRLLIYDASTRATGIPDRFSGSGSGTDFTLTINR




LEPEDFAVYYCQHYGGSPLITFGQGTRLEIK





444
M7 >VE12- 01CD (M7


embedded image





VE12-
AILSCRASQSVYTKYLGWYQQKPGQAPRLLIYDASTRATGIPDRFSGSGSGTDFTLTINR



01CD
LEPEDFAVYYCQHYGGSPLITFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRP



R001-A5
AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQ



126167)
TTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKR




RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK




DTYDALHMQALPPR





445
M8 (ScFv
QVQLQQSAEVKKPGASVKVSCKTSGYPFTGYSLHWVRQ



domain)
APGQGLEWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARD






embedded image






ITCRASQDSGTWLAWYQQKPGKAPNLLMYDASTLEDGVPSRFSGSASGTEFTLTVNRLQP




EDSATYYCQQYNSYPLTFGGGTKVDIK





446
M8 >LE13- 05XD 


embedded image





(M8
ITCRASQDSGTWLAWYQQKPGKAPNLLMYDASTLEDGVPSRFSGSASGTEFTLTVNRLQP



LE13-
EDSATYYCQQYNSYPLTFGGGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG



05XD
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQE



R001-E5
EDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRD



126168)
PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





447
M9 (ScFv
QVQLVQSGAEVKKPGASVEVSCKASGYTFTSYYMHWVRQ



domain)
APGQGLEWMGIINPSGGSTGYAQKFQGRVTMTRDTSTSTVHMELSSLRSEDTAVYYCARG






embedded image






VTITCRASQDISSALAWYQQKPGTPPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQFSSYPLTFGGGTRLEIK





448
M9 >BE15- 00SD 


embedded image





(M9
VTITCRASQDISSALAWYQQKPGTPPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSL



BE15-
QPEDFATYYCQQFSSYPLTFGGGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAA



00SD
GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTT



R001-A3
QEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRG



126169)
RDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT




YDALHMQALPPR





449
M10 (ScFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQ



domain)
APGQGLEWMGWISAYNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARV






embedded image






RATISCKSSHSVLYNRNNKNYLAWYQQKPGQPPKLLFYWASTRKSGVPDRFSGSGSGTDF




TLTISSLQPEDFATYFCQQTQTFPLTFGQGTRLEIN





450
M10 >RE16- 05MD


embedded image





(M10
RATISCKSSHSVLYNRNNKNYLAWYQQKPGQPPKLLFYWASTRKSGVPDRFSGSGSGTDF



RE16-
TLTISSLQPEDFATYFCQQTQTFPLTFGQGTRLEINTTTPAPRPPTPAPTIASQPLSLRP



05MD
EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPF



R01-D10
MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYD



126170)
VLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL




STATKDTYDALHMQALPPR





451
M11 (ScFv
QVQLQQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQ



domain)
APGQGLEWMGWINPNSGGTNYAQNFQGRVTMTRDTSISTAYMELRRLRSDDTAVYYCASG






embedded image







ASQSIRYYLSWYQQKPGKAPKLLIYTASILQNGVPSRFSGSGSGTDFTLTISSLQPEDFA





TYYCLQTYTTPDFGPGTKVEIK





452
M11 >NE10- 19WD


embedded image





(M11

ASQSIRYYLSWYQQKPGKAPKLLIYTASILQNGVPSRFSGSGSGTDFTLTISSLQPEDFA




NE10-
TYYCLQTYTTPDFGPGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR



19WD
GLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCS



R001-G2
CRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG



126171)
KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ




ALPPR





453
M12 (ScFv
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQ



domain)
APGQGLEWMGRINPNSGGTNYAQKFQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCART






embedded image






TCRASQSISTWLAWYQQKPGKAPNLLIYKASTLESGVPSRFSGSGSGTEFTLTISSLQPD




DFATYYCQQYNTYSPYTFGQGTKLEIK





454
M12 >DE12- 14RD


embedded image





(M12
TCRASQSISTWLAWYQQKPGKAPNLLIYKASTLESGVPSRFSGSGSGTEFTLTISSLQPD



DE12-
DFATYYCQQYKTYSPYTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG



14RD
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQE



R001-G9
EDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRD



126172)
PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





455
M13 (ScFv
QVQLVQSGGGLVKPGGSLRLSCEASGFIFSDYYMGWIRQ



domain)
APGKGLEWVSYIGRSGSSMYYAPSVKGRFTFSRDNAKNSLYLQMNSLRAEDTAVYYCAAS






embedded image






ATLSCRASQSVTSNYLAWYQQKPGQAPRLLLFGASTRATGIPDRFSGSGSGTDFTLTINR




LEPEDFAMYYCQQYGSAPVTFGQGTKLEIK





456
M13 >TE13- 19LD


embedded image





(M13
ATLSCRASQSVTSNYLAWYQQKPGQAPRLLLFGASTRATGIPDRFSGSGSGTDFTLTINR



TE13-
LEPEDFAMYYCQQYGSAPVTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPA



19LD
AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQT



R002-C3
TQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR



126173)
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKD




TYDALHMQALPPR





457
M14 (ScFv
QVQLVQSGAEVRAPGASVKISCKASGFTFRGYYIHWVRQ



domain)
APGQGLEWMGIINPSGGSRAYAQKFQGRVTMTRDTSTSTVYMELSSLRSDDTAMYYCART






embedded image






RVTITCRASENVNIWLAWYQQKPGKAPKLLIYKSSSLASGVPSRFSGSGSGAEFTLTISS




LQPDDFATYYCQQYQSYPLTFGGGTKVDIK





458
M14 >BS83- 95ID


embedded image





(M14
RVTITCRASENVNIWLAWYQQKPGKAPKLLIYKSSSLASGVPSRFSGSGSGAEFTLTISS



BS83-
LQPDDFATYYCQQYQSYPLTFGGGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPA



95ID
AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQT



R001-E8
TQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR



126174)
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKD




TYDALHMQALPPR





459
M15 (ScFv
QVQLVQSGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQ



domain)
APGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKD






embedded image







QGDALRSYYASWYQQKPGQAPMLVIYGKNNRPSGIPDRFSGSDSGDTASLTITGAQAEDE





ADYYCNSRDSSGYPVFGTGTKVTVL





460
M15 >HS86- 94XD


embedded image





(M15

QGDALRSYYASWYQQKPGQAPMLVTYGKNNRPSGIPDRFSGSDSGDTASLTITGAQAEDE




HS86-
ADYYCNSRDSSGYPVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



94XD
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED



NT
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPE



127553)
MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR





461
M16 (ScFv
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQ



domain)
APGKGLEWVSGISWNSGSTGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKD






embedded image






CQGDSLRSYYASWYQQKPGQAPVLVIFGRSRRPSGIPDRFSGSSSGNTASLIITGAQAED




EADYYCNSRDNTANHYVFGTGTKLTVL





462
M16 >XS87- 99RD


embedded image





(M16
CQGDSLRSYYASWYQQKPGQAPVLVIFGRSRRPSGIPDRFSGSSSGNTASLIITGAQAED



XS87-
EADYYCNSRDNTANHYVFGTGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG



99RD
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQE



NT
EDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRD



127554)
PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





463
M17 (ScFv
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQ



domain)
APGKGLEWVSGISWNSGSTGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCAKD






embedded image






CQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAED




EADYYCNSRGSSGNHYVFGTGTKVTVL





464
M17 >NS89- 94MD


embedded image





(M17
CQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAED



NS89-
EADYYCNSRGSSGNHYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG



94MD
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQE



NT
EDGCSCRFPEEEEGGCELRVKFSRSADAFAYKQGQNQLYNELNLGRREEYDVLDKRRGRD



127555)
PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





465
M18 (ScFv
QVQLVQSGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQ



domain)
APGKGLVWVSRINSDGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCVRT






embedded image






RATLSCRASQSVSSNYLAWYQQKPGQPPRLLIYDVSTRATGIPARFSGGGSGTDFTLTIS




SLEPEDFAVYYCQQRSNWPPWTFGQGTKVEIK





466
M18 >DS90- 09HD


embedded image





(M18
RATLSCRASQSVSSNYLAWYQQKPGQPPRLLIYDVSTRATGIPARFSGGGSGTDFTLTIS



DS90-
SLEPEDFAVYYCQQRSNWPPWTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACR



09HD
PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPV



R003-A05
QTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDK



127556)
RRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT




KDTYDALHMQALPPR





467
M19 (ScFv
QVQLVQSGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQ



domain)
APGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKG






embedded image






AILSCRASQSVYTKYLGWYQQKPGQAPRLLIYDASTRATGIPDRFSGSGSGTDFTLTINR




LEPEDFAVYYCQHYGGSPLITFGQGTKVDIK





468
M19 >TS92- 04BD


embedded image





(M19
AILSCRASQSVYTKYLGWYQQKPGQAPRLLIYDASTRATGIPDRFSGSGSGTDFTLTINR



TS92-
LEPEDFAVYYCQHYGGSPLITFGQGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRP



04BD
AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQ



R003-C06
TTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKR



127557)
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK




DTYDALHMQALPPR





469
M20 (ScFv
QVQLVQSGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQ



domain)
APGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKR






embedded image






RVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISS




LQPEDFATYYCQQSYSIPLTFGQGTKVEIK





470
M20 >JS93- 08WD


embedded image





(M20
RVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISS



JS93-
LQPEDFATYYCQQSYSIPLTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPA



08WD
AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQT



R003-E07
TQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR



127558)
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKD




TYDALHMQALPPR





471
Ss1 (scFv
QVQLQQSGPELEKPGASVKISCKASGYSFTGYTMNWVKQSHGKSLEWIGLITPYNGASS



domain

YNQKFRGKATLTVDKSSSTAYMDLLSLTSEDSAVYFCARGGYDGRGFDYWGQGTTVTVS





SGGGGSGGGGSGGGGSDIELTQSPAIMSASPGEKVTMTCSASSSVSYMHWYQQKSGTSP




KRWIYDTSKLASGVPGRFSGSGSGNSYSLTISSVEAEDDATYYCQQWSGYPLTFGAGTK




LEI





472
Ss1 (full)


embedded image






CSASSSVSYMHWYQQKSGTSPKRWIYDTSKLASGVPGRFSGSGSGNSYSLTISSVEAED




DATYYCQQWSGYPLTFGAGTKLEITTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV




HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEE




DGCSCRFPEEEEGGCELRVKFSRSADAPA
















TABLE 3







Nucleic Acid Sequences encoding CAR molecules (underlined is the leader


sequence)









SEQ




ID


NO:
Desc.
Nucleic Acid Sequence





473
M1
CAAGTCCAACTGCAGCAGTCAGGAGCGGAAGTGAAGAAACCAGGAGCGTCAGTCAAAGTGTCGTGCAAGGCTAGCGGCTA



(ScFv
CACCTTCACCGGCTACTA



domain)
CATGCACTGGGTTCGACAGGCTCCAGGGCAGGGTCTGGAGTGGATGGGCCGCATCAACCCGAATTCCGGTGGGACTAACT



>ZA53-
ACGCCCAGAAGTTCCAGGGAAGAGTGACCATGACTAGGGACACGTCGATCAGCACTGCGTACATGGAACTGAGCCGCCTG



27BC
CGGTCCGAGGATACTGCCGTCTACTACTGCGCACGCGGAAGGTACTATGGAATGGACGTGTGGGGCCAAGGGACTATGGT



(M1)
GACTGTGAGCTCGGGAGGGGGAGGCTCCGGTGGCGGGGGATCAGGAGGAGGAGGATCAGGGGGAGGAGGTTCCGAAATTG




TCCTCACCCAGAGCCCGGCAACCCTCTCACTTTCCCCGGGAGAGCGCGCAACCATCTCTTGCCGGGCTAGCCAATCCGTG




TCGTCCAATTTCGCCTGGTACCAGCAACGGCCGGGACAAGCCCCTAGACTCCTGATCTACGACGCCAGCAACAGAGCGAC




TGGAATTCCTCCACGCTTTTCGGGATCAGGCTCCGGTACCGACTTCACCCTGACTATCTCGTCGCTCGAACCCGAGGATT




TCGCCGCCTACTACTGTCATCAGCGGTCGAACTGGTTGTATACGTTTGGCCAGGGCACCAAGGTGGATATCAAG





474
M1

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTGCAGCA




(Full)
G



>ZA53-
TCAGGAGCGGAAGTGAAGAAACCAGGAGCGTCAGTCAAAGTGTCGTGCAAGGCTAGCGGCTACACCTTCACCGGCTACTA



27BC (M1)
CATGCACTGGGTTCGACAGGCTCCAGGGCAGGGTCTGGAGTGGATGGGCCGCATCAACCCGAATTCCGGTGGGACTAACT




ACGCCCAGAAGTTCCAGGGAAGAGTGACCATGACTAGGGACACGTCGATCAGCACTGCGTACATGGAACTGAGCCGCCTG




CGGTCCGAGGATACTGCCGTCTACTACTGCGCACGCGGAAGGTACTATGGAATGGACGTGTGGGGCCAAGGGACTATGGT




GACTGTGAGCTCGGGAGGGGGAGGCTCCGGTGGCGGGGGATCAGGAGGAGGAGGATCAGGGGGAGGAGGTTCCGAAATTG




TCCTCACCCAGAGCCCGGCAACCCTCTCACTTTCCCCGGGAGAGCGCGCAACCATCTCTTGCCGGGCTAGCCAATCCGTG




TCGTCCAATTTCGCCTGGTACCAGCAACGGCCGGGACAAGCCCCTAGACTCCTGATCTACGACGCCAGCAACAGAGCGAC




TGGAATTCCTCCACGCTTTTCGGGATCAGGCTCCGGTACCGACTTCACCCTGACTATCTCGTCGCTCGAACCCGAGGATT




TCGCCGCCTACTACTGTCATCAGCGGTCGAACTGGTTGTATACGTTTGGCCAGGGCACCAAGGTGGATATCAAGACCACT




ACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACC




CGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTT




GCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAA




CCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTG




CGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCA




ATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGA




AAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGG




GGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTC




ACATGCAGGCCCTGCCGCCTCGG





475
M2
CAAGTCCAACTCGTCCAGTCAGGAGCAGAAGTCAAGAAACCAGGTGCTAGCGTGAAAGTGTCGTGCAAGGCGTCGGGATA



(ScFv
CACTTTCACCGGATACTAC



domain)
ATGCACTGGGTCCGCCAGGCCCCCGGACAAGGACTGGAATGGATGGGCTGGATCAACCCGAATAGCGGGGGAACTAATTA



>FA56-



26RC
CGCCCAGAAGTTTCAGGGACGAGTGACCATGACCCGCGATACCTCTATCTCGACCGCCTACATGGAGCTCTCCAGACTGC



(M2)
GCTCCGACGATACTGCAGTGTACTACTGCGCCCGGGACCTGAGGCGGACTGTGGTTACTCCTCGCGCCTATTATGGCATG




GACGTGTGGGGCCAAGGAACTACTGTGACTGTGAGCTCGGGAGGCGGTGGGTCAGGCGGAGGAGGGTCGGGCGGTGGTGG




CTCGGGAGGGGGAGGAAGCGACATTCAACTTACGCAGAGCCCGTCAACCCTGTCAGCGTCAGTGGGAGATCGGGTGACCA




TCACGTGTCAGGCCAGCCAGGATATCTCCAACTCGCTCAACTGGTACCAGCAAAAGGCGGGTAAAGCTCCGAAGCTGCTG




ATCTACGACGCTTCCACCCTCGAGACTGGAGTCCCATCCAGATTTTCCGGGTCAGGAAGCGGCACCGATTTCTCCTTCAC




CATTTCGTCCTTGCAACCGGAGGACATCGCAACCTACTACTGCCAGCAGCATGACAACTTGCCTCTGACGTTCGGGCAGG




GCACCAAGGTGGAAATCAAG





476
M2

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCGTCCA




(Full)
GTCAGGAGCAGAAGTCAAGAAACCAGGTGCTAGCGTGAAAGTGTCGTGCAAGGCGTCGGGATACACTTTCACCGGATACT



>FA56-
AC



26RC
ATGCACTGGGTCCGCCAGGCCCCCGGACAAGGACTGGAATGGATGGGCTGGATCAACCCGAATAGCGGGGGAACTAATTA



(M2)
CGCCCAGAAGTTTCAGGGACGAGTGACCATGACCCGCGATACCTCTATCTCGACCGCCTACATGGAGCTCTCCAGACTGC




GCTCCGACGATACTGCAGTGTACTACTGCGCCCGGGACCTGAGGCGGACTGTGGTTACTCCTCGCGCCTATTATGGCATG




GACGTGTGGGGCCAAGGAACTACTGTGACTGTGAGCTCGGGAGGCGGTGGGTCAGGCGGAGGAGGGTCGGGCGGTGGTGG




CTCGGGAGGGGGAGGAAGCGACATTCAACTTACGCAGAGCCCGTCAACCCTGTCAGCGTCAGTGGGAGATCGGGTGACCA




TCACGTGTCAGGCCAGCCAGGATATCTCCAACTCGCTCAACTGGTACCAGCAAAAGGCGGGTAAAGCTCCGAAGCTGCTG




ATCTACGACGCTTCCACCCTCGAGACTGGAGTCCCATCCAGATTTTCCGGGTCAGGAAGCGGCACCGATTTCTCCTTCAC




CATTTCGTCCTTGCAACCGGAGGACATCGCAACCTACTACTGCCAGCAGCATGACAACTTGCCTCTGACGTTCGGGCAGG




GCACCAAGGTGGAAATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTG




TCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTA




CATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGA




AGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGG




TTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGG




GCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACC




CAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAA




GCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGC




CACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





477
M3
CAAGTCCAACTCGTCCAA



(ScFv
TCAGGAGCGGAAGTCAAAAAGCCCGGAGCTCCAGTGAAAGTGTCATGCAAGGCCTCCGGCTACACCTTCACCGGTTACTA



domain)
TATGCACTGGGTGCGGCAGGCCCCGGGCCAGGGGTTGGAATGGATGGGATGGATCAATCCAAACTCGGGTGGGACTAACT



>VA58-
ACGCCCAGAAGTTCCAAGGACGGGTGACCATGACTAGGGACACCTCGATCTCCACCGCATACATGGAGCTTAGCAGACTC



21LC
CGCTCCGACGATACCGCAGTCTACTATTGCGCGCGGGGAGAGTGGGACGGATCGTACTACTACGATTACTGGGGCCAGGG



(M3)
AACTCTGGTGACTGTTTCCTCGGGTGGAGGAGGTTCAGGCGGAGGCGGCTCGGGCGGGGGAGGATCTGGAGGAGGAGGGT




CCGACATTGTGCTGACCCAAACTCCTTCGTCCCTGTCGGCCAGCGTGGGCGACCGCGTGACGATTACGTGCAGAGCTAGC




CAATCCATCAATACTTACCTCAACTGGTACCAGCATAAGCCGGGGAAAGCACCAAAGCTGCTGATCTACGCCGCCTCATC




CTTGCAGAGCGGTGTGCCTTCACGCTTTAGCGGATCGGGATCGGGAACGGATTTCACCCTGACTATCAGCTCCCTCCAGC




CGGAGGATTTTGCGACCTACTACTGTCAGCAGAGCTTCTCACCGCTGACTTTCGGCGGCGGGACCAAGCTGGAAATCAAG





478
M3

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCGTCCA




(Full)
A



>VA58-
TCAGGAGCGGAAGTCAAAAAGCCCGGAGCTCCAGTGAAAGTGTCATGCAAGGCCTCCGGCTACACCTTCACCGGTTACTA



21LC
TATGCACTGGGTGCGGCAGGCCCCGGGCCAGGGGTTGGAATGGATGGGATGGATCAATCCAAACTCGGGTGGGACTAACT



(M3)
ACGCCCAGAAGTTCCAAGGACGGGTGACCATGACTAGGGACACCTCGATCTCCACCGCATACATGGAGCTTAGCAGACTC




CGCTCCGACGATACCGCAGTCTACTATTGCGCGCGGGGAGAGTGGGACGGATCGTACTACTACGATTACTGGGGCCAGGG




AACTCTGGTGACTGTTTCCTCGGGTGGAGGAGGTTCAGGCGGAGGCGGCTCGGGCGGGGGAGGATCTGGAGGAGGAGGGT




CCGACATTGTGCTGACCCAAACTCCTTCGTCCCTGTCGGCCAGCGTGGGCGACCGCGTGACGATTACGTGCAGAGCTAGC




CAATCCATCAATACTTACCTCAACTGGTACCAGCATAAGCCGGGGAAAGCACCAAAGCTGCTGATCTACGCCGCCTCATC




CTTGCAGAGCGGTGTGCCTTCACGCTTTAGCGGATCGGGATCGGGAACGGATTTCACCCTGACTATCAGCTCCCTCCAGC




CGGAGGATTTTGCGACCTACTACTGTCAGCAGAGCTTCTCACCGCTGACTTTCGGCGGCGGGACCAAGCTGGAAATCAAG





ACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATG





TAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTG




GTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTT




AAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGG




CGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACG




AACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCG




CGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTAT




GAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACG




CTCTTCACATGCAGGCCCTGCCGCCTCGG





479
M4
CAAGTGCAACTCGTTGAA



(ScFv
TCAGGTGGAGGTTTGGTGCAACCCGGAGGATCTCTCAGACTGTCGTGTGCGGCGTCCGGGTTCACCTTTTCGTCCTACTG



domain)
GATGCACTGGGTGCGCCAGGTGCCGGGAAAAGGACTGGTGTGGGTGTCCAGAATCAACACCGACGGGTCAACGACTACCT



>DP37-
ACGCAGATAGCGTGGAAGGTCGGTTCACCATTTCGCGGGACAACGCTAAAAACACTCTGTACCTTCAGATGAATTCACTG



07IC
CGCGATGACGACACCGCAGTCTACTACTGCGTCGGTGGACACTGGGCGGTCTGGGGACAGGGAACTACGGTGACTGTGTC



(M4)
CAGCGGCGGGGGAGGAAGCGGCGGAGGGGGGAGCGGAGGCGGAGGATCAGGAGGAGGCGGCTCCGATATCCAGATGACCC




AGTCGCCATCGACCCTCTCCGCTAGCGTGGGGGATAGGGTCACTATCACTTGCCGAGCCAGCCAATCCATTAGCGACCGG




CTTGCCTGGTACCAACAGAAACCTGGAAAGGCCCCGAAGCTGCTCATCTACAAGGCCTCGTCACTGGAGTCGGGAGTCCC




GTCCCGCTTTTCCGGCTCGGGCTCAGGCACCGAGTTCACTCTGACCATCTCGAGCCTGCAGCCGGACGATTTCGCCGTGT




ATTACTGCCAGCAATACGGACATCTCCCAATGTACACGTTCGGTCAGGGCACCAAGGTCGAAATCAAG





480
M4

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTGCAACTCGTTGA




>DP37-
A



07IC
TCAGGTGGAGGTTTGGTGCAACCCGGAGGATCTCTCAGACTGTCGTGTGCGGCGTCCGGGTTCACCTTTTCGTCCTACTG



(M4)
GATGCACTGGGTGCGCCAGGTGCCGGGAAAAGGACTGGTGTGGGTGTCCAGAATCAACACCGACGGGTCAACGACTACCT




ACGCAGATAGCGTGGAAGGTCGGTTCACCATTTCGCGGGACAACGCTAAAAACACTCTGTACCTTCAGATGAATTCACTG




CGCGATGACGACACCGCAGTCTACTACTGCGTCGGTGGACACTGGGCGGTCTGGGGACAGGGAACTACGGTGACTGTGTC




CAGCGGCGGGGGAGGAAGCGGCGGAGGGGGGAGCGGAGGCGGAGGATCAGGAGGAGGCGGCTCCGATATCCAGATGACCC




AGTCGCCATCGACCCTCTCCGCTAGCGTGGGGGATAGGGTCACTATCACTTGCCGAGCCAGCCAATCCATTAGCGACCGG




CTTGCCTGGTACCAACAGAAACCTGGAAAGGCCCCGAAGCTGCTCATCTACAAGGCCTCGTCACTGGAGTCGGGAGTCCC




GTCCCGCTTTTCCGGCTCGGGCTCAGGCACCGAGTTCACTCTGACCATCTCGAGCCTGCAGCCGGACGATTTCGCCGTGT




ATTACTGCCAGCAATACGGACATCTCCCAATGTACACGTTCGGTCAGGGCACCAAGGTCGAAATCAAGACCACTACCCCA




GCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGC




TGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGG




TCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTC




ATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACT




GCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTG




GTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAAT




CCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACG




CAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGC




AGGCCCTGCCGCCTCGG





481
M5
CAAGTCCAACTCGTTCAATCAGGCGCAGAAGTCGAAAAGCCCGGAGCATCAGTCAAAGTCTCTTGCAAGGCTTCCGGCTA



(ScFv
CACCTTCACGGACTACTAC



domain)
ATGCACTGGGTGCGCCAGGCTCCAGGCCAGGGACTGGAGTGGATGGGATGGATCAACCCGAATTCCGGGGGAACTAACTA



>XP31-
CGCCCAGAAGTTTCAGGGCCGGGTGACTATGACTCGCGATACCTCGATCTCGACTGCGTACATGGAGCTCAGCCGCCTCC



20LC
GGTCGGACGATACCGCCGTGTACTATTGTGCGTCGGGATGGGACTTCGACTACTGGGGGCAGGGCACTCTGGTCACTGTG



(M5)
TCAAGCGGAGGAGGTGGATCAGGTGGAGGTGGAAGCGGGGGAGGAGGTTCCGGCGGCGGAGGATCAGATATCGTGATGAC




GCAATCGCCTTCCTCGTTGTCCGCATCCGTGGGAGACAGGGTGACCATTACTTGCAGAGCGTCCCAGTCCATTCGGTACT




ACCTGTCGTGGTACCAGCAGAAGCCGGGGAAAGCCCCAAAACTGCTTATCTATACTGCCTCGATCCTCCAAAACGGCGTG




CCATCAAGATTCAGCGGTTCGGGCAGCGGGACCGACTTTACCCTGACTATCAGCAGCCTGCAGCCGGAAGATTTCGCCAC




GTACTACTGCCTGCAAACCTACACCACCCCGGACTTCGGACCTGGAACCAAGGTGGAGATCAAG





482
M5

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCGTTCA




(Full)
ATCAGGCGCAGAAGTCGAAAAGCCCGGAGCATCAGTCAAAGTCTCTTGCAAGGCTTCCGGCTACACCTTCACGGACTACT



>XP31-
AC



20LC
ATGCACTGGGTGCGCCAGGCTCCAGGCCAGGGACTGGAGTGGATGGGATGGATCAACCCGAATTCCGGGGGAACTAACTA



(M5)
CGCCCAGAAGTTTCAGGGCCGGGTGACTATGACTCGCGATACCTCGATCTCGACTGCGTACATGGAGCTCAGCCGCCTCC




GGTCGGACGATACCGCCGTGTACTATTGTGCGTCGGGATGGGACTTCGACTACTGGGGGCAGGGCACTCTGGTCACTGTG




TCAAGCGGAGGAGGTGGATCAGGTGGAGGTGGAAGCGGGGGAGGAGGTTCCGGCGGCGGAGGATCAGATATCGTGATGAC




GCAATCGCCTTCCTCGTTGTCCGCATCCGTGGGAGACAGGGTGACCATTACTTGCAGAGCGTCCCAGTCCATTCGGTACT




ACCTGTCGTGGTACCAGCAGAAGCCGGGGAAAGCCCCAAAACTGCTTATCTATACTGCCTCGATCCTCCAAAACGGCGTG




CCATCAAGATTCAGCGGTTCGGGCAGCGGGACCGACTTTACCCTGACTATCAGCAGCCTGCAGCCGGAAGATTTCGCCAC




GTACTACTGCCTGCAAACCTACACCACCCCGGACTTCGGACCTGGAACCAAGGTGGAGATCAAGACCACTACCCCAGCAC




CGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGT




GGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCT




GCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGA




GGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGC




GTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCG




GAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCC




AAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGA




AGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGC





CCTGCCGCCTCGG






483
M6
CAAGTGCAACTCGTCCAGTCAGGTGCAGAAGTGAAGAAACCCGGAGCGTCAGTCAAAGTGTCATGCAAGGCGTCAGGCTA



(ScFv
CACCTTCACCAGCTACTAC



domain)
ATGCACTGGGTGCGGCAGGCCCCAGGCCAAGGCTTGGAGTGGATGGGAATCATTAACCCGTCAGGAGGCTCCACCTCCTA



>FE10-
CGCCCAGAAGTTTCAGGGAAGAGTGACGATGACTCGGGATACGTCGACCTCGACCGTGTACATGGAACTGAGCTCGCTGC



06ID
GCTCCGAGGACACTGCTGTGTACTACTGCGCACGGTACAGACTCATTGCCGTGGCAGGAGACTACTACTACTATGGCATG



(M6)
GACGTCTGGGGGCAGGGCACTATGGTCACTGTGTCGTCCGGCGGAGGAGGCTCGGGTGGAGGAGGTAGCGGAGGAGGGGG




AAGCGGAGGGGGGGGCTCCGATATCCAGATGACTCAGTCGCCTTCCTCCGTGTCGGCCTCGGTTGGAGATCGCGTCACCA




TCACTTGTCGAGCTTCCCAAGGAGTCGGTAGGTGGCTGGCGTGGTACCAGCAAAAGCCGGGAACTGCCCCGAAGCTCCTG




ATCTACGCGGCTAGCACCCTGCAGTCGGGAGTGCCATCCCGCTTCAGCGGATCTGGGTCAGGTACCGACTTCACCCTTAC




GATCAACAATCTCCAGCCGGAGGACTTTGCCACCTATTACTGCCAACAGGCCAACAGCTTCCCTCTGACTTTCGGAGGGG




GCACTCGCCTGGAAATCAAG





484
M6

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTGCAACTCGTCCA




(Full)
GTCAGGTGCAGAAGTGAAGAAACCCGGAGCGTCAGTCAAAGTGTCATGCAAGGCGTCAGGCTACACCTTCACCAGCTACT



>FE10-
AC



06ID
ATGCACTGGGTGCGGCAGGCCCCAGGCCAAGGCTTGGAGTGGATGGGAATCATTAACCCGTCAGGAGGCTCCACCTCCTA



(M6)
CGCCCAGAAGTTTCAGGGAAGAGTGACGATGACTCGGGATACGTCGACCTCGACCGTGTACATGGAACTGAGCTCGCTGC




GCTCCGAGGACACTGCTGTGTACTACTGCGCACGGTACAGACTCATTGCCGTGGCAGGAGACTACTACTACTATGGCATG




GACGTCTGGGGGCAGGGCACTATGGTCACTGTGTCGTCCGGCGGAGGAGGCTCGGGTGGAGGAGGTAGCGGAGGAGGGGG




AAGCGGAGGGGGGGGCTCCGATATCCAGATGACTCAGTCGCCTTCCTCCGTGTCGGCCTCGGTTGGAGATCGCGTCACCA




TCACTTGTCGAGCTTCCCAAGGAGTCGGTAGGTGGCTGGCGTGGTACCAGCAAAAGCCGGGAACTGCCCCGAAGCTCCTG




ATCTACGCGGCTAGCACCCTGCAGTCGGGAGTGCCATCCCGCTTCAGCGGATCTGGGTCAGGTACCGACTTCACCCTTAC




GATCAACAATCTCCAGCCGGAGGACTTTGCCACCTATTACTGCCAACAGGCCAACAGCTTCCCTCTGACTTTCGGAGGGG




GCACTCGCCTGGAAATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTG




TCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTA




CATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGA




AGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGG




TTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGG




GCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACC




CAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAA




GCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGC




CACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





485
M7
CAAGTGCAATTGGTTCAA



(ScFv
TCAGGAGGAGGAGTGGTGCAACCTGGAAGATCTCTCAGACTGTCGTGTGCGGCATCGGGATTCACTTTCTCATCATACGC



domain)
AATGCACTGGGTCCGCCAGGCCCCGGGCAAAGGCTTGGAATGGGTGGCGGTCATTTCATACGACGGCTCGAACAAGTACT



>VE12-
ACGCTGACAGCGTGAAGGGACGCTTTACTATTTCCCGGGACAATTCGAAGAACACTCTGTACCTCCAGATGAACTCCCTT



01CD
AGGGCTGAGGACACCGCCGTCTACTACTGCGCACGCTGGAAAGTGTCGTCCAGCTCCCCAGCTTTTGACTACTGGGGACA



(M7)
GGGAACCCTTGTGACCGTGTCGTCCGGTGGAGGGGGAAGCGGCGGAGGGGGATCAGGTGGCGGCGGATCGGGAGGCGGGG




GATCAGAAATCGTGCTGACTCAGTCCCCGGCCACGCTGTCTCTCAGCCCGGGAGAGAGAGCGATCCTGTCCTGCCGCGCC




TCGCAGAGCGTGTACACTAAGTACCTGGGGTGGTACCAGCAGAAACCGGGTCAAGCGCCTCGGCTGCTGATCTACGATGC




CTCCACCCGGGCCACCGGAATCCCCGATCGGTTCTCCGGCAGCGGCTCGGGAACTGATTTCACGCTGACCATCAATCGCC




TGGAGCCGGAAGATTTCGCCGTCTATTACTGCCAGCATTACGGCGGGAGCCCACTCATCACCTTCGGTCAAGGAACCCGA




CTCGAAATCAAG





486
M7

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTGCAATTGGTTCA




(Full)
A



>VE12-
TCAGGAGGAGGAGTGGTGCAACCTGGAAGATCTCTCAGACTGTCGTGTGCGGCATCGGGATTCACTTTCTCATCATACGC



01CD
AATGCACTGGGTCCGCCAGGCCCCGGGCAAAGGCTTGGAATGGGTGGCGGTCATTTCATACGACGGCTCGAACAAGTACT



(M7)
ACGCTGACAGCGTGAAGGGACGCTTTACTATTTCCCGGGACAATTCGAAGAACACTCTGTACCTCCAGATGAACTCCCTT




AGGGCTGAGGACACCGCCGTCTACTACTGCGCACGCTGGAAAGTGTCGTCCAGCTCCCCAGCTTTTGACTACTGGGGACA




GGGAACCCTTGTGACCGTGTCGTCCGGTGGAGGGGGAAGCGGCGGAGGGGGATCAGGTGGCGGCGGATCGGGAGGCGGGG




GATCAGAAATCGTGCTGACTCAGTCCCCGGCCACGCTGTCTCTCAGCCCGGGAGAGAGAGCGATCCTGTCCTGCCGCGCC




TCGCAGAGCGTGTACACTAAGTACCTGGGGTGGTACCAGCAGAAACCGGGTCAAGCGCCTCGGCTGCTGATCTACGATGC




CTCCACCCGGGCCACCGGAATCCCCGATCGGTTCTCCGGCAGCGGCTCGGGAACTGATTTCACGCTGACCATCAATCGCC




TGGAGCCGGAAGATTTCGCCGTCTATTACTGCCAGCATTACGGCGGGAGCCCACTCATCACCTTCGGTCAAGGAACCCGA




CTCGAAATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCG




TCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGG




CCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTG




CTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGA




GGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACC




AGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATG




GGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAG




CGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGG




ACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





487
M8
CAAGTCCAACTCCAGCAG



(ScFv
TCAGGTGCAGAAGTCAAAAAGCCAGGAGCATCCGTGAAGGTTTCGTGCAAGACTTCCGGCTACCCTTTTACCGGGTACTC



domain)
CCTCCATTGGGTGAGACAAGCACCGGGCCAGGGACTGGAGTGGATGGGATGGATCAACCCAAATTCGGGCGGCACCAACT



>LE13-
ATGCGCAGAAGTTCCAGGGACGGGTGACCATGACTCGCGACACTTCGATCTCCACTGCCTACATGGAGCTGTCCCGCTTG



05XD
AGATCTGACGACACGGCCGTCTACTACTGCGCCCGGGATCACTACGGAGGTAATTCGCTGTTCTACTGGGGGCAGGGAAC



(M8)
CCTTGTGACTGTGTCCTCGGGTGGTGGAGGGTCAGGAGGCGGAGGCTCAGGGGGAGGAGGTAGCGGAGGAGGCGGATCAG




ACATCCAACTGACCCAGTCACCATCCTCCATCTCGGCTAGCGTCGGAGACACCGTGTCGATTACTTGTAGGGCCTCCCAA




GACTCAGGGACGTGGCTGGCGTGGTATCAGCAAAAACCGGGCAAAGCTCCGAACCTGTTGATGTACGACGCCAGCACCCT




CGAAGATGGAGTGCCTAGCCGCTTCAGCGGAAGCGCCTCGGGCACTGAATTCACGCTGACTGTGAATCGGCTCCAGCCGG




AGGATTCGGCGACCTACTACTGCCAGCAGTACAACAGCTACCCCCTGACCTTTGGAGGCGGGACCAAGGTGGATATCAAG





488
M8

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCCAGCA




(Full)
G



>LE13-
TCAGGTGCAGAAGTCAAAAAGCCAGGAGCATCCGTGAAGGTTTCGTGCAAGACTTCCGGCTACCCTTTTACCGGGTACTC



05XD
CCTCCATTGGGTGAGACAAGCACCGGGCCAGGGACTGGAGTGGATGGGATGGATCAACCCAAATTCGGGCGGCACCAACT



(M8)
ATGCGCAGAAGTTCCAGGGACGGGTGACCATGACTCGCGACACTTCGATCTCCACTGCCTACATGGAGCTGTCCCGCTTG




AGATCTGACGACACGGCCGTCTACTACTGCGCCCGGGATCACTACGGAGGTAATTCGCTGTTCTACTGGGGGCAGGGAAC




CCTTGTGACTGTGTCCTCGGGTGGTGGAGGGTCAGGAGGCGGAGGCTCAGGGGGAGGAGGTAGCGGAGGAGGCGGATCAG




ACATCCAACTGACCCAGTCACCATCCTCCATCTCGGCTAGCGTCGGAGACACCGTGTCGATTACTTGTAGGGCCTCCCAA




GACTCAGGGACGTGGCTGGCGTGGTATCAGCAAAAACCGGGCAAAGCTCCGAACCTGTTGATGTACGACGCCAGCACCCT




CGAAGATGGAGTGCCTAGCCGCTTCAGCGGAAGCGCCTCGGGCACTGAATTCACGCTGACTGTGAATCGGCTCCAGCCGG




AGGATTCGGCGACCTACTACTGCCAGCAGTACAACAGCTACCCCCTGACCTTTGGAGGCGGGACCAAGGTGGATATCAAG





ACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATG





TAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTG




GTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTT




AAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGG




CGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACG




AACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCG




CGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTAT




GAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACG




CTCTTCACATGCAGGCCCTGCCGCCTCGG





489
M9
CAAGTGCAACTCGTCCAG



(ScFv
TCAGGTGCAGAAGTGAAGAAACCAGGAGCGTCCGTCGAAGTGTCGTGTAAGGCGTCCGGCTACACTTTCACCTCGTACTA



domain)
CATGCACTGGGTGCGGCAGGCCCCGGGACAAGGCCTCGAATGGATGGGAATCATCAACCCGAGCGGAGGCTCGACTGGTT



>BE15-
ACGCCCAGAAGTTCCAGGGAAGGGTGACGATGACCCGCGATACCTCGACTTCGACCGTTCATATGGAGCTCTCGTCCCTG



00SD
CGGAGCGAGGACACTGCTGTCTACTATTGCGCGCGGGGAGGATACTCTAGCTCCTCCGATGCATTTGACATTTGGGGCCA



(M9)
GGGAACTATGGTGACCGTGTCATCAGGCGGAGGTGGATCAGGAGGAGGAGGGTCGGGAGGGGGAGGCAGCGGCGGGGGTG




GGTCGGACATTCAGATGACGCAGTCCCCTCCTAGCCTGAGCGCCTCGGTGGGTGACAGAGTGACCATCACTTGCAGAGCC




TCGCAAGACATCTCCTCCGCATTGGCTTGGTACCAGCAAAAGCCGGGCACTCCGCCGAAACTGCTCATCTACGATGCCTC




CTCACTGGAGTCAGGAGTCCCATCTCGCTTCTCGGGGTCAGGAAGCGGCACCGATTTTACCCTTACCATCTCCAGCCTGC




AGCCCGAGGACTTCGCCACGTACTACTGCCAACAGTTCAGCTCCTACCCACTGACCTTCGGGGGCGGAACTCGCCTGGAA




ATCAAG





490
M9

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTGCAACTCGTCCA




(Full)
G



>BE15-
TCAGGTGCAGAAGTGAAGAAACCAGGAGCGTCCGTCGAAGTGTCGTGTAAGGCGTCCGGCTACACTTTCACCTCGTACTA



00SD
CATGCACTGGGTGCGGCAGGCCCCGGGACAAGGCCTCGAATGGATGGGAATCATCAACCCGAGCGGAGGCTCGACTGGTT



(M9)
ACGCCCAGAAGTTCCAGGGAAGGGTGACGATGACCCGCGATACCTCGACTTCGACCGTTCATATGGAGCTCTCGTCCCTG




CGGAGCGAGGACACTGCTGTCTACTATTGCGCGCGGGGAGGATACTCTAGCTCCTCCGATGCATTTGACATTTGGGGCCA




GGGAACTATGGTGACCGTGTCATCAGGCGGAGGTGGATCAGGAGGAGGAGGGTCGGGAGGGGGAGGCAGCGGCGGGGGTG




GGTCGGACATTCAGATGACGCAGTCCCCTCCTAGCCTGAGCGCCTCGGTGGGTGACAGAGTGACCATCACTTGCAGAGCC




TCGCAAGACATCTCCTCCGCATTGGCTTGGTACCAGCAAAAGCCGGGCACTCCGCCGAAACTGCTCATCTACGATGCCTC




CTCACTGGAGTCAGGAGTCCCATCTCGCTTCTCGGGGTCAGGAAGCGGCACCGATTTTACCCTTACCATCTCCAGCCTGC




AGCCCGAGGACTTCGCCACGTACTACTGCCAACAGTTCAGCTCCTACCCACTGACCTTCGGGGGCGGAACTCGCCTGGAA




ATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGA




GGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTC




TGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTAC




ATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGA




GGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCT




ACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGG




AAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGAT




TGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCT




ATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





491
M10
CAAGTGCAACTCGTCCAGAGCGGAGCAGAAGTCAAGAAGCCAGGAGCGTCAGTGAAAGTGTCATGCAAGGCCAGCGGCTA



(ScFv
TACCTTTACTTCGTATGGG



domain)
ATCTCCTGGGTGCGGCAGGCACCGGGCCAAGGACTGGAGTGGATGGGATGGATCTCAGCCTACAACGGTAACACCAACTA



>RE16-
CGCCCAGAAGCTGCAAGGACGCGTGACCATGACTACTGATACGAGCACCTCCACTGCCTACATGGAATTGCGGTCCCTTC



05MD
GGTCGGACGATACTGCTGTGTACTACTGCGCAAGAGTCGCCGGAGGGATCTACTACTACTACGGCATGGACGTCTGGGGA



(M10)
CAGGGAACCACCATTACGGTGTCGAGCGGAGGGGGAGGCTCGGGGGGAGGAGGAAGCGGAGGTGGCGGCTCCGGGGGCGG




CGGATCGGACATTGTGATGACCCAGACTCCTGACTCCCTGGCTGTTTCGTTGGGAGAGCGCGCGACTATCTCGTGTAAGT




CCAGCCACTCAGTCCTGTACAATCGCAATAACAAGAACTACCTCGCGTGGTACCAGCAAAAACCGGGTCAGCCGCCTAAA




CTCCTGTTCTACTGGGCCTCCACCAGAAAGAGCGGGGTGCCAGATCGATTCTCTGGATCAGGATCAGGTACCGACTTTAC




GCTGACCATCTCGTCCCTGCAGCCGGAGGATTTCGCGACTTACTTCTGCCAGCAGACTCAGACTTTCCCCCTCACCTTCG




GTCAAGGCACCAGGCTGGAAATCAAT





492
M10

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTGCAACTCGTCCA




(Full)
GAGCGGAGCAGAAGTCAAGAAGCCAGGAGCGTCAGTGAAAGTGTCATGCAAGGCCAGCGGCTATACCTTTACTTCGTATG



>RE16-
GG



05MD
ATCTCCTGGGTGCGGCAGGCACCGGGCCAAGGACTGGAGTGGATGGGATGGATCTCAGCCTACAACGGTAACACCAACTA



(M10)
CGCCCAGAAGCTGCAAGGACGCGTGACCATGACTACTGATACGAGCACCTCCACTGCCTACATGGAATTGCGGTCCCTTC




GGTCGGACGATACTGCTGTGTACTACTGCGCAAGAGTCGCCGGAGGGATCTACTACTACTACGGCATGGACGTCTGGGGA




CAGGGAACCACCATTACGGTGTCGAGCGGAGGGGGAGGCTCGGGGGGAGGAGGAAGCGGAGGTGGCGGCTCCGGGGGCGG




CGGATCGGACATTGTGATGACCCAGACTCCTGACTCCCTGGCTGTTTCGTTGGGAGAGCGCGCGACTATCTCGTGTAAGT




CCAGCCACTCAGTCCTGTACAATCGCAATAACAAGAACTACCTCGCGTGGTACCAGCAAAAACCGGGTCAGCCGCCTAAA




CTCCTGTTCTACTGGGCCTCCACCAGAAAGAGCGGGGTGCCAGATCGATTCTCTGGATCAGGATCAGGTACCGACTTTAC




GCTGACCATCTCGTCCCTGCAGCCGGAGGATTTCGCGACTTACTTCTGCCAGCAGACTCAGACTTTCCCCCTCACCTTCG




GTCAAGGCACCAGGCTGGAAATCAATACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAG




CCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGA




TATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCG




GTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCA




TGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAA




GCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGAC




GGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATG




GCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAG




CACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





493
M11
CAAGTCCAATTGCAGCAGAGCGGAGCAGAAGTGAAGAAGCCAGGAGCGTCAGTCAAAGTGTCGTGTAAGGCGTCAGGATA



(ScFv
CACCTTCACGGGATACTAC



domain)
ATGCACTGGGTGCGCCAGGCCCCGGGCCAAGGACTCGAGTGGATGGGCTGGATCAACCCTAACTCTGGAGGCACCAACTA



>NE10-
CGCCCAGAATTTCCAAGGCAGAGTGACCATGACCCGGGACACCTCCATCTCGACTGCCTATATGGAACTGCGGCGGCTGC



19WD
GCTCGGACGATACTGCTGTGTATTACTGCGCCAGCGGCTGGGACTTTGACTACTGGGGACAGGGTACTCTGGTGACTGTT



(M11)
TCCTCGGGAGGAGGCGGATCGGGTGGAGGAGGTAGCGGGGGAGGGGGGTCGGGAGGCGGAGGCAGCGATATTCGCATGAC




TCAATCGCCGTCCTCCCTGAGCGCTAGCGTGGGAGATCGAGTCACCATCACTTGCAGAGCGTCACAGTCGATTCGCTACT




ACCTGTCCTGGTACCAGCAGAAACCGGGAAAGGCACCAAAGCTTCTGATCTACACGGCCTCCATCCTGCAAAATGGTGTC




CCATCAAGGTTCTCCGGGTCAGGGAGCGGCACTGACTTCACTCTCACCATCTCCTCACTCCAGCCCGAGGACTTTGCAAC




CTACTACTGCCTCCAGACGTACACCACCCCGGATTTCGGTCCTGGAACCAAGGTGGAAATCAAA





494
M11

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAATTGCAGCA




(Full)
GAGCGGAGCAGAAGTGAAGAAGCCAGGAGCGTCAGTCAAAGTGTCGTGTAAGGCGTCAGGATACACCTTCACGGGATACT



>NE10-
AC



19WD
ATGCACTGGGTGCGCCAGGCCCCGGGCCAAGGACTCGAGTGGATGGGCTGGATCAACCCTAACTCTGGAGGCACCAACTA



(M11)
CGCCCAGAATTTCCAAGGCAGAGTGACCATGACCCGGGACACCTCCATCTCGACTGCCTATATGGAACTGCGGCGGCTGC




GCTCGGACGATACTGCTGTGTATTACTGCGCCAGCGGCTGGGACTTTGACTACTGGGGACAGGGTACTCTGGTGACTGTT




TCCTCGGGAGGAGGCGGATCGGGTGGAGGAGGTAGCGGGGGAGGGGGGTCGGGAGGCGGAGGCAGCGATATTCGCATGAC




TCAATCGCCGTCCTCCCTGAGCGCTAGCGTGGGAGATCGAGTCACCATCACTTGCAGAGCGTCACAGTCGATTCGCTACT




ACCTGTCCTGGTACCAGCAGAAACCGGGAAAGGCACCAAAGCTTCTGATCTACACGGCCTCCATCCTGCAAAATGGTGTC




CCATCAAGGTTCTCCGGGTCAGGGAGCGGCACTGACTTCACTCTCACCATCTCCTCACTCCAGCCCGAGGACTTTGCAAC




CTACTACTGCCTCCAGACGTACACCACCCCGGATTTCGGTCCTGGAACCAAGGTGGAAATCAAAACCACTACCCCAGCAC




CGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGT




GGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCT




GCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGA




GGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGC




GTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCG




GAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCC




AAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGA




AGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGC





CCTGCCGCCTCGG






495
M12
CAAGTCCAACTCGTCCAA



(ScFv
AGCGGAGCAGAAGTCAAAAAGCCAGGAGCGTCGGTGAAAGTGTCTTGCAAAGCCAGCGGCTACACCTTCACGGGTTACTA



domain)
CATGCACTGGGTGCGCCAGGCGCCGGGCCAGGGGCTGGAGTGGATGGGCCGGATTAACCCTAACAGCGGGGGAACTAATT



>DE12-
ACGCTCAGAAGTTCCAGGGTAGAGTCACCATGACTACGGACACTTCCACTTCCACCGCCTATATGGAACTGCGCTCCCTC



14RD
CGCTCAGATGATACTGCCGTGTATTACTGCGCGCGGACTACCACGTCATACGCATTTGACATCTGGGGCCAGGGAACTAT



(M12)
GGTGACCGTGAGCTCGGGCGGAGGCGGTTCAGGGGGAGGAGGAAGCGGAGGAGGAGGATCGGGAGGAGGTGGCTCCGATA




TCCAGCTGACTCAGTCCCCGAGCACCCTGTCGGCGTCGGTGGGGGACAGGGTTACCATCACCTGTAGAGCTTCCCAATCC




ATTTCGACTTGGCTGGCCTGGTACCAGCAAAAGCCGGGAAAGGCCCCTAATTTGCTTATCTACAAGGCATCGACCCTCGA




AAGCGGTGTGCCCTCCCGGTTTTCGGGATCAGGATCAGGGACCGAGTTCACCCTGACCATCTCATCCCTCCAGCCGGACG




ACTTCGCCACTTACTACTGCCAGCAGTACAACACCTACTCGCCATACACTTTCGGCCAAGGCACCAAGCTGGAGATCAAG





496
M12

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCGTCCA




(Full)
A



>DE12-
AGCGGAGCAGAAGTCAAAAAGCCAGGAGCGTCGGTGAAAGTGTCTTGCAAAGCCAGCGGCTACACCTTCACGGGTTACTA



14RD
CATGCACTGGGTGCGCCAGGCGCCGGGCCAGGGGCTGGAGTGGATGGGCCGGATTAACCCTAACAGCGGGGGAACTAATT



(M12)
ACGCTCAGAAGTTCCAGGGTAGAGTCACCATGACTACGGACACTTCCACTTCCACCGCCTATATGGAACTGCGCTCCCTC




CGCTCAGATGATACTGCCGTGTATTACTGCGCGCGGACTACCACGTCATACGCATTTGACATCTGGGGCCAGGGAACTAT




GGTGACCGTGAGCTCGGGCGGAGGCGGTTCAGGGGGAGGAGGAAGCGGAGGAGGAGGATCGGGAGGAGGTGGCTCCGATA




TCCAGCTGACTCAGTCCCCGAGCACCCTGTCGGCGTCGGTGGGGGACAGGGTTACCATCACCTGTAGAGCTTCCCAATCC




ATTTCGACTTGGCTGGCCTGGTACCAGCAAAAGCCGGGAAAGGCCCCTAATTTGCTTATCTACAAGGCATCGACCCTCGA




AAGCGGTGTGCCCTCCCGGTTTTCGGGATCAGGATCAGGGACCGAGTTCACCCTGACCATCTCATCCCTCCAGCCGGACG




ACTTCGCCACTTACTACTGCCAGCAGTACAACACCTACTCGCCATACACTTTCGGCCAAGGCACCAAGCTGGAGATCAAG





ACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATG





TAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTG




GTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTT




AAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGG




CGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACG




AACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCG




CGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTAT




GAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACG




CTCTTCACATGCAGGCCCTGCCGCCTCGG





497
M13
CAAGTTCAACTCGTGCAATCAGGTGGAGGACTCGTCAAACCCGGAGGATCATTGAGACTGTCATGCGAAGCGAGCGGTTT



(ScFv
TATCTTCTCCGATTACTAT



domain)
ATGGGATGGATTCGGCAGGCCCCGGGAAAGGGACTCGAATGGGTGTCATACATCGGAAGGTCAGGCTCGTCCATGTACTA



>TE13-
CGCAGACTCGGTGAAAGGCAGATTCACCTTTAGCCGGGACAACGCCAAGAATTCCCTCTACTTGCAGATGAACAGCCTGC



19LD
GAGCCGAGGATACTGCTGTCTACTACTGTGCCGCGTCGCCGGTGGTGGCAGCTACTGAAGATTTCCAGCACTGGGGACAG



(M13)
GGAACTCTGGTCACGGTGTCGAGCGGTGGGGGCGGAAGCGGAGGCGGAGGATCGGGCGGCGGAGGTTCGGGGGGGGGAGG




GTCTGACATCGTGATGACCCAAACCCCAGCCACCCTGAGCCTCTCCCCTGGAGAGCGCGCGACTCTTTCGTGCCGCGCTT




CCCAGTCAGTGACCAGCAATTACTTGGCTTGGTACCAACAGAAGCCGGGACAGGCGCCACGGCTGCTGCTTTTTGGTGCC




AGCACTCGCGCCACCGGAATCCCGGATCGCTTCTCGGGCTCAGGGTCCGGGACGGACTTCACCCTGACTATCAACCGGCT




GGAACCTGAGGACTTCGCGATGTACTACTGCCAGCAGTACGGCTCCGCACCAGTCACTTTCGGACAAGGCACCAAGCTGG




AGATCAAG





498
M13

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTTCAACTCGTGCA




(Full)
ATCAGGTGGAGGACTCGTCAAACCCGGAGGATCATTGAGACTGTCATGCGAAGCGAGCGGTTTTATCTTCTCCGATTACT



>TE13-
AT



19LD
ATGGGATGGATTCGGCAGGCCCCGGGAAAGGGACTCGAATGGGTGTCATACATCGGAAGGTCAGGCTCGTCCATGTACTA



(M13)
CGCAGACTCGGTGAAAGGCAGATTCACCTTTAGCCGGGACAACGCCAAGAATTCCCTCTACTTGCAGATGAACAGCCTGC




GAGCCGAGGATACTGCTGTCTACTACTGTGCCGCGTCGCCGGTGGTGGCAGCTACTGAAGATTTCCAGCACTGGGGACAG




GGAACTCTGGTCACGGTGTCGAGCGGTGGGGGCGGAAGCGGAGGCGGAGGATCGGGCGGCGGAGGTTCGGGGGGGGGAGG




GTCTGACATCGTGATGACCCAAACCCCAGCCACCCTGAGCCTCTCCCCTGGAGAGCGCGCGACTCTTTCGTGCCGCGCTT




CCCAGTCAGTGACCAGCAATTACTTGGCTTGGTACCAACAGAAGCCGGGACAGGCGCCACGGCTGCTGCTTTTTGGTGCC




AGCACTCGCGCCACCGGAATCCCGGATCGCTTCTCGGGCTCAGGGTCCGGGACGGACTTCACCCTGACTATCAACCGGCT




GGAACCTGAGGACTTCGCGATGTACTACTGCCAGCAGTACGGCTCCGCACCAGTCACTTTCGGACAAGGCACCAAGCTGG




AGATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCG




GAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCC




TCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGT




ACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAG




GAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCT




CTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCG




GGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG




ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACAC




CTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





499
M14
CAAGTCCAACTCGTCCAGTCGGGAGCAGAAGTTAGAGCACCAGGAGCGTCAGTGAAAATCTCATGCAAGGCCTCGGGCTT



(ScFv
CACGTTCCGCGGATACTAC



domain)
ATCCACTGGGTGCGCCAAGCCCCGGGTCAGGGATTGGAGTGGATGGGAATCATTAACCCATCAGGAGGGAGCCGGGCTTA



>BS83-
CGCGCAGAAGTTCCAGGGACGCGTCACTATGACCCGAGATACTTCCACCTCGACTGTGTACATGGAACTCTCGTCCCTGA



95ID
GGTCCGACGACACTGCGATGTATTACTGTGCTCGGACTGCCAGCTGCGGTGGGGACTGTTACTACCTCGATTACTGGGGC



(M14)
CAGGGAACTCTGGTGACCGTGTCCAGCGGAGGTGGCGGGTCAGGGGGTGGCGGAAGCGGAGGCGGCGGTTCAGGCGGAGG




AGGCTCGGACATCCAAATGACGCAATCGCCGCCTACCCTGAGCGCTTCCGTGGGAGATCGGGTGACCATTACTTGCAGAG




CATCCGAGAACGTCAATATCTGGCTGGCCTGGTACCAACAGAAGCCGGGGAAGGCCCCTAAACTGCTGATCTACAAGTCG




AGCAGCCTTGCCTCTGGAGTGCCCTCCCGCTTCTCGGGCTCGGGATCAGGAGCGGAATTCACCCTCACCATCTCCTCCCT




GCAGCCAGATGACTTTGCCACCTACTACTGCCAGCAGTACCAGAGCTATCCGTTGACCTTTGGGGGAGGCACTAAAGTGG




ACATCAAG





500
M14

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCGTCCA




(Full)
GTCGGGAGCAGAAGTTAGAGCACCAGGAGCGTCAGTGAAAATCTCATGCAAGGCCTCGGGCTTCACGTTCCGCGGATACT



>BS83-
AC



95ID
ATCCACTGGGTGCGCCAAGCCCCGGGTCAGGGATTGGAGTGGATGGGAATCATTAACCCATCAGGAGGGAGCCGGGCTTA



(M14)
CGCGCAGAAGTTCCAGGGACGCGTCACTATGACCCGAGATACTTCCACCTCGACTGTGTACATGGAACTCTCGTCCCTGA




GGTCCGACGACACTGCGATGTATTACTGTGCTCGGACTGCCAGCTGCGGTGGGGACTGTTACTACCTCGATTACTGGGGC




CAGGGAACTCTGGTGACCGTGTCCAGCGGAGGTGGCGGGTCAGGGGGTGGCGGAAGCGGAGGCGGCGGTTCAGGCGGAGG




AGGCTCGGACATCCAAATGACGCAATCGCCGCCTACCCTGAGCGCTTCCGTGGGAGATCGGGTGACCATTACTTGCAGAG




CATCCGAGAACGTCAATATCTGGCTGGCCTGGTACCAACAGAAGCCGGGGAAGGCCCCTAAACTGCTGATCTACAAGTCG




AGCAGCCTTGCCTCTGGAGTGCCCTCCCGCTTCTCGGGCTCGGGATCAGGAGCGGAATTCACCCTCACCATCTCCTCCCT




GCAGCCAGATGACTTTGCCACCTACTACTGCCAGCAGTACCAGAGCTATCCGTTGACCTTTGGGGGAGGCACTAAAGTGG




ACATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCG




GAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCC




TCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGT




ACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAG




GAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCT




CTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCG




GGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG




ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACAC




CTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





501
M15
CAAGTTCAACTCGTTCAA



(ScFv
TCAGGTGGAGGACTCGTGCAACCAGGAAGATCACTCAGACTCAGCTGCGCCGCGTCGGGATTCACTTTCGATGACTACGC



domain)
AATGCACTGGGTGCGGCAGGCCCCGGGCAAAGGACTGGAATGGGTGAGCGGAATTAGCTGGAACTCGGGGTCCATCGGGT



>HS86-
ACGCCGACTCGGTGAAGGGACGCTTTACGATCTCCCGGGACAATGCCAAGAACTCCCTGTATTTGCAGATGAACTCCTTG



94XD
AGGGCTGAGGACACCGCCGTGTACTACTGCGCTAAAGATGGATCATCGTCCTGGTCCTGGGGATACTTCGATTACTGGGG



(M15)
CCAGGGCACTCTGGTGACCGTGTCGTCAGGCGGTGGAGGGTCGGGCGGAGGAGGTAGCGGAGGCGGAGGGAGCAGCTCTG




AACTGACCCAAGACCCGGCGGTGTCGGTCGCCCTTGGTCAGACTGTGCGGACTACCTGTCAGGGGGACGCGCTGCGCTCG




TACTACGCTTCATGGTACCAGCAGAAGCCCGGACAGGCACCTATGCTGGTCATCTACGGAAAGAATAACCGCCCATCCGG




CATCCCGGATCGCTTCTCGGGTTCGGACAGCGGCGACACCGCATCCCTGACGATCACTGGAGCGCAGGCCGAGGATGAAG




CCGACTACTACTGCAATTCCCGAGATTCAAGCGGCTACCCTGTGTTTGGGACCGGAACTAAGGTCACCGTCCTG





502
M15

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTTCAACTCGTTCA




(Full)
A



>HS86-
TCAGGTGGAGGACTCGTGCAACCAGGAAGATCACTCAGACTCAGCTGCGCCGCGTCGGGATTCACTTTCGATGACTACGC



94XD
AATGCACTGGGTGCGGCAGGCCCCGGGCAAAGGACTGGAATGGGTGAGCGGAATTAGCTGGAACTCGGGGTCCATCGGGT



(M15)
ACGCCGACTCGGTGAAGGGACGCTTTACGATCTCCCGGGACAATGCCAAGAACTCCCTGTATTTGCAGATGAACTCCTTG




AGGGCTGAGGACACCGCCGTGTACTACTGCGCTAAAGATGGATCATCGTCCTGGTCCTGGGGATACTTCGATTACTGGGG




CCAGGGCACTCTGGTGACCGTGTCGTCAGGCGGTGGAGGGTCGGGCGGAGGAGGTAGCGGAGGCGGAGGGAGCAGCTCTG




AACTGACCCAAGACCCGGCGGTGTCGGTCGCCCTTGGTCAGACTGTGCGGACTACCTGTCAGGGGGACGCGCTGCGCTCG




TACTACGCTTCATGGTACCAGCAGAAGCCCGGACAGGCACCTATGCTGGTCATCTACGGAAAGAATAACCGCCCATCCGG




CATCCCGGATCGCTTCTCGGGTTCGGACAGCGGCGACACCGCATCCCTGACGATCACTGGAGCGCAGGCCGAGGATGAAG




CCGACTACTACTGCAATTCCCGAGATTCAAGCGGCTACCCTGTGTTTGGGACCGGAACTAAGGTCACCGTCCTGACCACT





ACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACC





CGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTT




GCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAA




CCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTG




CGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCA




ATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGA




AAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGG




GGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTC




ACATGCAGGCCCTGCCGCCTCGG





503
M16
GAAGTGCAACTCGTGGAA



(ScFv
TCTGGTGGAGGACTTGTGCAACCTGGAAGATCGTTGAGACTCTCATGTGCTGCCTCCGGGTTCACCTTTGACGACTACGC



domain)
CATGCACTGGGTGCGCCAGGCACCAGGAAAGGGTCTGGAGTGGGTTTCGGGTATCTCGTGGAACTCCGGGAGCACTGGCT



>XS87-
ACGCTGATTCGGTGAAAGGCCGGTTTACCATCTCCCGAGACAATGCGAAGAATTCCCTCTATCTGCAGATGAACAGCCTC



99RD
CGGGCCGAGGATACTGCCCTGTACTACTGCGCCAAGGATAGCTCATCATGGTACGGAGGTGGATCGGCTTTCGATATCTG



(M16)
GGGCCAGGGCACGATGGTCACCGTGTCCTCGGGGGGCGGAGGCTCCGGGGGAGGAGGTAGCGGAGGAGGAGGATCGAGCT




CAGAGTTGACTCAAGAACCCGCAGTGTCCGTGGCACTGGGCCAAACCGTCAGGATCACTTGCCAGGGAGACAGCCTGAGG




TCGTACTACGCGTCCTGGTACCAGCAGAAGCCGGGACAGGCCCCGGTCCTGGTCATTTTCGGACGCTCAAGACGCCCATC




GGGCATCCCGGACCGGTTCAGCGGAAGCTCCTCGGGAAACACCGCGTCACTTATCATTACCGGCGCACAGGCTGAGGACG




AAGCGGATTACTACTGCAACTCCCGCGACAATACTGCCAACCATTACGTGTTCGGGACCGGAACGAAACTGACTGTCCTG





504
M16

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCGAAGTGCAACTCGTGGA




(Full)
A



>XS87-
TCTGGTGGAGGACTTGTGCAACCTGGAAGATCGTTGAGACTCTCATGTGCTGCCTCCGGGTTCACCTTTGACGACTACGC



99RD
CATGCACTGGGTGCGCCAGGCACCAGGAAAGGGTCTGGAGTGGGTTTCGGGTATCTCGTGGAACTCCGGGAGCACTGGCT



(M16)
ACGCTGATTCGGTGAAAGGCCGGTTTACCATCTCCCGAGACAATGCGAAGAATTCCCTCTATCTGCAGATGAACAGCCTC




CGGGCCGAGGATACTGCCCTGTACTACTGCGCCAAGGATAGCTCATCATGGTACGGAGGTGGATCGGCTTTCGATATCTG




GGGCCAGGGCACGATGGTCACCGTGTCCTCGGGGGGCGGAGGCTCCGGGGGAGGAGGTAGCGGAGGAGGAGGATCGAGCT




CAGAGTTGACTCAAGAACCCGCAGTGTCCGTGGCACTGGGCCAAACCGTCAGGATCACTTGCCAGGGAGACAGCCTGAGG




TCGTACTACGCGTCCTGGTACCAGCAGAAGCCGGGACAGGCCCCGGTCCTGGTCATTTTCGGACGCTCAAGACGCCCATC




GGGCATCCCGGACCGGTTCAGCGGAAGCTCCTCGGGAAACACCGCGTCACTTATCATTACCGGCGCACAGGCTGAGGACG




AAGCGGATTACTACTGCAACTCCCGCGACAATACTGCCAACCATTACGTGTTCGGGACCGGAACGAAACTGACTGTCCTG





ACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATG





TAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTG




GTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTT




AAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGG




CGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACG




AACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCG




CGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTAT




GAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACG




CTCTTCACATGCAGGCCCTGCCGCCTCGG





505
M17
GAAGTTCAATTGGTGGAA



(ScFv
TCTGGAGGAGGACTTGTGCAACCCGGTAGATCTCTGAGACTGTCCTGTGCGGCATCGGGATTCACCTTCGACGACTACGC



domain)
TATGCACTGGGTGAGACAAGCCCCTGGAAAAGGACTGGAGTGGGTGTCAGGCATCTCCTGGAATAGCGGGTCCACTGGAT



>NS89-
ACGCCGATTCGGTCAAGGGTCGCTTCACCATTTCCCGGGACAATGCCAAGAACTCCCTGTACCTTCAAATGAACTCCCTC



94MD
CGGGCCGAGGATACCGCCCTCTACTACTGCGCCAAAGACAGCTCGTCATGGTATGGCGGAGGGTCGGCATTTGACATCTG



(M17)
GGGACAGGGAACTATGGTGACTGTGTCATCAGGAGGCGGCGGAAGCGGCGGCGGCGGGTCCGGCGGAGGAGGGTCGTCCA




GCGAACTCACCCAAGATCCAGCAGTGAGCGTCGCGCTGGGCCAGACCGTCAGGATCACGTGCCAGGGAGATTCACTGCGC




TCATACTACGCGTCCTGGTACCAGCAGAAGCCGGGGCAGGCCCCGGTCCTCGTGATCTACGGAAAGAACAACCGCCCGTC




GGGTATCCCAGACCGCTTTTCGGGTAGCTCCAGCGGAAATACGGCTAGCCTGACCATCACTGGAGCACAGGCTGAGGATG




AAGCGGACTACTACTGCAATTCGCGGGGCTCATCGGGGAACCATTACGTGTTCGGAACTGGTACCAAGGTGACTGTCCTG





506
M17

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCGAAGTTCAATTGGTGGA




(Full)
A



>NS89-
TCTGGAGGAGGACTTGTGCAACCCGGTAGATCTCTGAGACTGTCCTGTGCGGCATCGGGATTCACCTTCGACGACTACGC



94MD
TATGCACTGGGTGAGACAAGCCCCTGGAAAAGGACTGGAGTGGGTGTCAGGCATCTCCTGGAATAGCGGGTCCACTGGAT



(M17)
ACGCCGATTCGGTCAAGGGTCGCTTCACCATTTCCCGGGACAATGCCAAGAACTCCCTGTACCTTCAAATGAACTCCCTC




CGGGCCGAGGATACCGCCCTCTACTACTGCGCCAAAGACAGCTCGTCATGGTATGGCGGAGGGTCGGCATTTGACATCTG




GGGACAGGGAACTATGGTGACTGTGTCATCAGGAGGCGGCGGAAGCGGCGGCGGCGGGTCCGGCGGAGGAGGGTCGTCCA




GCGAACTCACCCAAGATCCAGCAGTGAGCGTCGCGCTGGGCCAGACCGTCAGGATCACGTGCCAGGGAGATTCACTGCGC




TCATACTACGCGTCCTGGTACCAGCAGAAGCCGGGGCAGGCCCCGGTCCTCGTGATCTACGGAAAGAACAACCGCCCGTC




GGGTATCCCAGACCGCTTTTCGGGTAGCTCCAGCGGAAATACGGCTAGCCTGACCATCACTGGAGCACAGGCTGAGGATG




AAGCGGACTACTACTGCAATTCGCGGGGCTCATCGGGGAACCATTACGTGTTCGGAACTGGTACCAAGGTGACTGTCCTG





ACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATG





TAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTG




GTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTT




AAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGG




CGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACG




AACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCG




CGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTAT




GAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACG




CTCTTCACATGCAGGCCCTGCCGCCTCGG





507
M18
CAAGTGCAGCTCGTTCAATCAGGCGGAGGACTCGTTCAACCAGGAGGATCATTGCGACTCTCATGTGCGGCCTCTGGATT



(ScFv
CACGTTTAGCTCATATTGG



domain)
ATGCACTGGGTGCGGCAGGCGCCGGGGAAAGGTCTGGTGTGGGTCAGCCGCATCAACTCAGACGGCTCCTCGACTTCGTA



>DS90-
CGCCGACTCCGTGAAGGGACGCTTTACCATTTCCCGCGACAACGCCAAGAATACCCTTTACCTTCAGATGAACTCCCTCC



09HD
GCGCTGAGGATACCGCCGTGTACTACTGCGTGAGGACTGGCTGGGTCGGCAGCTACTACTACTACATGGACGTGTGGGGC



(M18)
AAAGGAACTACTGTCACCGTGTCAAGCGGCGGTGGAGGTTCCGGCGGGGGAGGATCGGGGGGGGGCGGATCGGGTGGCGG




AGGATCGGAGATCGTGTTGACCCAGTCGCCGGGAACCCTGTCGCTGTCGCCTGGGGAGAGAGCAACTCTGTCCTGCCGGG




CTTCCCAGTCGGTGTCGAGCAATTACCTGGCATGGTACCAACAGAAGCCGGGACAGCCGCCACGCCTGCTGATCTATGAC




GTGTCAACTCGGGCAACTGGAATCCCTGCGCGGTTCAGCGGCGGAGGGAGCGGTACCGATTTCACCCTGACTATTTCCTC




CCTCGAACCAGAAGATTTCGCCGTCTACTACTGCCAGCAGAGAAGCAACTGGCCGCCCTGGACGTTCGGACAAGGAACCA




AGGTCGAAATCAAG





508
M18

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTGCAGCTCGTTCA




(Full)
ATCAGGCGGAGGACTCGTTCAACCAGGAGGATCATTGCGACTCTCATGTGCGGCCTCTGGATTCACGTTTAGCTCATATT



>DS90-
GG



09HD
ATGCACTGGGTGCGGCAGGCGCCGGGGAAAGGTCTGGTGTGGGTCAGCCGCATCAACTCAGACGGCTCCTCGACTTCGTA



(M18)
CGCCGACTCCGTGAAGGGACGCTTTACCATTTCCCGCGACAACGCCAAGAATACCCTTTACCTTCAGATGAACTCCCTCC




GCGCTGAGGATACCGCCGTGTACTACTGCGTGAGGACTGGCTGGGTCGGCAGCTACTACTACTACATGGACGTGTGGGGC




AAAGGAACTACTGTCACCGTGTCAAGCGGCGGTGGAGGTTCCGGCGGGGGAGGATCGGGGGGGGGCGGATCGGGTGGCGG




AGGATCGGAGATCGTGTTGACCCAGTCGCCGGGAACCCTGTCGCTGTCGCCTGGGGAGAGAGCAACTCTGTCCTGCCGGG




CTTCCCAGTCGGTGTCGAGCAATTACCTGGCATGGTACCAACAGAAGCCGGGACAGCCGCCACGCCTGCTGATCTATGAC




GTGTCAACTCGGGCAACTGGAATCCCTGCGCGGTTCAGCGGCGGAGGGAGCGGTACCGATTTCACCCTGACTATTTCCTC




CCTCGAACCAGAAGATTTCGCCGTCTACTACTGCCAGCAGAGAAGCAACTGGCCGCCCTGGACGTTCGGACAAGGAACCA




AGGTCGAAATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTG




CGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTG




GGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGC




TGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCA




GAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAA




CCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAA




TGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTAT




AGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAA




GGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





509
M19
CAAGTGCAATTGGTTCAA



(ScFv
TCAGGAGGAGGAGTCGTGCAGCCCGGAAGATCGTTGAGACTGTCATGTGCCGCGAGCGGCTTTACTTTCTCAAGCTACGG



domain)
AATGCATTGGGTGCGACAGGCTCCGGGAAAAGGACTGGAATGGGTCGCAGTGATCTCATACGACGGCTCGAACAAGTACT



>TS92-
ACGCCGACTCCGTCAAGGGTCGGTTCACGATTTCGCGCGATAATTCCAAGAACACTCTGTACCTCCAAATGAACAGCCTC



04BD
CGGGCAGAGGACACCGCCGTCTACTACTGCGCTAAGGGATACTCGCGCTACTACTACTATGGAATGGATGTGTGGGGCCA



(M19)
GGGAACTACCGTGACGGTGTCGTCCGGCGGCGGTGGGTCGGGCGGAGGCGGATCAGGTGGAGGTGGAAGCGGAGGAGGAG




GGAGCGAAATCGTCATGACTCAGTCCCCTGCTACCCTTTCTCTGTCGCCGGGAGAAAGAGCCATCCTGAGCTGCCGGGCC




TCCCAGAGCGTGTACACCAAATACCTGGGATGGTACCAGCAGAAGCCGGGGCAGGCACCAAGGCTCCTGATCTACGATGC




GTCCACCCGCGCGACTGGTATCCCAGACCGCTTTTCCGGCTCGGGGTCAGGGACTGACTTCACCCTTACTATCAATCGGC




TCGAGCCTGAGGATTTCGCCGTGTATTACTGCCAGCACTACGGAGGGTCCCCGCTGATTACCTTCGGCCAAGGCACCAAA




GTGGACATCAAG





510
M19

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTGCAATTGGTTCA




(Full)
A



>TS92-
TCAGGAGGAGGAGTCGTGCAGCCCGGAAGATCGTTGAGACTGTCATGTGCCGCGAGCGGCTTTACTTTCTCAAGCTACGG



04BD
AATGCATTGGGTGCGACAGGCTCCGGGAAAAGGACTGGAATGGGTCGCAGTGATCTCATACGACGGCTCGAACAAGTACT



(M19)
ACGCCGACTCCGTCAAGGGTCGGTTCACGATTTCGCGCGATAATTCCAAGAACACTCTGTACCTCCAAATGAACAGCCTC




CGGGCAGAGGACACCGCCGTCTACTACTGCGCTAAGGGATACTCGCGCTACTACTACTATGGAATGGATGTGTGGGGCCA




GGGAACTACCGTGACGGTGTCGTCCGGCGGCGGTGGGTCGGGCGGAGGCGGATCAGGTGGAGGTGGAAGCGGAGGAGGAG




GGAGCGAAATCGTCATGACTCAGTCCCCTGCTACCCTTTCTCTGTCGCCGGGAGAAAGAGCCATCCTGAGCTGCCGGGCC




TCCCAGAGCGTGTACACCAAATACCTGGGATGGTACCAGCAGAAGCCGGGGCAGGCACCAAGGCTCCTGATCTACGATGC




GTCCACCCGCGCGACTGGTATCCCAGACCGCTTTTCCGGCTCGGGGTCAGGGACTGACTTCACCCTTACTATCAATCGGC




TCGAGCCTGAGGATTTCGCCGTGTATTACTGCCAGCACTACGGAGGGTCCCCGCTGATTACCTTCGGCCAAGGCACCAAA




GTGGACATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCG




TCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGG




CCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTG




CTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGA




GGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACC




AGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATG




GGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAG




CGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGG




ACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





511
M20
CAAGTGCAACTTGTTCAATCAGGAGGAGGACTCGTTCAACCCGGAGGATCACTGCGACTCTCATGTGCAGCGTCGGGGTT



(ScFv
CACCTTCTCCAGCTACGCA



domain)
ATGTCCTGGGTGCGCCAAGCCCCTGGAAAAGGCCTGGAGTGGGTGTCGGCCATCTCTGGGAGCGGGGGATCAACTTACTA



>JS93-
CGCTGACTCCGTCAAGGGCCGCTTTACCATCTCCCGGGACAACAGCAAGAACACTCTCTATCTCCAGATGAACTCGCTGA



08WD
GAGCCGAAGATACCGCTGTCTACTACTGCGCGAAGAGAGAAGCTGCCGCAGGGCACGATTGGTACTTCGACTTGTGGGGC



(M20)
AGGGGCACCCTTGTGACCGTGTCCTCCGGTGGAGGCGGATCAGGAGGTGGGGGATCGGGTGGAGGAGGAAGCGGAGGCGG




CGGTTCGGACATTCGCGTCACCCAGTCACCGAGCTCCCTCAGCGCATCGGTGGGCGACCGGGTCACTATCACTTGCCGGG




CGTCCCAGTCGATCTCATCGTATCTGAATTGGTACCAGCAGAAACCGGGAAAGGCGCCGAAGCTGTTGATCTACGCTGCC




AGCTCCCTGCAGTCGGGTGTGCCATCACGCTTTTCCGGCTCGGGATCGGGAACCGATTTCACTCTGACGATCTCTAGCCT




GCAGCCAGAAGATTTCGCCACTTACTACTGCCAGCAGTCCTACAGCATCCCTCTGACTTTCGGACAAGGGACGAAAGTGG




AGATTAAG





512
M20

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTGCAACTTGTTCA




(Full)
ATCAGGAGGAGGACTCGTTCAACCCGGAGGATCACTGCGACTCTCATGTGCAGCGTCGGGGTTCACCTTCTCCAGCTACGCA



>JS93-
ATGTCCTGGGTGCGCCAAGCCCCTGGAAAAGGCCTGGAGTGGGTGTCGGCCATCTCTGGGAGCGGGGGATCAACTTACTA



08WD
CGCTGACTCCGTCAAGGGCCGCTTTACCATCTCCCGGGACAACAGCAAGAACACTCTCTATCTCCAGATGAACTCGCTGA



(M20)
GAGCCGAAGATACCGCTGTCTACTACTGCGCGAAGAGAGAAGCTGCCGCAGGGCACGATTGGTACTTCGACTTGTGGGGC




AGGGGCACCCTTGTGACCGTGTCCTCCGGTGGAGGCGGATCAGGAGGTGGGGGATCGGGTGGAGGAGGAAGCGGAGGCGG




CGGTTCGGACATTCGCGTCACCCAGTCACCGAGCTCCCTCAGCGCATCGGTGGGCGACCGGGTCACTATCACTTGCCGGG




CGTCCCAGTCGATCTCATCGTATCTGAATTGGTACCAGCAGAAACCGGGAAAGGCGCCGAAGCTGTTGATCTACGCTGCC




AGCTCCCTGCAGTCGGGTGTGCCATCACGCTTTTCCGGCTCGGGATCGGGAACCGATTTCACTCTGACGATCTCTAGCCT




GCAGCCAGAAGATTTCGCCACTTACTACTGCCAGCAGTCCTACAGCATCCCTCTGACTTTCGGACAAGGGACGAAAGTGG




AGATTAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCG




GAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCC




TCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGT




ACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAG




GAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCT




CTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCG




GGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG




ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACAC




CTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





513
M21
CAAGTCCAACTCGTTCAGTCATGGGCAGAAGTCAAGAAACCCGGTGCAAGCGTCAAAGTGTCGTGTAAGGCCTCCGGCTA



(ScFv
CACTTTCACTTCCTACTAC



domain)
ATGCACTGGGTGCGCCAAGCCCCGGGACAGGGCCTTGAATGGATGGGCATCATCAACCCATCAGGAGGTTCCACGAGCTA



>ZS95-
CGCGCAGAAGTTCCAGGGGAGAGTGACGATGACTAGAGATACCTCCACGAGCACCGTCTACATGGAGCTGTCGAATCTGC



03QD
GGTCAGAGGACACTGCTGTGTATTACTGCGCGCGCTCCCCGCGGGTGACCACTGGCTACTTTGACTACTGGGGACAAGGG



(M21)
ACCCTGGTGACCGTCAGCTCGGGAGGCGGAGGATCGGGAGGTGGAGGGTCCGGTGGAGGCGGCTCTGGAGGAGGCGGGTC




GGACATTCAATTGACCCAGAGCCCATCCACCCTCTCAGCCTCGGTGGGGGATAGGGTGACTATCACTTGCCGGGCCTCCC




AGTCAATTTCCAGCTGGCTGGCTTGGTACCAGCAAAAGCCTGGAAAGGCACCGAAGCTCCTGATCTACAAGGCCTCATCT




CTGGAATCAGGAGTGCCTTCGCGCTTCAGCGGAAGCGGCTCGGGAACTGAGTTTACCCTGACCATCTCGAGCCTGCAGCC




AGATGACTTCGCGACCTATTACTGCCAGCAGTACTCGTCCTACCCGTTGACTTTCGGAGGAGGTACCCGCCTCGAAATCAAA





514
M21

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCGTTCA




(Full)
GTCATGGGCAGAAGTCAAGAAACCCGGTGCAAGCGTCAAAGTGTCGTGTAAGGCCTCCGGCTACACTTTCACTTCCTACTAC



>ZS95-
ATGCACTGGGTGCGCCAAGCCCCGGGACAGGGCCTTGAATGGATGGGCATCATCAACCCATCAGGAGGTTCCACGAGCTA



03QD
CGCGCAGAAGTTCCAGGGGAGAGTGACGATGACTAGAGATACCTCCACGAGCACCGTCTACATGGAGCTGTCGAATCTGC



(M21)
GGTCAGAGGACACTGCTGTGTATTACTGCGCGCGCTCCCCGCGGGTGACCACTGGCTACTTTGACTACTGGGGACAAGGG




ACCCTGGTGACCGTCAGCTCGGGAGGCGGAGGATCGGGAGGTGGAGGGTCCGGTGGAGGCGGCTCTGGAGGAGGCGGGTC




GGACATTCAATTGACCCAGAGCCCATCCACCCTCTCAGCCTCGGTGGGGGATAGGGTGACTATCACTTGCCGGGCCTCCC




AGTCAATTTCCAGCTGGCTGGCTTGGTACCAGCAAAAGCCTGGAAAGGCACCGAAGCTCCTGATCTACAAGGCCTCATCT




CTGGAATCAGGAGTGCCTTCGCGCTTCAGCGGAAGCGGCTCGGGAACTGAGTTTACCCTGACCATCTCGAGCCTGCAGCC




AGATGACTTCGCGACCTATTACTGCCAGCAGTACTCGTCCTACCCGTTGACTTTCGGAGGAGGTACCCGCCTCGAAATCA




AAACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCA




TGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGC




TGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCT




TTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAA




GGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAA




CGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGC




CGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGT




ATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGA




CGCTCTTCACATGCAGGCCCTGCCGCCTCGG





515
M22
CAAGTCCAACTCGTCCAGTCCGGTGCAGAAGTCAGAAGGCCAGGAGCAAGCGTGAAGATCTCGTGTAGAGCGTCAGGAGA



(ScFv
CACCAGCACTCGCCATTAC



domain)
ATCCACTGGCTGCGCCAGGCTCCGGGCCAAGGGCCGGAGTGGATGGGTGTGATCAACCCGACTACGGGACCGGCTACCGG



>PS96-
AAGCCCTGCGTACGCACAGATGCTGCAGGGACGGGTGACTATGACCCGCGATACTAGCACTAGGACCGTGTACATGGAAC



08LD
TCCGCTCGTTGCGGTTCGAAGATACCGCCGTCTACTACTGCGCCCGGTCCGTGGTGGGCCGAAGCGCCCCTTACTACTTC



(M22)
GATTACTGGGGACAGGGCACTCTGGTGACCGTTAGCTCCGGTGGGGGAGGCTCGGGTGGAGGCGGATCGGGAGGAGGAGG




CAGCGGTGGAGGGGGATCGGACATTCAGATGACCCAGTCACCCTCCTCCCTCTCAGCCTCGGTCGGGGACCGGGTGACCA




TTACGTGCAGAGCCTCACAAGGGATCTCGGACTACTCCGCCTGGTACCAGCAGAAACCGGGAAAAGCGCCAAAGCTCCTG




ATCTACGCCGCGAGCACCCTGCAATCAGGAGTGCCATCGCGCTTTTCTGGATCGGGCTCAGGGACTGACTTCACGCTGAC




TATCTCCTACCTTCAGTCCGAGGATTTCGCTACCTACTACTGCCAACAGTATTACTCCTATCCCCTGACCTTTGGCGGAG




GCACTAAGGTGGACATCAAG





516
M22

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCGTCCA




(Full)
GTCCGGTGCAGAAGTCAGAAGGCCAGGAGCAAGCGTGAAGATCTCGTGTAGAGCGTCAGGAGACACCAGCACTCGCCATTAC



>PS96-
ATCCACTGGCTGCGCCAGGCTCCGGGCCAAGGGCCGGAGTGGATGGGTGTGATCAACCCGACTACGGGACCGGCTACCGG



08LD
AAGCCCTGCGTACGCACAGATGCTGCAGGGACGGGTGACTATGACCCGCGATACTAGCACTAGGACCGTGTACATGGAAC



(M22)
TCCGCTCGTTGCGGTTCGAAGATACCGCCGTCTACTACTGCGCCCGGTCCGTGGTGGGCCGAAGCGCCCCTTACTACTTC




GATTACTGGGGACAGGGCACTCTGGTGACCGTTAGCTCCGGTGGGGGAGGCTCGGGTGGAGGCGGATCGGGAGGAGGAGG




CAGCGGTGGAGGGGGATCGGACATTCAGATGACCCAGTCACCCTCCTCCCTCTCAGCCTCGGTCGGGGACCGGGTGACCA




TTACGTGCAGAGCCTCACAAGGGATCTCGGACTACTCCGCCTGGTACCAGCAGAAACCGGGAAAAGCGCCAAAGCTCCTG




ATCTACGCCGCGAGCACCCTGCAATCAGGAGTGCCATCGCGCTTTTCTGGATCGGGCTCAGGGACTGACTTCACGCTGAC




TATCTCCTACCTTCAGTCCGAGGATTTCGCTACCTACTACTGCCAACAGTATTACTCCTATCCCCTGACCTTTGGCGGAG




GCACTAAGGTGGACATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTG




TCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTA




CATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGA




AGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGG




TTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGG




GCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACC




CAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAA




GCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGC




CACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





517
M23
CAAGTCCAACTCCAGCAATCGGGAGCAGAAGTCAAGAAACCAGGCGCATCGGTGAAAGTGTCGTGTAAGGCGTCAGGGTA



(ScFv
CACCTTCACCAACTACTAT



domain)
ATGCACTGGGTGCGCCAGGCTCCAGGCCAGGGGTTGGAGTGGATGGGGATCATCAATCCGTCAGGTGGCTACACCACTTA



>XH66-
CGCTCAGAAGTTCCAGGGACGCCTCACTATGACTCGCGATACTAGCACCTCCACGGTGTACATGGAACTGTCATCGCTGA



84HE
GGTCCGAAGATACCGCCGTCTACTACTGCGCACGGATCAGATCCTGCGGAGGAGATTGTTACTACTTTGACAACTGGGGA



(M23)
CAGGGCACCCTTGTTACTGTGTCATCGGGAGGAGGGGGAAGCGGAGGAGGTGGATCAGGCGGCGGTGGCAGCGGGGGCGG




AGGATCGGACATTCAGCTGACTCAGTCCCCCTCCACTTTGTCGGCCAGCGTGGGAGACAGAGTGACCATCACTTGCCGGG




CGTCCGAGAACGTCAATATCTGGCTGGCCTGGTACCAGCAAAAGCCTGGAAAAGCCCCGAAGCTGCTCATCTATAAGTCA




TCCAGCCTGGCGTCTGGTGTGCCGTCGCGGTTCTCCGGCAGCGGGAGCGGAGCCGAGTTCACTCTCACCATTTCGAGCCT




TCAACCGGACGATTTCGCCACCTACTACTGCCAGCAGTACCAATCCTACCCTCTGACGTTTGGAGGTGGAACCAAGGTGG




ACATCAAG





518
M23

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAGTCCAACTCCAGCA




(Full)
ATCGGGAGCAGAAGTCAAGAAACCAGGCGCATCGGTGAAAGTGTCGTGTAAGGCGTCAGGGTACACCTTCACCAACTACTAT



>XH66-
ATGCACTGGGTGCGCCAGGCTCCAGGCCAGGGGTTGGAGTGGATGGGGATCATCAATCCGTCAGGTGGCTACACCACTTA



84HE
CGCTCAGAAGTTCCAGGGACGCCTCACTATGACTCGCGATACTAGCACCTCCACGGTGTACATGGAACTGTCATCGCTGA



(M23)
GGTCCGAAGATACCGCCGTCTACTACTGCGCACGGATCAGATCCTGCGGAGGAGATTGTTACTACTTTGACAACTGGGGA




CAGGGCACCCTTGTTACTGTGTCATCGGGAGGAGGGGGAAGCGGAGGAGGTGGATCAGGCGGCGGTGGCAGCGGGGGCGG




AGGATCGGACATTCAGCTGACTCAGTCCCCCTCCACTTTGTCGGCCAGCGTGGGAGACAGAGTGACCATCACTTGCCGGG




CGTCCGAGAACGTCAATATCTGGCTGGCCTGGTACCAGCAAAAGCCTGGAAAAGCCCCGAAGCTGCTCATCTATAAGTCA




TCCAGCCTGGCGTCTGGTGTGCCGTCGCGGTTCTCCGGCAGCGGGAGCGGAGCCGAGTTCACTCTCACCATTTCGAGCCT




TCAACCGGACGATTTCGCCACCTACTACTGCCAGCAGTACCAATCCTACCCTCTGACGTTTGGAGGTGGAACCAAGGTGG




ACATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCG




GAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCC




TCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGT




ACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAG




GAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCT




CTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCG




GGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG




ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACAC




CTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





519
M24
CAAATCACTCTGAAAGAA



(ScFv
TCTGGACCGGCCCTGGTTAAGCCGACTCAAACGCTCACCCTTACTTGCACCTTCAGCGGATTCTCACTCAGCACTGCTGG



domain)
TGTGCACGTCGGATGGATTAGACAGCCGCCTGGAAAGGCCCTGGAATGGCTCGCCCTCATCTCCTGGGCCGATGACAAGA



>NH67-
GATACAGGCCCTCGCTTCGATCCCGGTTGGACATTACCCGGGTGACCTCGAAAGATCAGGTGGTGCTCTCAATGACCAAT



89CE
ATGCAGCCGGAGGACACCGCTACGTACTACTGCGCACTGCAAGGATTTGACGGCTACGAGGCTAACTGGGGACCAGGTAC



(M24)
TCTGGTCACCGTGAGCTCCGGCGGGGGAGGATCAGGCGGGGGGGGGTCAGGAGGCGGAGGCTCCGGTGGAGGAGGATCGG




ATATCGTCATGACCCAGTCCCCAAGCTCGCTGAGCGCGTCAGCGGGCGACCGCGTGACTATCACTTGCCGGGCCAGCCGC




GGCATCTCCTCCGCACTGGCGTGGTACCAGCAGAAGCCTGGAAAACCGCCAAAGCTCCTGATCTATGATGCCTCCAGCCT




GGAGTCAGGTGTCCCCAGCCGCTTCTCGGGTTCGGGCTCGGGAACCGACTTCACTTTGACCATCGACTCGCTGGAACCGG




AAGATTTCGCAACCTACTACTGTCAGCAGTCCTACTCGACCCCTTGGACTTTTGGACAAGGGACGAAGGTGGACATCAAG





520
M24

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCGGCCCCAAATCACTCTGAAAGA




(Full)
A



>NH67-
TCTGGACCGGCCCTGGTTAAGCCGACTCAAACGCTCACCCTTACTTGCACCTTCAGCGGATTCTCACTCAGCACTGCTGG



89CE
TGTGCACGTCGGATGGATTAGACAGCCGCCTGGAAAGGCCCTGGAATGGCTCGCCCTCATCTCCTGGGCCGATGACAAGA



(M24)
GATACAGGCCCTCGCTTCGATCCCGGTTGGACATTACCCGGGTGACCTCGAAAGATCAGGTGGTGCTCTCAATGACCAAT




ATGCAGCCGGAGGACACCGCTACGTACTACTGCGCACTGCAAGGATTTGACGGCTACGAGGCTAACTGGGGACCAGGTAC




TCTGGTCACCGTGAGCTCCGGCGGGGGAGGATCAGGCGGGGGGGGGTCAGGAGGCGGAGGCTCCGGTGGAGGAGGATCGG




ATATCGTCATGACCCAGTCCCCAAGCTCGCTGAGCGCGTCAGCGGGCGACCGCGTGACTATCACTTGCCGGGCCAGCCGC




GGCATCTCCTCCGCACTGGCGTGGTACCAGCAGAAGCCTGGAAAACCGCCAAAGCTCCTGATCTATGATGCCTCCAGCCT




GGAGTCAGGTGTCCCCAGCCGCTTCTCGGGTTCGGGCTCGGGAACCGACTTCACTTTGACCATCGACTCGCTGGAACCGG




AAGATTTCGCAACCTACTACTGTCAGCAGTCCTACTCGACCCCTTGGACTTTTGGACAAGGGACGAAGGTGGACATCAAG





ACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATG





TAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTG




GTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTT




AAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGG




CGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACG




AACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCG




CGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTAT




GAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACG




CTCTTCACATGCAGGCCCTGCCGCCTCGG





521
Ss1
CAAGTCCAGCTCCAGCAGTCGGGCCCAGAGTTGGAGAAGCCTGGGGCGAGCGTGA



(scFv
AGAT



domain)
CTCATGCAAAGCCTCAGGCTACTCCTTTACTGGATACACGATGAATTGGGTGAAAC




AGT




CGCATGGAAAGTCACTGGAATGGATCGGTCTGATTACGCCCTACAACGGCGCCTCCAGC




TACAACCAGAAGTTCAGGGGAAAGGCGACCCTTACTGTCGACAAGTCGTCAAGCA




CCGC




CTACATGGACCTCCTGTCCCTGACCTCCGAAGATAGCGCGGTCTACTTTTGTGCACG




CG




GAGGTTACGATGGACGGGGATTCGACTACTGGGGCCAGGGAACCACTGTCACCGT




GTCG




AGCGGAGGCGGAGGGAGCGGAGGAGGAGGCAGCGGAGGTGGAGGGTCGGATATC




GAACT




CACTCAGTCCCCAGCAATCATGTCCGCTTCACCGGGAGAAAAGGTGACCATGACTT




GCT




CGGCCTCCTCGTCCGTGTCATACATGCACTGGTACCAACAAAAATCGGGGACCTCC




CCT




AAGAGATGGATCTACGATACCAGCAAACTGGCTTCAGGCGTGCCGGGACGCTTCTC




GGG




TTCGGGGAGCGGAAATTCGTATTCGTTGACCATTTCGTCCGTGGAAGCCGAGGACG




ACG




CAACTTATTACTGCCAACAGTGGTCAGGCTACCCGCTCACTTTCGGAGCCGGCACT




AAG




CTGGAGATC





522
Ss1

ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCACGCCGCTCG




(full)

GCCCCAAGTCCAGCTCCAGCAGTCGGGCCCAGAGTTGGAGAAGCCTGGGGCGAGCGTGA





AGATCTCATGCAAAGCCTCAGGCTACTCCTTTACTGGATACACGATGAATTGGGTGAAA




CAGTCGCATGGAAAGTCACTGGAATGGATCGGTCTGATTACGCCCTACAACGGCGCCTC




CAGCTACAACCAGAAGTTCAGGGGAAAGGCGACCCTTACTGTCGACAAGTCGTCAAGCA




CCGCCTACATGGACCTCCTGTCCCTGACCTCCGAAGATAGCGCGGTCTACTTTTGTGCA




CGCGGAGGTTACGATGGACGGGGATTCGACTACTGGGGCCAGGGAACCACTGTCACCGT




GTCGAGCGGAGGCGGAGGGAGCGGAGGAGGAGGCAGCGGAGGTGGAGGGTCGGATATCG




AACTCACTCAGTCCCCAGCAATCATGTCCGCTTCACCGGGAGAAAAGGTGACCATGACT




TGCTCGGCCTCCTCGTCCGTGTCATACATGCACTGGTACCAACAAAAATCGGGGACCTC




CCCTAAGAGATGGATCTACGATACCAGCAAACTGGCTTCAGGCGTGCCGGGACGCTTCT




CGGGTTCGGGGAGCGGAAATTCGTATTCGTTGACCATTTCGTCCGTGGAAGCCGAGGAC




GACGCAACTTATTACTGCCAACAGTGGTCAGGCTACCCGCTCACTTTCGGAGCCGGCAC




TAAGCTGGAGATCACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCG




CCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTG




CATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTAC




TTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGA




AGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAG




GACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAA




ATTCAGCCGCAGCGCAGATGCTCCAGCC









In one embodiment, an antigen binding domain against CD123 is an antigen binding portion, e.g., CDRs, of an antibody, antigen-binding fragment or CAR described in, e.g., PCT publication WO2016/028896. In one embodiment, an antigen binding domain against CD123 is an antigen binding portion, e.g., CDRs, of an antibody, antigen-binding fragment or CAR described in, e.g., PCT publication WO2014/130635. In one embodiment, an antigen binding domain against CD123 is an antigen binding portion, e.g., CDRs, of an antibody, antigen-binding fragment, or CAR described in, e.g., PCT publication WO2014/138805, WO2014/138819, WO2013/173820, WO2014/144622, WO2001/66139, WO2010/126066, WO2014/144622, or US2009/0252742.


In one embodiment, an antigen binding domain against CD123 is an antigen binding portion, e.g., CDRs, of an antibody, antigen-binding fragment or CAR described in, e.g., US2014/0322212A1 or US2016/0068601A1, both incorporated herein by reference. In embodiments, the CD123 CAR comprises an amino acid, or has a nucleotide sequence shown in US2014/0322212A1 or US2016/0068601A1, both incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD123 CAR sequences). In one embodiment, the CAR molecule comprises a CD123 CAR (e.g., any of the CAR1-CAR8), or an antigen binding domain according to Tables 1-2 of WO 2014/130635, incorporated herein by reference, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD123 CAR sequences). The amino acid and nucleotide sequences encoding the CD123 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO 2014/130635.


In other embodiments, the CAR molecule comprises a CD123 CAR comprises a CAR molecule (e.g., any of the CAR123-1 to CAR123-4 and hzCAR123-1 to hzCAR123-32), or an antigen binding domain according to Tables 2, 6, and 9 of WO2016/028896, incorporated herein by reference, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD123 CAR sequences). The amino acid and nucleotide sequences encoding the CD123 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/028896.


In one embodiment, an antigen binding domain against CD22 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Haso et al., Blood, 121(7): 1165-1174 (2013); Wayne et al., Clin Cancer Res 16(6): 1894-1903 (2010); Kato et al., Leuk Res 37(1):83-88 (2013); Creative BioMart (creativebiomart.net): MOM-18047-S(P).


In one embodiment, an antigen binding domain against CS-1 is an antigen binding portion, e.g., CDRs, of Elotuzumab (BMS), see e.g., Tai et al., 2008, Blood 112(4):1329-37; Tai et al., 2007, Blood. 110(5):1656-63.


In one embodiment, an antigen binding domain against CLL-1 is an antigen binding portion, e.g., CDRs, of an antibody available from R&D, ebiosciences, Abcam, for example, PE-CLL1-hu Cat #353604 (BioLegend); and PE-CLL1 (CLEC12A) Cat #562566 (BD).


In other embodiments, the CLL1 CAR includes a CAR molecule, or an antigen binding domain according to Table 2 of WO2016/014535, incorporated herein by reference. The amino acid and nucleotide sequences encoding the CLL-1 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/014535.


In one embodiment, an antigen binding domain against CD33 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Bross et al., Clin Cancer Res 7(6):1490-1496 (2001) (Gemtuzumab Ozogamicin, hP67.6), Caron et al., Cancer Res 52(24):6761-6767 (1992) (Lintuzumab, HuM195), Lapusan et al., Invest New Drugs 30(3):1121-1131 (2012) (AVE9633), Aigner et al., Leukemia 27(5): 1107-1115 (2013) (AMG330, CD33 BiTE), Dutour et al., Adv hematol 2012:683065 (2012), and Pizzitola et al., Leukemia doi:10.1038/Lue.2014.62 (2014).


In one embodiment, an antigen binding domain against CD33 is an antigen binding portion, e.g., CDRs, of an antibody described in, US2016/0096892A1, incorporated herein by reference. In embodiments, the CD33 CAR comprises an amino acid, or has a nucleotide sequence shown in US2016/0096892A1, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD33 CAR sequences). In other embodiments, the CD33 CAR CAR or antigen binding domain thereof can include a CAR molecule (e.g., any of CAR33-1 to CAR-33-9), or an antigen binding domain according to Table 2 or 9 of WO2016/014576, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD33 CAR sequences). The amino acid and nucleotide sequences encoding the CD33 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/014576.


In one embodiment, an antigen binding domain against GD2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Mujoo et al., Cancer Res. 47(4):1098-1104 (1987); Cheung et al., Cancer Res 45(6):2642-2649 (1985), Cheung et al., J Clin Oncol 5(9):1430-1440 (1987), Cheung et al., J Clin Oncol 16(9):3053-3060 (1998), Handgretinger et al., Cancer Immunol Immunother 35(3):199-204 (1992). In some embodiments, an antigen binding domain against GD2 is an antigen binding portion of an antibody selected from mAb 14.18, 14G2a, ch14.18, hu14.18, 3F8, hu3F8, 3G6, 8B6, 60C3, 10B8, ME36.1, and 8H9, see e.g., WO2012033885, WO2013040371, WO2013192294, WO2013061273, WO2013123061, WO2013074916, and WO201385552. In some embodiments, an antigen binding domain against GD2 is an antigen binding portion of an antibody described in US Publication No.: 20100150910 or PCT Publication No.: WO 2011160119.


In one embodiment, an antigen binding domain against BCMA is an antigen binding portion, e.g., CDRs, of an antibody, antigen-binding fragment or CAR described in, e.g., PCT publication WO2016/014565, e.g., the antigen binding portion of CAR BCMA-10 as described in WO2016/014565. In one embodiment, an antigen binding domain against BCMA is an antigen binding portion, e.g., CDRs, of an antibody, antigen-binding fragment or CAR described in, e.g., PCT publication WO2016/014789. In one embodiment, an antigen binding domain against BCMA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., WO2012/163805, WO2001/12812, and WO2003/062401.


In other embodiment, the CAR molecule comprises a BCMA CAR molecule, or an antigen binding domain against BCMA described herein, e.g., a BCMA CAR described in US-2016-0046724-A1 or WO2016/014565. In embodiments, the BCMA CAR comprises an amino acid, or has a nucleotide sequence of a CAR molecule, or an antigen binding domain according to US-2016-0046724-A1, or Table 1 or 16, SEQ ID NO: 271 or SEQ ID NO: 273 of WO2016/014565, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid BCMA CAR sequences). The amino acid and nucleotide sequences encoding the BCMA CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/014565.


In one embodiment, an antigen binding domain against GFR ALPHA-4 CAR antigen is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., WO2016/025880, incorporated herein by reference. In one embodiment, the CAR molecule comprises an a GFR ALPHA-4 CAR, e.g., a CAR molecule, or an antigen binding domain according to Table 2 of WO2016/025880, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid GFR ALPHA-4 sequences). The amino acid and nucleotide sequences encoding the GFR ALPHA-4 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/025880.


In one embodiment, an antigen binding domain against Tn antigen is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 8,440,798; Brooks et al., PNAS 107(22):10056-10061 (2010), and Stone et al., OncoImmunology 1(6):863-873(2012).


In one embodiment, an antigen binding domain against PSMA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Parker et al., Protein Expr Purif 89(2):136-145 (2013), US 20110268656 (J591 ScFv); Frigerio et al, European J Cancer 49(9):2223-2232 (2013) (scFvD2B); WO 2006125481 (mAbs 3/A12, 3/E7 and 3/F11) and single chain antibody fragments (scFv A5 and D7).


In one embodiment, an antigen binding domain against ROR1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Hudecek et al., Clin Cancer Res 19(12):3153-3164 (2013); WO 2011159847; and US20130101607.


In one embodiment, an antigen binding domain against FLT3 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., WO2011076922, U.S. Pat. No. 5,777,084, EP0754230, US20090297529, and several commercial catalog antibodies (R&D, ebiosciences, Abcam).


In one embodiment, an antigen binding domain against TAG72 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Hombach et al., Gastroenterology 113(4):1163-1170 (1997); and Abcam ab691.


In one embodiment, an antigen binding domain against FAP is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Ostermann et al., Clinical Cancer Research 14:4584-4592 (2008) (FAP5), US Pat. Publication No. 2009/0304718; sibrotuzumab (see e.g., Hofheinz et al., Oncology Research and Treatment 26(1), 2003); and Tran et al., J Exp Med 210(6):1125-1135 (2013).


In one embodiment, an antigen binding domain against CD38 is an antigen binding portion, e.g., CDRs, of daratumumab (see, e.g., Groen et al., Blood 116(21):1261-1262 (2010); MOR202 (see, e.g., U.S. Pat. No. 8,263,746); or antibodies described in U.S. Pat. No. 8,362,211.


In one embodiment, an antigen binding domain against CD44v6 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Casucci et al., Blood 122(20):3461-3472 (2013).


In one embodiment, an antigen binding domain against CEA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Chmielewski et al., Gastroenterology 143(4):1095-1107 (2012).


In one embodiment, an antigen binding domain against EPCAM is an antigen binding portion, e.g., CDRS, of an antibody selected from MT110, EpCAM-CD3 bispecific Ab (see, e.g., clinicaltrials.gov/ct2/show/NCT00635596); Edrecolomab; 3622W94; ING-1; and adecatumumab (MT201).


In one embodiment, an antigen binding domain against PRSS21 is an antigen binding portion, e.g., CDRs, of an antibody described in U.S. Pat. No. 8,080,650.


In one embodiment, an antigen binding domain against B7H3 is an antigen binding portion, e.g., CDRs, of an antibody MGA271 (Macrogenics).


In one embodiment, an antigen binding domain against KIT is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 7,915,391, US20120288506, and several commercial catalog antibodies.


In one embodiment, an antigen binding domain against IL-13Ra2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., WO2008/146911, WO2004087758, several commercial catalog antibodies, and WO2004087758.


In one embodiment, an antigen binding domain against CD30 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 7,090,843 B1, and EP0805871.


In one embodiment, an antigen binding domain against GD3 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. Nos. 7,253,263; 8,207,308; US 20120276046; EP1013761; WO2005035577; and U.S. Pat. No. 6,437,098.


In one embodiment, an antigen binding domain against CD171 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Hong et al., J Immunother 37(2):93-104 (2014).


In one embodiment, an antigen binding domain against IL-11Ra is an antigen binding portion, e.g., CDRs, of an antibody available from Abcam (cat #ab55262) or Novus Biologicals (cat #EPR5446). In another embodiment, an antigen binding domain again IL-11Ra is a peptide, see, e.g., Huang et al., Cancer Res 72(1):271-281 (2012).


In one embodiment, an antigen binding domain against PSCA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Morgenroth et al., Prostate 67(10):1121-1131 (2007) (scFv 7F5); Nejatollahi et al., J of Oncology 2013(2013), article ID 839831 (scFv C5-II); and US Pat Publication No. 20090311181.


In one embodiment, an antigen binding domain against VEGFR2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Chinnasamy et al., J Clin Invest 120(11):3953-3968 (2010).


In one embodiment, an antigen binding domain against LewisY is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Kelly et al., Cancer Biother Radiopharm 23(4):411-423 (2008) (hu3S193 Ab (scFvs)); Dolezal et al., Protein Engineering 16(1):47-56 (2003) (NC10 scFv).


In one embodiment, an antigen binding domain against CD24 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Maliar et al., Gastroenterology 143(5):1375-1384 (2012).


In one embodiment, an antigen binding domain against PDGFR-beta is an antigen binding portion, e.g., CDRs, of an antibody Abcam ab32570.


In one embodiment, an antigen binding domain against SSEA-4 is an antigen binding portion, e.g., CDRs, of antibody MC813 (Cell Signaling), or other commercially available antibodies.


In one embodiment, an antigen binding domain against CD20 is an antigen binding portion, e.g., CDRs, of the antibody Rituximab, Ofatumumab, Ocrelizumab, Veltuzumab, or GA101.


In one embodiment, an antigen binding domain against Folate receptor alpha is an antigen binding portion, e.g., CDRs, of the antibody IMGN853, or an antibody described in US20120009181; U.S. Pat. No. 4,851,332, LK26: U.S. Pat. No. 5,952,484.


In one embodiment, an antigen binding domain against ERBB2 (Her2/neu) is an antigen binding portion, e.g., CDRs, of the antibody trastuzumab, or pertuzumab.


In one embodiment, an antigen binding domain against MUC1 is an antigen binding portion, e.g., CDRs, of the antibody SAR566658.


In one embodiment, the antigen binding domain against EGFR is antigen binding portion, e.g., CDRs, of the antibody cetuximab, panitumumab, zalutumumab, nimotuzumab, or matuzumab.


In one embodiment, an antigen binding domain against NCAM is an antigen binding portion, e.g., CDRs, of the antibody clone 2-2B: MAB5324 (EMD Millipore).


In one embodiment, an antigen binding domain against Ephrin B2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Abengozar et al., Blood 119(19):4565-4576 (2012).


In one embodiment, an antigen binding domain against IGF-I receptor is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 8,344,112 B2; EP2322550 A1; WO 2006/138315, or PCT/US2006/022995.


In one embodiment, an antigen binding domain against CAIX is an antigen binding portion, e.g., CDRs, of the antibody clone 303123 (R&D Systems).


In one embodiment, an antigen binding domain against LMP2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 7,410,640, or US20050129701.


In one embodiment, an antigen binding domain against gp100 is an antigen binding portion, e.g., CDRs, of the antibody HMB45, NKIbetaB, or an antibody described in WO2013165940, or US20130295007


In one embodiment, an antigen binding domain against tyrosinase is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 5,843,674; or US19950504048.


In one embodiment, an antigen binding domain against EphA2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Yu et al., Mol Ther 22(1):102-111 (2014).


In one embodiment, an antigen binding domain against GD3 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. Nos. 7,253,263; 8,207,308; US 20120276046; EP1013761 A3; 20120276046; WO2005035577; or U.S. Pat. No. 6,437,098.


In one embodiment, an antigen binding domain against fucosyl GM1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., US20100297138; or WO2007/067992.


In one embodiment, an antigen binding domain against sLe is an antigen binding portion, e.g., CDRs, of the antibody G193 (for lewis Y), see Scott A M et al, Cancer Res 60: 3254-61 (2000), also as described in Neeson et al, J Immunol May 2013 190 (Meeting Abstract Supplement) 177.10.


In one embodiment, an antigen binding domain against GM3 is an antigen binding portion, e.g., CDRs, of the antibody CA 2523449 (mAb 14F7).


In one embodiment, an antigen binding domain against HMWMAA is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Kmiecik et al., Oncoimmunology 3(1):e27185 (2014) (PMID: 24575382) (mAb9.2.27); U.S. Pat. No. 6,528,481; WO2010033866; or US 20140004124.


In one embodiment, an antigen binding domain against o-acetyl-GD2 is an antigen binding portion, e.g., CDRs, of the antibody 8B6.


In one embodiment, an antigen binding domain against TEM1/CD248 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Marty et al., Cancer Lett 235(2):298-308 (2006); Zhao et al., J Immunol Methods 363(2):221-232 (2011).


In one embodiment, an antigen binding domain against CLDN6 is an antigen binding portion, e.g., CDRs, of the antibody IMAB027 (Ganymed Pharmaceuticals), see e.g., clinicaltrial.gov/show/NCT02054351.


In one embodiment, an antigen binding domain against TSHR is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 8,603,466; U.S. Pat. No. 8,501,415; or U.S. Pat. No. 8,309,693.


In one embodiment, an antigen binding domain against GPRC5D is an antigen binding portion, e.g., CDRs, of the antibody FAB6300A (R&D Systems); or LS-A4180 (Lifespan Biosciences).


In one embodiment, an antigen binding domain against CD97 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., U.S. Pat. No. 6,846,911;de Groot et al., J Immunol 183(6):4127-4134 (2009); or an antibody from R&D:MAB3734.


In one embodiment, an antigen binding domain against ALK is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Mino-Kenudson et al., Clin Cancer Res 16(5):1561-1571 (2010).


In one embodiment, an antigen binding domain against polysialic acid is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Nagae et al., J Biol Chem 288(47):33784-33796 (2013).


In one embodiment, an antigen binding domain against PLAC1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Ghods et al., Biotechnol Appl Biochem 2013 doi:10.1002/bab.1177.


In one embodiment, an antigen binding domain against GloboH is an antigen binding portion of the antibody VK9; or an antibody described in, e.g., Kudryashov V et al, Glycoconj J. 15(3):243-9 (1998), Lou et al., Proc Natl Acad Sci USA 111(7):2482-2487 (2014); MBr1: Bremer E-G et al. J Biol Chem 259:14773-14777 (1984).


In one embodiment, an antigen binding domain against NY-BR-1 is an antigen binding portion, e.g., CDRs of an antibody described in, e.g., Jager et al., Appl Immunohistochem Mol Morphol 15(1):77-83 (2007).


In one embodiment, an antigen binding domain against WT-1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Dao et al., Sci Transl Med 5(176):176ra33 (2013); or WO2012/135854.


In one embodiment, an antigen binding domain against MAGE-A1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Willemsen et al., J Immunol 174(12):7853-7858 (2005) (TCR-like scFv).


In one embodiment, an antigen binding domain against sperm protein 17 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Song et al., Target Oncol 2013 Aug. 14 (PMID: 23943313); Song et al., Med Oncol 29(4):2923-2931 (2012).


In one embodiment, an antigen binding domain against Tie 2 is an antigen binding portion, e.g., CDRs, of the antibody AB33 (Cell Signaling Technology).


In one embodiment, an antigen binding domain against MAD-CT-2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., PMID: 2450952; U.S. Pat. No. 7,635,753.


In one embodiment, an antigen binding domain against Fos-related antigen 1 is an antigen binding portion, e.g., CDRs, of the antibody 12F9 (Novus Biologicals).


In one embodiment, an antigen binding domain against MelanA/MART1 is an antigen binding portion, e.g., CDRs, of an antibody described in, EP2514766 A2; or U.S. Pat. No. 7,749,719.


In one embodiment, an antigen binding domain against sarcoma translocation breakpoints is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Luo et al, EMBO Mol. Med. 4(6):453-461 (2012).


In one embodiment, an antigen binding domain against TRP-2 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Wang et al, J Exp Med. 184(6):2207-16 (1996).


In one embodiment, an antigen binding domain against CYP1B1 is an antigen binding portion, e.g., CDRs, of an antibody described in, e.g., Maecker et al, Blood 102 (9): 3287-3294 (2003).


In one embodiment, an antigen binding domain against RAGE-1 is an antigen binding portion, e.g., CDRs, of the antibody MAB5328 (EMD Millipore).


In one embodiment, an antigen binding domain against human telomerase reverse transcriptase is an antigen binding portion, e.g., CDRs, of the antibody cat no: LS-B95-100 (Lifespan Biosciences)


In one embodiment, an antigen binding domain against intestinal carboxyl esterase is an antigen binding portion, e.g., CDRs, of the antibody 4F12: cat no: LS-B6190-50 (Lifespan Biosciences).


In one embodiment, an antigen binding domain against mut hsp70-2 is an antigen binding portion, e.g., CDRs, of the antibody Lifespan Biosciences: monoclonal: cat no: LS-C133261-100 (Lifespan Biosciences).


In one embodiment, an antigen binding domain against CD79a is an antigen binding portion, e.g., CDRs, of the antibody Anti-CD79a antibody [HM47/A9] (ab3121), available from Abcam; antibody CD79A Antibody #3351 available from Cell Signaling Technology; or antibody HPA017748-Anti-CD79A antibody produced in rabbit, available from Sigma Aldrich.


In one embodiment, an antigen binding domain against CD79b is an antigen binding portion, e.g., CDRs, of the antibody polatuzumab vedotin, anti-CD79b described in Dornan et al., “Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma” Blood. 2009 Sep. 24; 114(13):2721-9. doi: 10.1182/blood-2009-02-205500. Epub 2009 Jul. 24, or the bispecific antibody Anti-CD79b/CD3 described in “4507 Pre-Clinical Characterization of T Cell-Dependent Bispecific Antibody Anti-CD79b/CD3 As a Potential Therapy for B Cell Malignancies” Abstracts of 56th ASH Annual Meeting and Exposition, San Francisco, Calif. Dec. 6-9 2014.


In one embodiment, an antigen binding domain against CD72 is an antigen binding portion, e.g., CDRs, of the antibody J3-109 described in Myers, and Uckun, “An anti-CD72 immunotoxin against therapy-refractory B-lineage acute lymphoblastic leukemia.” Leuk Lymphoma. 1995 June; 18(1-2):119-22, or anti-CD72 (10D6.8.1, mIgG1) described in Polson et al., “Antibody-Drug Conjugates for the Treatment of Non-Hodgkin's Lymphoma: Target and Linker-Drug Selection” Cancer Res Mar. 15, 2009 69; 2358.


In one embodiment, an antigen binding domain against LAIR1 is an antigen binding portion, e.g., CDRs, of the antibody ANT-301 LAIR1 antibody, available from ProSpec; or anti-human CD305 (LAIR1) Antibody, available from BioLegend.


In one embodiment, an antigen binding domain against FCAR is an antigen binding portion, e.g., CDRs, of the antibody CD89/FCARAntibody (Catalog #10414-H08H), available from Sino Biological Inc.


In one embodiment, an antigen binding domain against LILRA2 is an antigen binding portion, e.g., CDRs, of the antibody LILRA2 monoclonal antibody (M17), clone 3C7, available from Abnova, or Mouse Anti-LILRA2 antibody, Monoclonal (2D7), available from Lifespan Biosciences.


In one embodiment, an antigen binding domain against CD300LF is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-CMRF35-like molecule 1 antibody, Monoclonal[UP-D2], available from BioLegend, or Rat Anti-CMRF35-like molecule 1 antibody, Monoclonal[234903], available from R&D Systems.


In one embodiment, an antigen binding domain against CLEC12A is an antigen binding portion, e.g., CDRs, of the antibody Bispecific T cell Engager (BiTE) scFv-antibody and ADC described in Noordhuis et al., “Targeting of CLEC12A In Acute Myeloid Leukemia by Antibody-Drug-Conjugates and Bispecific CLL-1xCD3 BiTE Antibody” 53rd ASH Annual Meeting and Exposition, Dec. 10-13, 2011, and MCLA-117 (Merus).


In one embodiment, an antigen binding domain against BST2 (also called CD317) is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-CD317 antibody, Monoclonal[3H4], available from Antibodies-Online or Mouse Anti-CD317 antibody, Monoclonal[696739], available from R&D Systems.


In one embodiment, an antigen binding domain against EMR2 (also called CD312) is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-CD312 antibody, Monoclonal[LS-B8033] available from Lifespan Biosciences, or Mouse Anti-CD312 antibody, Monoclonal[494025] available from R&D Systems.


In one embodiment, an antigen binding domain against LY75 is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-Lymphocyte antigen 75 antibody, Monoclonal[HD30] available from EMD Millipore or Mouse Anti-Lymphocyte antigen 75 antibody, Monoclonal[A15797] available from Life Technologies.


In one embodiment, an antigen binding domain against GPC3 is an antigen binding portion, e.g., CDRs, of the antibody hGC33 described in Nakano K, Ishiguro T, Konishi H, et al. Generation of a humanized anti-glypican 3 antibody by CDR grafting and stability optimization. Anticancer Drugs. 2010 November; 21(10):907-916, or MDX-1414, HN3, or YP7, all three of which are described in Feng et al., “Glypican-3 antibodies: a new therapeutic target for liver cancer.” FEBS Lett. 2014 Jan. 21; 588(2):377-82.


In one embodiment, an antigen binding domain against FCRL5 is an antigen binding portion, e.g., CDRs, of the anti-FcRL5 antibody described in Elkins et al., “FcRL5 as a target of antibody-drug conjugates for the treatment of multiple myeloma” Mol Cancer Ther. 2012 October; 11(10):2222-32.


In one embodiment, an antigen binding domain against IGLL1 is an antigen binding portion, e.g., CDRs, of the antibody Mouse Anti-Immunoglobulin lambda-like polypeptide 1 antibody, Monoclonal[AT1G4] available from Lifespan Biosciences, Mouse Anti-Immunoglobulin lambda-like polypeptide 1 antibody, Monoclonal[HSL11] available from BioLegend.


In one embodiment, the antigen binding domain comprises one, two three (e.g., all three) heavy chain CDRs, HC CDR1, HC CDR2 and HC CDR3, from an antibody listed above, and/or one, two, three (e.g., all three) light chain CDRs, LC CDR1, LC CDR2 and LC CDR3, from an antibody listed above. In one embodiment, the antigen binding domain comprises a heavy chain variable region and/or a variable light chain region of an antibody listed above.


In another aspect, the antigen binding domain comprises a humanized antibody or an antibody fragment. In some aspects, a non-human antibody is humanized, where specific sequences or regions of the antibody are modified to increase similarity to an antibody naturally produced in a human or fragment thereof. In one aspect, the antigen binding domain is humanized.


Bispecific CARS

In an embodiment a multispecific antibody molecule is a bispecific antibody molecule. A bispecific antibody has specificity for no more than two antigens. A bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence which has binding specificity for a first epitope and a second immunoglobulin variable domain sequence that has binding specificity for a second epitope. In an embodiment the first and second epitopes are on the same antigen, e.g., the same protein (or subunit of a multimeric protein). In an embodiment the first and second epitopes overlap. In an embodiment the first and second epitopes do not overlap. In an embodiment the first and second epitopes are on different antigens, e.g., different proteins (or different subunits of a multimeric protein). In an embodiment a bispecific antibody molecule comprises a heavy chain variable domain sequence and a light chain variable domain sequence which have binding specificity for a first epitope and a heavy chain variable domain sequence and a light chain variable domain sequence which have binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a half antibody having binding specificity for a first epitope and a half antibody having binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a half antibody, or fragment thereof, having binding specificity for a first epitope and a half antibody, or fragment thereof, having binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a scFv, or fragment thereof, have binding specificity for a first epitope and a scFv, or fragment thereof, have binding specificity for a second epitope.


In certain embodiments, the antibody molecule is a multi-specific (e.g., a bispecific or a trispecific) antibody molecule. Protocols for generating bispecific or heterodimeric antibody molecules are known in the art; including but not limited to, for example, the “knob in a hole” approach described in, e.g., U.S. Pat. No. 5,731,168; the electrostatic steering Fc pairing as described in, e.g., WO 09/089004, WO 06/106905 and WO 2010/129304; Strand Exchange Engineered Domains (SEED) heterodimer formation as described in, e.g., WO 07/110205; Fab arm exchange as described in, e.g., WO 08/119353, WO 2011/131746, and WO 2013/060867; double antibody conjugate, e.g., by antibody cross-linking to generate a bi-specific structure using a heterobifunctional reagent having an amine-reactive group and a sulfhydryl reactive group as described in, e.g., U.S. Pat. No. 4,433,059; bispecific antibody determinants generated by recombining half antibodies (heavy-light chain pairs or Fabs) from different antibodies through cycle of reduction and oxidation of disulfide bonds between the two heavy chains, as described in, e.g., U.S. Pat. No. 4,444,878; trifunctional antibodies, e.g., three Fab′ fragments cross-linked through sulfhdryl reactive groups, as described in, e.g., U.S. Pat. No. 5,273,743; biosynthetic binding proteins, e.g., pair of scFvs cross-linked through C-terminal tails preferably through disulfide or amine-reactive chemical cross-linking, as described in, e.g., U.S. Pat. No. 5,534,254; bifunctional antibodies, e.g., Fab fragments with different binding specificities dimerized through leucine zippers (e.g., c-fos and c-jun) that have replaced the constant domain, as described in, e.g., U.S. Pat. No. 5,582,996; bispecific and oligospecific mono-and oligovalent receptors, e.g., VH-CH1 regions of two antibodies (two Fab fragments) linked through a polypeptide spacer between the CH1 region of one antibody and the VH region of the other antibody typically with associated light chains, as described in, e.g., U.S. Pat. No. 5,591,828; bispecific DNA-antibody conjugates, e.g., crosslinking of antibodies or Fab fragments through a double stranded piece of DNA, as described in, e.g., U.S. Pat. No. 5,635,602; bispecific fusion proteins, e.g., an expression construct containing two scFvs with a hydrophilic helical peptide linker between them and a full constant region, as described in, e.g., U.S. Pat. No. 5,637,481; multivalent and multispecific binding proteins, e.g., dimer of polypeptides having first domain with binding region of Ig heavy chain variable region, and second domain with binding region of Ig light chain variable region, generally termed diabodies (higher order structures are also encompassed creating for bispecifc, trispecific, or tetraspecific molecules, as described in, e.g., U.S. Pat. No. 5,837,242; minibody constructs with linked VL and VH chains further connected with peptide spacers to an antibody hinge region and CH3 region, which can be dimerized to form bispecific/multivalent molecules, as described in, e.g., U.S. Pat. No. 5,837,821; VH and VL domains linked with a short peptide linker (e.g., 5 or 10 amino acids) or no linker at all in either orientation, which can form dimers to form bispecific diabodies; trimers and tetramers, as described in, e.g., U.S. Pat. No. 5,844,094; String of VH domains (or VL domains in family members) connected by peptide linkages with crosslinkable groups at the C-terminus further associated with VL domains to form a series of FVs (or scFvs), as described in, e.g., U.S. Pat. No. 5,864,019; and single chain binding polypeptides with both a VH and a VL domain linked through a peptide linker are combined into multivalent structures through non-covalent or chemical crosslinking to form, e.g., homobivalent, heterobivalent, trivalent, and tetravalent structures using both scFV or diabody type format, as described in, e.g., U.S. Pat. No. 5,869,620. Additional exemplary multispecific and bispecific molecules and methods of making the same are found, for example, in U.S. Pat. Nos. 5,910,573, 5,932,448, 5,959,083, 5,989,830, 6,005,079, 6,239,259, 6,294,353, 6,333,396, 6,476,198, 6,511,663, 6,670,453, 6,743,896, 6,809,185, 6,833,441, 7,129,330, 7,183,076, 7,521,056, 7,527,787, 7,534,866, 7,612,181, US2002004587A1, US2002076406A1, US2002103345A1, US2003207346A1, US2003211078A1, US2004219643A1, US2004220388A1, US2004242847A1, US2005003403A1, US2005004352A1, US2005069552A1, US2005079170A1, US2005100543A1, US2005136049A1, US2005136051A1, US2005163782A1, US2005266425A1, US2006083747A1, US2006120960A1, US2006204493A1, US2006263367A1, US2007004909A1, US2007087381A1, US2007128150A1, US2007141049A1, US2007154901A1, US2007274985A1, US2008050370A1, US2008069820A1, US2008152645A1, US2008171855A1, US2008241884A1, US2008254512A1, US2008260738A1, US2009130106A1, US2009148905A1, US2009155275A1, US2009162359A1, US2009162360A1, US2009175851A1, US2009175867A1, US2009232811A1, US2009234105A1, US2009263392A1, US2009274649A1, EP346087A2, WO0006605A2, WO02072635A2, WO04081051A1, WO06020258A2, WO2007044887A2, WO2007095338A2, WO2007137760A2, WO2008119353A1, WO2009021754A2, WO2009068630A1, WO9103493A1, WO9323537A1, WO9409131A1, WO9412625A2, WO9509917A1, WO9637621A2, WO9964460A1. The contents of the above-referenced applications are incorporated herein by reference in their entireties.


Within each antibody or antibody fragment (e.g., scFv) of a bispecific antibody molecule, the VH can be upstream or downstream of the VL. In some embodiments, the upstream antibody or antibody fragment (e.g., scFv) is arranged with its VH (VH1) upstream of its VL (VL1) and the downstream antibody or antibody fragment (e.g., scFv) is arranged with its VL (VL2) upstream of its VH (VH2), such that the overall bispecific antibody molecule has the arrangement VH1-VL1-VL2-VH2. In other embodiments, the upstream antibody or antibody fragment (e.g., scFv) is arranged with its VL (VL1) upstream of its VH (VH1) and the downstream antibody or antibody fragment (e.g., scFv) is arranged with its VH (VH2) upstream of its VL (VL2), such that the overall bispecific antibody molecule has the arrangement VL1-VH1-VH2-VL2. Optionally, a linker is disposed between the two antibodies or antibody fragments (e.g., scFvs), e.g., between VL1 and VL2 if the construct is arranged as VH1-VL1-VL2-VH2, or between VH1 and VH2 if the construct is arranged as VL1-VH1-VH2-VL2. The linker may be a linker as described herein, e.g., a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 78). In general, the linker between the two scFvs should be long enough to avoid mispairing between the domains of the two scFvs. Optionally, a linker is disposed between the VL and VH of the first scFv. Optionally, a linker is disposed between the VL and VH of the second scFv. In constructs that have multiple linkers, any two or more of the linkers can be the same or different. Accordingly, in some embodiments, a bispecific CAR comprises VLs, VHs, and optionally one or more linkers in an arrangement as described herein.


Stability and Mutations

The stability of an antigen binding domain to a cancer associated antigen as described herein, e.g., scFv molecules (e.g., soluble scFv), can be evaluated in reference to the biophysical properties (e.g., thermal stability) of a conventional control scFv molecule or a full length antibody. In one embodiment, the humanized scFv has a thermal stability that is greater than about 0.1, about 0.25, about 0.5, about 0.75, about 1, about 1.25, about 1.5, about 1.75, about 2, about 2.5, about 3, about 3.5, about 4, about 4.5, about 5, about 5.5, about 6, about 6.5, about 7, about 7.5, about 8, about 8.5, about 9, about 9.5, about 10 degrees, about 11 degrees, about 12 degrees, about 13 degrees, about 14 degrees, or about 15 degrees Celsius than a control binding molecule (e.g. a conventional scFv molecule) in the described assays.


The improved thermal stability of the antigen binding domain to a cancer associated antigen described herein, e.g., scFv is subsequently conferred to the entire CAR construct, leading to improved therapeutic properties of the CAR construct. The thermal stability of the antigen binding domain of—a cancer associated antigen described herein, e.g., scFv, can be improved by at least about 2° C. or 3° C. as compared to a conventional antibody. In one embodiment, the antigen binding domain of-a cancer associated antigen described herein, e.g., scFv, has a 1° C. improved thermal stability as compared to a conventional antibody. In another embodiment, the antigen binding domain of a cancer associated antigen described herein, e.g., scFv, has a 2° C. improved thermal stability as compared to a conventional antibody. In another embodiment, the scFv has a 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15° C. improved thermal stability as compared to a conventional antibody. Comparisons can be made, for example, between the scFv molecules disclosed herein and scFv molecules or Fab fragments of an antibody from which the scFv VH and VL were derived. Thermal stability can be measured using methods known in the art. For example, in one embodiment, Tm can be measured. Methods for measuring Tm and other methods of determining protein stability are described in more detail below.


Mutations in scFv (arising through humanization or direct mutagenesis of the soluble scFv) can alter the stability of the scFv and improve the overall stability of the scFv and the CAR construct. Stability of the humanized scFv is compared against the murine scFv using measurements such as Tm, temperature denaturation and temperature aggregation.


The binding capacity of the mutant scFvs can be determined using assays know in the art and described herein.


In one embodiment, the antigen binding domain of a cancer associated antigen described herein, e.g., scFv, comprises at least one mutation arising from the humanization process such that the mutated scFv confers improved stability to the CAR construct. In another embodiment, the antigen binding domain of—a cancer associated antigen described herein, e.g., scFv, comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mutations arising from the humanization process such that the mutated scFv confers improved stability to the CAR construct.


Methods of Evaluating Protein Stability

The stability of an antigen binding domain may be assessed using, e.g., the methods described below. Such methods allow for the determination of multiple thermal unfolding transitions where the least stable domain either unfolds first or limits the overall stability threshold of a multidomain unit that unfolds cooperatively (e.g., a multidomain protein which exhibits a single unfolding transition). The least stable domain can be identified in a number of additional ways. Mutagenesis can be performed to probe which domain limits the overall stability. Additionally, protease resistance of a multidomain protein can be performed under conditions where the least stable domain is known to be intrinsically unfolded via DSC or other spectroscopic methods (Fontana, et al., (1997) Fold. Des., 2: R17-26; Dimasi et al. (2009) J. Mol. Biol. 393: 672-692). Once the least stable domain is identified, the sequence encoding this domain (or a portion thereof) may be employed as a test sequence in the methods.


Thermal Stability

The thermal stability of the compositions may be analyzed using a number of non-limiting biophysical or biochemical techniques known in the art. In certain embodiments, thermal stability is evaluated by analytical spectroscopy.


An exemplary analytical spectroscopy method is Differential Scanning calorimetry (DSC). DSC employs a calorimeter which is sensitive to the heat absorbances that accompany the unfolding of most proteins or protein domains (see, e.g. Sanchez-Ruiz, et al., Biochemistry, 27: 1648-52, 1988). To determine the thermal stability of a protein, a sample of the protein is inserted into the calorimeter and the temperature is raised until the Fab or scFv unfolds. The temperature at which the protein unfolds is indicative of overall protein stability.


Another exemplary analytical spectroscopy method is Circular Dichroism (CD) spectroscopy. CD spectrometry measures the optical activity of a composition as a function of increasing temperature. Circular dichroism (CD) spectroscopy measures differences in the absorption of left-handed polarized light versus right-handed polarized light which arise due to structural asymmetry. A disordered or unfolded structure results in a CD spectrum very different from that of an ordered or folded structure. The CD spectrum reflects the sensitivity of the proteins to the denaturing effects of increasing temperature and is therefore indicative of a protein's thermal stability (see van Mierlo and Steemsma, J. Biotechnol., 79(3):281-98, 2000).


Another exemplary analytical spectroscopy method for measuring thermal stability is Fluorescence Emission Spectroscopy (see van Mierlo and Steemsma, supra). Yet another exemplary analytical spectroscopy method for measuring thermal stability is Nuclear Magnetic Resonance (NMR) spectroscopy (see, e.g. van Mierlo and Steemsma, supra). The thermal stability of a composition can be measured biochemically. An exemplary biochemical method for assessing thermal stability is a thermal challenge assay. In a “thermal challenge assay”, a composition is subjected to a range of elevated temperatures for a set period of time. For example, in one embodiment, test scFv molecules or molecules comprising scFv molecules are subject to a range of increasing temperatures, e.g., for 1-1.5 hours. The activity of the protein is then assayed by a relevant biochemical assay. For example, if the protein is a binding protein (e.g. an scFv or scFv-containing polypeptide) the binding activity of the binding protein may be determined by a functional or quantitative ELISA.


Such an assay may be done in a high-throughput format and those disclosed in the Examples using E. coli and high throughput screening. A library of antigen binding domains, e.g., that includes an antigen binding domain to—a cancer associated antigen described herein, e.g., scFv variants, may be created using methods known in the art. Antigen binding domain, e.g., to—a cancer associated antigen described herein, e.g., scFv, expression may be induced and the antigen binding domain, e.g., to—a cancer associated antigen described herein, e.g., scFv, may be subjected to thermal challenge. The challenged test samples may be assayed for binding and those antigen binding domains to—a cancer associated antigen described herein, e.g., scFvs, which are stable may be scaled up and further characterized.


Thermal stability is evaluated by measuring the melting temperature (Tm) of a composition using any of the above techniques (e.g. analytical spectroscopy techniques). The melting temperature is the temperature at the midpoint of a thermal transition curve wherein 50% of molecules of a composition are in a folded state (See e.g., Dimasi et al. (2009) J. Mol Biol. 393: 672-692). In one embodiment, Tm values for an antigen binding domain to—a cancer associated antigen described herein, e.g., scFv, are about 40° C., 41° C., 42° C., 43° C., 44° C., 45° C., 46° C., 47° C., 48° C., 49° C., 50° C., 51° C., 52° C., 53° C., 54° C., 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C., 65° C., 66° C., 67° C., 68° C., 69° C., 70° C., 71° C., 72° C., 73° C., 74° C., 75° C., 76° C., 77° C., 78° C., 79° C., 80° C., 81° C., 82° C., 83° C., 84° C., 85° C., 86° C., 87° C., 88° C., 89° C., 90° C., 91° C., 92° C., 93° C., 94° C., 95° C., 96° C., 97° C., 98° C., 99° C., 100° C. In one embodiment, Tm values for an IgG is about 40° C., 41° C., 42° C., 43° C., 44° C., 45° C., 46° C., 47° C., 48° C., 49° C., 50° C., 51° C., 52° C., 53° C., 54° C., 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C., 65° C., 66° C., 67° C., 68° C., 69° C., 70° C., 71° C., 72° C., 73° C., 74° C., 75° C., 76° C., 77° C., 78° C., 79° C., 80° C., 81° C., 82° C., 83° C., 84° C., 85° C., 86° C., 87° C., 88° C., 89° C., 90° C., 91° C., 92° C., 93° C., 94° C., 95° C., 96° C., 97° C., 98° C., 99° C., 100° C. In one embodiment, Tm values for an multivalent antibody is about 40° C., 41° C., 42° C., 43° C., 44° C., 45° C., 46° C., 47° C., 48° C., 49° C., 50° C., 51° C., 52° C., 53° C., 54° C., 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C., 65° C., 66° C., 67° C., 68° C., 69° C., 70° C., 71° C., 72° C., 73° C., 74° C., 75° C., 76° C., 77° C., 78° C., 79° C., 80° C., 81° C., 82° C., 83° C., 84° C., 85° C., 86° C., 87° C., 88° C., 89° C., 90° C., 91° C., 92° C., 93° C., 94° C., 95° C., 96° C., 97° C., 98° C., 99° C., 100° C.


Thermal stability is also evaluated by measuring the specific heat or heat capacity (Cp) of a composition using an analytical calorimetric technique (e.g. DSC). The specific heat of a composition is the energy (e.g. in kcal/mol) is required to rise by 1° C., the temperature of 1 mol of water. As large Cp is a hallmark of a denatured or inactive protein composition. The change in heat capacity (ΔCp) of a composition is measured by determining the specific heat of a composition before and after its thermal transition. Thermal stability may also be evaluated by measuring or determining other parameters of thermodynamic stability including Gibbs free energy of unfolding (AG), enthalpy of unfolding (ΔH), or entropy of unfolding (ΔS). One or more of the above biochemical assays (e.g. a thermal challenge assay) are used to determine the temperature (i.e. the TC value) at which 50% of the composition retains its activity (e.g. binding activity).


In addition, mutations to the antigen binding domain of a cancer associated antigen described herein, e.g., scFv, can be made to alter the thermal stability of the antigen binding domain of a cancer associated antigen described herein, e.g., scFv, as compared with the unmutated antigen binding domain of a cancer associated antigen described herein, e.g., scFv. When the humanized antigen binding domain of a cancer associated antigen described herein, e.g., scFv, is incorporated into a CAR construct, the antigen binding domain of the cancer associated antigen described herein, e.g., humanized scFv, confers thermal stability to the overall CARs of the present invention. In one embodiment, the antigen binding domain to a cancer associated antigen described herein, e.g., scFv, comprises a single mutation that confers thermal stability to the antigen binding domain of the cancer associated antigen described herein, e.g., scFv. In another embodiment, the antigen binding domain to a cancer associated antigen described herein, e.g., scFv, comprises multiple mutations that confer thermal stability to the antigen binding domain to the cancer associated antigen described herein, e.g., scFv. In one embodiment, the multiple mutations in the antigen binding domain to a cancer associated antigen described herein, e.g., scFv, have an additive effect on thermal stability of the antigen binding domain to the cancer associated antigen described herein binding domain, e.g., scFv.


b) % Aggregation

The stability of a composition can be determined by measuring its propensity to aggregate. Aggregation can be measured by a number of non-limiting biochemical or biophysical techniques. For example, the aggregation of a composition may be evaluated using chromatography, e.g. Size-Exclusion Chromatography (SEC). SEC separates molecules on the basis of size. A column is filled with semi-solid beads of a polymeric gel that will admit ions and small molecules into their interior but not large ones. When a protein composition is applied to the top of the column, the compact folded proteins (i.e. non-aggregated proteins) are distributed through a larger volume of solvent than is available to the large protein aggregates. Consequently, the large aggregates move more rapidly through the column, and in this way the mixture can be separated or fractionated into its components. Each fraction can be separately quantified (e.g. by light scattering) as it elutes from the gel. Accordingly, the % aggregation of a composition can be determined by comparing the concentration of a fraction with the total concentration of protein applied to the gel. Stable compositions elute from the column as essentially a single fraction and appear as essentially a single peak in the elution profile or chromatogram.


c) Binding Affinity

The stability of a composition can be assessed by determining its target binding affinity. A wide variety of methods for determining binding affinity are known in the art. An exemplary method for determining binding affinity employs surface plasmon resonance. Surface plasmon resonance is an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.). For further descriptions, see Jonsson, U., et al. (1993) Ann. Biol. Clin. 51:19-26; Jonsson, U., i (1991) Biotechniques 11:620-627; Johnsson, B., et al. (1995) J. Mol. Recognit. 8:125-131; and Johnnson, B., et al. (1991) Anal. Biochem. 198:268-277.


In one aspect, the antigen binding domain of the CAR comprises an amino acid sequence that is homologous to an antigen binding domain amino acid sequence described herein, and the antigen binding domain retains the desired functional properties of the antigen binding domain described herein.


In one specific aspect, the CAR composition of the invention comprises an antibody fragment. In a further aspect, the antibody fragment comprises an scFv.


In various aspects, the antigen binding domain of the CAR is engineered by modifying one or more amino acids within one or both variable regions (e.g., VH and/or VL), for example within one or more CDR regions and/or within one or more framework regions. In one specific aspect, the CAR composition of the invention comprises an antibody fragment. In a further aspect, the antibody fragment comprises an scFv.


It will be understood by one of ordinary skill in the art that the antibody or antibody fragment of the invention may further be modified such that they vary in amino acid sequence (e.g., from wild-type), but not in desired activity. For example, additional nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues may be made to the protein For example, a nonessential amino acid residue in a molecule may be replaced with another amino acid residue from the same side chain family In another embodiment, a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members, e.g., a conservative substitution, in which an amino acid residue is replaced with an amino acid residue having a similar side chain, may be made.


Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).


Percent identity in the context of two or more nucleic acids or polypeptide sequences, refers to two or more sequences that are the same. Two sequences are “substantially identical” if two sequences have a specified percentage of amino acid residues or nucleotides that are the same (e.g., 60% identity, optionally 70%, 71%. 72%. 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%,81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identity over a specified region, or, when not specified, over the entire sequence), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. Optionally, the identity exists over a region that is at least about 50 nucleotides (or 10 amino acids) in length, or more preferably over a region that is 100 to 500 or 1000 or more nucleotides (or 20, 50, 200 or more amino acids) in length.


For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman, (1970) Adv. Appl. Math. 2:482c, by the homology alignment algorithm of Needleman and Wunsch, (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman, (1988) Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Brent et al., (2003) Current Protocols in Molecular Biology).


Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., (1977) Nuc. Acids Res. 25:3389-3402; and Altschul et al., (1990) J. Mol. Biol. 215:403-410, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.


The percent identity between two amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller, (1988) Comput. Appl. Biosci. 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.


In one aspect, the present invention contemplates modifications of the starting antibody or fragment (e.g., scFv) amino acid sequence that generate functionally equivalent molecules. For example, the VH or VL of an antigen binding domain to—a cancer associated antigen described herein, e.g., scFv, comprised in the CAR can be modified to retain at least about 70%, 71%. 72%. 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%,81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identity of the starting VH or VL framework region of the antigen binding domain to the cancer associated antigen described herein, e.g., scFv. The present invention contemplates modifications of the entire CAR construct, e.g., modifications in one or more amino acid sequences of the various domains of the CAR construct in order to generate functionally equivalent molecules. The CAR construct can be modified to retain at least about 70%, 71%. 72%. 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identity of the starting CAR construct.


Transmembrane Domain

With respect to the transmembrane domain, in various embodiments, a CAR can be designed to comprise a transmembrane domain that is attached to the extracellular domain of the CAR. A transmembrane domain can include one or more additional amino acids adjacent to the transmembrane region, e.g., one or more amino acid associated with the extracellular region of the protein from which the transmembrane was derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the extracellular region) and/or one or more additional amino acids associated with the intracellular region of the protein from which the transmembrane protein is derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the intracellular region). In one aspect, the transmembrane domain is one that is associated with one of the other domains of the CAR e.g., in one embodiment, the transmembrane domain may be from the same protein that the signaling domain, costimulatory domain or the hinge domain is derived from. In another aspect, the transmembrane domain is not derived from the same protein that any other domain of the CAR is derived from. In some instances, the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins, e.g., to minimize interactions with other members of the receptor complex. In one aspect, the transmembrane domain is capable of homodimerization with another CAR on the cell surface of a CAR-expressing cell. In a different aspect, the amino acid sequence of the transmembrane domain may be modified or substituted so as to minimize interactions with the binding domains of the native binding partner present in the same CAR-expressing cell.


The transmembrane domain may be derived either from a natural or from a recombinant source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. In one aspect the transmembrane domain is capable of signaling to the intracellular domain(s) whenever the CAR has bound to a target. A transmembrane domain of particular use in this invention may include at least the transmembrane region(s) of e.g., the alpha, beta or zeta chain of the T-cell receptor, CD28, CD27, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154. In some embodiments, a transmembrane domain may include at least the transmembrane region(s) of, e.g., KIRDS2, OX40, CD2, CD27, LFA-1 (CD11a, CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD160, CD19, IL2R beta, IL2R gamma, IL7Rα, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, NKG2D, NKG2C, or a functional variant thereof.


In some instances, the transmembrane domain can be attached to the extracellular region of the CAR, e.g., the antigen binding domain of the CAR, via a hinge, e.g., a hinge from a human protein. For example, in one embodiment, the hinge can be a human Ig (immunoglobulin) hinge (e.g., an IgG4 hinge, an IgD hinge), a GS linker (e.g., a GS linker described herein), a KIR2DS2 hinge or a CD8a hinge. In one embodiment, the hinge or spacer comprises (e.g., consists of) the amino acid sequence of SEQ ID NO:403. In one aspect, the transmembrane domain comprises (e.g., consists of) a transmembrane domain of SEQ ID NO: 12.


In one aspect, the hinge or spacer comprises an IgG4 hinge. For example, in one embodiment, the hinge or spacer comprises a hinge of the amino acid sequence ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFN WYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPS SIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP ENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS LSLGKM (SEQ ID NO:405). In some embodiments, the hinge or spacer comprises a hinge encoded by a nucleotide sequence of GAGAGCAAGTACGGCCCTCCCTGCCCCCCTTGCCCTGCCCCCGAGTTCCTGGGC GGACCCAGCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCAGC CGGACCCCCGAGGTGACCTGTGTGGTGGTGGACGTGTCCCAGGAGGACCCCGA GGTCCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCA AGCCCCGGGAGGAGCAGTTCAATAGCACCTACCGGGTGGTGTCCGTGCTGACC GTGCTGCACCAGGACTGGCTGAACGGCAAGGAATACAAGTGTAAGGTGTCCAA CAAGGGCCTGCCCAGCAGCATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGC CTCGGGAGCCCCAGGTGTACACCCTGCCCCCTAGCCAAGAGGAGATGACCAAG AACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCAGCGACATCGCC GTGGAGTGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCC TGTGCTGGACAGCGACGGCAGCTTCTTCCTGTACAGCCGGCTGACCGTGGACAA GAGCCGGTGGCAGGAGGGCAACGTCTTTAGCTGCTCCGTGATGCACGAGGCCC TGCACAACCACTACACCCAGAAGAGCCTGAGCCTGTCCCTGGGCAAGATG (SEQ ID NO:406).


In one aspect, the hinge or spacer comprises an IgD hinge. For example, in one embodiment, the hinge or spacer comprises a hinge of the amino acid sequence RWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEE RETKTPECPSHTQPLGVYLLTPAVQDLWLRDKATFTCFVVGSDLKDAHLTWEVAG KVPTGGVEEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPSLPPQRLMAL REPAAQAPVKLSLNLLASSDPPEAASWLLCEVSGFSPPNILLMWLEDQREVNTSGF APARPPPQPGSTTFWAWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVSYV TDH (SEQ ID NO:407). In some embodiments, the hinge or spacer comprises a hinge encoded by a nucleotide sequence of AGGTGGCCCGAAAGTCCCAAGGCCCAGGCATCTAGTGTTCCTACTGCACAGCCC CAGGCAGAAGGCAGCCTAGCCAAAGCTACTACTGCACCTGCCACTACGCGCAA TACTGGCCGTGGCGGGGAGGAGAAGAAAAAGGAGAAAGAGAAAGAAGAACAG GAAGAGAGGGAGACCAAGACCCCTGAATGTCCATCCCATACCCAGCCGCTGGG CGTCTATCTCTTGACTCCCGCAGTACAGGACTTGTGGCTTAGAGATAAGGCCAC CTTTACATGTTTCGTCGTGGGCTCTGACCTGAAGGATGCCCATTTGACTTGGGA GGTTGCCGGAAAGGTACCCACAGGGGGGGTTGAGGAAGGGTTGCTGGAGCGCC ATTCCAATGGCTCTCAGAGCCAGCACTCAAGACTCACCCTTCCGAGATCCCTGT GGAACGCCGGGACCTCTGTCACATGTACTCTAAATCATCCTAGCCTGCCCCCAC AGCGTCTGATGGCCCTTAGAGAGCCAGCCGCCCAGGCACCAGTTAAGCTTAGCC TGAATCTGCTCGCCAGTAGTGATCCCCCAGAGGCCGCCAGCTGGCTCTTATGCG AAGTGTCCGGCTTTAGCCCGCCCAACATCTTGCTCATGTGGCTGGAGGACCAGC GAGAAGTGAACACCAGCGGCTTCGCTCCAGCCCGGCCCCCACCCCAGCCGGGT TCTACCACATTCTGGGCCTGGAGTGTCTTAAGGGTCCCAGCACCACCTAGCCCC CAGCCAGCCACATACACCTGTGTTGTGTCCCATGAAGATAGCAGGACCCTGCTA AATGCTTCTAGGAGTCTGGAGGTTTCCTACGTGACTGACCATT (SEQ ID NO:408).


In one aspect, the transmembrane domain may be recombinant, in which case it will comprise predominantly hydrophobic residues such as leucine and valine. In one aspect a triplet of phenylalanine, tryptophan and valine can be found at each end of a recombinant transmembrane domain.


Optionally, a short oligo- or polypeptide linker, between 2 and 10 amino acids in length may form the linkage between the transmembrane domain and the cytoplasmic region of the CAR. A glycine-serine doublet provides a particularly suitable linker. For example, in one aspect, the linker comprises the amino acid sequence of GGGGSGGGGS (SEQ ID NO:10). In some embodiments, the linker is encoded by a nucleotide sequence of GGTGGCGGAGGTTCTGGAGGTGGAGGTTCC (SEQ ID NO:11).


In one aspect, the hinge or spacer comprises a KIR2DS2 hinge.


Cytoplasmic Domain

The cytoplasmic domain or region of the CAR includes an intracellular signaling domain. An intracellular signaling domain is generally responsible for activation of at least one of the normal effector functions of the immune cell in which the CAR has been introduced. The term “effector function” refers to a specialized function of a cell. Effector function of a T cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines. Thus the term “intracellular signaling domain” refers to the portion of a protein which transduces the effector function signal and directs the cell to perform a specialized function. While usually the entire intracellular signaling domain can be employed, in many cases it is not necessary to use the entire chain. To the extent that a truncated portion of the intracellular signaling domain is used, such truncated portion may be used in place of the intact chain as long as it transduces the effector function signal. The term intracellular signaling domain is thus meant to include any truncated portion of the intracellular signaling domain sufficient to transduce the effector function signal.


Examples of intracellular signaling domains for use in the CAR of the invention include the cytoplasmic sequences of the T cell receptor (TCR) and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any recombinant sequence that has the same functional capability.


It is known that signals generated through the TCR alone are insufficient for full activation of the T cell and that a secondary and/or costimulatory signal is also required. Thus, T cell activation can be said to be mediated by two distinct classes of cytoplasmic signaling sequences: those that initiate antigen-dependent primary activation through the TCR (primary intracellular signaling domains) and those that act in an antigen-independent manner to provide a secondary or costimulatory signal (secondary cytoplasmic domain, e.g., a costimulatory domain).


A primary signaling domain regulates primary activation of the TCR complex either in a stimulatory way, or in an inhibitory way. Primary intracellular signaling domains that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs.


Examples of ITAM containing primary intracellular signaling domains that are of particular use in the invention include those of CD3 zeta, common FcR gamma (FCER1G), Fc gamma RIIa, FcR beta (Fc Epsilon R1b), CD3 gamma, CD3 delta, CD3 epsilon, CD79a, CD79b, DAP10, and DAP12, or a functional variant thereof. In one embodiment, a CAR of the invention comprises an intracellular signaling domain, e.g., a primary signaling domain of CD3-zeta, or a functional variant thereof.


In one embodiment, a primary signaling domain comprises a modified ITAM domain, e.g., a mutated ITAM domain which has altered (e.g., increased or decreased) activity as compared to the native ITAM domain. In one embodiment, a primary signaling domain comprises a modified ITAM-containing primary intracellular signaling domain, e.g., an optimized and/or truncated ITAM-containing primary intracellular signaling domain. In an embodiment, a primary signaling domain comprises one, two, three, four or more ITAM motifs.


The intracellular signaling domain of the CAR can comprise the CD3-zeta signaling domain by itself or it can be combined with any other desired intracellular signaling domain(s) useful in the context of a CAR of the invention. For example, the intracellular signaling domain of the CAR can comprise a CD3 zeta chain portion and a costimulatory signaling domain. The costimulatory signaling domain refers to a portion of the CAR comprising the intracellular domain of a costimulatory molecule. A costimulatory molecule is a cell surface molecule other than an antigen receptor or its ligands that is required for an efficient response of lymphocytes to an antigen. Examples of such molecules include CD27, CD28, 4-1BB (CD137), OX40, CD28-OX40, CD28-4-1BB, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, and a ligand that specifically binds with CD83, and the like. For example, CD27 costimulation has been demonstrated to enhance expansion, effector function, and survival of human CART cells in vitro and augments human T cell persistence and antitumor activity in vivo (Song et al. Blood. 2012; 119(3):696-706). Further examples of such costimulatory molecules include CD5, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), NKG2D, CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, and CD19a.


The intracellular signaling sequences within the cytoplasmic portion of the CAR of the invention may be linked to each other in a random or specified order. Optionally, a short oligo- or polypeptide linker, for example, between 2 and 10 amino acids (e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids) in length may form the linkage between intracellular signaling sequence. In one embodiment, a glycine-serine doublet can be used as a suitable linker. In one embodiment, a single amino acid, e.g., an alanine, a glycine, can be used as a suitable linker.


In one aspect, the intracellular signaling domain is designed to comprise two or more, e.g., 2, 3, 4, 5, or more, costimulatory signaling domains. In an embodiment, the two or more, e.g., 2, 3, 4, 5, or more, costimulatory signaling domains, are separated by a linker molecule, e.g., a linker molecule described herein. In one embodiment, the intracellular signaling domain comprises two costimulatory signaling domains. In some embodiments, the linker molecule is a glycine residue. In some embodiments, the linker is an alanine residue.


In one aspect, the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD28, or a functional variant thereof. In one aspect, the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta, the signaling domain of CD28, and the signaling domain of 4-1BB, or a functional variant thereof. In one aspect, the signaling domain of 4-1BB is a signaling domain of SEQ ID NO: 14. In one aspect, the signaling domain of CD3-zeta is a signaling domain of SEQ ID NO: 18. In one aspect, the signaling domain of CD28 is selected from SEQ ID NOs: 427-430, as described herein.


In one aspect, the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta, the signaling domain of CD28, and the signaling domain of CD27, or a functional variant thereof. In one aspect, the signaling domain of CD27 comprises an amino acid sequence of QRRKYRSNKGESPVEPAEPCRYSCPREEEGSTIPIQEDYRKPEPACSP (SEQ ID NO:16). In one aspect, the signaling domain of CD27 is encoded by a nucleic acid sequence of AGGAGTAAGAGGAGCAGGCTCCTGCACAGTGACTACATGAACATGACTCCCCG CCGCCCCGGGCCCACCCGCAAGCATTACCAGCCCTATGCCCCACCACGCGACTT CGCAGCCTATCGCTCC (SEQ ID NO:17).


In one aspect, the CAR-expressing cell described herein can further comprise a second CAR, e.g., a second CAR that includes a different antigen binding domain, e.g., to the same target or a different target (e.g., a target other than a cancer associated antigen described herein or a different cancer associated antigen described herein). In one embodiment, the second CAR includes an antigen binding domain to a target expressed the same cancer cell type as the cancer associated antigen. In one embodiment, the CAR-expressing cell comprises a first CAR that targets a first antigen and includes an intracellular signaling domain having a costimulatory signaling domain but not a primary signaling domain, and a second CAR that targets a second, different, antigen and includes an intracellular signaling domain having a primary signaling domain but not a costimulatory signaling domain. While not wishing to be bound by theory, placement of a costimulatory signaling domain, e.g., 4-1BB, CD28, CD27 or OX-40, onto the first CAR, and the primary signaling domain, e.g., CD3 zeta, on the second CAR can limit the CAR activity to cells where both targets are expressed. In one embodiment, the CAR expressing cell comprises a first cancer associated antigen CAR that includes an antigen binding domain that binds a target antigen described herein, a transmembrane domain and a costimulatory domain and a second CAR that targets a different target antigen (e.g., an antigen expressed on that same cancer cell type as the first target antigen) and includes an antigen binding domain, a transmembrane domain and a primary signaling domain. In another embodiment, the CAR expressing cell comprises a first CAR that includes an antigen binding domain that binds a target antigen described herein, a transmembrane domain and a primary signaling domain and a second CAR that targets an antigen other than the first target antigen (e.g., an antigen expressed on the same cancer cell type as the first target antigen) and includes an antigen binding domain to the antigen, a transmembrane domain and a costimulatory signaling domain.


In one embodiment, the CAR-expressing cell comprises an XCAR described herein and an inhibitory CAR. In one embodiment, the inhibitory CAR comprises an antigen binding domain that binds an antigen found on normal cells but not cancer cells, e.g., normal cells that also express CLL. In one embodiment, the inhibitory CAR comprises the antigen binding domain, a transmembrane domain and an intracellular domain of an inhibitory molecule. For example, the intracellular domain of the inhibitory CAR can be an intracellular domain of PD1, PD-L1, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 or TGF beta.


In one embodiment, when the CAR-expressing cell comprises two or more different CARs, the antigen binding domains of the different CARs can be such that the antigen binding domains do not interact with one another. For example, a cell expressing a first and second CAR can have an antigen binding domain of the first CAR, e.g., as a fragment, e.g., an scFv, that does not form an association with the antigen binding domain of the second CAR, e.g., the antigen binding domain of the second CAR is a VHH.


In some embodiments, the antigen binding domain comprises a single domain antigen binding (SDAB) molecules include molecules whose complementary determining regions are part of a single domain polypeptide. Examples include, but are not limited to, heavy chain variable domains, binding molecules naturally devoid of light chains, single domains derived from conventional 4-chain antibodies, engineered domains and single domain scaffolds other than those derived from antibodies. SDAB molecules may be any of the art, or any future single domain molecules. SDAB molecules may be derived from any species including, but not limited to mouse, human, camel, llama, lamprey, fish, shark, goat, rabbit, and bovine. This term also includes naturally occurring single domain antibody molecules from species other than Camelidae and sharks.


In one aspect, an SDAB molecule can be derived from a variable region of the immunoglobulin found in fish, such as, for example, that which is derived from the immunoglobulin isotype known as Novel Antigen Receptor (NAR) found in the serum of shark. Methods of producing single domain molecules derived from a variable region of NAR (“IgNARs”) are described in WO 03/014161 and Streltsov (2005) Protein Sci. 14:2901-2909.


According to another aspect, an SDAB molecule is a naturally occurring single domain antigen binding molecule known as heavy chain devoid of light chains. Such single domain molecules are disclosed in WO 9404678 and Hamers-Casterman, C. et al. (1993) Nature 363:446-448, for example. For clarity reasons, this variable domain derived from a heavy chain molecule naturally devoid of light chain is known herein as a VHH or nanobody to distinguish it from the conventional VH of four chain immunoglobulins. Such a VHH molecule can be derived from Camelidae species, for example in camel, llama, dromedary, alpaca and guanaco. Other species besides Camelidae may produce heavy chain molecules naturally devoid of light chain; such VHHs are within the scope of the invention.


The SDAB molecules can be recombinant, CDR-grafted, humanized, camelized, de-immunized and/or in vitro generated (e.g., selected by phage display).


It has also been discovered, that cells having a plurality of chimeric membrane embedded receptors comprising an antigen binding domain that interactions between the antigen binding domain of the receptors can be undesirable, e.g., because it inhibits the ability of one or more of the antigen binding domains to bind its cognate antigen. Accordingly, disclosed herein are cells having a first and a second non-naturally occurring chimeric membrane embedded receptor comprising antigen binding domains that minimize such interactions. Also disclosed herein are nucleic acids encoding a first and a second non-naturally occurring chimeric membrane embedded receptor comprising antigen binding domains that minimize such interactions, as well as methods of making and using such cells and nucleic acids. In an embodiment the antigen binding domain of one of said first said second non-naturally occurring chimeric membrane embedded receptor, comprises an scFv, and the other comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence.


In some embodiments, the claimed invention comprises a first and second CAR, wherein the antigen binding domain of one of said first CAR said second CAR does not comprise a variable light domain and a variable heavy domain. In some embodiments, the antigen binding domain of one of said first CAR said second CAR is an scFv, and the other is not an scFv. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises a nanobody. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises a camelid VHH domain.


In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises an scFv, and the other comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises an scFv, and the other comprises a nanobody. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises an scFv, and the other comprises a camelid VHH domain.


In some embodiments, when present on the surface of a cell, binding of the antigen binding domain of said first CAR to its cognate antigen is not substantially reduced by the presence of said second CAR. In some embodiments, binding of the antigen binding domain of said first CAR to its cognate antigen in the presence of said second CAR is 85%, 90%, 95%, 96%, 97%, 98% or 99% of binding of the antigen binding domain of said first CAR to its cognate antigen in the absence of said second CAR.


In some embodiments, when present on the surface of a cell, the antigen binding domains of said first CAR said second CAR, associate with one another less than if both were scFv antigen binding domains. In some embodiments, the antigen binding domains of said first CAR said second CAR, associate with one another 85%, 90%, 95%, 96%, 97%, 98% or 99% less than if both were scFv antigen binding domains.


In another aspect, the CAR-expressing cell described herein can further express another agent, e.g., an agent which enhances the activity of a CAR-expressing cell. For example, in one embodiment, the agent can be an agent which inhibits an inhibitory molecule. Inhibitory molecules, e.g., PD1, can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response. Examples of inhibitory molecules include PD1, PD-L1, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGF beta. In one embodiment, the agent which inhibits an inhibitory molecule, e.g., is a molecule described herein, e.g., an agent that comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein. In one embodiment, the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PD1, PD-L1, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 or TGF beta, or a fragment of any of these (e.g., at least a portion of an extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 41BB, CD27 or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein). In one embodiment, the agent comprises a first polypeptide of PD1 or a fragment thereof (e.g., at least a portion of an extracellular domain of PD1), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein). PD1 is an inhibitory member of the CD28 family of receptors that also includes CD28, CTLA-4, ICOS, and BTLA. PD-1 is expressed on activated B cells, T cells and myeloid cells (Agata et al. 1996 Int. Immunol 8:765-75). Two ligands for PD1, PD-L1 and PD-L2 have been shown to downregulate T cell activation upon binding to PD1 (Freeman et a. 2000 J Exp Med 192:1027-34; Latchman et al. 2001 Nat Immunol 2:261-8; Carter et al. 2002 Eur J Immunol 32:634-43). PD-L1 is abundant in human cancers (Dong et al. 2003 J Mol Med 81:281-7; Blank et al. 2005 Cancer Immunol. Immunother 54:307-314; Konishi et al. 2004 Clin Cancer Res 10:5094) Immune suppression can be reversed by inhibiting the local interaction of PD1 with PD-L1.


In one embodiment, the agent comprises the extracellular domain (ECD) of an inhibitory molecule, e.g., Programmed Death 1 (PD1), fused to a transmembrane domain and intracellular signaling domains such as 41BB and CD3 zeta (also referred to herein as a PD1 CAR). In one embodiment, the PD1 CAR, when used in combinations with a XCAR described herein, improves the persistence of the T cell. In one embodiment, the CAR is a PD1 CAR comprising the extracellular domain of PD1 indicated as underlined in SEQ ID NO: 26. In one embodiment, the PD1 CAR comprises the amino acid sequence of SEQ ID NO:26.









(SEQ ID NO: 26)







Malpvtalllplalllhaarppgwfldspdrpwnpptfspallvvtegd






natftcsfsntsesfvlnwyrmspsnqtdklaafpedrsqpgqdcrfrv







tqlpngrdfhmsvvrarrndsgtylcgaislapkaqikeslraelrvte







rraevptahpspsprpagqfqtlvtttpaprpptpaptiasqplslrpe






acrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitlyckrgrk





llyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsadapay





kqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynel





qkdkmaeayseigmkgerrrgkghdglyqglstatkdtydalhmqa





lppr.






In one embodiment, the PD1 CAR comprises the amino acid sequence provided below (SEQ ID NO:39).









(SEQ ID NO: 39)








pgwfldspdrpwnpptfspallvvtegdnatftcsfsntsesfvlnwyrm







spsnqtdklaafpedrsqpgqdcrfrvtqlpngrdfhmsvvrarrndsgt







ylcgaislapkaqikeslraelrvterraevptahpspsprpagqfqtlv






tttpaprpptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwa





plagtcgvlllslvitlyckrgrkkllyifkqpfmrpvqttqeedgcscr





fpeeeeggcelrvkfsrsadapaykqgqnqlynelnlgrreeydvldkrr





grdpemggkprrknpqeglynelqkdkmaeayseigmkgerrrgkghdgl





yqglstatkdtydalhmqalppr.






In one embodiment, the agent comprises a nucleic acid sequence encoding the PD1 CAR, e.g., the PD1 CAR described herein. In one embodiment, the nucleic acid sequence for the PD1 CAR is shown below, with the PD1 ECD underlined below in SEQ ID NO: 27









(SEQ ID NO: 27)







atggccctccctgtcactgccctgcttctccccctcgcactcctgctcca





cgccgctagaccacccggatggtttctggactctccggatcgcccgtgga






atcccccaaccttctcaccggcactcttggttgtgactgagggcgataat







gcgaccttcacgtgctcgttctccaacacctccgaatcattcgtgctgaa







ctggtaccgcatgagcccgtcaaaccagaccgacaagctcgccgcgtttc







cggaagatcggtcgcaaccgggacaggattgtcggttccgcgtgactcaa







ctgccgaatggcagagacttccacatgagcgtggtccgcgctaggcgaaa







cgactccgggacctacctgtgcggagccatctcgctggcgcctaaggccc







aaatcaaagagagcttgagggccgaactgagagtgaccgagcgcagagct







gaggtgccaactgcacatccatccccatcgcctcggcctgcggggcagtt







tcagaccctggtcacgaccactccggcgccgcgcccaccgactccggccc






caactatcgcgagccagcccctgtcgctgaggccggaagcatgccgccct





gccgccggaggtgctgtgcatacccggggattggacttcgcatgcgacat





ctacatttgggctcctctcgccggaacttgtggcgtgctccttctgtccc





tggtcatcaccctgtactgcaagcggggtcggaaaaagcttctgtacatt





ttcaagcagcccttcatgaggcccgtgcaaaccacccaggaggaggacgg





ttgctcctgccggttccccgaagaggaagaaggaggttgcgagctgcgcg





tgaagttctcccggagcgccgacgcccccgcctataagcagggccagaac





cagctgtacaacgaactgaacctgggacggcgggaagagtacgatgtgct





ggacaagcggcgcggccgggaccccgaaatgggcgggaagcctagaagaa





agaaccctcaggaaggcctgtataacgagctgcagaaggacaagatggcc





gaggcctactccgaaattgggatgaagggagagcggcggaggggaaaggg





gcacgacggcctgtaccaaggactgtccaccgccaccaaggacacatacg





atgccctgcacatgcaggcccttccccctcgc.






In another aspect, the present invention provides a population of CAR-expressing cells, e.g., CART cells. In some embodiments, the population of CAR-expressing cells comprises a mixture of cells expressing different CARs. For example, in one embodiment, the population of CART cells can include a first cell expressing a CAR having an antigen binding domain to a cancer associated antigen described herein, and a second cell expressing a CAR having a different antigen binding domain, e.g., an antigen binding domain to a different a cancer associated antigen described herein, e.g., an antigen binding domain to a cancer associated antigen described herein that differs from the cancer associated antigen bound by the antigen binding domain of the CAR expressed by the first cell. As another example, the population of CAR-expressing cells can include a first cell expressing a CAR that includes an antigen binding domain to a cancer associated antigen described herein, and a second cell expressing a CAR that includes an antigen binding domain to a target other than a cancer associated antigen as described herein. In one embodiment, the population of CAR-expressing cells includes, e.g., a first cell expressing a CAR that includes a primary intracellular signaling domain, and a second cell expressing a CAR that includes a secondary signaling domain.


In another aspect, the present invention provides a population of cells wherein at least one cell in the population expresses a CAR having an antigen binding domain to a cancer associated antigen described herein, and a second cell expressing another agent, e.g., an agent which enhances the activity of a CAR-expressing cell. For example, in one embodiment, the agent can be an agent which inhibits an inhibitory molecule. Inhibitory molecules, e.g., PD-1, can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response. Examples of inhibitory molecules include PD-1, PD-L1, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGF beta. In one embodiment, the agent which inhibits an inhibitory molecule, e.g., is a molecule described herein, e.g., an agent that comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein. In one embodiment, the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PD-1, PD-L1, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 or TGF beta, or a fragment of any of these, and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 41BB, CD27, OX40 or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein). In one embodiment, the agent comprises a first polypeptide of PD-1 or a fragment thereof, and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).


In one aspect, the present invention provides methods comprising administering a population of CAR-expressing cells, e.g., CART cells, e.g., a mixture of cells expressing different CARs, in combination with another agent, e.g., a kinase inhibitor, such as a kinase inhibitor described herein. In another aspect, the present invention provides methods comprising administering a population of cells wherein at least one cell in the population expresses a CAR having an antigen binding domain of a cancer associated antigen described herein, and a second cell expressing another agent, e.g., an agent which enhances the activity of a CAR-expressing cell, in combination with another agent, e.g., a kinase inhibitor, such as a kinase inhibitor described herein.


Regulatable Chimeric Antigen Receptors

In some embodiments, a regulatable CAR (RCAR) where the CAR activity can be controlled is desirable to optimize the safety and efficacy of a CAR therapy. There are many ways CAR activities can be regulated. For example, inducible apoptosis using, e.g., a caspase fused to a dimerization domain (see, e.g., Di et al., N Egnl. J. Med. 2011 Nov. 3; 365(18):1673-1683), can be used as a safety switch in the CAR therapy of the instant invention. In an aspect, a RCAR comprises a set of polypeptides, typically two in the simplest embodiments, in which the components of a standard CAR described herein, e.g., an antigen binding domain and an intracellular signaling domain, are partitioned on separate polypeptides or members. In some embodiments, the set of polypeptides include a dimerization switch that, upon the presence of a dimerization molecule, can couple the polypeptides to one another, e.g., can couple an antigen binding domain to an intracellular signaling domain.


In an aspect, an RCAR comprises two polypeptides or members: 1) an intracellular signaling member comprising an intracellular signaling domain, e.g., a primary intracellular signaling domain described herein, and a first switch domain; 2) an antigen binding member comprising an antigen binding domain, e.g., that targets a tumor antigen described herein, as described herein and a second switch domain Optionally, the RCAR comprises a transmembrane domain described herein. In an embodiment, a transmembrane domain can be disposed on the intracellular signaling member, on the antigen binding member, or on both. (Unless otherwise indicated, when members or elements of an RCAR are described herein, the order can be as provided, but other orders are included as well. In other words, in an embodiment, the order is as set out in the text, but in other embodiments, the order can be different. E.g., the order of elements on one side of a transmembrane region can be different from the example, e.g., the placement of a switch domain relative to a intracellular signaling domain can be different, e.g., reversed).


In an embodiment, the first and second switch domains can form an intracellular or an extracellular dimerization switch. In an embodiment, the dimerization switch can be a homodimerization switch, e.g., where the first and second switch domain are the same, or a heterodimerization switch, e.g., where the first and second switch domain are different from one another.


In embodiments, an RCAR can comprise a “multi switch.” A multi switch can comprise heterodimerization switch domains or homodimerization switch domains. A multi switch comprises a plurality of, e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10, switch domains, independently, on a first member, e.g., an antigen binding member, and a second member, e.g., an intracellular signaling member. In an embodiment, the first member can comprise a plurality of first switch domains, e.g., FKBP-based switch domains, and the second member can comprise a plurality of second switch domains, e.g., FRB-based switch domains. In an embodiment, the first member can comprise a first and a second switch domain, e.g., a FKBP-based switch domain and a FRB-based switch domain, and the second member can comprise a first and a second switch domain, e.g., a FKBP-based switch domain and a FRB-based switch domain.


In an embodiment, the intracellular signaling member comprises one or more intracellular signaling domains, e.g., a primary intracellular signaling domain and one or more costimulatory signaling domains.


In an embodiment, the antigen binding member may comprise one or more intracellular signaling domains, e.g., one or more costimulatory signaling domains. In an embodiment, the antigen binding member comprises a plurality, e.g., 2 or 3 costimulatory signaling domains described herein, e.g., selected from 41BB, CD28, CD27, ICOS, and OX40, and in embodiments, no primary intracellular signaling domain. In an embodiment, the antigen binding member comprises the following costimulatory signaling domains, from the extracellular to intracellular direction: 41BB-CD27; 41BB-CD27; CD27-41BB; 41BB-CD28; CD28-41BB; OX40-CD28; CD28-OX40; CD28-41BB; or 41BB-CD28. In such embodiments, the intracellular binding member comprises a CD3zeta domain. In one such embodiment the RCAR comprises (1) an antigen binding member comprising, an antigen binding domain, a transmembrane domain, and two costimulatory domains and a first switch domain; and (2) an intracellular signaling domain comprising a transmembrane domain or membrane tethering domain and at least one primary intracellular signaling domain, and a second switch domain.


An embodiment provides RCARs wherein the antigen binding member is not tethered to the surface of the CAR cell. This allows a cell having an intracellular signaling member to be conveniently paired with one or more antigen binding domains, without transforming the cell with a sequence that encodes the antigen binding member. In such embodiments, the RCAR comprises: 1) an intracellular signaling member comprising: a first switch domain, a transmembrane domain, an intracellular signaling domain, e.g., a primary intracellular signaling domain, and a first switch domain; and 2) an antigen binding member comprising: an antigen binding domain, and a second switch domain, wherein the antigen binding member does not comprise a transmembrane domain or membrane tethering domain, and, optionally, does not comprise an intracellular signaling domain. In some embodiments, the RCAR may further comprise 3) a second antigen binding member comprising: a second antigen binding domain, e.g., a second antigen binding domain that binds a different antigen than is bound by the antigen binding domain; and a second switch domain.


Also provided herein are RCARs wherein the antigen binding member comprises bispecific activation and targeting capacity. In this embodiment, the antigen binding member can comprise a plurality, e.g., 2, 3, 4, or 5 antigen binding domains, e.g., scFvs, wherein each antigen binding domain binds to a target antigen, e.g. different antigens or the same antigen, e.g., the same or different epitopes on the same antigen. In an embodiment, the plurality of antigen binding domains are in tandem, and optionally, a linker or hinge region is disposed between each of the antigen binding domains. Suitable linkers and hinge regions are described herein.


An embodiment provides RCARs having a configuration that allows switching of proliferation. In this embodiment, the RCAR comprises: 1) an intracellular signaling member comprising: optionally, a transmembrane domain or membrane tethering domain; one or more co-stimulatory signaling domain, e.g., selected from 41BB, CD28, CD27, ICOS, and OX40, and a switch domain; and 2) an antigen binding member comprising: an antigen binding domain, a transmembrane domain, and a primary intracellular signaling domain, e.g., a CD3zeta domain, wherein the antigen binding member does not comprise a switch domain, or does not comprise a switch domain that dimerizes with a switch domain on the intracellular signaling member. In an embodiment, the antigen binding member does not comprise a co-stimulatory signaling domain. In an embodiment, the intracellular signaling member comprises a switch domain from a homodimerization switch. In an embodiment, the intracellular signaling member comprises a first switch domain of a heterodimerization switch and the RCAR comprises a second intracellular signaling member which comprises a second switch domain of the heterodimerization switch. In such embodiments, the second intracellular signaling member comprises the same intracellular signaling domains as the intracellular signaling member. In an embodiment, the dimerization switch is intracellular. In an embodiment, the dimerization switch is extracellular.


In any of the RCAR configurations described here, the first and second switch domains comprise a FKBP-FRB based switch as described herein.


Also provided herein are cells comprising an RCAR described herein. Any cell that is engineered to express a RCAR can be used as a RCARX cell. In an embodiment the RCARX cell is a T cell, and is referred to as a RCART cell. In an embodiment the RCARX cell is an NK cell, and is referred to as a RCARN cell.


Also provided herein are nucleic acids and vectors comprising RCAR encoding sequences. Sequence encoding various elements of an RCAR can be disposed on the same nucleic acid molecule, e.g., the same plasmid or vector, e.g., viral vector, e.g., lentiviral vector. In an embodiment, (i) sequence encoding an antigen binding member and (ii) sequence encoding an intracellular signaling member, can be present on the same nucleic acid, e.g., vector. Production of the corresponding proteins can be achieved, e.g., by the use of separate promoters, or by the use of a bicistronic transcription product (which can result in the production of two proteins by cleavage of a single translation product or by the translation of two separate protein products). In an embodiment, a sequence encoding a cleavable peptide, e.g., a P2A or F2A sequence, is disposed between (i) and (ii). In an embodiment, a sequence encoding an IRES, e.g., an EMCV or EV71 IRES, is disposed between (i) and (ii). In these embodiments, (i) and (ii) are transcribed as a single RNA. In an embodiment, a first promoter is operably linked to (i) and a second promoter is operably linked to (ii), such that (i) and (ii) are transcribed as separate mRNAs.


Alternatively, the sequence encoding various elements of an RCAR can be disposed on the different nucleic acid molecules, e.g., different plasmids or vectors, e.g., viral vector, e.g., lentiviral vector. E.g., the (i) sequence encoding an antigen binding member can be present on a first nucleic acid, e.g., a first vector, and the (ii) sequence encoding an intracellular signaling member can be present on the second nucleic acid, e.g., the second vector.


Dimerization Switches

Dimerization switches can be non-covalent or covalent. In a non-covalent dimerization switch, the dimerization molecule promotes a non-covalent interaction between the switch domains. In a covalent dimerization switch, the dimerization molecule promotes a covalent interaction between the switch domains.


In an embodiment, the RCAR comprises a FKBP/FRAP, or FKBP/FRB,-based dimerization switch. FKBP12 (FKBP, or FK506 binding protein) is an abundant cytoplasmic protein that serves as the initial intracellular target for the natural product immunosuppressive drug, rapamycin. Rapamycin binds to FKBP and to the large PI3K homolog FRAP (RAFT, mTOR). FRB is a 93 amino acid portion of FRAP, that is sufficient for binding the FKBP-rapamycin complex (Chen, J., Zheng, X. F., Brown, E. J. & Schreiber, S. L. (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92: 4947-51.)


In embodiments, an FKBP/FRAP, e.g., an FKBP/FRB, based switch can use a dimerization molecule, e.g., rapamycin or a rapamycin analog.


The amino acid sequence of FKBP is as follows:









(SEQ ID NO: 52)







D V P D Y A S L G G P S S P K K K R K V S R G V





Q V E T I S P G D G R T F P K R G Q T C V V H Y T





G M L E D G K K F D S S R D R N K P F K F M L G K





Q E V I R G W E E G V A Q M S V G Q R A K L T I S





P D Y A Y G A T G H P G I I P P H A T L V F D V E





L L K L E T S Y






In embodiments, an FKBP switch domain can comprise a fragment of FKBP having the ability to bind with FRB, or a fragment or analog thereof, in the presence of rapamycin or a rapalog, e.g., the underlined portion of SEQ ID NO: 52, which is:









(SEQ ID NO: 53)







V Q V E T I S P G D G R T F P K R G Q T C V V H Y





T G M L E D G K K F D S S R D R N K P F K F M L





G K Q E V I R G W E E G V A Q M S V G Q R A K L





T I S P D Y A Y G A T G H P G I I P P H A T L V F





D V E L L K L E T S






The amino acid sequence of FRB is as follows:









(SEQ ID NO: 54)







ILWHEMWHEG LEEASRLYFG ERNVKGMFEV LEPLHAMMER





GPQTLKETSF NQAYGRDLME AQEWCRKYMK SGNVKDLTQA





WDLYYHVFRR ISK






“FKBP/FRAP, e.g., an FKBP/FRB, based switch” as that term is used herein, refers to a dimerization switch comprising: a first switch domain, which comprises an FKBP fragment or analog thereof having the ability to bind with FRB, or a fragment or analog thereof, in the presence of rapamycin or a rapalog, e.g., RAD001, and has at least 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99% identity with, or differs by no more than 30, 25, 20, 15, 10, 5, 4, 3, 2, or 1 amino acid residues from, the FKBP sequence of SEQ ID NO: 52 or 53; and a second switch domain, which comprises an FRB fragment or analog thereof having the ability to bind with FRB, or a fragment or analog thereof, in the presence of rapamycin or a rapalog, and has at least 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99% identity with, or differs by no more than 30, 25, 20, 15, 10, 5, 4, 3, 2, or 1 amino acid residues from, the FRB sequence of SEQ ID NO: 54. In an embodiment, a RCAR described herein comprises one switch domain comprises amino acid residues disclosed in SEQ ID NO: 52 (or SEQ ID NO: 53), and one switch domain comprises amino acid residues disclosed in SEQ ID NO: 54.


In embodiments, the FKBP/FRB dimerization switch comprises a modified FRB switch domain that exhibits altered, e.g., enhanced, complex formation between an FRB-based switch domain, e.g., the modified FRB switch domain, a FKBP-based switch domain, and the dimerization molecule, e.g., rapamycin or a rapalogue, e.g., RAD001. In an embodiment, the modified FRB switch domain comprises one or more mutations, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, selected from mutations at amino acid position(s) L2031, E2032, S2035, R2036, F2039, G2040, T2098, W2101, D2102, Y2105, and F2108, where the wild-type amino acid is mutated to any other naturally-occurring amino acid. In an embodiment, a mutant FRB comprises a mutation at E2032, where E2032 is mutated to phenylalanine (E2032F), methionine (E2032M), arginine (E2032R), valine (E2032V), tyrosine (E2032Y), isoleucine (E20321), e.g., SEQ ID NO: 55, or leucine (E2032L), e.g., SEQ ID NO: 56. In an embodiment, a mutant FRB comprises a mutation at T2098, where T2098 is mutated to phenylalanine (T2098F) or leucine (T2098L), e.g., SEQ ID NO: 57. In an embodiment, a mutant FRB comprises a mutation at E2032 and at T2098, where E2032 is mutated to any amino acid, and where T2098 is mutated to any amino acid, e.g., SEQ ID NO: 58. In an embodiment, a mutant FRB comprises an E20321 and a T2098L mutation, e.g., SEQ ID NO: 59. In an embodiment, a mutant FRB comprises an E2032L and a T2098L mutation, e.g., SEQ ID NO: 60.









TABLE 4







Exemplary mutant FRB having increased affinity for a


dimerization molecule.











SEQ




ID


FRB mutant
Amino Acid Sequence
NO:





E2032I mutant
ILWHEMWHEGLIEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFN
55



QAYGRDLMEAQEWCRKYMKSGNVKDLTQAWDLYYHVFRRISKTS





E2032L mutant
ILWHEMWHEGLLEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFN
56



QAYGRDLMEAQEWCRKYMKSGNVKDLTQAWDLYYHVFRRISKTS





T2098L mutant
ILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFN
57



QAYGRDLMEAQEWCRKYMKSGNVKDLLQAWDLYYHVFRRISKTS





E2032, T2098
ILWHEMWHEGLXEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFN
58


mutant
QAYGRDLMEAQEWCRKYMKSGNVKDLXQAWDLYYHVFRRISKTS





E2032I, T2098L
ILWHEMWHEGLIEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFN
59


mutant
QAYGRDLMEAQEWCRKYMKSGNVKDLLQAWDLYYHVFRRISKTS





E2032L, T2098L
ILWHEMWHEGLLEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFN
60


mutant
QAYGRDLMEAQEWCRKYMKSGNVKDLLQAWDLYYHVFRRISKTS









Other suitable dimerization switches include a GyrB-GyrB based dimerization switch, a Gibberellin-based dimerization switch, a tag/binder dimerization switch, and a halo-tag/snap-tag dimerization switch. Following the guidance provided herein, such switches and relevant dimerization molecules will be apparent to one of ordinary skill.


Dimerization Molecule

Association between the switch domains is promoted by the dimerization molecule. In the presence of dimerization molecule interaction or association between switch domains allows for signal transduction between a polypeptide associated with, e.g., fused to, a first switch domain, and a polypeptide associated with, e.g., fused to, a second switch domain. In the presence of non-limiting levels of dimerization molecule signal transduction is increased by 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 5, 10, 50, 100 fold, e.g., as measured in a system described herein.


Rapamycin and rapamycin analogs (sometimes referred to as rapalogues), e.g., RAD001, can be used as dimerization molecules in a FKBP/FRB-based dimerization switch described herein. In an embodiment the dimerization molecule can be selected from rapamycin (sirolimus), RAD001 (everolimus), zotarolimus, temsirolimus, AP-23573 (ridaforolimus), biolimus and AP21967. Additional rapamycin analogs suitable for use with FKBP/FRB-based dimerization switches are further described in the section entitled


“Combination Therapies”, or in the subsection entitled “Exemplary mTOR inhibitors”.


Split CAR

In some embodiments, the CAR-expressing cell uses a split CAR. The split CAR approach is described in more detail in publications WO2014/055442 and WO2014/055657. Briefly, a split CAR system comprises a cell expressing a first CAR having a first antigen binding domain and a costimulatory domain (e.g., 41BB), and the cell also expresses a second CAR having a second antigen binding domain and an intracellular signaling domain (e.g., CD3 zeta). When the cell encounters the first antigen, the costimulatory domain is activated, and the cell proliferates. When the cell encounters the second antigen, the intracellular signaling domain is activated and cell-killing activity begins. Thus, the CAR-expressing cell is only fully activated in the presence of both antigens.


Exemplary CAR Molecules

The CAR molecules disclosed herein can comprise a binding domain that binds to a target, e.g., a target as described herein; a transmembrane domain, e.g., a transmembrane domain as described herein; and an intracellular signaling domain, e.g., an intracellular domain as described herein. In embodiments, the binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of a heavy chain binding domain described herein, and/or a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) of a light chain binding domain described herein.


In other embodiments, the CAR molecule comprises a CD19 CAR molecule described herein, e.g., a CD19 CAR molecule described in US-2015-0283178-A1, e.g., CTL019. In embodiments, the CD19 CAR comprises an amino acid, or has a nucleotide sequence shown in US-2015-0283178-A1, incorporated herein by reference, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical thereto).


In one embodiment, the CAR T cell that specifically binds to CD19 has the USAN designation TISAGENLECLEUCEL-T. CTL019 is made by a gene modification of T cells is mediated by stable insertion via transduction with a self-inactivating, replication deficient Lentiviral (LV) vector containing the CTL019 transgene under the control of the EF-1 alpha promoter. CTL019 can be a mixture of transgene positive and negative T cells that are delivered to the subject on the basis of percent transgene positive T cells.


In other embodiments, the CD19 CAR includes a CAR molecule, or an antigen binding domain (e.g., a humanized antigen binding domain) according to Table 3 of WO2014/153270, incorporated herein by reference. The amino acid and nucleotide sequences encoding the CD19 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2014/153270. In embodiments, the CD19 CAR comprises an amino acid, or has a nucleotide sequence shown in WO2014/153270 incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD19 CAR sequences).


In one embodiment, the parental murine scFv sequence is the CAR19 construct provided in PCT publication WO2012/079000 (incorporated herein by reference) and provided herein in Table 5. In one embodiment, the anti-CD19 binding domain is a scFv described in WO2012/079000 and provided herein in Table 5.


In one embodiment, the CD19 CAR comprises an amino acid sequence provided as SEQ ID NO: 12 in PCT publication WO2012/079000. In embodiment, the amino acid sequence is:


MALPVTALLLPLALLLHAARPdiqmtqttsslsaslgdrvtiscrasqdiskylnwyqqkpdgtvklli yhtsrlhsgvpsrfsgsgsgtdysltisnleqediatyfcqqgntlpytfgggtkleitggggsggggsggggsevklqesgpglva psqslsvtctvsgvslpdygvswirqpprkglewlgviwgsettyynsalksrltiikdnsksqvflkmnslqtddtaiyycakh yyyggsyamdywgqgtsvtvsstttpaprpptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslv itlyckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsadapaykqgqnqlynelnlgrreeydvldkrr grdpemggkprrknpqeglynelqkdkmaeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr (SEQ ID NO: 891), or a sequence substantially identical thereto (e.g., at least 85%, 90% or 95% or higher identical thereto), with or without the signal peptide sequence indicated in capital letters.


In embodiment, the amino acid sequence is:


diqmtqttsslsaslgdrvtiscrasqdiskylnwyqqkpdgtvklliyhtsrlhsgvpsrfsgsgsgtdysltisnleqe diatyfcqqgntlpytfgggtkleitggggsggggsggggsevklqesgpglvapsqslsvtctvsgvslpdygvswirqpprkg lewlgviwgsettyynsalksrltiikdnsksqvflkmnslqtddtaiyycakhyyyggsyamdywgqgtsvtvsstttpaprp ptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitlyckrgrkkllyifkqpfmrpvqttqeedg cscrfpeeeeggcelrvkfsrsadapaykqgqnqlynelnlgrreeydvldlargrdpemggkprrknpqeglynelqkdkm aeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr (SEQ ID NO: 892), or a sequence substantially homologous thereto (e.g., at least 85%, 90% or 95% or higher identical thereto).


In embodiments, the CAR molecule is a CD19 CAR molecule described herein, e.g., a humanized CAR molecule described herein, e.g., a humanized CD19 CAR molecule of Table 5 or having CDRs as set out in Tables 6A and 6B.


In embodiments, the CAR molecule is a CD19 CAR molecule described herein, e.g., a murine CAR molecule described herein, e.g., a murine CD19 CAR molecule of Table 5 or having CDRs as set out in Tables 6A and 6B.


In some embodiments, the CAR molecule comprises one, two, and/or three CDRs from the heavy chain variable region and/or one, two, and/or three CDRs from the light chain variable region of the murine or humanized CD19 CAR of Tables 6A and 6B.


In one embodiment, the antigen binding domain comprises one, two three (e.g., all three) heavy chain CDRs, HC CDR1, HC CDR2 and HC CDR3, from an antibody listed herein, and/or one, two, three (e.g., all three) light chain CDRs, LC CDR1, LC CDR2 and LC CDR3, from an antibody listed herein. In one embodiment, the antigen binding domain comprises a heavy chain variable region and/or a variable light chain region of an antibody listed or described herein.


Exemplary CD19 CARs include any of the CD19 CARs or anti-CD19 binding domains described herein, e.g., in one or more tables (e.g., Table 5) described herein (e.g., or an anti-CD19 CAR described in Xu et al. Blood 123.24(2014):3750-9; Kochenderfer et al. Blood 122.25(2013):4129-39, Cruz et al. Blood 122.17(2013):2965-73, NCT00586391, NCT01087294, NCT02456350, NCT00840853, NCT02659943, NCT02650999, NCT02640209, NCT01747486, NCT02546739, NCT02656147, NCT02772198, NCT00709033, NCT02081937, NCT00924326, NCT02735083, NCT02794246, NCT02746952, NCT01593696, NCT02134262, NCT01853631, NCT02443831, NCT02277522, NCT02348216, NCT02614066, NCT02030834, NCT02624258, NCT02625480, NCT02030847, NCT02644655, NCT02349698, NCT02813837, NCT02050347, NCT01683279, NCT02529813, NCT02537977, NCT02799550, NCT02672501, NCT02819583, NCT02028455, NCT01840566, NCT01318317, NCT01864889, NCT02706405, NCT01475058, NCT01430390, NCT02146924, NCT02051257, NCT02431988, NCT01815749, NCT02153580, NCT01865617, NCT02208362, NCT02685670, NCT02535364, NCT02631044, NCT02728882, NCT02735291, NCT01860937, NCT02822326, NCT02737085, NCT02465983, NCT02132624, NCT02782351, NCT01493453, NCT02652910, NCT02247609, NCT01029366, NCT01626495, NCT02721407, NCT01044069, NCT00422383, NCT01680991, NCT02794961, or NCT02456207, each of which is incorporated herein by reference in its entirety.


Exemplary CD19 CAR and antigen binding domain constructs that can be used in the methods described herein are shown in Table 5. The light and heavy chain CDR sequences according to Kabat are shown by the bold and underlined text, and are also summarized in Tables 5 and 6A-6B below. The location of the signal sequence and histidine tag are also underlined. In embodiments, the CD19 CAR sequences and antigen binding fragments thereof do not include the signal sequence and/or histidine tag sequences.


In embodiments, the CD19 CAR comprises an anti-CD19 binding domain (e.g., murine or humanized anti-CD19 binding domain), a transmembrane domain, and an intracellular signaling domain, and wherein said anti-CD19 binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of any anti-CD19 heavy chain binding domain amino acid sequences listed in Table 5 and 6A-6B, or a sequence at least 85%, 90%, 95% or more identical thereto (e.g., having less than 5, 4, 3, 2 or 1 amino acid substitutions, e.g., conservative substitutions).


In one embodiment, the anti-CD19 binding domain comprises a light chain variable region described herein (e.g., in Table 5) and/or a heavy chain variable region described herein (e.g., in Table 5), or a sequence at least 85%, 90%, 95% or more identical thereto.


In one embodiment, the encoded anti-CD19 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Tables 5, or a sequence at least 85%, 90%, 95% or more identical thereto.


In an embodiment, the human or humanized anti-CD19 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in Table 5, or a sequence at least 85%, 90%, 95% or more identical thereto; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 5, or a sequence at least 85%, 90%, 95% or more identical thereto.









TABLE 5







CD19 CAR Constructs










SEQ ID



Name
NO:
Sequence










CAR 1









CAR1 scFv
893
EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQKPGQAPRLLIYH


domain

TSRLHSGIPARFSGSGSGTDYTLTISSLQPEDFAVYFCQQGNTLPYTFGQ




GTKLEIKGGGGSGGGGSGGGGSQVQLQESGPGLVKPSETLSLTCTVSGVS




LPDYGVSWIRQPPGKGLEWIGVIWGSETTYYSSSLKSRVTISKDNSKNQV




SLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQGTLVTVSS





103101
894
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR1

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Soluble

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat


scFv-nt

tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagccaggtccaact




ccaagaaagcggaccgggtcttgtgaagccatcagaaactctttcactgacttgt




actgtgagcggagtgtctctccccgattacggggtgtcttggatcagacagccac




cggggaagggtctggaatggattggagtgatttggggctctgagactacttacta




ctcttcatccctcaagtcacgcgtcaccatctcaaaggacaactctaagaatcag




gtgtcactgaaactgtcatctgtgaccgcagccgacaccgccgtgtactattgcg




ctaagcattactattatggcgggagctacgcaatggattactggggacagggtac




tctggtcaccgtgtccagccaccaccatcatcaccatcaccat





103101
895


MALPVTALLLPLALLLHAARP
eivmtqspatlslspgeratlscrasqdiskyln



CAR1

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Soluble

qgntlpytfgqgtkleikggggsggggsggggsqvqlqesgpglvkpsetlsltc


scFv-aa

tvsgvslpdygvswirqppgkglewigviwgsettyyssslksrvtiskdnsknq




vslklssvtaadtavyycakhyyyggsyamdywgqqtlvtvsshhhhhhhh





104875
896
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR 1-

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Full-nt

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat




tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagccaggtccaact




ccaagaaagcggaccgggtcttgtgaagccatcagaaactctttcactgacttgt




actgtgagcggagtgtctctccccgattacggggtgtcttggatcagacagccac




cggggaagggtctggaatggattggagtgatttggggctctgagactacttacta




ctcttcatccctcaagtcacgcgtcaccatctcaaaggacaactctaagaatcag




gtgtcactgaaactgtcatctgtgaccgcagccgacaccgccgtgtactattgcg




ctaagcattactattatggcgggagctacgcaatggattactggggacagggtac




tctggtcaccgtgtccagcaccactaccccagcaccgaggccacccaccccggct




cctaccatcgcctcccagcctctgtccctgcgtccggaggcatgtagacccgcag




ctggtggggccgtgcatacccggggtcttgacttcgcctgcgatatctacatttg




ggcccctctggctggtacttgcggggtcctgctgctttcactcgtgatcactctt




tactgtaagcgcggtcggaagaagctgctgtacatctttaagcaacccttcatga




ggcctgtgcagactactcaagaggaggacggctgttcatgccggttcccagagga




ggaggaaggcggctgcgaactgcgcgtgaaattcagccgcagcgcagatgctcca




gcctacaagcaggggcagaaccagctctacaacgaactcaatcttggtcggagag




aggagtacgacgtgctggacaagcggagaggacgggacccagaaatgggcgggaa




gccgcgcagaaagaatccccaagagggcctgtacaacgagctccaaaaggataag




atggcagaagcctatagcgagattggtatgaaaggggaacgcagaagaggcaaag




gccacgacggactgtaccagggactcagcaccgccaccaaggacacctatgacgc




tcttcacatgcaggccctgccgcctcgg





104875
897
MALPVTALLLPLALLLHAARPeivmtqspatlslspgeratlscrasqdiskyln


CAR 1-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Full-aa



qgntlpyt
fgqqtkleikggggsggggsggggsqvqlqesqpglvkpsetlsltc





tvsqvslpdygvswirqppqkglewigviwgsettyyssslksrvtiskdnsknq




vslklssvtaadtavyycakhyyyggsyamdywgqgtlvtvsstttpaprpptpa




ptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitl




yckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsadap




aykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdk




maeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR 2









CAR2 scFv
898
eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlh


domain

sgiparfsgsgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleikggg




gsggggsggggsqvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgk




glewigviwgsettyyqsslksrvtiskdnsknqvslklssvtaadtavyycakh




yyyggsyamdywgqgtlvtvss





103102
899
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR2-

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Soluble

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat


scFv-nt

tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagccaggtccaact




ccaagaaagcggaccgggtcttgtgaagccatcagaaactctttcactgacttgt




actgtgagcggagtgtctctccccgattacggggtgtcttggatcagacagccac




cggggaagggtctggaatggattggagtgatttggggctctgagactacttacta




ccaatcatccctcaagtcacgcgtcaccatctcaaaggacaactctaagaatcag




gtgtcactgaaactgtcatctgtgaccgcagccgacaccgccgtgtactattgcg




ctaagcattactattatggcgggagctacgcaatggattactggggacagggtac




tctggtcaccgtgtccagccaccaccatcatcaccatcaccat





103102
900


MALPVTALLLPLALLLHAARP
eivmtqspatlslspgeratlscrasqdiskyln



CAR2-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Soluble

qgntlpytfgqgtkleikggggsggggsggggsqvqlqesgpglvkpsetlsltc


scFv-aa

tvsgvslpdygvswirqppgkglewigviwgsettyyqsslksrvtiskdnsknq




vslklssvtaadtavyycakhyyyggsyamdywgqqtlvtvsshhhhhhhh





104876
901
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR 2-

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Full-nt

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat




tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagccaggtccaact




ccaagaaagcggaccgggtcttgtgaagccatcagaaactctttcactgacttgt




actgtgagcggagtgtctctccccgattacggggtgtcttggatcagacagccac




cggggaagggtctggaatggattggagtgatttggggctctgagactacttacta




ccaatcatccctcaagtcacgcgtcaccatctcaaaggacaactctaagaatcag




gtgtcactgaaactgtcatctgtgaccgcagccgacaccgccgtgtactattgcg




ctaagcattactattatggcgggagctacgcaatggattactggggacagggtac




tctggtcaccgtgtccagcaccactaccccagcaccgaggccacccaccccggct




cctaccatcgcctcccagcctctgtccctgcgtccggaggcatgtagacccgcag




ctggtggggccgtgcatacccggggtcttgacttcgcctgcgatatctacatttg




ggcccctctggctggtacttgcggggtcctgctgctttcactcgtgatcactctt




tactgtaagcgcggtcggaagaagctgctgtacatctttaagcaacccttcatga




ggcctgtgcagactactcaagaggaggacggctgttcatgccggttcccagagga




ggaggaaggcggctgcgaactgcgcgtgaaattcagccgcagcgcagatgctcca




gcctacaagcaggggcagaaccagctctacaacgaactcaatcttggtcggagag




aggagtacgacgtgctggacaagcggagaggacgggacccagaaatgggcgggaa




gccgcgcagaaagaatccccaagagggcctgtacaacgagctccaaaaggataag




atggcagaagcctatagcgagattggtatgaaaggggaacgcagaagaggcaaag




gccacgacggactgtaccagggactcagcaccgccaccaaggacacctatgacgc




tcttcacatgcaggccctgccgcctcgg





104876
902
MALPVTALLLPLALLLHAARPeivmtqspatlslspgeratlscrasqdiskyln


CAR 2-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Full-aa



qgntlpyt
fgqqtkleikggggsggggsggggsqvqlqesqpglvkpsetlsltc





tvsqvslpdygvswirqppqkglewigviwgsettyyqsslksrvtiskdnsknq




vslklssvtaadtavyycakhyyyggsyamdywgqqtlvtvsstttpaprpptpa




ptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitl




yckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsadap




aykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdk




maeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR 3









CAR3 scFv
903
qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgse


domain

ttyyssslksrvtiskdnsknqvslklssvtaadtavyycakhyyyggsyamdyw




gqgtlvtvssggggsggggsggggseivmtqspatlslspgeratlscrasqdis




kylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfav




yfcqqgntlpytfgqgtkleik





103104
904
atggctctgcccgtgaccgcactcctcctgccactggctctgctgcttcacgccg


CAR 3-

ctcgcccacaagtccagcttcaagaatcagggcctggtctggtgaagccatctga


Soluble

gactctgtccctcacttgcaccgtgagcggagtgtccctcccagactacggagtg


scFv-nt

agctggattagacagcctcccggaaagggactggagtggatcggagtgatttggg




gtagcgaaaccacttactattcatcttccctgaagtcacgggtcaccatttcaaa




ggataactcaaagaatcaagtgagcctcaagctctcatcagtcaccgccgctgac




accgccgtgtattactgtgccaagcattactactatggagggtcctacgccatgg




actactggggccagggaactctggtcactgtgtcatctggtggaggaggtagcgg




aggaggcgggagcggtggaggtggctccgaaatcgtgatgacccagagccctgca




accctgtccctttctcccggggaacgggctaccctttcttgtcgggcatcacaag




atatctcaaaatacctcaattggtatcaacagaagccgggacaggcccctaggct




tcttatctaccacacctctcgcctgcatagcgggattcccgcacgctttagcggg




tctggaagcgggaccgactacactctgaccatctcatctctccagcccgaggact




tcgccgtctacttctgccagcagggtaacaccctgccgtacaccttcggccaggg




caccaagcttgagatcaaacatcaccaccatcatcaccatcac





103104
905


MALPVTALLLPLALLLHAARP
qvqlqesqpglvkpsetlsltctvsgvslpdygv



CAR 3-

swirqppgkglewigviwgsettyyssslksrvtiskdnsknqvslklssvtaad


Soluble

tavyycakhyyyggsyamdywgqgtlvtvssggggsggggsggggseivmtqspa


scFv-aa

tlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsg




sgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleikhhhhhhhh





104877
906
atggctctgcccgtgaccgcactcctcctgccactggctctgctgcttcacgccg


CAR 3-

ctcgcccacaagtccagcttcaagaatcagggcctggtctggtgaagccatctga


Full-nt

gactctgtccctcacttgcaccgtgagcggagtgtccctcccagactacggagtg




agctggattagacagcctcccggaaagggactggagtggatcggagtgatttggg




gtagcgaaaccacttactattcatcttccctgaagtcacgggtcaccatttcaaa




ggataactcaaagaatcaagtgagcctcaagctctcatcagtcaccgccgctgac




accgccgtgtattactgtgccaagcattactactatggagggtcctacgccatgg




actactggggccagggaactctggtcactgtgtcatctggtggaggaggtagcgg




aggaggcgggagcggtggaggtggctccgaaatcgtgatgacccagagccctgca




accctgtccctttctcccggggaacgggctaccctttcttgtcgggcatcacaag




atatctcaaaatacctcaattggtatcaacagaagccgggacaggcccctaggct




tcttatctaccacacctctcgcctgcatagcgggattcccgcacgctttagcggg




tctggaagcgggaccgactacactctgaccatctcatctctccagcccgaggact




tcgccgtctacttctgccagcagggtaacaccctgccgtacaccttcggccaggg




caccaagcttgagatcaaaaccactactcccgctccaaggccacccacccctgcc




ccgaccatcgcctctcagccgctttccctgcgtccggaggcatgtagacccgcag




ctggtggggccgtgcatacccggggtcttgacttcgcctgcgatatctacatttg




ggcccctctggctggtacttgcggggtcctgctgctttcactcgtgatcactctt




tactgtaagcgcggtcggaagaagctgctgtacatctttaagcaacccttcatga




ggcctgtgcagactactcaagaggaggacggctgttcatgccggttcccagagga




ggaggaaggcggctgcgaactgcgcgtgaaattcagccgcagcgcagatgctcca




gcctacaagcaggggcagaaccagctctacaacgaactcaatcttggtcggagag




aggagtacgacgtgctggacaagcggagaggacgggacccagaaatgggcgggaa




gccgcgcagaaagaatccccaagagggcctgtacaacgagctccaaaaggataag




atggcagaagcctatagcgagattggtatgaaaggggaacgcagaagaggcaaag




gccacgacggactgtaccagggactcagcaccgccaccaaggacacctatgacgc




tcttcacatgcaggccctgccgcctcgg





104877
907
MALPVTALLLPLALLLHAARPqvqlqesgpglvkpsetlsltctvsgvslpdygv


CAR 3-



s
wirqppqkglewigviwgsettyyssslksrvtiskdnsknqvslklssvtaad



Full-aa

tavyycakhyyyggsyamdywgqqtlvtvssggggsggggsggggseivmtqspa




tlslspgeratlscrasqdiskylnwyqqkpqqaprlliyhtsrlhsqiparfsg




sgsgtdytltisslqpedfavyfcqqgntlpytfqqqtkleiktttpaprpptpa




ptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitl




yckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsadap




aykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdk




maeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR 4









CAR4 scFv
908
qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgse


domain

ttyyqsslksrvtiskdnsknqvslklssvtaadtavyycakhyyyggsyamdyw




gqgtlvtvssggggsggggsggggseivmtqspatlslspgeratlscrasqdis




kylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfav




yfcqqgntlpytfgqgtkleik





103106
909
atggctctgcccgtgaccgcactcctcctgccactggctctgctgcttcacgccg


CAR4-

ctcgcccacaagtccagcttcaagaatcagggcctggtctggtgaagccatctga


Soluble

gactctgtccctcacttgcaccgtgagcggagtgtccctcccagactacggagtg


scFv-nt

agctggattagacagcctcccggaaagggactggagtggatcggagtgatttggg




gtagcgaaaccacttactatcaatcttccctgaagtcacgggtcaccatttcaaa




ggataactcaaagaatcaagtgagcctcaagctctcatcagtcaccgccgctgac




accgccgtgtattactgtgccaagcattactactatggagggtcctacgccatgg




actactggggccagggaactctggtcactgtgtcatctggtggaggaggtagcgg




aggaggcgggagcggtggaggtggctccgaaatcgtgatgacccagagccctgca




accctgtccctttctcccggggaacgggctaccctttcttgtcgggcatcacaag




atatctcaaaatacctcaattggtatcaacagaagccgggacaggcccctaggct




tcttatctaccacacctctcgcctgcatagcgggattcccgcacgctttagcggg




tctggaagcgggaccgactacactctgaccatctcatctctccagcccgaggact




tcgccgtctacttctgccagcagggtaacaccctgccgtacaccttcggccaggg




caccaagcttgagatcaaacatcaccaccatcatcaccatcac





103106
910


MALPVTALLLPLALLLHAARP
qvqlqesgpglvkpsetlsltctvsgvslpdygv



CAR4-

swirqppgkglewigviwgsettyyqsslksrvtiskdnsknqvslklssvtaad


Soluble

tavyycakhyyyggsyamdywgqgtlvtvssggggsggggsggggseivmtqspa


scFv-aa

tlslspgeratlserasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsg




sgsgtdytltisslqpedfavyfcqqqntlpytfgqqtkleikhhhhhhhh





104878
911
atggctctgcccgtgaccgcactcctcctgccactggctctgctgcttcacgccg


CAR 4-

ctcgcccacaagtccagcttcaagaatcagggcctggtctggtgaagccatctga


Full-nt

gactctgtccctcacttgcaccgtgagcggagtgtccctcccagactacggagtg




agctggattagacagcctcccggaaagggactggagtggatcggagtgatttggg




gtagcgaaaccacttactatcaatcttccctgaagtcacgggtcaccatttcaaa




ggataactcaaagaatcaagtgagcctcaagctctcatcagtcaccgccgctgac




accgccgtgtattactgtgccaagcattactactatggagggtcctacgccatgg




actactggggccagggaactctggtcactgtgtcatctggtggaggaggtagcgg




aggaggcgggagcggtggaggtggctccgaaatcgtgatgacccagagccctgca




accctgtccctttctcccggggaacgggctaccctttcttgtcgggcatcacaag




atatctcaaaatacctcaattggtatcaacagaagccgggacaggcccctaggct




tcttatctaccacacctctcgcctgcatagcgggattcccgcacgctttagcggg




tctggaagcgggaccgactacactctgaccatctcatctctccagcccgaggact




tcgccgtctacttctgccagcagggtaacaccctgccgtacaccttcggccaggg




caccaagcttgagatcaaaaccactactcccgctccaaggccacccacccctgcc




ccgaccatcgcctctcagccgctttccctgcgtccggaggcatgtagacccgcag




ctggtggggccgtgcatacccggggtcttgacttcgcctgcgatatctacatttg




ggcccctctggctggtacttgcggggtcctgctgctttcactcgtgatcactctt




tactgtaagcgcggtcggaagaagctgctgtacatctttaagcaacccttcatga




ggcctgtgcagactactcaagaggaggacggctgttcatgccggttcccagagga




ggaggaaggcggctgcgaactgcgcgtgaaattcagccgcagcgcagatgctcca




gcctacaagcaggggcagaaccagctctacaacgaactcaatcttggtcggagag




aggagtacgacgtgctggacaagcggagaggacgggacccagaaatgggcgggaa




gccgcgcagaaagaatccccaagagggcctgtacaacgagctccaaaaggataag




atggcagaagcctatagcgagattggtatgaaaggggaacgcagaagaggcaaag




gccacgacggactgtaccagggactcagcaccgccaccaaggacacctatgacgc




tcttcacatgcaggccctgccgcctcgg





104878
912
MALPVTALLLPLALLLHAARPqvqlqesgpglvkpsetlsltctvsgvslpdygv


CAR 4-



s
wirqppqkglewigviwgsettyyqsslksrvtiskdnsknqvslklssvtaad



Full-aa

tavyycakhyyyggsyamdywgqqtlvtvssggggsggggsggggseivmtqspa




tlslspgeratlscrasqdiskylnwyqqkpqqaprlliyhtsrlhsqiparfsg




sgsgtdytltisslqpedfavyfcqqgntlpytfqqqtkleiktttpaprpptpa




ptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitl




yckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsadap




aykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdk




maeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR 5









CAR5 scFv
913
eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlh


domain

sgiparfsgsgsgtdytItisslqpedfavyfcqqgntlpytfgqgtkleikggg




gsggggsggggsggggsqvqlqesgpglvkpsetlsltctvsgvslpdygvswir




qppgkglewigviwgsettyyssslksrvtiskdnsknqvslklssvtaadtavy




ycakhyyyggsyamdywgqgtlvtvss





99789
914
atggccctcccagtgaccgctctgctgctgcctctcgcacttcttctccatgccg


CAR5-

ctcggcctgagatcgtcatgacccaaagccccgctaccctgtccctgtcacccgg


Soluble

cgagagggcaaccctttcatgcagggccagccaggacatttctaagtacctcaac


scFv-nt

tggtatcagcagaagccagggcaggctcctcgcctgctgatctaccacaccagcc




gcctccacagcggtatccccgccagattttccgggagcgggtctggaaccgacta




caccctcaccatctcttctctgcagcccgaggatttcgccgtctatttctgccag




caggggaatactctgccgtacaccttcggtcaaggtaccaagctggaaatcaagg




gaggcggaggatcaggcggtggcggaagcggaggaggtggctccggaggaggagg




ttcccaagtgcagcttcaagaatcaggacccggacttgtgaagccatcagaaacc




ctctccctgacttgtaccgtgtccggtgtgagcctccccgactacggagtctctt




ggattcgccagcctccggggaagggtcttgaatggattggggtgatttggggatc




agagactacttactactcttcatcacttaagtcacgggtcaccatcagcaaagat




aatagcaagaaccaagtgtcacttaagctgtcatctgtgaccgccgctgacaccg




ccgtgtactattgtgccaaacattactattacggagggtcttatgctatggacta




ctggggacaggggaccctggtgactgtctctagccatcaccatcaccaccatcat




cac





99789
915


MALPVTALLLPLALLLHAARP
eivmtqspatlslspgeratlserasqdiskyln



CAR5-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Soluble

qgntlpytfgqgtkleikggggsggggsggggsggggsqvqlqesgpglvkpset


scFv-aa

lsltctvsgvslpdygvswirqppgkglewigviwgsettyyssslksrvtiskd




nsknqvslklssvtaadtavyycakhyyyqgsyamdywgqqtIvtvsshhhhhhhh






h







104879
916
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR 5-

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Full-nt

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat




tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagcggcggaggcgg




gagccaggtccaactccaagaaagcggaccgggtcttgtgaagccatcagaaact




ctttcactgacttgtactgtgagcggagtgtctctccccgattacggggtgtctt




ggatcagacagccaccggggaagggtctggaatggattggagtgatttggggctc




tgagactacttactactcttcatccctcaagtcacgcgtcaccatctcaaaggac




aactctaagaatcaggtgtcactgaaactgtcatctgtgaccgcagccgacaccg




ccgtgtactattgcgctaagcattactattatggcgggagctacgcaatggatta




ctggggacagggtactctggtcaccgtgtccagcaccactaccccagcaccgagg




ccacccaccccggctcctaccatcgcctcccagcctctgtccctgcgtccggagg




catgtagacccgcagctggtggggccgtgcatacccggggtcttgacttcgcctg




cgatatctacatttgggcccctctggctggtacttgcggggtcctgctgctttca




ctcgtgatcactctttactgtaagcgcggtcggaagaagctgctgtacatcttta




agcaacccttcatgaggcctgtgcagactactcaagaggaggacggctgttcatg




ccggttcccagaggaggaggaaggcggctgcgaactgcgcgtgaaattcagccgc




agcgcagatgctccagcctacaagcaggggcagaaccagctctacaacgaactca




atcttggtcggagagaggagtacgacgtgctggacaagcggagaggacgggaccc




agaaatgggcgggaagccgcgcagaaagaatccccaagagggcctgtacaacgag




ctccaaaaggataagatggcagaagcctatagcgagattggtatgaaaggggaac




gcagaagaggcaaaggccacgacggactgtaccagggactcagcaccgccaccaa




ggacacctatgacgctcttcacatgcaggccctgccgcctcgg





104879
917
MALPVTALLLPLALLLHAARPeivmtqspatlslspgeratlscrasqdiskyln


CAR 5-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Full-aa



qgntlpyt
fgqqtkleikggggsggggsggggsggggsqvqlqesqpglvkpset





lsltctvsqvslpdygvswirqppqkglewigviwgsettyyssslksrvtiskd




nsknqvslklssvtaadtavyycakhyyyggsyamdywqqqtlvtvsstttpapr




pptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvllls




lvitlyckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsr




sadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglyne




lqkdkmaeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR 6









CAR6
918
eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlh


scFv

sgiparfsgsgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleikggg


domain

gsggggsggggsggggsqvqlqesgpglvkpsetlsltctvsgvslpdygvswir




qppgkglewigviwgsettyyqsslksrvtiskdnsknqvslklssvtaadtavy




ycakhyyyggsyamdywgqgtlvtvss





99790
919
atggccctcccagtgaccgctctgctgctgcctctcgcacttcttctccatgccg


CAR6-

ctcggcctgagatcgtcatgacccaaagccccgctaccctgtccctgtcacccgg


Soluble

cgagagggcaaccctttcatgcagggccagccaggacatttctaagtacctcaac


scFv-nt

tggtatcagcagaagccagggcaggctcctcgcctgctgatctaccacaccagcc




gcctccacagcggtatccccgccagattttccgggagcgggtctggaaccgacta




caccctcaccatctcttctctgcagcccgaggatttcgccgtctatttctgccag




caggggaatactctgccgtacaccttcggtcaaggtaccaagctggaaatcaagg




gaggcggaggatcaggcggtggcggaagcggaggaggtggctccggaggaggagg




ttcccaagtgcagcttcaagaatcaggacccggacttgtgaagccatcagaaacc




ctctccctgacttgtaccgtgtccggtgtgagcctccccgactacggagtctctt




ggattcgccagcctccggggaagggtcttgaatggattggggtgatttggggatc




agagactacttactaccagtcatcacttaagtcacgggtcaccatcagcaaagat




aatagcaagaaccaagtgtcacttaagctgtcatctgtgaccgccgctgacaccg




ccgtgtactattgtgccaaacattactattacggagggtcttatgctatggacta




ctggggacaggggaccctggtgactgtctctagccatcaccatcaccaccatcat




cac





99790
920


MALPVTALLLPLALLLHAARP
eivmtqspatlslspgeratlscrasqdiskyln



CAR6-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Soluble

qgntlpytfgqgtkleikggggsggggsggggsggggsqvqlqesgpglvkpset


scFv-aa

lsltctvsgvslpdygvswirqppgkglewigviwgsettyyqsslksrvtiskd




nsknqvslklssvtaadtavyycakhyyyqgsyamdywgqqtlvtvsshhhhhhhh






h







104880
921
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR6-

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Full-nt

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat




tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagcggaggcggagg




gagccaggtccaactccaagaaagcggaccgggtcttgtgaagccatcagaaact




ctttcactgacttgtactgtgagcggagtgtctctccccgattacggggtgtctt




ggatcagacagccaccggggaagggtctggaatggattggagtgatttggggctc




tgagactacttactaccaatcatccctcaagtcacgcgtcaccatctcaaaggac




aactctaagaatcaggtgtcactgaaactgtcatctgtgaccgcagccgacaccg




ccgtgtactattgcgctaagcattactattatggcgggagctacgcaatggatta




ctggggacagggtactctggtcaccgtgtccagcaccactaccccagcaccgagg




ccacccaccccggctcctaccatcgcctcccagcctctgtccctgcgtccggagg




catgtagacccgcagctggtggggccgtgcatacccggggtcttgacttcgcctg




cgatatctacatttgggcccctctggctggtacttgcggggtcctgctgctttca




ctcgtgatcactctttactgtaagcgcggtcggaagaagctgctgtacatcttta




agcaacccttcatgaggcctgtgcagactactcaagaggaggacggctgttcatg




ccggttcccagaggaggaggaaggcggctgcgaactgcgcgtgaaattcagccgc




agcgcagatgctccagcctacaagcaggggcagaaccagctctacaacgaactca




atcttggtcggagagaggagtacgacgtgctggacaagcggagaggacgggaccc




agaaatgggcgggaagccgcgcagaaagaatccccaagagggcctgtacaacgag




ctccaaaaggataagatggcagaagcctatagcgagattggtatgaaaggggaac




gcagaagaggcaaaggccacgacggactgtaccagggactcagcaccgccaccaa




ggacacctatgacgctcttcacatgcaggccctgccgcctcgg





104880
922
MALPVTALLLPLALLLHAARPeivmtqspatlslspgeratlscrasqdiskyln


CAR6-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Full-aa



qgntlpyt
fgqqtkleikggggsggggsggggsggggsqvqlqesqpglvkpset





lsltctvsqvslpdygvswirqppqkglewigviwgsettyyqsslksrvtiskd




nsknqvslklssvtaadtavyycakhyyyggsyamdywqqqtlvtvsstttpapr




pptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvllls




lvitlyckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsr




sadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglyne




lqkdkmaeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR 7









CAR7 scFv
923
qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgse


domain

ttyyssslksrvtiskdnsknqvslklssvtaadtavyycakhyyyggsyamdyw




gqgtlvtvssggggsggggsggggsggggseivmtqspatlslspgeratlscra




sqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqp




edfavyfcqqgntlpytfgqgtkleik





100796
924
atggcactgcctgtcactgccctcctgctgcctctggccctccttctgcatgccg


CAR7-

ccaggccccaagtccagctgcaagagtcaggacccggactggtgaagccgtctga


Soluble

gactctctcactgacttgtaccgtcagcggcgtgtccctccccgactacggagtg


scFv-nt

tcatggatccgccaacctcccgggaaagggcttgaatggattggtgtcatctggg




gttctgaaaccacctactactcatcttccctgaagtccagggtgaccatcagcaa




ggataattccaagaaccaggtcagccttaagctgtcatctgtgaccgctgctgac




accgccgtgtattactgcgccaagcactactattacggaggaagctacgctatgg




actattggggacagggcactctcgtgactgtgagcagcggcggtggagggtctgg




aggtggaggatccggtggtggtgggtcaggcggaggagggagcgagattgtgatg




actcagtcaccagccaccctttctctttcacccggcgagagagcaaccctgagct




gtagagccagccaggacatttctaagtacctcaactggtatcagcaaaaaccggg




gcaggcccctcgcctcctgatctaccatacctcacgccttcactctggtatcccc




gctcggtttagcggatcaggatctggtaccgactacactctgaccatttccagcc




tgcagccagaagatttcgcagtgtatttctgccagcagggcaatacccttcctta




caccttcggtcagggaaccaagctcgaaatcaagcaccatcaccatcatcaccac




cat





100796
925


MALPVTALLLPLALLLHAARP
qvqlqesqpglvkpsetlsltctvsgvslpdygv



CAR7-

swirqppgkglewigviwgsettyyssslksrvtiskdnsknqvslklssvtaad


Soluble

tavyycakhyyyggsyamdywgqgtlvtvssggggsggggsggggsggggseivm


scFv-aa

tqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgip




arfsgsgsgtdytltisslqpedfavyfcqqqntlpytfgqqtkleikhhhhhhhh






h







104881
926
atggctctgcccgtgaccgcactcctcctgccactggctctgctgcttcacgccg


CAR 7

ctcgcccacaagtccagcttcaagaatcagggcctggtctggtgaagccatctga


Full-nt

gactctgtccctcacttgcaccgtgagcggagtgtccctcccagactacggagtg




agctggattagacagcctcccggaaagggactggagtggatcggagtgatttggg




gtagcgaaaccacttactattcatcttccctgaagtcacgggtcaccatttcaaa




ggataactcaaagaatcaagtgagcctcaagctctcatcagtcaccgccgctgac




accgccgtgtattactgtgccaagcattactactatggagggtcctacgccatgg




actactggggccagggaactctggtcactgtgtcatctggtggaggaggtagcgg




aggaggcgggagcggtggaggtggctccggaggtggcggaagcgaaatcgtgatg




acccagagccctgcaaccctgtccctttctcccggggaacgggctaccctttctt




gtcgggcatcacaagatatctcaaaatacctcaattggtatcaacagaagccggg




acaggcccctaggcttcttatctaccacacctctcgcctgcatagcgggattccc




gcacgctttagcgggtctggaagcgggaccgactacactctgaccatctcatctc




tccagcccgaggacttcgccgtctacttctgccagcagggtaacaccctgccgta




caccttcggccagggcaccaagcttgagatcaaaaccactactcccgctccaagg




ccacccacccctgccccgaccatcgcctctcagccgctttccctgcgtccggagg




catgtagacccgcagctggtggggccgtgcatacccggggtcttgacttcgcctg




cgatatctacatttgggcccctctggctggtacttgcggggtcctgctgctttca




ctcgtgatcactctttactgtaagcgcggtcggaagaagctgctgtacatcttta




agcaacccttcatgaggcctgtgcagactactcaagaggaggacggctgttcatg




ccggttcccagaggaggaggaaggcggctgcgaactgcgcgtgaaattcagccgc




agcgcagatgctccagcctacaagcaggggcagaaccagctctacaacgaactca




atcttggtcggagagaggagtacgacgtgctggacaagcggagaggacgggaccc




agaaatgggcgggaagccgcgcagaaagaatccccaagagggcctgtacaacgag




ctccaaaaggataagatggcagaagcctatagcgagattggtatgaaaggggaac




gcagaagaggcaaaggccacgacggactgtaccagggactcagcaccgccaccaa




ggacacctatgacgctcttcacatgcaggccctgccgcctcgg





104881
927
MALPVTALLLPLALLLHAARPqvqlqesqpglvkpsetlsltctvsgvslpdygv


CAR 7



s
wirqppqkglewigviwgsettyyssslksrvtiskdnsknqvslklssvtaad



Full-aa

tavyycakhyyyggsyamdywgqqtlvtvssggggsggggsggggsggggseivm




tqspatlslspqeratlscrasqdiskylnwyqqkpqqaprlliyhtsrlhsqip




arfsgsgsgtdyt1tisslqpedfavyfcqqgntlpytfqqqtkleiktttpapr




pptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvllls




lvitlyckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsr




sadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglyne




lqkdkmaeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR 8









CAR8 scFv
928
qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgse


domain

ttyyqsslksrvtiskdnsknqvslklssvtaadtavyycakhyyyggsyamdyw




gqgtlvtvssggggsggggsggggsggggseivmtqspatlslspgeratlscra




sqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqp




edfavyfcqqgntlpytfgqgtkleik





100798
929
atggcactgcctgtcactgccctcctgctgcctctggccctccttctgcatgccg


CAR8-

ccaggccccaagtccagctgcaagagtcaggacccggactggtgaagccgtctga


Soluble

gactctctcactgacttgtaccgtcagcggcgtgtccctccccgactacggagtg


scFv-nt

tcatggatccgccaacctcccgggaaagggcttgaatggattggtgtcatctggg




gttctgaaaccacctactaccagtcttccctgaagtccagggtgaccatcagcaa




ggataattccaagaaccaggtcagccttaagctgtcatctgtgaccgctgctgac




accgccgtgtattactgcgccaagcactactattacggaggaagctacgctatgg




actattggggacagggcactctcgtgactgtgagcagcggcggtggagggtctgg




aggtggaggatccggtggtggtgggtcaggcggaggagggagcgagattgtgatg




actcagtcaccagccaccctttctctttcacccggcgagagagcaaccctgagct




gtagagccagccaggacatttctaagtacctcaactggtatcagcaaaaaccggg




gcaggcccctcgcctcctgatctaccatacctcacgccttcactctggtatcccc




gctcggtttagcggatcaggatctggtaccgactacactctgaccatttccagcc




tgcagccagaagatttcgcagtgtatttctgccagcagggcaatacccttcctta




caccttcggtcagggaaccaagctcgaaatcaagcaccatcaccatcatcatcac




cac





100798
930


MALPVTALLLPLALLLHAARP
qvqlqesqpglvkpsetlsltctvsgvslpdygv



CAR8-

swirqppgkglewigviwgsettyyqsslksrvtiskdnsknqvslklssvtaad


Soluble

tavyycakhyyyggsyamdywgqgtlvtvssggggsggggsggggsggggseivm


scFv-aa

tqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgip




arfsgsgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleikhhhhhhh






h







104882
931
atggctctgcccgtgaccgcactcctcctgccactggctctgctgcttcacgccg


CAR 8-

ctcgcccacaagtccagcttcaagaatcagggcctggtctggtgaagccatctga


Full-nt

gactctgtccctcacttgcaccgtgagcggagtgtccctcccagactacggagtg




agctggattagacagcctcccggaaagggactggagtggatcggagtgatttggg




gtagcgaaaccacttactatcaatcttccctgaagtcacgggtcaccatttcaaa




ggataactcaaagaatcaagtgagcctcaagctctcatcagtcaccgccgctgac




accgccgtgtattactgtgccaagcattactactatggagggtcctacgccatgg




actactggggccagggaactctggtcactgtgtcatctggtggaggaggtagcgg




aggaggcgggagcggtggaggtggctccggaggcggtgggtcagaaatcgtgatg




acccagagccctgcaaccctgtccctttctcccggggaacgggctaccctttctt




gtcgggcatcacaagatatctcaaaatacctcaattggtatcaacagaagccggg




acaggcccctaggcttcttatctaccacacctctcgcctgcatagcgggattccc




gcacgctttagcgggtctggaagcgggaccgactacactctgaccatctcatctc




tccagcccgaggacttcgccgtctacttctgccagcagggtaacaccctgccgta




caccttcggccagggcaccaagcttgagatcaaaaccactactcccgctccaagg




ccacccacccctgccccgaccatcgcctctcagccgctttccctgcgtccggagg




catgtagacccgcagctggtggggccgtgcatacccggggtcttgacttcgcctg




cgatatctacatttgggcccctctggctggtacttgcggggtcctgctgctttca




ctcgtgatcactctttactgtaagcgcggtcggaagaagctgctgtacatcttta




agcaacccttcatgaggcctgtgcagactactcaagaggaggacggctgttcatg




ccggttcccagaggaggaggaaggcggctgcgaactgcgcgtgaaattcagccgc




agcgcagatgctccagcctacaagcaggggcagaaccagctctacaacgaactca




atcttggtcggagagaggagtacgacgtgctggacaagcggagaggacgggaccc




agaaatgggcgggaagccgcgcagaaagaatccccaagagggcctgtacaacgag




ctccaaaaggataagatggcagaagcctatagcgagattggtatgaaaggggaac




gcagaagaggcaaaggccacgacggactgtaccagggactcagcaccgccaccaa




ggacacctatgacgctcttcacatgcaggccctgccgcctcgg





104882
932
MALPVTALLLPLALLLHAARPqvqlqesgpglvkpsetlsltctvsgvslpdygv


CAR 8-



s
wirqppqkglewigviwgsettyyqsslksrvtiskdnsknqvslklssvtaad



Full-aa

tavyycakhyyyggsyamdywgqqtlvtvssggggsggggsggggsggggseivm




tqspatlslspqeratlscrasqdiskylnwyqqkpqqaprlliyhtsrlhsqip




arfsgsgsgtdytltisslqpedfavyfcqqgntlpytfqqqtkleiktttpapr




pptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvllls




lvitlyckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsr




sadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglyne




lqkdkmaeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR 9









CAR9 scFv
933
eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlh


domain

sgiparfsgsgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleikggg




gsggggsggggsggggsqvqlqesgpglvkpsetlsltctvsgvslpdygvswir




qppgkglewigviwgsettyynsslksrvtiskdnsknqvslklssvtaadtavy




ycakhyyyggsyamdywgqgtlvtvss





99789
934
atggccctcccagtgaccgctctgctgctgcctctcgcacttcttctccatgccg


CAR9-

ctcggcctgagatcgtcatgacccaaagccccgctaccctgtccctgtcacccgg


Soluble

cgagagggcaaccctttcatgcagggccagccaggacatttctaagtacctcaac


scFv-nt

tggtatcagcagaagccagggcaggctcctcgcctgctgatctaccacaccagcc




gcctccacagcggtatccccgccagattttccgggagcgggtctggaaccgacta




caccctcaccatctcttctctgcagcccgaggatttcgccgtctatttctgccag




caggggaatactctgccgtacaccttcggtcaaggtaccaagctggaaatcaagg




gaggcggaggatcaggcggtggcggaagcggaggaggtggctccggaggaggagg




ttcccaagtgcagcttcaagaatcaggacccggacttgtgaagccatcagaaacc




ctctccctgacttgtaccgtgtccggtgtgagcctccccgactacggagtctctt




ggattcgccagcctccggggaagggtcttgaatggattggggtgatttggggatc




agagactacttactacaattcatcacttaagtcacgggtcaccatcagcaaagat




aatagcaagaaccaagtgtcacttaagctgtcatctgtgaccgccgctgacaccg




ccgtgtactattgtgccaaacattactattacggagggtcttatgctatggacta




ctggggacaggggaccctggtgactgtctctagccatcaccatcaccaccatcat




cac





99789
935
MALPVTALLLPLALLLHAARPeivmtqspatlslspgeratlscrasqdiskyln


CAR9-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Soluble

qgntlpytfgqgtkleikggggsggggsggggsggggsqvqlqesgpglvkpset


scFv-aa

lsltctvsgvslpdygvswirqppgkglewigviwgsettyynsslksrvtiskd




nsknqvslklssvtaadtavyycakhyyyqgsyamdywgqqtlvtvsshhhhhhh






h







105974
936
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR 9-

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Full-nt

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat




tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagcggaggcggtgg




gagccaggtccaactccaagaaagcggaccgggtcttgtgaagccatcagaaact




ctttcactgacttgtactgtgagcggagtgtctctccccgattacggggtgtctt




ggatcagacagccaccggggaagggtctggaatggattggagtgatttggggctc




tgagactacttactacaactcatccctcaagtcacgcgtcaccatctcaaaggac




aactctaagaatcaggtgtcactgaaactgtcatctgtgaccgcagccgacaccg




ccgtgtactattgcgctaagcattactattatggcgggagctacgcaatggatta




ctggggacagggtactctggtcaccgtgtccagcaccactaccccagcaccgagg




ccacccaccccggctcctaccatcgcctcccagcctctgtccctgcgtccggagg




catgtagacccgcagctggtggggccgtgcatacccggggtcttgacttcgcctg




cgatatctacatttgggcccctctggctggtacttgcggggtcctgctgctttca




ctcgtgatcactctttactgtaagcgcggtcggaagaagctgctgtacatcttta




agcaacccttcatgaggcctgtgcagactactcaagaggaggacggctgttcatg




ccggttcccagaggaggaggaaggcggctgcgaactgcgcgtgaaattcagccgc




agcgcagatgctccagcctacaagcaggggcagaaccagctctacaacgaactca




atcttggtcggagagaggagtacgacgtgctggacaagcggagaggacgggaccc




agaaatgggcgggaagccgcgcagaaagaatccccaagagggcctgtacaacgag




ctccaaaaggataagatggcagaagcctatagcgagattggtatgaaaggggaac




gcagaagaggcaaaggccacgacggactgtaccagggactcagcaccgccaccaa




ggacacctatgacgctcttcacatgcaggccctgccgcctcgg





105974
937
MALPVTALLLPLALLLHAARPeivmtqspatlslspqeratlscrasqdiskyln


CAR 9-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Full-aa



qgntlpyt
fgqqtkleikggggsggggsggggsggggsqvqlqesqpglvkpset





lsltctvsqvslpdygvswirqppqkglewigviwgsettyynsslksrvtiskd




nsknqvslklssvtaadtavyycakhyyyggsyamdywqqqtlvtvsstttpapr




pptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvllls




lvitlyckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsr




sadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglyne




lqkdkmaeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr










CAR10









CAR10
938
qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgse


scFv

ttyynsslksrvtiskdnsknqvslklssvtaadtavyycakhyyyggsyamdyw


domain

gqgtlvtvssggggsggggsggggsggggseivmtqspatlslspgeratlscra




sqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqp




edfavyfcqqgntlpytfgqgtkleik





100796
939
atggcactgcctgtcactgccctcctgctgcctctggccctccttctgcatgccg


CAR10-

ccaggccccaagtccagctgcaagagtcaggacccggactggtgaagccgtctga


Soluble

gactctctcactgacttgtaccgtcagcggcgtgtccctccccgactacggagtg


scFv-nt

tcatggatccgccaacctcccgggaaagggcttgaatggattggtgtcatctggg




gttctgaaaccacctactacaactcttccctgaagtccagggtgaccatcagcaa




ggataattccaagaaccaggtcagccttaagctgtcatctgtgaccgctgctgac




accgccgtgtattactgcgccaagcactactattacggaggaagctacgctatgg




actattggggacagggcactctcgtgactgtgagcagcggcggtggagggtctgg




aggtggaggatccggtggtggtgggtcaggcggaggagggagcgagattgtgatg




actcagtcaccagccaccctttctctttcacccggcgagagagcaaccctgagct




gtagagccagccaggacatttctaagtacctcaactggtatcagcaaaaaccggg




gcaggcccctcgcctcctgatctaccatacctcacgccttcactctggtatcccc




gctcggtttagcggatcaggatctggtaccgactacactctgaccatttccagcc




tgcagccagaagatttcgcagtgtatttctgccagcagggcaatacccttcctta




caccttcggtcagggaaccaagctcgaaatcaagcaccatcaccatcatcaccac




cat





100796
940


MALPVTALLLPLALLLHAARP
qvqlqesqpglvkpsetlsltctvsgvslpdygv



CAR10-

swirqppgkglewigviwgsettyynsslksrvtiskdnsknqvslklssvtaad


Soluble

tavyycakhyyyggsyamdywgqgtlvtvssggggsggggsggggsggggseivm


scFv-aa

tqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgip




arfsgsgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleikhhhhhhh






h







105975
941
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR 10

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Full-nt

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat




tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagcggaggcggtgg




gagccaggtccaactccaagaaagcggaccgggtcttgtgaagccatcagaaact




ctttcactgacttgtactgtgagcggagtgtctctccccgattacggggtgtctt




ggatcagacagccaccggggaagggtctggaatggattggagtgatttggggctc




tgagactacttactacaactcatccctcaagtcacgcgtcaccatctcaaaggac




aactctaagaatcaggtgtcactgaaactgtcatctgtgaccgcagccgacaccg




ccgtgtactattgcgctaagcattactattatggcgggagctacgcaatggatta




ctggggacagggtactctggtcaccgtgtccagcaccactaccccagcaccgagg




ccacccaccccggctcctaccatcgcctcccagcctctgtccctgcgtccggagg




catgtagacccgcagctggtggggccgtgcatacccggggtcttgacttcgcctg




cgatatctacatttgggcccctctggctggtacttgcggggtcctgctgctttca




ctcgtgatcactctttactgtaagcgcggtcggaagaagctgctgtacatcttta




agcaacccttcatgaggcctgtgcagactactcaagaggaggacggctgttcatg




ccggttcccagaggaggaggaaggcggctgcgaactgcgcgtgaaattcagccgc




agcgcagatgctccagcctacaagcaggggcagaaccagctctacaacgaactca




atcttggtcggagagaggagtacgacgtgctggacaagcggagaggacgggaccc




agaaatgggcgggaagccgcgcagaaagaatccccaagagggcctgtacaacgag




ctccaaaaggataagatggcagaagcctatagcgagattggtatgaaaggggaac




gcagaagaggcaaaggccacgacggactgtaccagggactcagcaccgccaccaa




ggacacctatgacgctcttcacatgcaggccctgccgcctcgg





105975
942
MALPVTALLLPLALLLHAARPEIVMTQSPATLSLSPGERATLSCRASQDISKYLN


CAR 10

WYQQKPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISSLQPEDFAVYFCQ


Full-aa



QGNTLPYT
FGQGTKLEIKGGGGSGGGGSGGGGSGGGGSQVQLQESGPGLVKPSET





LSLTCTVSGVSLPDYGVSWIRQPPGKGLEWIGVIWGSETTYYNSSLKSRVTISKD




NSKNQVSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQGTLVTVSSTTTPAPR




PPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLS




LVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE




LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR










CAR11









CAR11
943
eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlh


scFv

sgiparfsgsgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleikggg


domain

gsggggsggggsqvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgk




glewigviwgsettyynsslksrvtiskdnsknqvslklssvtaadtavyycakh




yyyggsyamdywgqgtlvtvss





103101
944
Atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR11-

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Soluble

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat


scFv-nt

tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagccaggtccaact




ccaagaaagcggaccgggtcttgtgaagccatcagaaactctttcactgacttgt




actgtgagcggagtgtctctccccgattacggggtgtcttggatcagacagccac




cggggaagggtctggaatggattggagtgatttggggctctgagactacttacta




caattcatccctcaagtcacgcgtcaccatctcaaaggacaactctaagaatcag




gtgtcactgaaactgtcatctgtgaccgcagccgacaccgccgtgtactattgcg




ctaagcattactattatggcgggagctacgcaatggattactggggacagggtac




tctggtcaccgtgtccagccaccaccatcatcaccatcaccat





103101
945


MALPVTALLLPLALLLHAARP
eivmtqspatlslspgeratlscrasqdiskyln



CAR11-

wyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfavyfcq


Soluble

qgntlpytfgqgtkleikggggsggggsggggsqvqlqesgpglvkpsetlsltc


scFv-aa

tvsgvslpdygvswirqppgkglewigviwgsettyynsslksrvtiskdnsknq




vslklssvtaadtavyycakhyyyggsyamdywgqqtlvtvsshhhhhhhh





105976
946
atggctctgcccgtgaccgcactcctcctgccactggctctgctgcttcacgccg


CAR 11

ctcgcccacaagtccagcttcaagaatcagggcctggtctggtgaagccatctga


Full-nt

gactctgtccctcacttgcaccgtgagcggagtgtccctcccagactacggagtg




agctggattagacagcctcccggaaagggactggagtggatcggagtgatttggg




gtagcgaaaccacttactataactcttccctgaagtcacgggtcaccatttcaaa




ggataactcaaagaatcaagtgagcctcaagctctcatcagtcaccgccgctgac




accgccgtgtattactgtgccaagcattactactatggagggtcctacgccatgg




actactggggccagggaactctggtcactgtgtcatctggtggaggaggtagcgg




aggaggcgggagcggtggaggtggctccggaggtggcggaagcgaaatcgtgatg




acccagagccctgcaaccctgtccctttctcccggggaacgggctaccctttctt




gtcgggcatcacaagatatctcaaaatacctcaattggtatcaacagaagccggg




acaggcccctaggcttcttatctaccacacctctcgcctgcatagcgggattccc




gcacgctttagcgggtctggaagcgggaccgactacactctgaccatctcatctc




tccagcccgaggacttcgccgtctacttctgccagcagggtaacaccctgccgta




caccttcggccagggcaccaagcttgagatcaaaaccactactcccgctccaagg




ccacccacccctgccccgaccatcgcctctcagccgctttccctgcgtccggagg




catgtagacccgcagctggtggggccgtgcatacccggggtcttgacttcgcctg




cgatatctacatttgggcccctctggctggtacttgcggggtcctgctgctttca




ctcgtgatcactctttactgtaagcgcggtcggaagaagctgctgtacatcttta




agcaacccttcatgaggcctgtgcagactactcaagaggaggacggctgttcatg




ccggttcccagaggaggaggaaggcggctgcgaactgcgcgtgaaattcagccgc




agcgcagatgctccagcctacaagcaggggcagaaccagctctacaacgaactca




atcttggtcggagagaggagtacgacgtgctggacaagcggagaggacgggaccc




agaaatgggcgggaagccgcgcagaaagaatccccaagagggcctgtacaacgag




ctccaaaaggataagatggcagaagcctatagcgagattggtatgaaaggggaac




gcagaagaggcaaaggccacgacggactgtaccagggactcagcaccgccaccaa




ggacacctatgacgctcttcacatgcaggccctgccgcctcgg





105976
947
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTCTVSGVSLPDYGV


CAR 11



S
WIRQPPGKGLEWIGVIWGSETTYYNSSLKSRVTISKDNSKNQVSLKLSSVTAAD



Full-aa

TAVYYCAKHYYYGGSYAMDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVM




TQSPATLSLSPGERATLSCRASQDISKYLNWYQQKPGQAPRLLIYHTSRLHSGIP




ARFSGSGSGTDYTLTISSLQPEDFAVYFCQQGNTLPYTFGQGTKLEIKTTTPAPR




PPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLS




LVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE




LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR










CAR12









CAR12
948
qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgse


scFv

ttyynsslksrvtiskdnsknqvslklssvtaadtavyycakhyyyggsyamdyw


domain

gqgtlvtvssggggsggggsggggseivmtqspatlslspgeratlscrasqdis




kylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdytltisslqpedfav




yfcqqgntlpytfgqgtkleik





103104
949
atggctctgcccgtgaccgcactcctcctgccactggctctgctgcttcacgccg


CAR12-

ctcgcccacaagtccagcttcaagaatcagggcctggtctggtgaagccatctga


Soluble

gactctgtccctcacttgcaccgtgagcggagtgtccctcccagactacggagtg


scFv-nt

agctggattagacagcctcccggaaagggactggagtggatcggagtgatttggg




gtagcgaaaccacttactataactcttccctgaagtcacgggtcaccatttcaaa




ggataactcaaagaatcaagtgagcctcaagctctcatcagtcaccgccgctgac




accgccgtgtattactgtgccaagcattactactatggagggtcctacgccatgg




actactggggccagggaactctggtcactgtgtcatctggtggaggaggtagcgg




aggaggcgggagcggtggaggtggctccgaaatcgtgatgacccagagccctgca




accctgtccctttctcccggggaacgggctaccctttcttgtcgggcatcacaag




atatctcaaaatacctcaattggtatcaacagaagccgggacaggcccctaggct




tcttatctaccacacctctcgcctgcatagcgggattcccgcacgctttagcggg




tctggaagcgggaccgactacactctgaccatctcatctctccagcccgaggact




tcgccgtctacttctgccagcagggtaacaccctgccgtacaccttcggccaggg




caccaagcttgagatcaaacatcaccaccatcatcaccatcac





103104
950


MALPVTALLLPLALLLHAARP
qvqlqesqpglvkpsetlsltctvsgvslpdygv



CAR12-

swirqppgkglewigviwgsettyynsslksrvtiskdnsknqvslklssvtaad


Soluble

tavyycakhyyyggsyamdywgqgtlvtvssggggsggggsggggseivmtqspa


scFv-aa

tlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsg




sgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleikhhhhhhhh





105977
951
atggccctccctgtcaccgccctgctgcttccgctggctcttctgctccacgccg


CAR 12-

ctcggcccgaaattgtgatgacccagtcacccgccactcttagcctttcacccgg


Full-nt

tgagcgcgcaaccctgtcttgcagagcctcccaagacatctcaaaataccttaat




tggtatcaacagaagcccggacaggctcctcgccttctgatctaccacaccagcc




ggctccattctggaatccctgccaggttcagcggtagcggatctgggaccgacta




caccctcactatcagctcactgcagccagaggacttcgctgtctatttctgtcag




caagggaacaccctgccctacacctttggacagggcaccaagctcgagattaaag




gtggaggtggcagcggaggaggtgggtccggcggtggaggaagccaggtccaact




ccaagaaagcggaccgggtcttgtgaagccatcagaaactctttcactgacttgt




actgtgagcggagtgtctctccccgattacggggtgtcttggatcagacagccac




cggggaagggtctggaatggattggagtgatttggggctctgagactacttacta




caactcatccctcaagtcacgcgtcaccatctcaaaggacaactctaagaatcag




gtgtcactgaaactgtcatctgtgaccgcagccgacaccgccgtgtactattgcg




ctaagcattactattatggcgggagctacgcaatggattactggggacagggtac




tctggtcaccgtgtccagcaccactaccccagcaccgaggccacccaccccggct




cctaccatcgcctcccagcctctgtccctgcgtccggaggcatgtagacccgcag




ctggtggggccgtgcatacccggggtcttgacttcgcctgcgatatctacatttg




ggcccctctggctggtacttgcggggtcctgctgctttcactcgtgatcactctt




tactgtaagcgcggtcggaagaagctgctgtacatctttaagcaacccttcatga




ggcctgtgcagactactcaagaggaggacggctgttcatgccggttcccagagga




ggaggaaggcggctgcgaactgcgcgtgaaattcagccgcagcgcagatgctcca




gcctacaagcaggggcagaaccagctctacaacgaactcaatcttggtcggagag




aggagtacgacgtgctggacaagcggagaggacgggacccagaaatgggcgggaa




gccgcgcagaaagaatccccaagagggcctgtacaacgagctccaaaaggataag




atggcagaagcctatagcgagattggtatgaaaggggaacgcagaagaggcaaag




gccacgacggactgtaccagggactcagcaccgccaccaaggacacctatgacgc




tcttcacatgcaggccctgccgcctcgg





105977
952
MALPVTALLLPLALLLHAARPEIVMTQSPATLSLSPGERATLSCRASQDISKYLN


CAR 12-

WYQQKPGQAPRLLIYHTSRLHSGIPARFSGSGSGTDYTLTISSLQPEDFAVYFCQ


Full-aa



QGNTLPYT
FGQGTKLEIKGGGGSGGGGSGGGGSQVQLQESGPGLVKPSETLSLTC





TVSGVSLPDYGVSWIRQPPGKGLEWIGVIWGSETTYYNSSLKSRVTISKDNSKNQ




VSLKLSSVTAADTAVYYCAKHYYYGGSYAMDYWGQGTLVTVSSTTTPAPRPPTPA




PTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




YCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP




AYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDK




MAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR










CTL019









CTL019-
953
atggccctgcccgtcaccgctctgctgctgccccttgctctgcttcttcatgcag


Soluble

caaggccggacatccagatgacccaaaccacctcatccctctctgcctctcttgg


scFv-Histag-

agacagggtgaccatttcttgtcgcgccagccaggacatcagcaagtatctgaac


nt

tggtatcagcagaagccggacggaaccgtgaagctcctgatctaccatacctctc




gcctgcatagcggcgtgccctcacgcttctctggaagcggatcaggaaccgatta




ttctctcactatttcaaatcttgagcaggaagatattgccacctatttctgccag




cagggtaataccctgccctacaccttcggaggagggaccaagctcgaaatcaccg




gtggaggaggcagcggcggtggagggtctggtggaggtggttctgaggtgaagct




gcaagaatcaggccctggacttgtggccccttcacagtccctgagcgtgacttgc




accgtgtccggagtctccctgcccgactacggagtgtcatggatcagacaacctc




cacggaaaggactggaatggctcggtgtcatctggggtagcgaaactacttacta




caattcagccctcaaaagcaggctgactattatcaaggacaacagcaagtcccaa




gtctttcttaagatgaactcactccagactgacgacaccgcaatctactattgtg




ctaagcactactactacggaggatcctacgctatggattactggggacaaggtac




ttccgtcactgtctcttcacaccatcatcaccatcaccatcac





CTL019-
954


MALPVTALLLPLALLLHAARP
diqmtqttsslsaslgdrvtiscrasqdiskyln



Soluble

wyqqkpdgtvklliyhtsrlhsgvpsrfsgsgsgtdysltisnleqediatyfcq


scFv-Histag-

qgntlpytfgggtkleitggggsggggsggggsevklqesgpglvapsqslsvtc


aa

tvsgvslpdygvswirqpprkglewlgviwgsettyynsalksrltiikdnsksq




vflkmnslqtddtaiyycakhyyyqgsyamdywgqqtsvtvsshhhhhhhh





CTL019
955
atggccttaccagtgaccgccttgctcctgccgctggccttgctgctccacgccg


Full-nt

ccaggccggacatccagatgacacagactacatcctccctgtctgcctctctggg




agacagagtcaccatcagttgcagggcaagtcaggacattagtaaatatttaaat




tggtatcagcagaaaccagatggaactgttaaactcctgatctaccatacatcaa




gattacactcaggagtcccatcaaggttcagtggcagtgggtctggaacagatta




ttctctcaccattagcaacctggagcaagaagatattgccacttacttttgccaa




cagggtaatacgcttccgtacacgttcggaggggggaccaagctggagatcacag




gtggcggtggctcgggcggtggtgggtcgggtggcggcggatctgaggtgaaact




gcaggagtcaggacctggcctggtggcgccctcacagagcctgtccgtcacatgc




actgtctcaggggtctcattacccgactatggtgtaagctggattcgccagcctc




cacgaaagggtctggagtggctgggagtaatatggggtagtgaaaccacatacta




taattcagctctcaaatccagactgaccatcatcaaggacaactccaagagccaa




gttttcttaaaaatgaacagtctgcaaactgatgacacagccatttactactgtg




ccaaacattattactacggtggtagctatgctatggactactggggccaaggaac




ctcagtcaccgtctcctcaaccacgacgccagcgccgcgaccaccaacaccggcg




cccaccatcgcgtcgcagcccctgtccctgcgcccagaggcgtgccggccagcgg




cggggggcgcagtgcacacgagggggctggacttcgcctgtgatatctacatctg




ggcgcccttggccgggacttgtggggtccttctcctgtcactggttatcaccctt




tactgcaaacggggcagaaagaaactcctgtatatattcaaacaaccatttatga




gaccagtacaaactactcaagaggaagatggctgtagctgccgatttccagaaga




agaagaaggaggatgtgaactgagagtgaagttcagcaggagcgcagacgccccc




gcgtacaagcagggccagaaccagctctataacgagctcaatctaggacgaagag




aggagtacgatgttttggacaagagacgtggccgggaccctgagatggggggaaa




gccgagaaggaagaaccctcaggaaggcctgtacaatgaactgcagaaagataag




atggcggaggcctacagtgagattgggatgaaaggcgagcgccggaggggcaagg




ggcacgatggcctttaccagggtctcagtacagccaccaaggacacctacgacgc




ccttcacatgcaggccctgccccctcgc





CTL019
956
MALPVTALLLPLALLLHAARPdiqmtqttsslsaslgdrvtiscrasqdiskyln


Full-aa

wyqqkpdgtvklliyhtsrlhsgvpsrfsgsgsgtdysltisnleqediatyfcq




qgntlpytfgggtkleitggggsggggsggggsevklqesgpglvapsqslsvtc




tvsgvslpdygvswirqpprkglewlgviwgsettyynsalksrltiikdnsksq




vflkmnslqtddtaiyycakhyyyggsyamdywgqgtsvtvsstttpaprpptpa




ptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitl




yckrgrkkllyifkqpfmrpvqttqeedgcscrfpeeeeggcelrvkfsrsadap




aykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdk




maeayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr





CTL019
957
diqmtqttsslsaslgdrvtiscrasqdiskylnwyqqkpdgtvklliyhtsrlh


scFv

sgvpsrfsgsgsgtdysltisnleqediatyfcqqgntlpytfgggtkleitggg


domain

gsggggsggggsevklqesgpglvapsqslsvtctvsgvslpdygvswirqpprk




glewlgviwgsettyynsalksrltiikdnsksqvflkmnslqtddtaiyycakh




yyyggsyamdywgqgtsvtvss





mCAR1
417
QVQLLESGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIYPGD


scFv

GDTNYNGKFKGQATLTADKSSSTAYMQLSGLTSEDSAVYSCARKTISSVVDFYFD




YWGQGTTVTGGGSGGGSGGGSGGGSELVLTQSPKFMSTSVGDRVSVTCKASQNVG




TNVAWYQQKPGQSPKPLIYSATYRNSGVPDRFTGSGSGTDFTLTITNVQSKDLAD




YFCQYNRYPYTSFFFTKLEIKRRS





mCAR1
1937
QVQLLESGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIYPGD


Full-aa

GDTNYNGKFKGQATLTADKSSSTAYMQLSGLTSEDSAVYSCARKTISSVVDFYFD




YWGQGTTVTGGGSGGGSGGGSGGGSELVLTQSPKFMSTSVGDRVSVTCKASQNVG




TNVAWYQQKPGQSPKPLIYSATYRNSGVPDRFTGSGSGTDFTLTITNVQSKDLAD




YFCQYNRYPYTSFFFTKLEIKRRSKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPS




PLFPGPSKPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRR




PGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYD




VLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG




LYQGLSTATKDTYDALHMQALPPR





mCAR2
423
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLH


scFv

SGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGST




SGSGKPGSGEGSTKGEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQP




PRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYC




AKHYYYGGSYAMDYWGQGTSVTVSSE





mCAR2
1938
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLH


CAR-aa

SGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGST




SGSGKPGSGEGSTKGEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQP




PRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIY




YCAKHYYYGGSYAMDYWGQGTSVTVSSESKYGPPCPPCPMFWVLVVVGGVLACYS




LLVTVAFIIFWVKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFEEEEGGCELRV




KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEG




LYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR




L





mCAR2
1939
DIQMTQTT SSLSASLGDR VTISCRASQD ISKYLNWYQQ KPDGTVKLLI


Full-aa

YHTSRLHSGV PSRFSGSGSG TDYSLTISNL EQEDIATYFC QQGNTLPYTF




GGGTKLEITG STSGSGKPGS GEGSTKGEVK LQESGPGLVA PSQSLSVTCT




VSGVSLPDYG VSWIRQPPRK GLEWLGVIWG SETTYYNSAL KSRLTIIKDN




SKSQVFLKMN SLQTDDTAIY YCAKHYYYGG SYAMDYWGQG TSVTVSSESK




YGPPCPPCPM FWVLVVVGGV LACYSLLVTV




AFIIFWVKRG RKKLLYIFKQ PFMRPVQTTQ EEDGCSCRFE EEEGGCELRV




KFSRSADAPA YQQGQNQLYN ELNLGRREEY DVLDKRRGRD PEMGGKPRRK




NPQEGLYNEL QKDKMAEAYS EIGMKGERRR GKGHDGLYQG LSTATKDTYD




ALHMQALPPR LEGGGEGRGS LLTCGDVEEN PGPRMLLLVT SLLLCELPHP




AFLLIPRKVC NGIGIGEFKD SLSINATNIK HFKNCTSISG DLHILPVAFR




GDSFTHTPPL DPQELDILKT VKEITGFLLI QAWPENRTDL HAFENLEIIR




GRTKQHGQFS LAVVSLNITS LGLRSLKEIS DGDVIISGNK NLCYANTINW




KKLFGTSGQK TKIISNRGEN SCKATGQVCH ALCSPEGCWG PEPRDCVSCR




NVSRGRECVD KCNLLEGEPR EFVENSECIQ CHPECLPQAM NITCTGRGPD




NCIQCAHYID GPHCVKTCPA GVMGENNTLV WKYADAGHVC HLCHPNCTYG




CTGPGLEGCP TNGPKIPSIA TGMVGALLLL LVVALGIGLF M





mCAR3
411
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLH


scFv

SGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGST




SGSGKPGSGEGSTKGEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQP




PRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYC




AKHYYYGGSYAMDYWGQGTSVTVSS





mCAR3
1940
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLH


Full-aa

SGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGST




SGSGKPGSGEGSTKGEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQP




PRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYC




AKHYYYGGSYAMDYWGQGTSVTVSSAAAIEVMYPPPYLDNEKSNGTIIHVKGKHL




CPSPLFPGPSKPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMT




PRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRRE




EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKG




HDGLYQGLSTATKDTYDALHMQALPPR





SSJ25-C1
416
QVQLLESGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIYPGD


VH

GDTNYNGKFKGQATLTADKSSSTAYMQLSGLTSEDSAVYSCARKTISSVVDFYFD


sequence

YWGQGTTVT





SSJ25-C1
1941
ELVLTQSPKFMSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKPLIYSATYRN


VL

SGVPDRFTGSGSGTDFTLTITNVQSKDLADYFYFCQYNRYPYTSGGGTKLEIKRR


sequence

S









In some embodiments, the CD19 CAR or binding domain includes the amino acid sequence of CTL019, or is encoded by the nucleotide sequence of CTL019 according to Table 5 with or without the leader sequence or the his tag, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or higher identity).


In some embodiments, the CDRs are defined according to the Kabat numbering scheme, the Chothia numbering scheme, or a combination thereof.


The sequences of humanized CDR sequences of the scFv domains are shown in Table 6A for the heavy chain variable domains and in Table 6B for the light chain variable domains. “ID” stands for the respective SEQ ID NO for each CDR.









TABLE 6A







Heavy Chain Variable Domain CDRs (according to Kabat)

















SEQ

SEQ

SEQ





ID

ID

ID


Candidate
FW
HCDR1
NO
HCDR2
NO
HCDR3
NO





murine_CART19

DYGVS
958
VIWGSETTYYNSALKS
959
HYYYGGSYAMDY
960





humanized_CART19 a
VH4
DYGVS
958
VIWGSETTYYcustom-character Scustom-character LKS
961
HYYYGGSYAMDY
960





humanized_CART19 b
VH4
DYGVS
958
VIWGSETTYYcustom-character Scustom-character LKS
962
HYYYGGSYAMDY
960





humanized_CART19 c
VH4
DYGVS
958
VIWGSETTYYNScustom-character LKS
963
HYYYGGSYAMDY
960
















TABLE 6B







Light Chain Variable Domain CDRs (according to Kabat)

















SEQ

SEQ

SEQ





ID

ID

ID


Candidate
FW
LCDR1
NO
LCDR2
NO
LCDR3
NO





murine_CART19

RASQDISKYLN
964
HTSRLHS
965
QQGNTLPYT
966





humanized_CART19 a
VK3
RASQDISKYLN
964
HTSRLHS
965
QQGNTLPYT
966





humanized_CART19 b
VK3
RASQDISKYLN
964
HTSRLHS
965
QQGNTLPYT
966





humanized_CART19 c
VK3
RASQDISKYLN
964
HTSRLHS
965
QQGNTLPYT
966









In one embodiment, the CAR molecule comprises a BCMA CAR molecule described herein, e.g., a BCMA CAR described in US-2016-0046724-A1 or WO2016/014565. In embodiments, the BCMA CAR comprises an amino acid, or has a nucleotide sequence of a CAR molecule, or an antigen binding domain according to US-2016-0046724-A1, or Table 1 or 16, SEQ ID NO: 271 or SEQ ID NO: 273 of WO2016/014565, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid BCMA CAR sequences). The amino acid and nucleotide sequences encoding the BCMA CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/014565.


In embodiments, the BCMA CAR comprises an anti-BCMA binding domain (e.g., human or humanized anti-BCMA binding domain), a transmembrane domain, and an intracellular signaling domain, and wherein said anti-BCMA binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of any anti-BMCA heavy chain binding domain amino acid sequences listed in Table 7 or 8, or a sequence at least 85%, 90%, 95% or more identical thereto (e.g., having less than 5, 4, 3, 2 or 1 amino acid substitutions, e.g., conservative substitutions).


In one embodiment, the anti-BCMA binding domain comprises a light chain variable region described herein (e.g., in Table 7 or 8) and/or a heavy chain variable region described herein (e.g., in Table 7 or 8), or a sequence at least 85%, 90%, 95% or more identical thereto.


In one embodiment, the encoded anti-BCMA binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Table 7 or 8.


In an embodiment, the human or humanized anti-BCMA binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in Table 7 or 8, or a sequence at least 85%, 90%, 95% or more identical thereto; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 7 or 8, or a sequence at least 85%, 90%, 95% or more identical thereto.









TABLE 7







Amino Acid and Nucleic Acid Sequences of exemplary anti-BCMA


scFv domains and BCMA CAR molecules










SEQ



Name/
ID


Description
NO:
Sequence










139109









139109-aa
967
EVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


ScFv

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS


domain

AHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGGSDIQLTQSPSSLS




ASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGTKVEIK





139109-nt
968
GAAGTGCAATTGGTGGAATCAGGGGGAGGACTTGTGCAGCCTGGAGGA


ScFv

TCGCTGAGACTGTCATGTGCCGTGTCCGGCTTTGCCCTGTCCAACCAC


domain

GGGATGTCCTGGGTCCGCCGCGCGCCTGGAAAGGGCCTCGAATGGGTG




TCGGGTATTGTGTACAGCGGTAGCACCTACTATGCCGCATCCGTGAAG




GGGAGATTCACCATCAGCCGGGACAACTCCAGGAACACTCTGTACCTC




CAAATGAATTCGCTGAGGCCAGAGGACACTGCCATCTACTACTGCTCC




GCGCATGGCGGAGAGTCCGACGTCTGGGGACAGGGGACCACCGTGACC




GTGTCTAGCGCGTCCGGCGGAGGCGGCAGCGGGGGTCGGGCATCAGGG




GGCGGCGGATCGGACATCCAGCTCACCCAGTCCCCGAGCTCGCTGTCC




GCCTCCGTGGGAGATCGGGTCACCATCACGTGCCGCGCCAGCCAGTCG




ATTTCCTCCTACCTGAACTGGTACCAACAGAAGCCCGGAAAAGCCCCG




AAGCTTCTCATCTACGCCGCCTCGAGCCTGCAGTCAGGAGTGCCCTCA




CGGTTCTCCGGCTCCGGTTCCGGTACTGATTTCACCCTGACCATTTCC




TCCCTGCAACCGGAGGACTTCGCTACTTACTACTGCCAGCAGTCGTAC




TCCACCCCCTACACTTTCGGACAAGGCACCAAGGTCGAAATCAAG





139109-aa
969
EVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


VH

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS




AHGGESDVWGQGTTVTVSS





139109-aa
970
DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI


VL

YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPY




TFGQGTKVEIK





139109-aa
971
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLSCAVSGF


Full CAR

ALSNHGMSWVRRAPGKGLEWVSGIVYSGSTYYAASVKGRFTISRDNSR




NTLYLQMNSLRPEDTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSG




GRASGGGGSDIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQK




PGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYY




CQQSYSTPYTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACR




PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




KQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE




LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQAL




PPR





139109-nt
972
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAATTGGTGGAATCAGGGGGAGGACTT




GTGCAGCCTGGAGGATCGCTGAGACTGTCATGTGCCGTGTCCGGCTTT




GCCCTGTCCAACCACGGGATGTCCTGGGTCCGCCGCGCGCCTGGAAAG




GGCCTCGAATGGGTGTCGGGTATTGTGTACAGCGGTAGCACCTACTAT




GCCGCATCCGTGAAGGGGAGATTCACCATCAGCCGGGACAACTCCAGG




AACACTCTGTACCTCCAAATGAATTCGCTGAGGCCAGAGGACACTGCC




ATCTACTACTGCTCCGCGCATGGCGGAGAGTCCGACGTCTGGGGACAG




GGGACCACCGTGACCGTGTCTAGCGCGTCCGGCGGAGGCGGCAGCGGG




GGTCGGGCATCAGGGGGCGGCGGATCGGACATCCAGCTCACCCAGTCC




CCGAGCTCGCTGTCCGCCTCCGTGGGAGATCGGGTCACCATCACGTGC




CGCGCCAGCCAGTCGATTTCCTCCTACCTGAACTGGTACCAACAGAAG




CCCGGAAAAGCCCCGAAGCTTCTCATCTACGCCGCCTCGAGCCTGCAG




TCAGGAGTGCCCTCACGGTTCTCCGGCTCCGGTTCCGGTACTGATTTC




ACCCTGACCATTTCCTCCCTGCAACCGGAGGACTTCGCTACTTACTAC




TGCCAGCAGTCGTACTCCACCCCCTACACTTTCGGACAAGGCACCAAG




GTCGAAATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCT




CCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGA




CCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGC




GATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTG




CTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTG




CTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAA




GAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGC




TGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTAC




AAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGA




GAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATG




GGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAG




CTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAA




GGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTC




AGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTG




CCGCCTCGG










139103









139103-aa
973
QVQLVESGGGLVQPGRSLRLSCAASGFTFSNYAMSWVRQAPGKGLGWV


ScFv

SGISRSGENTYYADSVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYC


domain

ARSPAHYYGGMDVWGQGTTVTVSSASGGGGSGGRASGGGGSDIVLTQS




PGTLSLSPGERATLSCRASQSISSSFLAWYQQKPGQAPRLLIYGASRR




ATGIPDRFSGSGSGTDFTLTISRLEPEDSAVYYCQQYHSSPSWTFGQG




TKLEIK





139103-nt
974
CAAGTGCAACTCGTGGAATCTGGTGGAGGACTCGTGCAACCCGGAAGA


ScFv

TCGCTTAGACTGTCGTGTGCCGCCAGCGGGTTCACTTTCTCGAACTAC


domain

GCGATGTCCTGGGTCCGCCAGGCACCCGGAAAGGGACTCGGTTGGGTG




TCCGGCATTTCCCGGTCCGGCGAAAATACCTACTACGCCGACTCCGTG




AAGGGCCGCTTCACCATCTCAAGGGACAACAGCAAAAACACCCTGTAC




TTGCAAATGAACTCCCTGCGGGATGAAGATACAGCCGTGTACTATTGC




GCCCGGTCGCCTGCCCATTACTACGGCGGAATGGACGTCTGGGGACAG




GGAACCACTGTGACTGTCAGCAGCGCGTCGGGTGGCGGCGGCTCAGGG




GGTCGGGCCTCCGGGGGGGGAGGGTCCGACATCGTGCTGACCCAGTCC




CCGGGAACCCTGAGCCTGAGCCCGGGAGAGCGCGCGACCCTGTCATGC




CGGGCATCCCAGAGCATTAGCTCCTCCTTTCTCGCCTGGTATCAGCAG




AAGCCCGGACAGGCCCCGAGGCTGCTGATCTACGGCGCTAGCAGAAGG




GCTACCGGAATCCCAGACCGGTTCTCCGGCTCCGGTTCCGGGACCGAT




TTCACCCTTACTATCTCGCGCCTGGAACCTGAGGACTCCGCCGTCTAC




TACTGCCAGCAGTACCACTCATCCCCGTCGTGGACGTTCGGACAGGGC




ACCAAGCTGGAGATTAAG





139103-aa
975
QVQLVESGGGLVQPGRSLRLSCAASGFTFSNYAMSWVRQAPGKGLGWV


VH

SGISRSGENTYYADSVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYC




ARSPAHYYGGMDVWGQGTTVTVSS





139103-aa
976
DIVLTQSPGTLSLSPGERATLSCRASQSISSSFLAWYQQKPGQAPRLL


VL

IYGASRRATGIPDRFSGSGSGTDFTLTISRLEPEDSAVYYCQQYHSSP




SWTFGQGTKLEIK





139103-aa
977
MALPVTALLLPLALLLHAARPQVQLVESGGGLVQPGRSLRLSCAASGF


Full CAR

TFSNYAMSWVRQAPGKGLGWVSGISRSGENTYYADSVKGRFTISRDNS




KNTLYLQMNSLRDEDTAVYYCARSPAHYYGGMDVWGQGTTVTVSSASG




GGGSGGRASGGGGSDIVLTQSPGTLSLSPGERATLSCRASQSISSSFL




AWYQQKPGQAPRLLIYGASRRATGIPDRFSGSGSGTDFTLTISRLEPE




DSAVYYCQQYHSSPSWTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLS




LRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





139103-nt
978
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAACTCGTGGAATCTGGTGGAGGACTC




GTGCAACCCGGAAGATCGCTTAGACTGTCGTGTGCCGCCAGCGGGTTC




ACTTTCTCGAACTACGCGATGTCCTGGGTCCGCCAGGCACCCGGAAAG




GGACTCGGTTGGGTGTCCGGCATTTCCCGGTCCGGCGAAAATACCTAC




TACGCCGACTCCGTGAAGGGCCGCTTCACCATCTCAAGGGACAACAGC




AAAAACACCCTGTACTTGCAAATGAACTCCCTGCGGGATGAAGATACA




GCCGTGTACTATTGCGCCCGGTCGCCTGCCCATTACTACGGCGGAATG




GACGTCTGGGGACAGGGAACCACTGTGACTGTCAGCAGCGCGTCGGGT




GGCGGCGGCTCAGGGGGTCGGGCCTCCGGGGGGGGAGGGTCCGACATC




GTGCTGACCCAGTCCCCGGGAACCCTGAGCCTGAGCCCGGGAGAGCGC




GCGACCCTGTCATGCCGGGCATCCCAGAGCATTAGCTCCTCCTTTCTC




GCCTGGTATCAGCAGAAGCCCGGACAGGCCCCGAGGCTGCTGATCTAC




GGCGCTAGCAGAAGGGCTACCGGAATCCCAGACCGGTTCTCCGGCTCC




GGTTCCGGGACCGATTTCACCCTTACTATCTCGCGCCTGGAACCTGAG




GACTCCGCCGTCTACTACTGCCAGCAGTACCACTCATCCCCGTCGTGG




ACGTTCGGACAGGGCACCAAGCTGGAGATTAAGACCACTACCCCAGCA




CCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCC




CTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACC




CGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCT




GGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGT




AAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATG




AGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTC




CCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGC




AGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC




GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGG




AGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCC




CAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCC




TATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCAC




GACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGAC




GCTCTTCACATGCAGGCCCTGCCGCCTCGG










139105









139105-aa
979
QVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWV


ScFv

SGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYC


domain

SVHSFLAYWGQGTLVTVSSASGGGGSGGRASGGGGSDIVMTQTPLSLP




VTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRA




SGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPYTFGQGTK




VEIK





139105-nt
980
CAAGTGCAACTCGTCGAATCCGGTGGAGGTCTGGTCCAACCTGGTAGA


ScFv

AGCCTGAGACTGTCGTGTGCGGCCAGCGGATTCACCTTTGATGACTAT


domain

GCTATGCACTGGGTGCGGCAGGCCCCAGGAAAGGGCCTGGAATGGGTG




TCGGGAATTAGCTGGAACTCCGGGTCCATTGGCTACGCCGACTCCGTG




AAGGGCCGCTTCACCATCTCCCGCGACAACGCAAAGAACTCCCTGTAC




TTGCAAATGAACTCGCTCAGGGCTGAGGATACCGCGCTGTACTACTGC




TCCGTGCATTCCTTCCTGGCCTACTGGGGACAGGGAACTCTGGTCACC




GTGTCGAGCGCCTCCGGCGGCGGGGGCTCGGGTGGACGGGCCTCGGGC




GGAGGGGGGTCCGACATCGTGATGACCCAGACCCCGCTGAGCTTGCCC




GTGACTCCCGGAGAGCCTGCATCCATCTCCTGCCGGTCATCCCAGTCC




CTTCTCCACTCCAACGGATACAACTACCTCGACTGGTACCTCCAGAAG




CCGGGACAGAGCCCTCAGCTTCTGATCTACCTGGGGTCAAATAGAGCC




TCAGGAGTGCCGGATCGGTTCAGCGGATCTGGTTCGGGAACTGATTTC




ACTCTGAAGATTTCCCGCGTGGAAGCCGAGGACGTGGGCGTCTACTAC




TGTATGCAGGCGCTGCAGACCCCCTATACCTTCGGCCAAGGGACGAAA




GTGGAGATCAAG





139105-aa
981
QVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWV


VH

SGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYC




SVHSFLAYWGQGTLVTVSS





139105-aa
982
DIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS


VL

PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA




LQTPYTFGQGTKVEIK





139105-aa
983
MALPVTALLLPLALLLHAARPQVQLVESGGGLVQPGRSLRLSCAASGF


Full CAR

TFDDYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNA




KNSLYLQMNSLRAEDTALYYCSVHSFLAYWGQGTLVTVSSASGGGGSG




GRASGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLD




WYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAED




VGVYYCMQALQTPYTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLR




PEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKR




GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA




DAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR





139105-nt
984
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAACTCGTCGAATCCGGTGGAGGTCTG




GTCCAACCTGGTAGAAGCCTGAGACTGTCGTGTGCGGCCAGCGGATTC




ACCTTTGATGACTATGCTATGCACTGGGTGCGGCAGGCCCCAGGAAAG




GGCCTGGAATGGGTGTCGGGAATTAGCTGGAACTCCGGGTCCATTGGC




TACGCCGACTCCGTGAAGGGCCGCTTCACCATCTCCCGCGACAACGCA




AAGAACTCCCTGTACTTGCAAATGAACTCGCTCAGGGCTGAGGATACC




GCGCTGTACTACTGCTCCGTGCATTCCTTCCTGGCCTACTGGGGACAG




GGAACTCTGGTCACCGTGTCGAGCGCCTCCGGCGGCGGGGGCTCGGGT




GGACGGGCCTCGGGCGGAGGGGGGTCCGACATCGTGATGACCCAGACC




CCGCTGAGCTTGCCCGTGACTCCCGGAGAGCCTGCATCCATCTCCTGC




CGGTCATCCCAGTCCCTTCTCCACTCCAACGGATACAACTACCTCGAC




TGGTACCTCCAGAAGCCGGGACAGAGCCCTCAGCTTCTGATCTACCTG




GGGTCAAATAGAGCCTCAGGAGTGCCGGATCGGTTCAGCGGATCTGGT




TCGGGAACTGATTTCACTCTGAAGATTTCCCGCGTGGAAGCCGAGGAC




GTGGGCGTCTACTACTGTATGCAGGCGCTGCAGACCCCCTATACCTTC




GGCCAAGGGACGAAAGTGGAGATCAAGACCACTACCCCAGCACCGAGG




CCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGT




CCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGT




CTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACT




TGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGC




GGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCT




GTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAG




GAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCA




GATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTC




AATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGA




CGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAG




GGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGC




GAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGA




CTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTT




CACATGCAGGCCCTGCCGCCTCGG










139111









139111-aa
985
EVQLLESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


ScFv

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS


domain

AHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGGSDIVMTQTPLSLS




VTPGQPASISCKSSQSLLRNDGKTPLYWYLQKAGQPPQLLIYEVSNRF




SGVPDRFSGSGSGTDFTLKISRVEAEDVGAYYCMQNIQFPSFGGGTKL




EIK





139111-nt
986
GAAGTGCAATTGTTGGAATCTGGAGGAGGACTTGTGCAGCCTGGAGGA


ScFv

TCACTGAGACTTTCGTGTGCGGTGTCAGGCTTCGCCCTGAGCAACCAC


domain

GGCATGAGCTGGGTGCGGAGAGCCCCGGGGAAGGGTCTGGAATGGGTG




TCCGGGATCGTCTACTCCGGTTCAACTTACTACGCCGCAAGCGTGAAG




GGTCGCTTCACCATTTCCCGCGATAACTCCCGGAACACCCTGTACCTC




CAAATGAACTCCCTGCGGCCCGAGGACACCGCCATCTACTACTGTTCC




GCGCATGGAGGAGAGTCCGATGTCTGGGGACAGGGCACTACCGTGACC




GTGTCGAGCGCCTCGGGGGGAGGAGGCTCCGGCGGTCGCGCCTCCGGG




GGGGGTGGCAGCGACATTGTGATGACGCAGACTCCACTCTCGCTGTCC




GTGACCCCGGGACAGCCCGCGTCCATCTCGTGCAAGAGCTCCCAGAGC




CTGCTGAGGAACGACGGAAAGACTCCTCTGTATTGGTACCTCCAGAAG




GCTGGACAGCCCCCGCAACTGCTCATCTACGAAGTGTCAAATCGCTTC




TCCGGGGTGCCGGATCGGTTTTCCGGCTCGGGATCGGGCACCGACTTC




ACCCTGAAAATCTCCAGGGTCGAGGCCGAGGACGTGGGAGCCTACTAC




TGCATGCAAAACATCCAGTTCCCTTCCTTCGGCGGCGGCACAAAGCTG




GAGATTAAG





139111-aa
987
EVQLLESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


VH

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS




AHGGESDVWGQGTTVTVSS





139111-aa
988
DIVMTQTPLSLSVTPGQPASISCKSSQSLLRNDGKTPLYWYLQKAGQP


VL

PQLLIYEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGAYYCMQN




IQFPSFGGGTKLEIK





139111-aa
989
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCAVSGF


Full CAR

ALSNHGMSWVRRAPGKGLEWVSGIVYSGSTYYAASVKGRFTISRDNSR




NTLYLQMNSLRPEDTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSG




GRASGGGGSDIVMTQTPLSLSVTPGQPASISCKSSQSLLRNDGKTPLY




WYLQKAGQPPQLLIYEVSNRFSGVPDRFSGSGSGTDFTLKISRVEAED




VGAYYCMQNIQFPSFGGGTKLEIKTTTPAPRPPTPAPTIASQPLSLRP




EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRG




RKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD




APAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEG




LYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALH




MQALPPR





139111-nt
990
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAATTGTTGGAATCTGGAGGAGGACTT




GTGCAGCCTGGAGGATCACTGAGACTTTCGTGTGCGGTGTCAGGCTTC




GCCCTGAGCAACCACGGCATGAGCTGGGTGCGGAGAGCCCCGGGGAAG




GGTCTGGAATGGGTGTCCGGGATCGTCTACTCCGGTTCAACTTACTAC




GCCGCAAGCGTGAAGGGTCGCTTCACCATTTCCCGCGATAACTCCCGG




AACACCCTGTACCTCCAAATGAACTCCCTGCGGCCCGAGGACACCGCC




ATCTACTACTGTTCCGCGCATGGAGGAGAGTCCGATGTCTGGGGACAG




GGCACTACCGTGACCGTGTCGAGCGCCTCGGGGGGAGGAGGCTCCGGC




GGTCGCGCCTCCGGGGGGGGTGGCAGCGACATTGTGATGACGCAGACT




CCACTCTCGCTGTCCGTGACCCCGGGACAGCCCGCGTCCATCTCGTGC




AAGAGCTCCCAGAGCCTGCTGAGGAACGACGGAAAGACTCCTCTGTAT




TGGTACCTCCAGAAGGCTGGACAGCCCCCGCAACTGCTCATCTACGAA




GTGTCAAATCGCTTCTCCGGGGTGCCGGATCGGTTTTCCGGCTCGGGA




TCGGGCACCGACTTCACCCTGAAAATCTCCAGGGTCGAGGCCGAGGAC




GTGGGAGCCTACTACTGCATGCAAAACATCCAGTTCCCTTCCTTCGGC




GGCGGCACAAAGCTGGAGATTAAGACCACTACCCCAGCACCGAGGCCA




CCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCG




GAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTT




GACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGC




GGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGT




CGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTG




CAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAG




GAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGAT




GCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAAT




CTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGG




GACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGC




CTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG




ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTG




TACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCAC




ATGCAGGCCCTGCCGCCTCGG










139100









139100-aa
991
QVQLVQSGAEVRKTGASVKVSCKASGYIFDNFGINWVRQAPGQGLEWM


ScFv

GWINPKNNNTNYAQKFQGRVTITADESTNTAYMEVSSLRSEDTAVYYC


domain

ARGPYYYQSYMDVWGQGTMVTVSSASGGGGSGGRASGGGGSDIVMTQT




PLSLPVTPGEPASISCRSSQSLLHSNGYNYLNWYLQKPGQSPQLLIYL




GSKRASGVPDRFSGSGSGTDFTLHITRVGAEDVGVYYCMQALQTPYTF




GQGTKLEIK





139100-nt
992
CAAGTCCAACTCGTCCAGTCCGGCGCAGAAGTCAGAAAAACCGGTGCT


ScFv

AGCGTGAAAGTGTCCTGCAAGGCCTCCGGCTACATTTTCGATAACTTC


domain

GGAATCAACTGGGTCAGACAGGCCCCGGGCCAGGGGCTGGAATGGATG




GGATGGATCAACCCCAAGAACAACAACACCAACTACGCACAGAAGTTC




CAGGGCCGCGTGACTATCACCGCCGATGAATCGACCAATACCGCCTAC




ATGGAGGTGTCCTCCCTGCGGTCGGAGGACACTGCCGTGTATTACTGC




GCGAGGGGCCCATACTACTACCAAAGCTACATGGACGTCTGGGGACAG




GGAACCATGGTGACCGTGTCATCCGCCTCCGGTGGTGGAGGCTCCGGG




GGGCGGGCTTCAGGAGGCGGAGGAAGCGATATTGTGATGACCCAGACT




CCGCTTAGCCTGCCCGTGACTCCTGGAGAACCGGCCTCCATTTCCTGC




CGGTCCTCGCAATCACTCCTGCATTCCAACGGTTACAACTACCTGAAT




TGGTACCTCCAGAAGCCTGGCCAGTCGCCCCAGTTGCTGATCTATCTG




GGCTCGAAGCGCGCCTCCGGGGTGCCTGACCGGTTTAGCGGATCTGGG




AGCGGCACGGACTTCACTCTCCACATCACCCGCGTGGGAGCGGAGGAC




GTGGGAGTGTACTACTGTATGCAGGCGCTGCAGACTCCGTACACATTC




GGACAGGGCACCAAGCTGGAGATCAAG





139100-aa
993
QVQLVQSGAEVRKTGASVKVSCKASGYIFDNFGINWVRQAPGQGLEWM


VH

GWINPKNNNTNYAQKFQGRVTITADESTNTAYMEVSSLRSEDTAVYYC




ARGPYYYQSYMDVWGQGTMVTVSS





139100-aa
994
DIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGYNYLNWYLQKPGQS


VL

PQLLIYLGSKRASGVPDRFSGSGSGTDFTLHITRVGAEDVGVYYCMQA




LQTPYTFGQGTKLEIK





139100-aa
995
MALPVTALLLPLALLLHAARPQVQLVQSGAEVRKTGASVKVSCKASGY


Full CAR

IFDNFGINWVRQAPGQGLEWMGWINPKNNNTNYAQKFQGRVTITADES




TNTAYMEVSSLRSEDTAVYYCARGPYYYQSYMDVWGQGTMVTVSSASG




GGGSGGRASGGGGSDIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNG




YNYLNWYLQKPGQSPQLLIYLGSKRASGVPDRFSGSGSGTDFTLHITR




VGAEDVGVYYCMQALQTPYTFGQGTKLEIKTTTPAPRPPTPAPTIASQ




PLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVIT




LYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK




FSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKD




TYDALHMQALPPR





139100-nt
996
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTCCAACTCGTCCAGTCCGGCGCAGAAGTC




AGAAAAACCGGTGCTAGCGTGAAAGTGTCCTGCAAGGCCTCCGGCTAC




ATTTTCGATAACTTCGGAATCAACTGGGTCAGACAGGCCCCGGGCCAG




GGGCTGGAATGGATGGGATGGATCAACCCCAAGAACAACAACACCAAC




TACGCACAGAAGTTCCAGGGCCGCGTGACTATCACCGCCGATGAATCG




ACCAATACCGCCTACATGGAGGTGTCCTCCCTGCGGTCGGAGGACACT




GCCGTGTATTACTGCGCGAGGGGCCCATACTACTACCAAAGCTACATG




GACGTCTGGGGACAGGGAACCATGGTGACCGTGTCATCCGCCTCCGGT




GGTGGAGGCTCCGGGGGGCGGGCTTCAGGAGGCGGAGGAAGCGATATT




GTGATGACCCAGACTCCGCTTAGCCTGCCCGTGACTCCTGGAGAACCG




GCCTCCATTTCCTGCCGGTCCTCGCAATCACTCCTGCATTCCAACGGT




TACAACTACCTGAATTGGTACCTCCAGAAGCCTGGCCAGTCGCCCCAG




TTGCTGATCTATCTGGGCTCGAAGCGCGCCTCCGGGGTGCCTGACCGG




TTTAGCGGATCTGGGAGCGGCACGGACTTCACTCTCCACATCACCCGC




GTGGGAGCGGAGGACGTGGGAGTGTACTACTGTATGCAGGCGCTGCAG




ACTCCGTACACATTCGGACAGGGCACCAAGCTGGAGATCAAGACCACT




ACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAG




CCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCC




GTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCC




CCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACT




CTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAA




CCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCA




TGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAA




TTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAG




CTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTG




GACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGA




AAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATG




GCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGC




AAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGAC




ACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG










139101









139101-aa
997
QVQLQESGGGLVQPGGSLRLSCAASGFTFSSDAMTWVRQAPGKGLEWV


ScFv

SVISGSGGTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


domain

AKLDSSGYYYARGPRYWGQGTLVTVSSASGGGGSGGRASGGGGSDIQL




TQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYGAS




TLASGVPARFSGSGSGTHFTLTINSLQSEDSATYYCQQSYKRASFGQG




TKVEIK





139101-nt
998
CAAGTGCAACTTCAAGAATCAGGCGGAGGACTCGTGCAGCCCGGAGGA


ScFv

TCATTGCGGCTCTCGTGCGCCGCCTCGGGCTTCACCTTCTCGAGCGAC


domain

GCCATGACCTGGGTCCGCCAGGCCCCGGGGAAGGGGCTGGAATGGGTG




TCTGTGATTTCCGGCTCCGGGGGAACTACGTACTACGCCGATTCCGTG




AAAGGTCGCTTCACTATCTCCCGGGACAACAGCAAGAACACCCTTTAT




CTGCAAATGAATTCCCTCCGCGCCGAGGACACCGCCGTGTACTACTGC




GCCAAGCTGGACTCCTCGGGCTACTACTATGCCCGGGGTCCGAGATAC




TGGGGACAGGGAACCCTCGTGACCGTGTCCTCCGCGTCCGGCGGAGGA




GGGTCGGGAGGGCGGGCCTCCGGCGGCGGCGGTTCGGACATCCAGCTG




ACCCAGTCCCCATCCTCACTGAGCGCAAGCGTGGGCGACAGAGTCACC




ATTACATGCAGGGCGTCCCAGAGCATCAGCTCCTACCTGAACTGGTAC




CAACAGAAGCCTGGAAAGGCTCCTAAGCTGTTGATCTACGGGGCTTCG




ACCCTGGCATCCGGGGTGCCCGCGAGGTTTAGCGGAAGCGGTAGCGGC




ACTCACTTCACTCTGACCATTAACAGCCTCCAGTCCGAGGATTCAGCC




ACTTACTACTGTCAGCAGTCCTACAAGCGGGCCAGCTTCGGACAGGGC




ACTAAGGTCGAGATCAAG





139101-aa
999
QVQLQESGGGLVQPGGSLRLSCAASGFTFSSDAMTWVRQAPGKGLEWV


VH

SVISGSGGTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




AKLDSSGYYYARGPRYWGQGTLVTVSS





139101-aa
1000
DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI


VL

YGASTLASGVPARFSGSGSGTHFTLTINSLQSEDSATYYCQQSYKRAS




FGQGTKVEIK





139101-aa
1001
MALPVTALLLPLALLLHAARPQVQLQESGGGLVQPGGSLRLSCAASGF


Full CAR

TFSSDAMTWVRQAPGKGLEWVSVISGSGGTTYYADSVKGRFTISRDNS




KNTLYLQMNSLRAEDTAVYYCAKLDSSGYYYARGPRYWGQGTLVTVSS




ASGGGGSGGRASGGGGSDIQLTQSPSSLSASVGDRVTITCRASQSISS




YLNWYQQKPGKAPKLLIYGASTLASGVPARFSGSGSGTHFTLTINSLQ




SEDSATYYCQQSYKRASFGQGTKVEIKTTTPAPRPPTPAPTIASQPLS




LRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





139101-nt
1002
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAACTTCAAGAATCAGGCGGAGGACTC




GTGCAGCCCGGAGGATCATTGCGGCTCTCGTGCGCCGCCTCGGGCTTC




ACCTTCTCGAGCGACGCCATGACCTGGGTCCGCCAGGCCCCGGGGAAG




GGGCTGGAATGGGTGTCTGTGATTTCCGGCTCCGGGGGAACTACGTAC




TACGCCGATTCCGTGAAAGGTCGCTTCACTATCTCCCGGGACAACAGC




AAGAACACCCTTTATCTGCAAATGAATTCCCTCCGCGCCGAGGACACC




GCCGTGTACTACTGCGCCAAGCTGGACTCCTCGGGCTACTACTATGCC




CGGGGTCCGAGATACTGGGGACAGGGAACCCTCGTGACCGTGTCCTCC




GCGTCCGGCGGAGGAGGGTCGGGAGGGCGGGCCTCCGGCGGCGGCGGT




TCGGACATCCAGCTGACCCAGTCCCCATCCTCACTGAGCGCAAGCGTG




GGCGACAGAGTCACCATTACATGCAGGGCGTCCCAGAGCATCAGCTCC




TACCTGAACTGGTACCAACAGAAGCCTGGAAAGGCTCCTAAGCTGTTG




ATCTACGGGGCTTCGACCCTGGCATCCGGGGTGCCCGCGAGGTTTAGC




GGAAGCGGTAGCGGCACTCACTTCACTCTGACCATTAACAGCCTCCAG




TCCGAGGATTCAGCCACTTACTACTGTCAGCAGTCCTACAAGCGGGCC




AGCTTCGGACAGGGCACTAAGGTCGAGATCAAGACCACTACCCCAGCA




CCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCC




CTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACC




CGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCT




GGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGT




AAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATG




AGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTC




CCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGC




AGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC




GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGG




AGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCC




CAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCC




TATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCAC




GACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGAC




GCTCTTCACATGCAGGCCCTGCCGCCTCGG










139102









139102-aa
1003
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQAPGQGLEWM


ScFv

GWISAYNGNTNYAQKFQGRVTMTRNTSISTAYMELSSLRSEDTAVYYC


domain

ARGPYYYYMDVWGKGTMVTVSSASGGGGSGGRASGGGGSEIVMTQSPL




SLPVTPGEPASISCRSSQSLLYSNGYNYVDWYLQKPGQSPQLLIYLGS




NRASGVPDRFSGSGSGTDFKLQISRVEAEDVGIYYCMQGRQFPYSFGQ




GTKVEIK





139102-nt
1004
CAAGTCCAACTGGTCCAGAGCGGTGCAGAAGTGAAGAAGCCCGGAGCG


ScFv

AGCGTGAAAGTGTCCTGCAAGGCTTCCGGGTACACCTTCTCCAACTAC


domain

GGCATCACTTGGGTGCGCCAGGCCCCGGGACAGGGCCTGGAATGGATG




GGGTGGATTTCCGCGTACAACGGCAATACGAACTACGCTCAGAAGTTC




CAGGGTAGAGTGACCATGACTAGGAACACCTCCATTTCCACCGCCTAC




ATGGAACTGTCCTCCCTGCGGAGCGAGGACACCGCCGTGTACTATTGC




GCCCGGGGACCATACTACTACTACATGGATGTCTGGGGGAAGGGGACT




ATGGTCACCGTGTCATCCGCCTCGGGAGGCGGCGGATCAGGAGGACGC




GCCTCTGGTGGTGGAGGATCGGAGATCGTGATGACCCAGAGCCCTCTC




TCCTTGCCCGTGACTCCTGGGGAGCCCGCATCCATTTCATGCCGGAGC




TCCCAGTCACTTCTCTACTCCAACGGCTATAACTACGTGGATTGGTAC




CTCCAAAAGCCGGGCCAGAGCCCGCAGCTGCTGATCTACCTGGGCTCG




AACAGGGCCAGCGGAGTGCCTGACCGGTTCTCCGGGTCGGGAAGCGGG




ACCGACTTCAAGCTGCAAATCTCGAGAGTGGAGGCCGAGGACGTGGGA




ATCTACTACTGTATGCAGGGCCGCCAGTTTCCGTACTCGTTCGGACAG




GGCACCAAAGTGGAAATCAAG





139102-aa
1005
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQAPGQGLEWM


VH

GWISAYNGNTNYAQKFQGRVTMTRNTSISTAYMELSSLRSEDTAVYYC




ARGPYYYYMDVWGKGTMVTVSS





139102-aa
1006
EIVMTQSPLSLPVTPGEPASISCRSSQSLLYSNGYNYVDWYLQKPGQS


VL

PQLLIYLGSNRASGVPDRFSGSGSGTDFKLQISRVEAEDVGIYYCMQG




RQFPYSFGQGTKVEIK





139102-aa
1007
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVSCKASGY


Full CAR

TFSNYGITWVRQAPGQGLEWMGWISAYNGNTNYAQKFQGRVTMTRNTS




ISTAYMELSSLRSEDTAVYYCARGPYYYYMDVWGKGTMVTVSSASGGG




GSGGRASGGGGSEIVMTQSPLSLPVTPGEPASISCRSSQSLLYSNGYN




YVDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFKLQISRVE




AEDVGIYYCMQGRQFPYSFGQGTKVEIKTTTPAPRPPTPAPTIASQPL




SLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLY




CKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFS




RSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKN




PQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTY




DALHMQALPPR





139102-nt
1008
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTCCAACTGGTCCAGAGCGGTGCAGAAGTG




AAGAAGCCCGGAGCGAGCGTGAAAGTGTCCTGCAAGGCTTCCGGGTAC




ACCTTCTCCAACTACGGCATCACTTGGGTGCGCCAGGCCCCGGGACAG




GGCCTGGAATGGATGGGGTGGATTTCCGCGTACAACGGCAATACGAAC




TACGCTCAGAAGTTCCAGGGTAGAGTGACCATGACTAGGAACACCTCC




ATTTCCACCGCCTACATGGAACTGTCCTCCCTGCGGAGCGAGGACACC




GCCGTGTACTATTGCGCCCGGGGACCATACTACTACTACATGGATGTC




TGGGGGAAGGGGACTATGGTCACCGTGTCATCCGCCTCGGGAGGCGGC




GGATCAGGAGGACGCGCCTCTGGTGGTGGAGGATCGGAGATCGTGATG




ACCCAGAGCCCTCTCTCCTTGCCCGTGACTCCTGGGGAGCCCGCATCC




ATTTCATGCCGGAGCTCCCAGTCACTTCTCTACTCCAACGGCTATAAC




TACGTGGATTGGTACCTCCAAAAGCCGGGCCAGAGCCCGCAGCTGCTG




ATCTACCTGGGCTCGAACAGGGCCAGCGGAGTGCCTGACCGGTTCTCC




GGGTCGGGAAGCGGGACCGACTTCAAGCTGCAAATCTCGAGAGTGGAG




GCCGAGGACGTGGGAATCTACTACTGTATGCAGGGCCGCCAGTTTCCG




TACTCGTTCGGACAGGGCACCAAAGTGGAAATCAAGACCACTACCCCA




GCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTG




TCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCAT




ACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTG




GCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTAC




TGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTC




ATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGG




TTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGC




CGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTAC




AACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAG




CGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAAT




CCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAA




GCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGC




CACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTAT




GACGCTCTTCACATGCAGGCCCTGCCGCCTCGG










139104









139104-aa
1009
EVQLLETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


ScFv

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS


domain

AHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGGSEIVLTQSPATLS




VSPGESATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRASGIPD




RFSGSGSGTDFTLTISSLQAEDVAVYYCQQYGSSLTFGGGTKVEIK





139104-nt
1010
GAAGTGCAATTGCTCGAAACTGGAGGAGGTCTGGTGCAACCTGGAGGA


ScFv

TCACTTCGCCTGTCCTGCGCCGTGTCGGGCTTTGCCCTGTCCAACCAT


domain

GGAATGAGCTGGGTCCGCCGCGCGCCGGGGAAGGGCCTCGAATGGGTG




TCCGGCATCGTCTACTCCGGCTCCACCTACTACGCCGCGTCCGTGAAG




GGCCGGTTCACGATTTCACGGGACAACTCGCGGAACACCCTGTACCTC




CAAATGAATTCCCTTCGGCCGGAGGATACTGCCATCTACTACTGCTCC




GCCCACGGTGGCGAATCCGACGTCTGGGGCCAGGGAACCACCGTGACC




GTGTCCAGCGCGTCCGGGGGAGGAGGAAGCGGGGGTAGAGCATCGGGT




GGAGGCGGATCAGAGATCGTGCTGACCCAGTCCCCCGCCACCTTGAGC




GTGTCACCAGGAGAGTCCGCCACCCTGTCATGCCGCGCCAGCCAGTCC




GTGTCCTCCAACCTGGCTTGGTACCAGCAGAAGCCGGGGCAGGCCCCT




AGACTCCTGATCTATGGGGCGTCGACCCGGGCATCTGGAATTCCCGAT




AGGTTCAGCGGATCGGGCTCGGGCACTGACTTCACTCTGACCATCTCC




TCGCTGCAAGCCGAGGACGTGGCTGTGTACTACTGTCAGCAGTACGGA




AGCTCCCTGACTTTCGGTGGCGGGACCAAAGTCGAGATTAAG





139104-aa
1011
EVQLLETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


VH

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS




AHGGESDVWGQGTTVTVSS





139104-aa
1012
EIVLTQSPATLSVSPGESATLSCRASQSVSSNLAWYQQKPGQAPRLLI


VL

YGASTRASGIPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYGSSLT




FGGGTKVEIK





139104-aa
1013
MALPVTALLLPLALLLHAARPEVQLLETGGGLVQPGGSLRLSCAVSGF


Full CAR

ALSNHGMSWVRRAPGKGLEWVSGIVYSGSTYYAASVKGRFTISRDNSR




NTLYLQMNSLRPEDTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSG




GRASGGGGSEIVLTQSPATLSVSPGESATLSCRASQSVSSNLAWYQQK




PGQAPRLLIYGASTRASGIPDRFSGSGSGTDFTLTISSLQAEDVAVYY




CQQYGSSLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRP




AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYK




QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNEL




QKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALP




PR





139104-nt
1014
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAATTGCTCGAAACTGGAGGAGGTCTG




GTGCAACCTGGAGGATCACTTCGCCTGTCCTGCGCCGTGTCGGGCTTT




GCCCTGTCCAACCATGGAATGAGCTGGGTCCGCCGCGCGCCGGGGAAG




GGCCTCGAATGGGTGTCCGGCATCGTCTACTCCGGCTCCACCTACTAC




GCCGCGTCCGTGAAGGGCCGGTTCACGATTTCACGGGACAACTCGCGG




AACACCCTGTACCTCCAAATGAATTCCCTTCGGCCGGAGGATACTGCC




ATCTACTACTGCTCCGCCCACGGTGGCGAATCCGACGTCTGGGGCCAG




GGAACCACCGTGACCGTGTCCAGCGCGTCCGGGGGAGGAGGAAGCGGG




GGTAGAGCATCGGGTGGAGGCGGATCAGAGATCGTGCTGACCCAGTCC




CCCGCCACCTTGAGCGTGTCACCAGGAGAGTCCGCCACCCTGTCATGC




CGCGCCAGCCAGTCCGTGTCCTCCAACCTGGCTTGGTACCAGCAGAAG




CCGGGGCAGGCCCCTAGACTCCTGATCTATGGGGCGTCGACCCGGGCA




TCTGGAATTCCCGATAGGTTCAGCGGATCGGGCTCGGGCACTGACTTC




ACTCTGACCATCTCCTCGCTGCAAGCCGAGGACGTGGCTGTGTACTAC




TGTCAGCAGTACGGAAGCTCCCTGACTTTCGGTGGCGGGACCAAAGTC




GAGATTAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCT




ACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCC




GCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGAT




ATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTT




TCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTG




TACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAG




GAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGC




GAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAG




CAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAG




GAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGC




GGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTC




CAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGG




GAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGC




ACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCG




CCTCGG










139106









139106-aa
1015
EVQLVETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


ScFv

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS


domain

AHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGGSEIVMTQSPATLS




VSPGERATLSCRASQSVSSKLAWYQQKPGQAPRLLMYGASIRATGIPD




RFSGSGSGTEFTLTISSLEPEDFAVYYCQQYGSSSWTFGQGTKVEIK





139106-nt
1016
GAAGTGCAATTGGTGGAAACTGGAGGAGGACTTGTGCAACCTGGAGGA


ScFv

TCATTGAGACTGAGCTGCGCAGTGTCGGGATTCGCCCTGAGCAACCAT


domain

GGAATGTCCTGGGTCAGAAGGGCCCCTGGAAAAGGCCTCGAATGGGTG




TCAGGGATCGTGTACTCCGGTTCCACTTACTACGCCGCCTCCGTGAAG




GGGCGCTTCACTATCTCACGGGATAACTCCCGCAATACCCTGTACCTC




CAAATGAACAGCCTGCGGCCGGAGGATACCGCCATCTACTACTGTTCC




GCCCACGGTGGAGAGTCTGACGTCTGGGGCCAGGGAACTACCGTGACC




GTGTCCTCCGCGTCCGGCGGTGGAGGGAGCGGCGGCCGCGCCAGCGGC




GGCGGAGGCTCCGAGATCGTGATGACCCAGAGCCCCGCTACTCTGTCG




GTGTCGCCCGGAGAAAGGGCGACCCTGTCCTGCCGGGCGTCGCAGTCC




GTGAGCAGCAAGCTGGCTTGGTACCAGCAGAAGCCGGGCCAGGCACCA




CGCCTGCTTATGTACGGTGCCTCCATTCGGGCCACCGGAATCCCGGAC




CGGTTCTCGGGGTCGGGGTCCGGTACCGAGTTCACACTGACCATTTCC




TCGCTCGAGCCCGAGGACTTTGCCGTCTATTACTGCCAGCAGTACGGC




TCCTCCTCATGGACGTTCGGCCAGGGGACCAAGGTCGAAATCAAG





139106-aa
1017
EVQLVETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


VH

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS




AHGGESDVWGQGTTVTVSS





139106-aa
1018
EIVMTQSPATLSVSPGERATLSCRASQSVSSKLAWYQQKPGQAPRLLM


VL

YGASIRATGIPDRFSGSGSGTEFTLTISSLEPEDFAVYYCQQYGSSSW




TFGQGTKVEIK





139106-aa
1019
MALPVTALLLPLALLLHAARPEVQLVETGGGLVQPGGSLRLSCAVSGF


Full CAR

ALSNHGMSWVRRAPGKGLEWVSGIVYSGSTYYAASVKGRFTISRDNSR




NTLYLQMNSLRPEDTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSG




GRASGGGGSEIVMTQSPATLSVSPGERATLSCRASQSVSSKLAWYQQK




PGQAPRLLMYGASIRATGIPDRFSGSGSGTEFTLTISSLEPEDFAVYY




CQQYGSSSWTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACR




PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




KQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE




LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQAL




PPR





139106-nt
1020
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAATTGGTGGAAACTGGAGGAGGACTT




GTGCAACCTGGAGGATCATTGAGACTGAGCTGCGCAGTGTCGGGATTC




GCCCTGAGCAACCATGGAATGTCCTGGGTCAGAAGGGCCCCTGGAAAA




GGCCTCGAATGGGTGTCAGGGATCGTGTACTCCGGTTCCACTTACTAC




GCCGCCTCCGTGAAGGGGCGCTTCACTATCTCACGGGATAACTCCCGC




AATACCCTGTACCTCCAAATGAACAGCCTGCGGCCGGAGGATACCGCC




ATCTACTACTGTTCCGCCCACGGTGGAGAGTCTGACGTCTGGGGCCAG




GGAACTACCGTGACCGTGTCCTCCGCGTCCGGCGGTGGAGGGAGCGGC




GGCCGCGCCAGCGGCGGCGGAGGCTCCGAGATCGTGATGACCCAGAGC




CCCGCTACTCTGTCGGTGTCGCCCGGAGAAAGGGCGACCCTGTCCTGC




CGGGCGTCGCAGTCCGTGAGCAGCAAGCTGGCTTGGTACCAGCAGAAG




CCGGGCCAGGCACCACGCCTGCTTATGTACGGTGCCTCCATTCGGGCC




ACCGGAATCCCGGACCGGTTCTCGGGGTCGGGGTCCGGTACCGAGTTC




ACACTGACCATTTCCTCGCTCGAGCCCGAGGACTTTGCCGTCTATTAC




TGCCAGCAGTACGGCTCCTCCTCATGGACGTTCGGCCAGGGGACCAAG




GTCGAAATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCT




CCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGA




CCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGC




GATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTG




CTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTG




CTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAA




GAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGC




TGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTAC




AAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGA




GAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATG




GGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAG




CTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAA




GGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTC




AGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTG




CCGCCTCGG










139107









139107-aa
1021
EVQLVETGGGVVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


ScFv

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS


domain

AHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGGSEIVLTQSPGTLS




LSPGERATLSCRASQSVGSTNLAWYQQKPGQAPRLLIYDASNRATGIP




DRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPWTFGQGTKVEI




K





139107-nt
1022
GAAGTGCAATTGGTGGAGACTGGAGGAGGAGTGGTGCAACCTGGAGGA


ScFv

AGCCTGAGACTGTCATGCGCGGTGTCGGGCTTCGCCCTCTCCAACCAC


domain

GGAATGTCCTGGGTCCGCCGGGCCCCTGGGAAAGGACTTGAATGGGTG




TCCGGCATCGTGTACTCGGGTTCCACCTACTACGCGGCCTCAGTGAAG




GGCCGGTTTACTATTAGCCGCGACAACTCCAGAAACACACTGTACCTC




CAAATGAACTCGCTGCGGCCGGAAGATACCGCTATCTACTACTGCTCC




GCCCATGGGGGAGAGTCGGACGTCTGGGGACAGGGCACCACTGTCACT




GTGTCCAGCGCTTCCGGCGGTGGTGGAAGCGGGGGACGGGCCTCAGGA




GGCGGTGGCAGCGAGATTGTGCTGACCCAGTCCCCCGGGACCCTGAGC




CTGTCCCCGGGAGAAAGGGCCACCCTCTCCTGTCGGGCATCCCAGTCC




GTGGGGTCTACTAACCTTGCATGGTACCAGCAGAAGCCCGGCCAGGCC




CCTCGCCTGCTGATCTACGACGCGTCCAATAGAGCCACCGGCATCCCG




GATCGCTTCAGCGGAGGCGGATCGGGCACCGACTTCACCCTCACCATT




TCAAGGCTGGAACCGGAGGACTTCGCCGTGTACTACTGCCAGCAGTAT




GGTTCGTCCCCACCCTGGACGTTCGGCCAGGGGACTAAGGTCGAGATC




AAG





139107-aa
1023
EVQLVETGGGVVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


VH

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS




AHGGESDVWGQGTTVTVSS





139107-aa
1024
EIVLTQSPGTLSLSPGERATLSCRASQSVGSTNLAWYQQKPGQAPRLL


VL

IYDASNRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVYYCQQYGSSP




PWTFGQGTKVEIK





139107-aa
1025
MALPVTALLLPLALLLHAARPEVQLVETGGGVVQPGGSLRLSCAVSGF


Full CAR

ALSNHGMSWVRRAPGKGLEWVSGIVYSGSTYYAASVKGRFTISRDNSR




NTLYLQMNSLRPEDTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSG




GRASGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVGSTNLAWYQQ




KPGQAPRLLIYDASNRATGIPDRFSGGGSGTDFTLTISRLEPEDFAVY




YCQQYGSSPPWTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEA




CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP




AYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY




NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ




ALPPR





139107-nt
1026
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAATTGGTGGAGACTGGAGGAGGAGTG




GTGCAACCTGGAGGAAGCCTGAGACTGTCATGCGCGGTGTCGGGCTTC




GCCCTCTCCAACCACGGAATGTCCTGGGTCCGCCGGGCCCCTGGGAAA




GGACTTGAATGGGTGTCCGGCATCGTGTACTCGGGTTCCACCTACTAC




GCGGCCTCAGTGAAGGGCCGGTTTACTATTAGCCGCGACAACTCCAGA




AACACACTGTACCTCCAAATGAACTCGCTGCGGCCGGAAGATACCGCT




ATCTACTACTGCTCCGCCCATGGGGGAGAGTCGGACGTCTGGGGACAG




GGCACCACTGTCACTGTGTCCAGCGCTTCCGGCGGTGGTGGAAGCGGG




GGACGGGCCTCAGGAGGCGGTGGCAGCGAGATTGTGCTGACCCAGTCC




CCCGGGACCCTGAGCCTGTCCCCGGGAGAAAGGGCCACCCTCTCCTGT




CGGGCATCCCAGTCCGTGGGGTCTACTAACCTTGCATGGTACCAGCAG




AAGCCCGGCCAGGCCCCTCGCCTGCTGATCTACGACGCGTCCAATAGA




GCCACCGGCATCCCGGATCGCTTCAGCGGAGGCGGATCGGGCACCGAC




TTCACCCTCACCATTTCAAGGCTGGAACCGGAGGACTTCGCCGTGTAC




TACTGCCAGCAGTATGGTTCGTCCCCACCCTGGACGTTCGGCCAGGGG




ACTAAGGTCGAGATCAAGACCACTACCCCAGCACCGAGGCCACCCACC




CCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCA




TGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTC




GCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTC




CTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAG




AAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACT




ACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAA




GGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCA




GCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGT




CGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCA




GAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTAC




AACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGT




ATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAG




GGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAG




GCCCTGCCGCCTCGG










139108









139108-aa
1027
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWV


ScFv

SYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC


domain

ARESGDGMDVWGQGTTVTVSSASGGGGSGGRASGGGGSDIQMTQSPSS




LSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTLAFGQGTKVDIK





139108-nt
1028
CAAGTGCAACTCGTGGAATCTGGTGGAGGACTCGTGAAACCTGGAGGA


ScFv

TCATTGAGACTGTCATGCGCGGCCTCGGGATTCACGTTCTCCGATTAC


domain

TACATGAGCTGGATTCGCCAGGCTCCGGGGAAGGGACTGGAATGGGTG




TCCTACATTTCCTCATCCGGCTCCACCATCTACTACGCGGACTCCGTG




AAGGGGAGATTCACCATTAGCCGCGATAACGCCAAGAACAGCCTGTAC




CTTCAGATGAACTCCCTGCGGGCTGAAGATACTGCCGTCTACTACTGC




GCAAGGGAGAGCGGAGATGGGATGGACGTCTGGGGACAGGGTACCACT




GTGACCGTGTCGTCGGCCTCCGGCGGAGGGGGTTCGGGTGGAAGGGCC




AGCGGCGGCGGAGGCAGCGACATCCAGATGACCCAGTCCCCCTCATCG




CTGTCCGCCTCCGTGGGCGACCGCGTCACCATCACATGCCGGGCCTCA




CAGTCGATCTCCTCCTACCTCAATTGGTATCAGCAGAAGCCCGGAAAG




GCCCCTAAGCTTCTGATCTACGCAGCGTCCTCCCTGCAATCCGGGGTC




CCATCTCGGTTCTCCGGCTCGGGCAGCGGTACCGACTTCACTCTGACC




ATCTCGAGCCTGCAGCCGGAGGACTTCGCCACTTACTACTGTCAGCAA




AGCTACACCCTCGCGTTTGGCCAGGGCACCAAAGTGGACATCAAG





139108-aa
1029
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWV


VH

SYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC




ARESGDGMDVWGQGTTVTVSS





139108-aa
1030
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI


VL

YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTLAF




GQGTKVDIK





139108-aa
1031
MALPVTALLLPLALLLHAARPQVQLVESGGGLVKPGGSLRLSCAASGF


Full CAR

TFSDYYMSWIRQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNA




KNSLYLQMNSLRAEDTAVYYCARESGDGMDVWGQGTTVTVSSASGGGG




SGGRASGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQ




QKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFAT




YYCQQSYTLAFGQGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACR




PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




KQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE




LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQAL




PPR





139108-nt
1032
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAACTCGTGGAATCTGGTGGAGGACTC




GTGAAACCTGGAGGATCATTGAGACTGTCATGCGCGGCCTCGGGATTC




ACGTTCTCCGATTACTACATGAGCTGGATTCGCCAGGCTCCGGGGAAG




GGACTGGAATGGGTGTCCTACATTTCCTCATCCGGCTCCACCATCTAC




TACGCGGACTCCGTGAAGGGGAGATTCACCATTAGCCGCGATAACGCC




AAGAACAGCCTGTACCTTCAGATGAACTCCCTGCGGGCTGAAGATACT




GCCGTCTACTACTGCGCAAGGGAGAGCGGAGATGGGATGGACGTCTGG




GGACAGGGTACCACTGTGACCGTGTCGTCGGCCTCCGGCGGAGGGGGT




TCGGGTGGAAGGGCCAGCGGCGGCGGAGGCAGCGACATCCAGATGACC




CAGTCCCCCTCATCGCTGTCCGCCTCCGTGGGCGACCGCGTCACCATC




ACATGCCGGGCCTCACAGTCGATCTCCTCCTACCTCAATTGGTATCAG




CAGAAGCCCGGAAAGGCCCCTAAGCTTCTGATCTACGCAGCGTCCTCC




CTGCAATCCGGGGTCCCATCTCGGTTCTCCGGCTCGGGCAGCGGTACC




GACTTCACTCTGACCATCTCGAGCCTGCAGCCGGAGGACTTCGCCACT




TACTACTGTCAGCAAAGCTACACCCTCGCGTTTGGCCAGGGCACCAAA




GTGGACATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCT




CCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGA




CCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGC




GATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTG




CTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTG




CTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAA




GAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGC




TGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTAC




AAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGA




GAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATG




GGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAG




CTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAA




GGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTC




AGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTG




CCGCCTCGG










139110









139110-aa
1033
QVQLVQSGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWV


ScFv

SYISSSGNTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC


domain

ARSTMVREDYWGQGTLVTVSSASGGGGSGGRASGGGGSDIVLTQSPLS




LPVTLGQPASISCKSSESLVHNSGKTYLNWFHQRPGQSPRRLIYEVSN




RDSGVPDRFTGSGSGTDFTLKISRVEAEDVGVYYCMQGTHWPGTFGQG




TKLEIK





139110-nt
1034
CAAGTGCAACTGGTGCAAAGCGGAGGAGGATTGGTCAAACCCGGAGGA


ScFv

AGCCTGAGACTGTCATGCGCGGCCTCTGGATTCACCTTCTCCGATTAC


domain

TACATGTCATGGATCAGACAGGCCCCGGGGAAGGGCCTCGAATGGGTG




TCCTACATCTCGTCCTCCGGGAACACCATCTACTACGCCGACAGCGTG




AAGGGCCGCTTTACCATTTCCCGCGACAACGCAAAGAACTCGCTGTAC




CTTCAGATGAATTCCCTGCGGGCTGAAGATACCGCGGTGTACTATTGC




GCCCGGTCCACTATGGTCCGGGAGGACTACTGGGGACAGGGCACACTC




GTGACCGTGTCCAGCGCGAGCGGGGGTGGAGGCAGCGGTGGACGCGCC




TCCGGCGGCGGCGGTTCAGACATCGTGCTGACTCAGTCGCCCCTGTCG




CTGCCGGTCACCCTGGGCCAACCGGCCTCAATTAGCTGCAAGTCCTCG




GAGAGCCTGGTGCACAACTCAGGAAAGACTTACCTGAACTGGTTCCAT




CAGCGGCCTGGACAGTCCCCACGGAGGCTCATCTATGAAGTGTCCAAC




AGGGATTCGGGGGTGCCCGACCGCTTCACTGGCTCCGGGTCCGGCACC




GACTTCACCTTGAAAATCTCCAGAGTGGAAGCCGAGGACGTGGGCGTG




TACTACTGTATGCAGGGTACCCACTGGCCTGGAACCTTTGGACAAGGA




ACTAAGCTCGAGATTAAG





139110-aa
1035
QVQLVQSGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWV


VH

SYISSSGNTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC




ARSTMVREDYWGQGTLVTVSS





139110-aa
1036
DIVLTQSPLSLPVTLGQPASISCKSSESLVHNSGKTYLNWFHQRPGQS


VL

PRRLIYEVSNRDSGVPDRFTGSGSGTDFTLKISRVEAEDVGVYYCMQG




THWPGTFGQGTKLEIK





139110-aa
1037
MALPVTALLLPLALLLHAARPQVQLVQSGGGLVKPGGSLRLSCAASGF


Full CAR

TFSDYYMSWIRQAPGKGLEWVSYISSSGNTIYYADSVKGRFTISRDNA




KNSLYLQMNSLRAEDTAVYYCARSTMVREDYWGQGTLVTVSSASGGGG




SGGRASGGGGSDIVLTQSPLSLPVTLGQPASISCKSSESLVHNSGKTY




LNWFHQRPGQSPRRLIYEVSNRDSGVPDRFTGSGSGTDFTLKISRVEA




EDVGVYYCMQGTHWPGTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLS




LRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





139110-nt
1038
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAACTGGTGCAAAGCGGAGGAGGATTG




GTCAAACCCGGAGGAAGCCTGAGACTGTCATGCGCGGCCTCTGGATTC




ACCTTCTCCGATTACTACATGTCATGGATCAGACAGGCCCCGGGGAAG




GGCCTCGAATGGGTGTCCTACATCTCGTCCTCCGGGAACACCATCTAC




TACGCCGACAGCGTGAAGGGCCGCTTTACCATTTCCCGCGACAACGCA




AAGAACTCGCTGTACCTTCAGATGAATTCCCTGCGGGCTGAAGATACC




GCGGTGTACTATTGCGCCCGGTCCACTATGGTCCGGGAGGACTACTGG




GGACAGGGCACACTCGTGACCGTGTCCAGCGCGAGCGGGGGTGGAGGC




AGCGGTGGACGCGCCTCCGGCGGCGGCGGTTCAGACATCGTGCTGACT




CAGTCGCCCCTGTCGCTGCCGGTCACCCTGGGCCAACCGGCCTCAATT




AGCTGCAAGTCCTCGGAGAGCCTGGTGCACAACTCAGGAAAGACTTAC




CTGAACTGGTTCCATCAGCGGCCTGGACAGTCCCCACGGAGGCTCATC




TATGAAGTGTCCAACAGGGATTCGGGGGTGCCCGACCGCTTCACTGGC




TCCGGGTCCGGCACCGACTTCACCTTGAAAATCTCCAGAGTGGAAGCC




GAGGACGTGGGCGTGTACTACTGTATGCAGGGTACCCACTGGCCTGGA




ACCTTTGGACAAGGAACTAAGCTCGAGATTAAGACCACTACCCCAGCA




CCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCC




CTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACC




CGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCT




GGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGT




AAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATG




AGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTC




CCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGC




AGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC




GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGG




AGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCC




CAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCC




TATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCAC




GACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGAC




GCTCTTCACATGCAGGCCCTGCCGCCTCGG










139112









139112-aa
1039
QVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


ScFv

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS


domain

AHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGGSDIRLTQSPSPLS




ASVGDRVTITCQASEDINKFLNWYHQTPGKAPKLLIYDASTLQTGVPS




RFSGSGSGTDFTLTINSLQPEDIGTYYCQQYESLPLTFGGGTKVEIK





139112-nt
1040
CAAGTGCAACTCGTGGAATCTGGTGGAGGACTCGTGCAACCCGGTGGA


ScFv

AGCCTTAGGCTGTCGTGCGCCGTCAGCGGGTTTGCTCTGAGCAACCAT


domain

GGAATGTCCTGGGTCCGCCGGGCACCGGGAAAAGGGCTGGAATGGGTG




TCCGGCATCGTGTACAGCGGGTCAACCTATTACGCCGCGTCCGTGAAG




GGCAGATTCACTATCTCAAGAGACAACAGCCGGAACACCCTGTACTTG




CAAATGAATTCCCTGCGCCCCGAGGACACCGCCATCTACTACTGCTCC




GCCCACGGAGGAGAGTCGGACGTGTGGGGCCAGGGAACGACTGTGACT




GTGTCCAGCGCATCAGGAGGGGGTGGTTCGGGCGGCCGGGCCTCGGGG




GGAGGAGGTTCCGACATTCGGCTGACCCAGTCCCCGTCCCCACTGTCG




GCCTCCGTCGGCGACCGCGTGACCATCACTTGTCAGGCGTCCGAGGAC




ATTAACAAGTTCCTGAACTGGTACCACCAGACCCCTGGAAAGGCCCCC




AAGCTGCTGATCTACGATGCCTCGACCCTTCAAACTGGAGTGCCTAGC




CGGTTCTCCGGGTCCGGCTCCGGCACTGATTTCACTCTGACCATCAAC




TCATTGCAGCCGGAAGATATCGGGACCTACTATTGCCAGCAGTACGAA




TCCCTCCCGCTCACATTCGGCGGGGGAACCAAGGTCGAGATTAAG





139112-aa
1041
QVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


VH

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS




AHGGESDVWGQGTTVTVSS





139112-aa
1042
DIRLTQSPSPLSASVGDRVTITCQASEDINKFLNWYHQTPGKAPKLLI


VL

YDASTLQTGVPSRFSGSGSGTDFTLTINSLQPEDIGTYYCQQYESLPL




TFGGGTKVEIK





139112-aa
1043
MALPVTALLLPLALLLHAARPQVQLVESGGGLVQPGGSLRLSCAVSGF


Full CAR

ALSNHGMSWVRRAPGKGLEWVSGIVYSGSTYYAASVKGRFTISRDNSR




NTLYLQMNSLRPEDTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSG




GRASGGGGSDIRLTQSPSPLSASVGDRVTITCQASEDINKFLNWYHQT




PGKAPKLLIYDASTLQTGVPSRFSGSGSGTDFTLTINSLQPEDIGTYY




CQQYESLPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACR




PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




KQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE




LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQAL




PPR





139112-nt
1044
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAACTCGTGGAATCTGGTGGAGGACTC




GTGCAACCCGGTGGAAGCCTTAGGCTGTCGTGCGCCGTCAGCGGGTTT




GCTCTGAGCAACCATGGAATGTCCTGGGTCCGCCGGGCACCGGGAAAA




GGGCTGGAATGGGTGTCCGGCATCGTGTACAGCGGGTCAACCTATTAC




GCCGCGTCCGTGAAGGGCAGATTCACTATCTCAAGAGACAACAGCCGG




AACACCCTGTACTTGCAAATGAATTCCCTGCGCCCCGAGGACACCGCC




ATCTACTACTGCTCCGCCCACGGAGGAGAGTCGGACGTGTGGGGCCAG




GGAACGACTGTGACTGTGTCCAGCGCATCAGGAGGGGGTGGTTCGGGC




GGCCGGGCCTCGGGGGGAGGAGGTTCCGACATTCGGCTGACCCAGTCC




CCGTCCCCACTGTCGGCCTCCGTCGGCGACCGCGTGACCATCACTTGT




CAGGCGTCCGAGGACATTAACAAGTTCCTGAACTGGTACCACCAGACC




CCTGGAAAGGCCCCCAAGCTGCTGATCTACGATGCCTCGACCCTTCAA




ACTGGAGTGCCTAGCCGGTTCTCCGGGTCCGGCTCCGGCACTGATTTC




ACTCTGACCATCAACTCATTGCAGCCGGAAGATATCGGGACCTACTAT




TGCCAGCAGTACGAATCCCTCCCGCTCACATTCGGCGGGGGAACCAAG




GTCGAGATTAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCT




CCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGA




CCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGC




GATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTG




CTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTG




CTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAA




GAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGC




TGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTAC




AAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGA




GAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATG




GGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAG




CTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAA




GGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTC




AGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTG




CCGCCTCGG










139113









139113-aa
1045
EVQLVETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


ScFv

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS


domain

AHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGGSETTLTQSPATLS




VSPGERATLSCRASQSVGSNLAWYQQKPGQGPRLLIYGASTRATGIPA




RFSGSGSGTEFTLTISSLQPEDFAVYYCQQYNDWLPVTFGQGTKVEIK





139113-nt
1046
GAAGTGCAATTGGTGGAAACTGGAGGAGGACTTGTGCAACCTGGAGGA


ScFv

TCATTGCGGCTCTCATGCGCTGTCTCCGGCTTCGCCCTGTCAAATCAC


domain

GGGATGTCGTGGGTCAGACGGGCCCCGGGAAAGGGTCTGGAATGGGTG




TCGGGGATTGTGTACAGCGGCTCCACCTACTACGCCGCTTCGGTCAAG




GGCCGCTTCACTATTTCACGGGACAACAGCCGCAACACCCTCTATCTG




CAAATGAACTCTCTCCGCCCGGAGGATACCGCCATCTACTACTGCTCC




GCACACGGCGGCGAATCCGACGTGTGGGGACAGGGAACCACTGTCACC




GTGTCGTCCGCATCCGGTGGCGGAGGATCGGGTGGCCGGGCCTCCGGG




GGCGGCGGCAGCGAGACTACCCTGACCCAGTCCCCTGCCACTCTGTCC




GTGAGCCCGGGAGAGAGAGCCACCCTTAGCTGCCGGGCCAGCCAGAGC




GTGGGCTCCAACCTGGCCTGGTACCAGCAGAAGCCAGGACAGGGTCCC




AGGCTGCTGATCTACGGAGCCTCCACTCGCGCGACCGGCATCCCCGCG




AGGTTCTCCGGGTCGGGTTCCGGGACCGAGTTCACCCTGACCATCTCC




TCCCTCCAACCGGAGGACTTCGCGGTGTACTACTGTCAGCAGTACAAC




GATTGGCTGCCCGTGACATTTGGACAGGGGACGAAGGTGGAAATCAAA





139113-aa
1047
EVQLVETGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


VH

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS




AHGGESDVWGQGTTVTVSS





139113-aa
1048
ETTLTQSPATLSVSPGERATLSCRASQSVGSNLAWYQQKPGQGPRLLI


VL

YGASTRATGIPARFSGSGSGTEFTLTISSLQPEDFAVYYCQQYNDWLP




VTFGQGTKVEIK





139113-aa
1049
MALPVTALLLPLALLLHAARPEVQLVETGGGLVQPGGSLRLSCAVSGF


Full CAR

ALSNHGMSWVRRAPGKGLEWVSGIVYSGSTYYAASVKGRFTISRDNSR




NTLYLQMNSLRPEDTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSG




GRASGGGGSETTLTQSPATLSVSPGERATLSCRASQSVGSNLAWYQQK




PGQGPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQPEDFAVYY




CQQYNDWLPVTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEAC




RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKK




LLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYN




ELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQA




LPPR





139113-nt
1050
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAATTGGTGGAAACTGGAGGAGGACTT




GTGCAACCTGGAGGATCATTGCGGCTCTCATGCGCTGTCTCCGGCTTC




GCCCTGTCAAATCACGGGATGTCGTGGGTCAGACGGGCCCCGGGAAAG




GGTCTGGAATGGGTGTCGGGGATTGTGTACAGCGGCTCCACCTACTAC




GCCGCTTCGGTCAAGGGCCGCTTCACTATTTCACGGGACAACAGCCGC




AACACCCTCTATCTGCAAATGAACTCTCTCCGCCCGGAGGATACCGCC




ATCTACTACTGCTCCGCACACGGCGGCGAATCCGACGTGTGGGGACAG




GGAACCACTGTCACCGTGTCGTCCGCATCCGGTGGCGGAGGATCGGGT




GGCCGGGCCTCCGGGGGCGGCGGCAGCGAGACTACCCTGACCCAGTCC




CCTGCCACTCTGTCCGTGAGCCCGGGAGAGAGAGCCACCCTTAGCTGC




CGGGCCAGCCAGAGCGTGGGCTCCAACCTGGCCTGGTACCAGCAGAAG




CCAGGACAGGGTCCCAGGCTGCTGATCTACGGAGCCTCCACTCGCGCG




ACCGGCATCCCCGCGAGGTTCTCCGGGTCGGGTTCCGGGACCGAGTTC




ACCCTGACCATCTCCTCCCTCCAACCGGAGGACTTCGCGGTGTACTAC




TGTCAGCAGTACAACGATTGGCTGCCCGTGACATTTGGACAGGGGACG




AAGGTGGAAATCAAAACCACTACCCCAGCACCGAGGCCACCCACCCCG




GCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGT




AGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCC




TGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTG




CTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAG




CTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACT




CAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGC




GGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCC




TACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGG




AGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAA




ATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAAC




GAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATG




AAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGA




CTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCC




CTGCCGCCTCGG










139114









139114-aa
1051
EVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


ScFv

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS


domain

AHGGESDVWGQGTTVTVSSASGGGGSGGRASGGGGSEIVLTQSPGTLS




LSPGERATLSCRASQSIGSSSLAWYQQKPGQAPRLLMYGASSRASGIP




DRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYAGSPPFTFGQGTKVEI




K





139114-nt
1052
GAAGTGCAATTGGTGGAATCTGGTGGAGGACTTGTGCAACCTGGAGGA


ScFv

TCACTGAGACTGTCATGCGCGGTGTCCGGTTTTGCCCTGAGCAATCAT


domain

GGGATGTCGTGGGTCCGGCGCGCCCCCGGAAAGGGTCTGGAATGGGTG




TCGGGTATCGTCTACTCCGGGAGCACTTACTACGCCGCGAGCGTGAAG




GGCCGCTTCACCATTTCCCGCGATAACTCCCGCAACACCCTGTACTTG




CAAATGAACTCGCTCCGGCCTGAGGACACTGCCATCTACTACTGCTCC




GCACACGGAGGAGAATCCGACGTGTGGGGCCAGGGAACTACCGTGACC




GTCAGCAGCGCCTCCGGCGGCGGGGGCTCAGGCGGACGGGCTAGCGGC




GGCGGTGGCTCCGAGATCGTGCTGACCCAGTCGCCTGGCACTCTCTCG




CTGAGCCCCGGGGAAAGGGCAACCCTGTCCTGTCGGGCCAGCCAGTCC




ATTGGATCATCCTCCCTCGCCTGGTATCAGCAGAAACCGGGACAGGCT




CCGCGGCTGCTTATGTATGGGGCCAGCTCAAGAGCCTCCGGCATTCCC




GACCGGTTCTCCGGGTCCGGTTCCGGCACCGATTTCACCCTGACTATC




TCGAGGCTGGAGCCAGAGGACTTCGCCGTGTACTACTGCCAGCAGTAC




GCGGGGTCCCCGCCGTTCACGTTCGGACAGGGAACCAAGGTCGAGATC




AAG





139114-aa
1053
EVQLVESGGGLVQPGGSLRLSCAVSGFALSNHGMSWVRRAPGKGLEWV


VH

SGIVYSGSTYYAASVKGRFTISRDNSRNTLYLQMNSLRPEDTAIYYCS




AHGGESDVWGQGTTVTVSS





139114-aa
1054
EIVLTQSPGTLSLSPGERATLSCRASQSIGSSSLAWYQQKPGQAPRLL


VL

MYGASSRASGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYAGSP




PFTFGQGTKVEIK





139114-aa
1055
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLSCAVSGF


Full CAR

ALSNHGMSWVRRAPGKGLEWVSGIVYSGSTYYAASVKGRFTISRDNSR




NTLYLQMNSLRPEDTAIYYCSAHGGESDVWGQGTTVTVSSASGGGGSG




GRASGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSIGSSSLAWYQQ




KPGQAPRLLMYGASSRASGIPDRFSGSGSGTDFTLTISRLEPEDFAVY




YCQQYAGSPPFTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEA




CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP




AYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY




NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ




ALPPR





139114-nt
1056
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAATTGGTGGAATCTGGTGGAGGACTT




GTGCAACCTGGAGGATCACTGAGACTGTCATGCGCGGTGTCCGGTTTT




GCCCTGAGCAATCATGGGATGTCGTGGGTCCGGCGCGCCCCCGGAAAG




GGTCTGGAATGGGTGTCGGGTATCGTCTACTCCGGGAGCACTTACTAC




GCCGCGAGCGTGAAGGGCCGCTTCACCATTTCCCGCGATAACTCCCGC




AACACCCTGTACTTGCAAATGAACTCGCTCCGGCCTGAGGACACTGCC




ATCTACTACTGCTCCGCACACGGAGGAGAATCCGACGTGTGGGGCCAG




GGAACTACCGTGACCGTCAGCAGCGCCTCCGGCGGCGGGGGCTCAGGC




GGACGGGCTAGCGGCGGCGGTGGCTCCGAGATCGTGCTGACCCAGTCG




CCTGGCACTCTCTCGCTGAGCCCCGGGGAAAGGGCAACCCTGTCCTGT




CGGGCCAGCCAGTCCATTGGATCATCCTCCCTCGCCTGGTATCAGCAG




AAACCGGGACAGGCTCCGCGGCTGCTTATGTATGGGGCCAGCTCAAGA




GCCTCCGGCATTCCCGACCGGTTCTCCGGGTCCGGTTCCGGCACCGAT




TTCACCCTGACTATCTCGAGGCTGGAGCCAGAGGACTTCGCCGTGTAC




TACTGCCAGCAGTACGCGGGGTCCCCGCCGTTCACGTTCGGACAGGGA




ACCAAGGTCGAGATCAAGACCACTACCCCAGCACCGAGGCCACCCACC




CCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCA




TGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTC




GCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTC




CTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAG




AAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACT




ACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAA




GGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCA




GCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGT




CGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCA




GAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTAC




AACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGT




ATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAG




GGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAG




GCCCTGCCGCCTCGG










149362









149362-aa
1057
QVQLQESGPGLVKPSETLSLTCTVSGGSISSSYYYWGWIRQPPGKGLE


ScFv

WIGSIYYSGSAYYNPSLKSRVTISVDTSKNQFSLRLSSVTAADTAVYY


domain

CARHWQEWPDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSETTLTQSP




AFMSATPGDKVIISCKASQDIDDAMNWYQQKPGEAPLFIIQSATSPVP




GIPPRFSGSGFGTDFSLTINNIESEDAAYYFCLQHDNFPLTFGQGTKL




EIK





149362-nt
1058
CAAGTGCAGCTTCAGGAAAGCGGACCGGGCCTGGTCAAGCCATCCGAA


ScFv

ACTCTCTCCCTGACTTGCACTGTGTCTGGCGGTTCCATCTCATCGTCG


domain

TACTACTACTGGGGCTGGATTAGGCAGCCGCCCGGAAAGGGACTGGAG




TGGATCGGAAGCATCTACTATTCCGGCTCGGCGTACTACAACCCTAGC




CTCAAGTCGAGAGTGACCATCTCCGTGGATACCTCCAAGAACCAGTTT




TCCCTGCGCCTGAGCTCCGTGACCGCCGCTGACACCGCCGTGTACTAC




TGTGCTCGGCATTGGCAGGAATGGCCCGATGCCTTCGACATTTGGGGC




CAGGGCACTATGGTCACTGTGTCATCCGGGGGTGGAGGCAGCGGGGGA




GGAGGGTCCGGGGGGGGAGGTTCAGAGACAACCTTGACCCAGTCACCC




GCATTCATGTCCGCCACTCCGGGAGACAAGGTCATCATCTCGTGCAAA




GCGTCCCAGGATATCGACGATGCCATGAATTGGTACCAGCAGAAGCCT




GGCGAAGCGCCGCTGTTCATTATCCAATCCGCAACCTCGCCCGTGCCT




GGAATCCCACCGCGGTTCAGCGGCAGCGGTTTCGGAACCGACTTTTCC




CTGACCATTAACAACATTGAGTCCGAGGACGCCGCCTACTACTTCTGC




CTGCAACACGACAACTTCCCTCTCACGTTCGGCCAGGGAACCAAGCTG




GAAATCAAG





149362-aa
1059
QVQLQESGPGLVKPSETLSLTCTVSGGSISSSYYYWGWIRQPPGKGLE


VH

WIGSIYYSGSAYYNPSLKSRVTISVDTSKNQFSLRLSSVTAADTAVYY




CARHWQEWPDAFDIWGQGTMVTVSS





149362-aa
1060
ETTLTQSPAFMSATPGDKVIISCKASQDIDDAMNWYQQKPGEAPLFII


VL

QSATSPVPGIPPRFSGSGFGTDFSLTINNIESEDAAYYFCLQHDNFPL




TFGQGTKLEIK





149362-aa
1061
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTCTVSGG


Full CAR

SISSSYYYWGWIRQPPGKGLEWIGSIYYSGSAYYNPSLKSRVTISVDT




SKNQFSLRLSSVTAADTAVYYCARHWQEWPDAFDIWGQGTMVTVSSGG




GGSGGGGSGGGGSETTLTQSPAFMSATPGDKVIISCKASQDIDDAMNW




YQQKPGEAPLFIIQSATSPVPGIPPRFSGSGFGTDFSLTINNIESEDA




AYYFCLQHDNFPLTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRP




EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRG




RKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD




APAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEG




LYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALH




MQALPPR





149362-nt
1062
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAGCTTCAGGAAAGCGGACCGGGCCTG




GTCAAGCCATCCGAAACTCTCTCCCTGACTTGCACTGTGTCTGGCGGT




TCCATCTCATCGTCGTACTACTACTGGGGCTGGATTAGGCAGCCGCCC




GGAAAGGGACTGGAGTGGATCGGAAGCATCTACTATTCCGGCTCGGCG




TACTACAACCCTAGCCTCAAGTCGAGAGTGACCATCTCCGTGGATACC




TCCAAGAACCAGTTTTCCCTGCGCCTGAGCTCCGTGACCGCCGCTGAC




ACCGCCGTGTACTACTGTGCTCGGCATTGGCAGGAATGGCCCGATGCC




TTCGACATTTGGGGCCAGGGCACTATGGTCACTGTGTCATCCGGGGGT




GGAGGCAGCGGGGGAGGAGGGTCCGGGGGGGGAGGTTCAGAGACAACC




TTGACCCAGTCACCCGCATTCATGTCCGCCACTCCGGGAGACAAGGTC




ATCATCTCGTGCAAAGCGTCCCAGGATATCGACGATGCCATGAATTGG




TACCAGCAGAAGCCTGGCGAAGCGCCGCTGTTCATTATCCAATCCGCA




ACCTCGCCCGTGCCTGGAATCCCACCGCGGTTCAGCGGCAGCGGTTTC




GGAACCGACTTTTCCCTGACCATTAACAACATTGAGTCCGAGGACGCC




GCCTACTACTTCTGCCTGCAACACGACAACTTCCCTCTCACGTTCGGC




CAGGGAACCAAGCTGGAAATCAAGACCACTACCCCAGCACCGAGGCCA




CCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCG




GAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTT




GACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGC




GGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGT




CGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTG




CAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAG




GAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGAT




GCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAAT




CTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGG




GACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGC




CTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG




ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTG




TACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCAC




ATGCAGGCCCTGCCGCCTCGG










149363









149363-aa
1063
VNLRESGPALVKPTQTLTLTCTFSGFSLRTSGMCVSWIRQPPGKALEW


ScFv

LARIDWDEDKFYSTSLKTRLTISKDTSDNQVVLRMTNMDPADTATYYC


domain

ARSGAGGTSATAFDIWGPGTMVTVSSGGGGSGGGGSGGGGSDIQMTQS




PSSLSASVGDRVTITCRASQDIYNNLAWFQLKPGSAPRSLMYAANKSQ




SGVPSRFSGSASGTDFTLTISSLQPEDFATYYCQHYYRFPYSFGQGTK




LEIK





149363-nt
1064
CAAGTCAATCTGCGCGAATCCGGCCCCGCCTTGGTCAAGCCTACCCAG


ScFv

ACCCTCACTCTGACCTGTACTTTCTCCGGCTTCTCCCTGCGGACTTCC


domain

GGGATGTGCGTGTCCTGGATCAGACAGCCTCCGGGAAAGGCCCTGGAG




TGGCTCGCTCGCATTGACTGGGATGAGGACAAGTTCTACTCCACCTCA




CTCAAGACCAGGCTGACCATCAGCAAAGATACCTCTGACAACCAAGTG




GTGCTCCGCATGACCAACATGGACCCAGCCGACACTGCCACTTACTAC




TGCGCGAGGAGCGGAGCGGGCGGAACCTCCGCCACCGCCTTCGATATT




TGGGGCCCGGGTACCATGGTCACCGTGTCAAGCGGAGGAGGGGGGTCC




GGGGGCGGCGGTTCCGGGGGAGGCGGATCGGACATTCAGATGACTCAG




TCACCATCGTCCCTGAGCGCTAGCGTGGGCGACAGAGTGACAATCACT




TGCCGGGCATCCCAGGACATCTATAACAACCTTGCGTGGTTCCAGCTG




AAGCCTGGTTCCGCACCGCGGTCACTTATGTACGCCGCCAACAAGAGC




CAGTCGGGAGTGCCGTCCCGGTTTTCCGGTTCGGCCTCGGGAACTGAC




TTCACCCTGACGATCTCCAGCCTGCAACCCGAGGATTTCGCCACCTAC




TACTGCCAGCACTACTACCGCTTTCCCTACTCGTTCGGACAGGGAACC




AAGCTGGAAATCAAG





149363-aa
1065
QVNLRESGPALVKPTQTLTLTCTFSGFSLRTSGMCVSWIRQPPGKALE


VH

WLARIDWDEDKFYSTSLKTRLTISKDTSDNQVVLRMTNMDPADTATYY




CARSGAGGTSATAFDIWGPGTMVTVSS





149363-aa
1066
DIQMTQSPSSLSASVGDRVTITCRASQDIYNNLAWFQLKPGSAPRSLM


VL

YAANKSQSGVPSRFSGSASGTDFTLTISSLQPEDFATYYCQHYYRFPY




SFGQGTKLEIK





149363-aa
1067
MALPVTALLLPLALLLHAARPQVNLRESGPALVKPTQTLTLTCTFSGF


Full CAR

SLRTSGMCVSWIRQPPGKALEWLARIDWDEDKFYSTSLKTRLTISKDT




SDNQVVLRMTNMDPADTATYYCARSGAGGTSATAFDIWGPGTMVTVSS




GGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQDIYNNL




AWFQLKPGSAPRSLMYAANKSQSGVPSRFSGSASGTDFTLTISSLQPE




DFATYYCQHYYRFPYSFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSL




RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCK




RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS




ADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ




EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDA




LHMQALPPR





149363-nt
1068
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTCAATCTGCGCGAATCCGGCCCCGCCTTG




GTCAAGCCTACCCAGACCCTCACTCTGACCTGTACTTTCTCCGGCTTC




TCCCTGCGGACTTCCGGGATGTGCGTGTCCTGGATCAGACAGCCTCCG




GGAAAGGCCCTGGAGTGGCTCGCTCGCATTGACTGGGATGAGGACAAG




TTCTACTCCACCTCACTCAAGACCAGGCTGACCATCAGCAAAGATACC




TCTGACAACCAAGTGGTGCTCCGCATGACCAACATGGACCCAGCCGAC




ACTGCCACTTACTACTGCGCGAGGAGCGGAGCGGGCGGAACCTCCGCC




ACCGCCTTCGATATTTGGGGCCCGGGTACCATGGTCACCGTGTCAAGC




GGAGGAGGGGGGTCCGGGGGCGGCGGTTCCGGGGGAGGCGGATCGGAC




ATTCAGATGACTCAGTCACCATCGTCCCTGAGCGCTAGCGTGGGCGAC




AGAGTGACAATCACTTGCCGGGCATCCCAGGACATCTATAACAACCTT




GCGTGGTTCCAGCTGAAGCCTGGTTCCGCACCGCGGTCACTTATGTAC




GCCGCCAACAAGAGCCAGTCGGGAGTGCCGTCCCGGTTTTCCGGTTCG




GCCTCGGGAACTGACTTCACCCTGACGATCTCCAGCCTGCAACCCGAG




GATTTCGCCACCTACTACTGCCAGCACTACTACCGCTTTCCCTACTCG




TTCGGACAGGGAACCAAGCTGGAAATCAAGACCACTACCCCAGCACCG




AGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTG




CGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGG




GGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGT




ACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAG




CGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGG




CCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCA




GAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGC




GCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAA




CTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGA




GGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAA




GAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTAT




AGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGAC




GGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCT




CTTCACATGCAGGCCCTGCCGCCTCGG










149364









149364-aa
1069
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWV


ScFv

SSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC


domain

AKTIAAVYAFDIWGQGTTVTVSSGGGGSGGGGSGGGGSEIVLTQSPLS




LPVTPEEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSN




RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPYTFGQG




TKLEIK





149364-nt
1070
GAAGTGCAGCTTGTCGAATCCGGGGGGGGACTGGTCAAGCCGGGCGGA


ScFv

TCACTGAGACTGTCCTGCGCCGCGAGCGGCTTCACGTTCTCCTCCTAC


domain

TCCATGAACTGGGTCCGCCAAGCCCCCGGGAAGGGACTGGAATGGGTG




TCCTCTATCTCCTCGTCGTCGTCCTACATCTACTACGCCGACTCCGTG




AAGGGAAGATTCACCATTTCCCGCGACAACGCAAAGAACTCACTGTAC




TTGCAAATGAACTCACTCCGGGCCGAAGATACTGCTGTGTACTATTGC




GCCAAGACTATTGCCGCCGTCTACGCTTTCGACATCTGGGGCCAGGGA




ACCACCGTGACTGTGTCGTCCGGTGGTGGTGGCTCGGGCGGAGGAGGA




AGCGGCGGCGGGGGGTCCGAGATTGTGCTGACCCAGTCGCCACTGAGC




CTCCCTGTGACCCCCGAGGAACCCGCCAGCATCAGCTGCCGGTCCAGC




CAGTCCCTGCTCCACTCCAACGGATACAATTACCTCGATTGGTACCTT




CAGAAGCCTGGACAAAGCCCGCAGCTGCTCATCTACTTGGGATCAAAC




CGCGCGTCAGGAGTGCCTGACCGGTTCTCCGGCTCGGGCAGCGGTACC




GATTTCACCCTGAAAATCTCCAGGGTGGAGGCAGAGGACGTGGGAGTG




TATTACTGTATGCAGGCGCTGCAGACTCCGTACACATTTGGGCAGGGC




ACCAAGCTGGAGATCAAG





149364-aa
1071
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWV


VH

SSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC




AKTIAAVYAFDIWGQGTTVTVSS





149364-aa
1072
EIVLTQSPLSLPVTPEEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS


VL

PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA




LQTPYTFGQGTKLEIK





149364-aa
1073
MALPVTALLLPLALLLHAARPEVQLVESGGGLVKPGGSLRLSCAASGF


Full CAR

TFSSYSMNWVRQAPGKGLEWVSSISSSSSYIYYADSVKGRFTISRDNA




KNSLYLQMNSLRAEDTAVYYCAKTIAAVYAFDIWGQGTTVTVSSGGGG




SGGGGSGGGGSEIVLTQSPLSLPVTPEEPASISCRSSQSLLHSNGYNY




LDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEA




EDVGVYYCMQALQTPYTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLS




LRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





149364-nt
1074
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAGCTTGTCGAATCCGGGGGGGGACTG




GTCAAGCCGGGCGGATCACTGAGACTGTCCTGCGCCGCGAGCGGCTTC




ACGTTCTCCTCCTACTCCATGAACTGGGTCCGCCAAGCCCCCGGGAAG




GGACTGGAATGGGTGTCCTCTATCTCCTCGTCGTCGTCCTACATCTAC




TACGCCGACTCCGTGAAGGGAAGATTCACCATTTCCCGCGACAACGCA




AAGAACTCACTGTACTTGCAAATGAACTCACTCCGGGCCGAAGATACT




GCTGTGTACTATTGCGCCAAGACTATTGCCGCCGTCTACGCTTTCGAC




ATCTGGGGCCAGGGAACCACCGTGACTGTGTCGTCCGGTGGTGGTGGC




TCGGGCGGAGGAGGAAGCGGCGGCGGGGGGTCCGAGATTGTGCTGACC




CAGTCGCCACTGAGCCTCCCTGTGACCCCCGAGGAACCCGCCAGCATC




AGCTGCCGGTCCAGCCAGTCCCTGCTCCACTCCAACGGATACAATTAC




CTCGATTGGTACCTTCAGAAGCCTGGACAAAGCCCGCAGCTGCTCATC




TACTTGGGATCAAACCGCGCGTCAGGAGTGCCTGACCGGTTCTCCGGC




TCGGGCAGCGGTACCGATTTCACCCTGAAAATCTCCAGGGTGGAGGCA




GAGGACGTGGGAGTGTATTACTGTATGCAGGCGCTGCAGACTCCGTAC




ACATTTGGGCAGGGCACCAAGCTGGAGATCAAGACCACTACCCCAGCA




CCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCC




CTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACC




CGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCT




GGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGT




AAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATG




AGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTC




CCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGC




AGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC




GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGG




AGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCC




CAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCC




TATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCAC




GACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGAC




GCTCTTCACATGCAGGCCCTGCCGCCTCGG










149365









149365-aa
1075
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWV


ScFv

SYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC


domain

ARDLRGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSSYVLTQSPSVSA




APGYTATISCGGNNIGTKSVHWYQQKPGQAPLLVIRDDSVRPSKIPGR




FSGSNSGNMATLTISGVQAGDEADFYCQVWDSDSEHVVFGGGTKLTVL





149365-nt
1076
GAAGTCCAGCTCGTGGAGTCCGGCGGAGGCCTTGTGAAGCCTGGAGGT


ScFv

TCGCTGAGACTGTCCTGCGCCGCCTCCGGCTTCACCTTCTCCGACTAC


domain

TACATGTCCTGGATCAGACAGGCCCCGGGAAAGGGCCTGGAATGGGTG




TCCTACATCTCGTCATCGGGCAGCACTATCTACTACGCGGACTCAGTG




AAGGGGCGGTTCACCATTTCCCGGGATAACGCGAAGAACTCGCTGTAT




CTGCAAATGAACTCACTGAGGGCCGAGGACACCGCCGTGTACTACTGC




GCCCGCGATCTCCGCGGGGCATTTGACATCTGGGGACAGGGAACCATG




GTCACAGTGTCCAGCGGAGGGGGAGGATCGGGTGGCGGAGGTTCCGGG




GGTGGAGGCTCCTCCTACGTGCTGACTCAGAGCCCAAGCGTCAGCGCT




GCGCCCGGTTACACGGCAACCATCTCCTGTGGCGGAAACAACATTGGG




ACCAAGTCTGTGCACTGGTATCAGCAGAAGCCGGGCCAAGCTCCCCTG




TTGGTGATCCGCGATGACTCCGTGCGGCCTAGCAAAATTCCGGGACGG




TTCTCCGGCTCCAACAGCGGCAATATGGCCACTCTCACCATCTCGGGA




GTGCAGGCCGGAGATGAAGCCGACTTCTACTGCCAAGTCTGGGACTCA




GACTCCGAGCATGTGGTGTTCGGGGGCGGAACCAAGCTGACTGTGCTC





149365-aa
1077
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLEWV


VH

SYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC




ARDLRGAFDIWGQGTMVTVSS





149365-aa
1078
SYVLTQSPSVSAAPGYTATISCGGNNIGTKSVHWYQQKPGQAPLLVIR


VL

DDSVRPSKIPGRFSGSNSGNMATLTISGVQAGDEADFYCQVWDSDSEH




VVFGGGTKLTVL





149365-aa
1079
MALPVTALLLPLALLLHAARPEVQLVESGGGLVKPGGSLRLSCAASGF


Full CAR

TFSDYYMSWIRQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNA




KNSLYLQMNSLRAEDTAVYYCARDLRGAFDIWGQGTMVTVSSGGGGSG




GGGSGGGGSSYVLTQSPSVSAAPGYTATISCGGNNIGTKSVHWYQQKP




GQAPLLVIRDDSVRPSKIPGRFSGSNSGNMATLTISGVQAGDEADFYC




QVWDSDSEHVVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEAC




RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKK




LLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYN




ELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQA




LPPR





149365-nt
1080
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTCCAGCTCGTGGAGTCCGGCGGAGGCCTT




GTGAAGCCTGGAGGTTCGCTGAGACTGTCCTGCGCCGCCTCCGGCTTC




ACCTTCTCCGACTACTACATGTCCTGGATCAGACAGGCCCCGGGAAAG




GGCCTGGAATGGGTGTCCTACATCTCGTCATCGGGCAGCACTATCTAC




TACGCGGACTCAGTGAAGGGGCGGTTCACCATTTCCCGGGATAACGCG




AAGAACTCGCTGTATCTGCAAATGAACTCACTGAGGGCCGAGGACACC




GCCGTGTACTACTGCGCCCGCGATCTCCGCGGGGCATTTGACATCTGG




GGACAGGGAACCATGGTCACAGTGTCCAGCGGAGGGGGAGGATCGGGT




GGCGGAGGTTCCGGGGGTGGAGGCTCCTCCTACGTGCTGACTCAGAGC




CCAAGCGTCAGCGCTGCGCCCGGTTACACGGCAACCATCTCCTGTGGC




GGAAACAACATTGGGACCAAGTCTGTGCACTGGTATCAGCAGAAGCCG




GGCCAAGCTCCCCTGTTGGTGATCCGCGATGACTCCGTGCGGCCTAGC




AAAATTCCGGGACGGTTCTCCGGCTCCAACAGCGGCAATATGGCCACT




CTCACCATCTCGGGAGTGCAGGCCGGAGATGAAGCCGACTTCTACTGC




CAAGTCTGGGACTCAGACTCCGAGCATGTGGTGTTCGGGGGCGGAACC




AAGCTGACTGTGCTCACCACTACCCCAGCACCGAGGCCACCCACCCCG




GCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGT




AGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCC




TGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTG




CTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAG




CTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACT




CAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGC




GGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCC




TACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGG




AGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAA




ATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAAC




GAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATG




AAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGA




CTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCC




CTGCCGCCTCGG










149366









149366-aa
1081
QVQLVQSGAEVKKPGASVKVSCKPSGYTVTSHYIHWVRRAPGQGLEWM


ScFv

GMINPSGGVTAYSQTLQGRVTMTSDTSSSTVYMELSSLRSEDTAMYYC


domain

AREGSGSGWYFDFWGRGTLVTVSSGGGGSGGGGSGGGGSSYVLTQPPS




VSVSPGQTASITCSGDGLSKKYVSWYQQKAGQSPVVLISRDKERPSGI




PDRFSGSNSADTATLTISGTQAMDEADYYCQAWDDTTVVFGGGTKLTV




L





149366-nt
1082
CAAGTGCAGCTGGTGCAGAGCGGGGCCGAAGTCAAGAAGCCGGGAGCC


ScFv

TCCGTGAAAGTGTCCTGCAAGCCTTCGGGATACACCGTGACCTCCCAC


domain

TACATTCATTGGGTCCGCCGCGCCCCCGGCCAAGGACTCGAGTGGATG




GGCATGATCAACCCTAGCGGCGGAGTGACCGCGTACAGCCAGACGCTG




CAGGGACGCGTGACTATGACCTCGGATACCTCCTCCTCCACCGTCTAT




ATGGAACTGTCCAGCCTGCGGTCCGAGGATACCGCCATGTACTACTGC




GCCCGGGAAGGATCAGGCTCCGGGTGGTATTTCGACTTCTGGGGAAGA




GGCACCCTCGTGACTGTGTCATCTGGGGGAGGGGGTTCCGGTGGTGGC




GGATCGGGAGGAGGCGGTTCATCCTACGTGCTGACCCAGCCACCCTCC




GTGTCCGTGAGCCCCGGCCAGACTGCATCGATTACATGTAGCGGCGAC




GGCCTCTCCAAGAAATACGTGTCGTGGTACCAGCAGAAGGCCGGACAG




AGCCCGGTGGTGCTGATCTCAAGAGATAAGGAGCGGCCTAGCGGAATC




CCGGACAGGTTCTCGGGTTCCAACTCCGCGGACACTGCTACTCTGACC




ATCTCGGGGACCCAGGCTATGGACGAAGCCGATTACTACTGCCAAGCC




TGGGACGACACTACTGTCGTGTTTGGAGGGGGCACCAAGTTGACCGTC




CTT





149366-aa
1083
QVQLVQSGAEVKKPGASVKVSCKPSGYTVTSHYIHWVRRAPGQGLEWM


VH

GMINPSGGVTAYSQTLQGRVTMTSDTSSSTVYMELSSLRSEDTAMYYC




AREGSGSGWYFDFWGRGTLVTVSS





149366-aa
1084
SYVLTQPPSVSVSPGQTASITCSGDGLSKKYVSWYQQKAGQSPVVLIS


VL

RDKERPSGIPDRFSGSNSADTATLTISGTQAMDEADYYCQAWDDTTVV




FGGGTKLTVL





149366-aa
1085
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVSCKPSGY


Full CAR

TVTSHYIHWVRRAPGQGLEWMGMINPSGGVTAYSQTLQGRVTMTSDTS




SSTVYMELSSLRSEDTAMYYCAREGSGSGWYFDFWGRGTLVTVSSGGG




GSGGGGSGGGGSSYVLTQPPSVSVSPGQTASITCSGDGLSKKYVSWYQ




QKAGQSPVVLISRDKERPSGIPDRFSGSNSADTATLTISGTQAMDEAD




YYCQAWDDTTVVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEA




CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP




AYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY




NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ




ALPPR





149366-nt
1086
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAGCTGGTGCAGAGCGGGGCCGAAGTC




AAGAAGCCGGGAGCCTCCGTGAAAGTGTCCTGCAAGCCTTCGGGATAC




ACCGTGACCTCCCACTACATTCATTGGGTCCGCCGCGCCCCCGGCCAA




GGACTCGAGTGGATGGGCATGATCAACCCTAGCGGCGGAGTGACCGCG




TACAGCCAGACGCTGCAGGGACGCGTGACTATGACCTCGGATACCTCC




TCCTCCACCGTCTATATGGAACTGTCCAGCCTGCGGTCCGAGGATACC




GCCATGTACTACTGCGCCCGGGAAGGATCAGGCTCCGGGTGGTATTTC




GACTTCTGGGGAAGAGGCACCCTCGTGACTGTGTCATCTGGGGGAGGG




GGTTCCGGTGGTGGCGGATCGGGAGGAGGCGGTTCATCCTACGTGCTG




ACCCAGCCACCCTCCGTGTCCGTGAGCCCCGGCCAGACTGCATCGATT




ACATGTAGCGGCGACGGCCTCTCCAAGAAATACGTGTCGTGGTACCAG




CAGAAGGCCGGACAGAGCCCGGTGGTGCTGATCTCAAGAGATAAGGAG




CGGCCTAGCGGAATCCCGGACAGGTTCTCGGGTTCCAACTCCGCGGAC




ACTGCTACTCTGACCATCTCGGGGACCCAGGCTATGGACGAAGCCGAT




TACTACTGCCAAGCCTGGGACGACACTACTGTCGTGTTTGGAGGGGGC




ACCAAGTTGACCGTCCTTACCACTACCCCAGCACCGAGGCCACCCACC




CCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCA




TGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTC




GCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTC




CTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAG




AAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACT




ACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAA




GGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCA




GCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGT




CGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCA




GAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTAC




AACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGT




ATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAG




GGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAG




GCCCTGCCGCCTCGG










149367









149367-aa
1087
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLE


ScFv

WIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY


domain

CARAGIAARLRGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDIVMTQ




SPSSVSASVGDRVIITCRASQGIRNWLAWYQQKPGKAPNLLIYAASNL




QSGVPSRFSGSGSGADFTLTISSLQPEDVATYYCQKYNSAPFTFGPGT




KVDIK





149367-nt
1088
CAAGTGCAGCTTCAGGAGAGCGGCCCGGGACTCGTGAAGCCGTCCCAG


ScFv

ACCCTGTCCCTGACTTGCACCGTGTCGGGAGGAAGCATCTCGAGCGGA


domain

GGCTACTATTGGTCGTGGATTCGGCAGCACCCTGGAAAGGGCCTGGAA




TGGATCGGCTACATCTACTACTCCGGCTCGACCTACTACAACCCATCG




CTGAAGTCCAGAGTGACAATCTCAGTGGACACGTCCAAGAATCAGTTC




AGCCTGAAGCTCTCTTCCGTGACTGCGGCCGACACCGCCGTGTACTAC




TGCGCACGCGCTGGAATTGCCGCCCGGCTGAGGGGTGCCTTCGACATT




TGGGGACAGGGCACCATGGTCACCGTGTCCTCCGGCGGCGGAGGTTCC




GGGGGTGGAGGCTCAGGAGGAGGGGGGTCCGACATCGTCATGACTCAG




TCGCCCTCAAGCGTCAGCGCGTCCGTCGGGGACAGAGTGATCATCACC




TGTCGGGCGTCCCAGGGAATTCGCAACTGGCTGGCCTGGTATCAGCAG




AAGCCCGGAAAGGCCCCCAACCTGTTGATCTACGCCGCCTCAAACCTC




CAATCCGGGGTGCCGAGCCGCTTCAGCGGCTCCGGTTCGGGTGCCGAT




TTCACTCTGACCATCTCCTCCCTGCAACCTGAAGATGTGGCTACCTAC




TACTGCCAAAAGTACAACTCCGCACCTTTTACTTTCGGACCGGGGACC




AAAGTGGACATTAAG





149367-aa
1089
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLE


VH

WIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




CARAGIAARLRGAFDIWGQGTMVTVSS





149367-aa
1090
DIVMTQSPSSVSASVGDRVIITCRASQGIRNWLAWYQQKPGKAPNLLI


VL

YAASNLQSGVPSRFSGSGSGADFTLTISSLQPEDVATYYCQKYNSAPF




TFGPGTKVDIK





149367-aa
1091
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSQTLSLTCTVSGG


Full CAR

SISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDT




SKNQFSLKLSSVTAADTAVYYCARAGIAARLRGAFDIWGQGTMVTVSS




GGGGSGGGGSGGGGSDIVMTQSPSSVSASVGDRVIITCRASQGIRNWL




AWYQQKPGKAPNLLIYAASNLQSGVPSRFSGSGSGADFTLTISSLQPE




DVATYYCQKYNSAPFTFGPGTKVDIKTTTPAPRPPTPAPTIASQPLSL




RPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCK




RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS




ADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ




EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDA




LHMQALPPR





149367-nt
1092
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAGCTTCAGGAGAGCGGCCCGGGACTC




GTGAAGCCGTCCCAGACCCTGTCCCTGACTTGCACCGTGTCGGGAGGA




AGCATCTCGAGCGGAGGCTACTATTGGTCGTGGATTCGGCAGCACCCT




GGAAAGGGCCTGGAATGGATCGGCTACATCTACTACTCCGGCTCGACC




TACTACAACCCATCGCTGAAGTCCAGAGTGACAATCTCAGTGGACACG




TCCAAGAATCAGTTCAGCCTGAAGCTCTCTTCCGTGACTGCGGCCGAC




ACCGCCGTGTACTACTGCGCACGCGCTGGAATTGCCGCCCGGCTGAGG




GGTGCCTTCGACATTTGGGGACAGGGCACCATGGTCACCGTGTCCTCC




GGCGGCGGAGGTTCCGGGGGTGGAGGCTCAGGAGGAGGGGGGTCCGAC




ATCGTCATGACTCAGTCGCCCTCAAGCGTCAGCGCGTCCGTCGGGGAC




AGAGTGATCATCACCTGTCGGGCGTCCCAGGGAATTCGCAACTGGCTG




GCCTGGTATCAGCAGAAGCCCGGAAAGGCCCCCAACCTGTTGATCTAC




GCCGCCTCAAACCTCCAATCCGGGGTGCCGAGCCGCTTCAGCGGCTCC




GGTTCGGGTGCCGATTTCACTCTGACCATCTCCTCCCTGCAACCTGAA




GATGTGGCTACCTACTACTGCCAAAAGTACAACTCCGCACCTTTTACT




TTCGGACCGGGGACCAAAGTGGACATTAAGACCACTACCCCAGCACCG




AGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTG




CGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGG




GGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGT




ACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAG




CGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGG




CCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCA




GAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGC




GCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAA




CTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGA




GGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAA




GAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTAT




AGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGAC




GGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCT




CTTCACATGCAGGCCCTGCCGCCTCGG










149368









149368-aa
1093
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWM


ScFv

GGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYC


domain

ARRGGYQLLRWDVGLLRSAFDIWGQGTMVTVSSGGGGSGGGGSGGGGS




SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVLY




GKNNRPSGVPDRFSGSRSGTTASLTITGAQAEDEADYYCSSRDSSGDH




LRVFGTGTKVTVL





149368-nt
1094
CAAGTGCAGCTGGTCCAGTCGGGCGCCGAGGTCAAGAAGCCCGGGAGC


ScFv

TCTGTGAAAGTGTCCTGCAAGGCCTCCGGGGGCACCTTTAGCTCCTAC


domain

GCCATCTCCTGGGTCCGCCAAGCACCGGGTCAAGGCCTGGAGTGGATG




GGGGGAATTATCCCTATCTTCGGCACTGCCAACTACGCCCAGAAGTTC




CAGGGACGCGTGACCATTACCGCGGACGAATCCACCTCCACCGCTTAT




ATGGAGCTGTCCAGCTTGCGCTCGGAAGATACCGCCGTGTACTACTGC




GCCCGGAGGGGTGGATACCAGCTGCTGAGATGGGACGTGGGCCTCCTG




CGGTCGGCGTTCGACATCTGGGGCCAGGGCACTATGGTCACTGTGTCC




AGCGGAGGAGGCGGATCGGGAGGCGGCGGATCAGGGGGAGGCGGTTCC




AGCTACGTGCTTACTCAACCCCCTTCGGTGTCCGTGGCCCCGGGACAG




ACCGCCAGAATCACTTGCGGAGGAAACAACATTGGGTCCAAGAGCGTG




CATTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTGCTGGTGCTCTAC




GGGAAGAACAATCGGCCCAGCGGAGTGCCGGACAGGTTCTCGGGTTCA




CGCTCCGGTACAACCGCTTCACTGACTATCACCGGGGCCCAGGCAGAG




GATGAAGCGGACTACTACTGTTCCTCCCGGGATTCATCCGGCGACCAC




CTCCGGGTGTTCGGAACCGGAACGAAGGTCACCGTGCTG





149368-aa
1095
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWM


VH

GGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYC




ARRGGYQLLRWDVGLLRSAFDIWGQGTMVTVSS





149368-aa
1096
SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVLY


VL

GKNNRPSGVPDRFSGSRSGTTASLTITGAQAEDEADYYCSSRDSSGDH




LRVFGTGTKVTVL





149368-aa
1097
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGSSVKVSCKASGG


Full CAR

TFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADES




TSTAYMELSSLRSEDTAVYYCARRGGYQLLRWDVGLLRSAFDIWGQGT




MVTVSSGGGGSGGGGSGGGGSSYVLTQPPSVSVAPGQTARITCGGNNI




GSKSVHWYQQKPGQAPVLVLYGKNNRPSGVPDRFSGSRSGTTASLTIT




GAQAEDEADYYCSSRDSSGDHLRVFGTGTKVTVLTTTPAPRPPTPAPT




IASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLS




LVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCE




LRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG




KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





149368-nt
1098
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCCAAGTGCAGCTGGTCCAGTCGGGCGCCGAGGTC




AAGAAGCCCGGGAGCTCTGTGAAAGTGTCCTGCAAGGCCTCCGGGGGC




ACCTTTAGCTCCTACGCCATCTCCTGGGTCCGCCAAGCACCGGGTCAA




GGCCTGGAGTGGATGGGGGGAATTATCCCTATCTTCGGCACTGCCAAC




TACGCCCAGAAGTTCCAGGGACGCGTGACCATTACCGCGGACGAATCC




ACCTCCACCGCTTATATGGAGCTGTCCAGCTTGCGCTCGGAAGATACC




GCCGTGTACTACTGCGCCCGGAGGGGTGGATACCAGCTGCTGAGATGG




GACGTGGGCCTCCTGCGGTCGGCGTTCGACATCTGGGGCCAGGGCACT




ATGGTCACTGTGTCCAGCGGAGGAGGCGGATCGGGAGGCGGCGGATCA




GGGGGAGGCGGTTCCAGCTACGTGCTTACTCAACCCCCTTCGGTGTCC




GTGGCCCCGGGACAGACCGCCAGAATCACTTGCGGAGGAAACAACATT




GGGTCCAAGAGCGTGCATTGGTACCAGCAGAAGCCAGGACAGGCCCCT




GTGCTGGTGCTCTACGGGAAGAACAATCGGCCCAGCGGAGTGCCGGAC




AGGTTCTCGGGTTCACGCTCCGGTACAACCGCTTCACTGACTATCACC




GGGGCCCAGGCAGAGGATGAAGCGGACTACTACTGTTCCTCCCGGGAT




TCATCCGGCGACCACCTCCGGGTGTTCGGAACCGGAACGAAGGTCACC




GTGCTGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACC




ATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCA




GCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATC




TACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCA




CTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTAC




ATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAG




GACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAA




CTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAG




GGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAG




TACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGG




AAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAA




AAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAA




CGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACC




GCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCT




CGG










149369









149369-aa
1099
EVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLE


ScFv

WLGRTYYRSKWYSFYAISLKSRIIINPDTSKNQFSLQLKSVTPEDTAV


domain

YYCARSSPEGLFLYWFDPWGQGTLVTVSSGGDGSGGGGSGGGGSSSEL




TQDPAVSVALGQTIRITCQGDSLGNYYATWYQQKPGQAPVLVIYGTNN




RPSGIPDRFSASSSGNTASLTITGAQAEDEADYYCNSRDSSGHHLLFG




TGTKVTVL





149369-nt
1100
GAAGTGCAGCTCCAACAGTCAGGACCGGGGCTCGTGAAGCCATCCCAG


ScFv

ACCCTGTCCCTGACTTGTGCCATCTCGGGAGATAGCGTGTCATCGAAC


domain

TCCGCCGCCTGGAACTGGATTCGGCAGAGCCCGTCCCGCGGACTGGAG




TGGCTTGGAAGGACCTACTACCGGTCCAAGTGGTACTCTTTCTACGCG




ATCTCGCTGAAGTCCCGCATTATCATTAACCCTGATACCTCCAAGAAT




CAGTTCTCCCTCCAACTGAAATCCGTCACCCCCGAGGACACAGCAGTG




TATTACTGCGCACGGAGCAGCCCCGAAGGACTGTTCCTGTATTGGTTT




GACCCCTGGGGCCAGGGGACTCTTGTGACCGTGTCGAGCGGCGGAGAT




GGGTCCGGTGGCGGTGGTTCGGGGGGCGGCGGATCATCATCCGAACTG




ACCCAGGACCCGGCTGTGTCCGTGGCGCTGGGACAAACCATCCGCATT




ACGTGCCAGGGAGACTCCCTGGGCAACTACTACGCCACTTGGTACCAG




CAGAAGCCGGGCCAAGCCCCTGTGTTGGTCATCTACGGGACCAACAAC




AGACCTTCCGGCATCCCCGACCGGTTCAGCGCTTCGTCCTCCGGCAAC




ACTGCCAGCCTGACCATCACTGGAGCGCAGGCCGAAGATGAGGCCGAC




TACTACTGCAACAGCAGAGACTCCTCGGGTCATCACCTCTTGTTCGGA




ACTGGAACCAAGGTCACCGTGCTG





149369-aa
1101
EVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLE


VH

WLGRTYYRSKWYSFYAISLKSRIIINPDTSKNQFSLQLKSVTPEDTAV




YYCARSSPEGLFLYWFDPWGQGTLVTVSS





149369-aa
1102
SSELTQDPAVSVALGQTIRITCQGDSLGNYYATWYQQKPGQAPVLVIY


VL

GTNNRPSGIPDRFSASSSGNTASLTITGAQAEDEADYYCNSRDSSGHH




LLFGTGTKVTVL





149369-aa
1103
MALPVTALLLPLALLLHAARPEVQLQQSGPGLVKPSQTLSLTCAISGD


Full CAR

SVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYSFYAISLKSRIIINP




DTSKNQFSLQLKSVTPEDTAVYYCARSSPEGLFLYWFDPWGQGTLVTV




SSGGDGSGGGGSGGGGSSSELTQDPAVSVALGQTIRITCQGDSLGNYY




ATWYQQKPGQAPVLVIYGTNNRPSGIPDRFSASSSGNTASLTITGAQA




EDEADYYCNSRDSSGHHLLFGTGTKVTVLTTTPAPRPPTPAPTIASQP




LSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




YCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF




SRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT




YDALHMQALPPR





149369-nt
1104
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


Full CAR

CACGCCGCTCGGCCCGAAGTGCAGCTCCAACAGTCAGGACCGGGGCTC




GTGAAGCCATCCCAGACCCTGTCCCTGACTTGTGCCATCTCGGGAGAT




AGCGTGTCATCGAACTCCGCCGCCTGGAACTGGATTCGGCAGAGCCCG




TCCCGCGGACTGGAGTGGCTTGGAAGGACCTACTACCGGTCCAAGTGG




TACTCTTTCTACGCGATCTCGCTGAAGTCCCGCATTATCATTAACCCT




GATACCTCCAAGAATCAGTTCTCCCTCCAACTGAAATCCGTCACCCCC




GAGGACACAGCAGTGTATTACTGCGCACGGAGCAGCCCCGAAGGACTG




TTCCTGTATTGGTTTGACCCCTGGGGCCAGGGGACTCTTGTGACCGTG




TCGAGCGGCGGAGATGGGTCCGGTGGCGGTGGTTCGGGGGGCGGCGGA




TCATCATCCGAACTGACCCAGGACCCGGCTGTGTCCGTGGCGCTGGGA




CAAACCATCCGCATTACGTGCCAGGGAGACTCCCTGGGCAACTACTAC




GCCACTTGGTACCAGCAGAAGCCGGGCCAAGCCCCTGTGTTGGTCATC




TACGGGACCAACAACAGACCTTCCGGCATCCCCGACCGGTTCAGCGCT




TCGTCCTCCGGCAACACTGCCAGCCTGACCATCACTGGAGCGCAGGCC




GAAGATGAGGCCGACTACTACTGCAACAGCAGAGACTCCTCGGGTCAT




CACCTCTTGTTCGGAACTGGAACCAAGGTCACCGTGCTGACCACTACC




CCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCT




CTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTG




CATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCT




CTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTT




TACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCC




TTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGC




CGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTC




AGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTC




TACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGAC




AAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAG




AATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCA




GAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAA




GGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACC




TATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1978-A4









BCMA_EBB-
1105
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1978-A4-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


aa

AKVEGSGSLDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPGTL


ScFv

SLSPGERATLSCRASQSVSSAYLAWYQQKPGQPPRLLISGASTRATGI


domain

PDRFGGSGSGTDFTLTISRLEPEDFAVYYCQHYGSSFNGSSLFTFGQG




TRLEIK





BCMA_EBB-
1106
GAAGTGCAGCTCGTGGAGTCAGGAGGCGGCCTGGTCCAGCCGGGAGGG


C1978-A4-

TCCCTTAGACTGTCATGCGCCGCAAGCGGATTCACTTTCTCCTCCTAT


nt

GCCATGAGCTGGGTCCGCCAAGCCCCCGGAAAGGGACTGGAATGGGTG


ScFv

TCCGCCATCTCGGGGTCTGGAGGCTCAACTTACTACGCTGACTCCGTG


domain

AAGGGACGGTTCACCATTAGCCGCGACAACTCCAAGAACACCCTCTAC




CTCCAAATGAACTCCCTGCGGGCCGAGGATACCGCCGTCTACTACTGC




GCCAAAGTGGAAGGTTCAGGATCGCTGGACTACTGGGGACAGGGTACT




CTCGTGACCGTGTCATCGGGCGGAGGAGGTTCCGGCGGTGGCGGCTCC




GGCGGCGGAGGGTCGGAGATCGTGATGACCCAGAGCCCTGGTACTCTG




AGCCTTTCGCCGGGAGAAAGGGCCACCCTGTCCTGCCGCGCTTCCCAA




TCCGTGTCCTCCGCGTACTTGGCGTGGTACCAGCAGAAGCCGGGACAG




CCCCCTCGGCTGCTGATCAGCGGGGCCAGCACCCGGGCAACCGGAATC




CCAGACAGATTCGGGGGTTCCGGCAGCGGCACAGATTTCACCCTGACT




ATTTCGAGGTTGGAGCCCGAGGACTTTGCGGTGTATTACTGTCAGCAC




TACGGGTCGTCCTTTAATGGCTCCAGCCTGTTCACGTTCGGACAGGGG




ACCCGCCTGGAAATCAAG





BCMA_EBB-
1107
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1978-A4-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


aa

AKVEGSGSLDYWGQGTLVTVSS


VH





BCMA_EBB-
1108
EIVMTQSPGTLSLSPGERATLSCRASQSVSSAYLAWYQQKPGQPPRLL


C1978-A4-

ISGASTRATGIPDRFGGSGSGTDFTLTISRLEPEDFAVYYCQHYGSSF


aa

NGSSLFTFGQGTRLEIK


VL





BCMA_EBB-
1109
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLSCAASGF


C1978-A4-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNS


aa

KNTLYLQMNSLRAEDTAVYYCAKVEGSGSLDYWGQGTLVTVSSGGGGS


Full CART

GGGGSGGGGSEIVMTQSPGTLSLSPGERATLSCRASQSVSSAYLAWYQ




QKPGQPPRLLISGASTRATGIPDRFGGSGSGTDFTLTISRLEPEDFAV




YYCQHYGSSFNGSSLFTFGQGTRLEIKTTTPAPRPPTPAPTIASQPLS




LRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





BCMA_EBB-
1110
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1978-A4-

CACGCCGCTCGGCCCGAAGTGCAGCTCGTGGAGTCAGGAGGCGGCCTG


nt

GTCCAGCCGGGAGGGTCCCTTAGACTGTCATGCGCCGCAAGCGGATTC


Full CART

ACTTTCTCCTCCTATGCCATGAGCTGGGTCCGCCAAGCCCCCGGAAAG




GGACTGGAATGGGTGTCCGCCATCTCGGGGTCTGGAGGCTCAACTTAC




TACGCTGACTCCGTGAAGGGACGGTTCACCATTAGCCGCGACAACTCC




AAGAACACCCTCTACCTCCAAATGAACTCCCTGCGGGCCGAGGATACC




GCCGTCTACTACTGCGCCAAAGTGGAAGGTTCAGGATCGCTGGACTAC




TGGGGACAGGGTACTCTCGTGACCGTGTCATCGGGCGGAGGAGGTTCC




GGCGGTGGCGGCTCCGGCGGCGGAGGGTCGGAGATCGTGATGACCCAG




AGCCCTGGTACTCTGAGCCTTTCGCCGGGAGAAAGGGCCACCCTGTCC




TGCCGCGCTTCCCAATCCGTGTCCTCCGCGTACTTGGCGTGGTACCAG




CAGAAGCCGGGACAGCCCCCTCGGCTGCTGATCAGCGGGGCCAGCACC




CGGGCAACCGGAATCCCAGACAGATTCGGGGGTTCCGGCAGCGGCACA




GATTTCACCCTGACTATTTCGAGGTTGGAGCCCGAGGACTTTGCGGTG




TATTACTGTCAGCACTACGGGTCGTCCTTTAATGGCTCCAGCCTGTTC




ACGTTCGGACAGGGGACCCGCCTGGAAATCAAGACCACTACCCCAGCA




CCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCC




CTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACC




CGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCT




GGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGT




AAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATG




AGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTC




CCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGC




AGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC




GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGG




AGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCC




CAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCC




TATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCAC




GACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGAC




GCTCTTCACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1978-G1









BCMA_EBB-
1111
EVQLVETGGGLVQPGGSLRLSCAASGITFSRYPMSWVRQAPGKG


C1978-G1-

LEWVSGISDSGVSTYYADSAKGRFTISRDNSKNTLFLQMSSLRDE


aa

DTAVYYCVTRAGSEASDIWGQGTMVTVSSGGGGSGGGGSGGG


ScFv

GSEIVLTQSPATLSLSPGERATLSCRASQSVSNSLAWYQQKPGQA


domain

PRLLIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAIYYCQQ




FGTSSGLTFGGGTKLEIK





BCMA_EBB-
1112
GAAGTGCAACTGGTGGAAACCGGTGGCGGCCTGGTGCAGCCTGGAGGA


C1978-G1-

TCATTGAGGCTGTCATGCGCGGCCAGCGGTATTACCTTCTCCCGGTAC


nt

CCCATGTCCTGGGTCAGACAGGCCCCGGGGAAAGGGCTTGAATGGGTG


ScFv

TCCGGGATCTCGGACTCCGGTGTCAGCACTTACTACGCCGACTCCGCC


domain

AAGGGACGCTTCACCATTTCCCGGGACAACTCGAAGAACACCCTGTTC




CTCCAAATGAGCTCCCTCCGGGACGAGGATACTGCAGTGTACTACTGC




GTGACCCGCGCCGGGTCCGAGGCGTCTGACATTTGGGGACAGGGCACT




ATGGTCACCGTGTCGTCCGGCGGAGGGGGCTCGGGAGGCGGTGGCAGC




GGAGGAGGAGGGTCCGAGATCGTGCTGACCCAATCCCCGGCCACCCTC




TCGCTGAGCCCTGGAGAAAGGGCAACCTTGTCCTGTCGCGCGAGCCAG




TCCGTGAGCAACTCCCTGGCCTGGTACCAGCAGAAGCCCGGACAGGCT




CCGAGACTTCTGATCTACGACGCTTCGAGCCGGGCCACTGGAATCCCC




GACCGCTTTTCGGGGTCCGGCTCAGGAACCGATTTCACCCTGACAATC




TCACGGCTGGAGCCAGAGGATTTCGCCATCTATTACTGCCAGCAGTTC




GGTACTTCCTCCGGCCTGACTTTCGGAGGCGGCACGAAGCTCGAAATC




AAG





BCMA_EBB-
1113
EVQLVETGGGLVQPGGSLRLSCAASGITFSRYPMSWVRQAPGKGLEWV


C1978-G1-

SGISDSGVSTYYADSAKGRFTISRDNSKNTLFLQMSSLRDEDTAVYYC


aa

VTRAGSEASDIWGQGTMVTVSS


VH





BCMA_EBB-
1114
EIVLTQSPATLSLSPGERATLSCRASQSVSNSLAWYQQKPGQAPRLLI


C1978-G1-

YDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAIYYCQQFGTSSG


aa

LTFGGGTKLEIK


VL





BCMA_EBB-
1115
MALPVTALLLPLALLLHAARPEVQLVETGGGLVQPGGSLRLSCA


C1978-G1-

ASGITFSRYPMSWVRQAPGKGLEWVSGISDSGVSTYYADSAKGR


aa

FTISRDNSKNTLFLQMSSLRDEDTAVYYCVTRAGSEASDIWGQG


Full CART

TMVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERATLSC




RASQSVSNSLAWYQQKPGQAPRLLIYDASSRATGIPDRFSGSGSG




TDFTLTISRLEPEDFAIYYCQQFGTSSGLTFGGGTKLEIKTTTPAPR




PPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPL




AGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDG




CSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAY




SEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR





BCMA_EBB-
1116
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1978-G1-

CACGCCGCTCGGCCCGAAGTGCAACTGGTGGAAACCGGTGGCGGCCTG


nt

GTGCAGCCTGGAGGATCATTGAGGCTGTCATGCGCGGCCAGCGGTATT


Full CART

ACCTTCTCCCGGTACCCCATGTCCTGGGTCAGACAGGCCCCGGGGAAA




GGGCTTGAATGGGTGTCCGGGATCTCGGACTCCGGTGTCAGCACTTAC




TACGCCGACTCCGCCAAGGGACGCTTCACCATTTCCCGGGACAACTCG




AAGAACACCCTGTTCCTCCAAATGAGCTCCCTCCGGGACGAGGATACT




GCAGTGTACTACTGCGTGACCCGCGCCGGGTCCGAGGCGTCTGACATT




TGGGGACAGGGCACTATGGTCACCGTGTCGTCCGGCGGAGGGGGCTCG




GGAGGCGGTGGCAGCGGAGGAGGAGGGTCCGAGATCGTGCTGACCCAA




TCCCCGGCCACCCTCTCGCTGAGCCCTGGAGAAAGGGCAACCTTGTCC




TGTCGCGCGAGCCAGTCCGTGAGCAACTCCCTGGCCTGGTACCAGCAG




AAGCCCGGACAGGCTCCGAGACTTCTGATCTACGACGCTTCGAGCCGG




GCCACTGGAATCCCCGACCGCTTTTCGGGGTCCGGCTCAGGAACCGAT




TTCACCCTGACAATCTCACGGCTGGAGCCAGAGGATTTCGCCATCTAT




TACTGCCAGCAGTTCGGTACTTCCTCCGGCCTGACTTTCGGAGGCGGC




ACGAAGCTCGAAATCAAGACCACTACCCCAGCACCGAGGCCACCCACC




CCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCA




TGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTC




GCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTC




CTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAG




AAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACT




ACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAA




GGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCA




GCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGT




CGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCA




GAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTAC




AACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGT




ATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAG




GGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAG




GCCCTGCCGCCTCGG










BCMA_EBB-C1979-C1









BCMA_EBB-
1117
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1979-C1-

SAISGSGGSTYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAIYYC


aa

ARATYKRELRYYYGMDVWGQGTMVTVSSGGGGSGGGGSGGGGSEIVMT


ScFv

QSPGTVSLSPGERATLSCRASQSVSSSFLAWYQQKPGQAPRLLIYGAS


domain

SRATGIPDRFSGSGSGTDFTLTISRLEPEDSAVYYCQQYHSSPSWTFG




QGTRLEIK





BCMA_EBB-
1118
CAAGTGCAGCTCGTGGAATCGGGTGGCGGACTGGTGCAGCCGGGGGGC


C1979-C1-

TCACTTAGACTGTCCTGCGCGGCCAGCGGATTCACTTTCTCCTCCTAC


nt

GCCATGTCCTGGGTCAGACAGGCCCCTGGAAAGGGCCTGGAATGGGTG


ScFv

TCCGCAATCAGCGGCAGCGGCGGCTCGACCTATTACGCGGATTCAGTG


domain

AAGGGCAGATTCACCATTTCCCGGGACAACGCCAAGAACTCCTTGTAC




CTTCAAATGAACTCCCTCCGCGCGGAAGATACCGCAATCTACTACTGC




GCTCGGGCCACTTACAAGAGGGAACTGCGCTACTACTACGGGATGGAC




GTCTGGGGCCAGGGAACCATGGTCACCGTGTCCAGCGGAGGAGGAGGA




TCGGGAGGAGGCGGTAGCGGGGGTGGAGGGTCGGAGATCGTGATGACC




CAGTCCCCCGGCACTGTGTCGCTGTCCCCCGGCGAACGGGCCACCCTG




TCATGTCGGGCCAGCCAGTCAGTGTCGTCAAGCTTCCTCGCCTGGTAC




CAGCAGAAACCGGGACAAGCTCCCCGCCTGCTGATCTACGGAGCCAGC




AGCCGGGCCACCGGTATTCCTGACCGGTTCTCCGGTTCGGGGTCCGGG




ACCGACTTTACTCTGACTATCTCTCGCCTCGAGCCAGAGGACTCCGCC




GTGTATTACTGCCAGCAGTACCACTCCTCCCCGTCCTGGACGTTCGGA




CAGGGCACAAGGCTGGAGATTAAG





BCMA_EBB-
1119
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1979-C1-

SAISGSGGSTYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAIYYC


aa

ARATYKRELRYYYGMDVWGQGTMVTVSS


VH





BCMA_EBB-
1120
EIVMTQSPGTVSLSPGERATLSCRASQSVSSSFLAWYQQKPGQAPRLL


C1979-C1-

IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDSAVYYCQQYHSSP


aa

SWTFGQGTRLEIK


VL





BCMA_EBB-
1121
MALPVTALLLPLALLLHAARPQVQLVESGGGLVQPGGSLRLSCAASGF


C1979-C1-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNA


aa

KNSLYLQMNSLRAEDTAIYYCARATYKRELRYYYGMDVWGQGTMVTVS


Full CART

SGGGGSGGGGSGGGGSEIVMTQSPGTVSLSPGERATLSCRASQSVSSS




FLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLE




PEDSAVYYCQQYHSSPSWTFGQGTRLEIKTTTPAPRPPTPAPTIASQP




LSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




YCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF




SRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT




YDALHMQALPPR





BCMA_EBB-
1122
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1979-C1-

CACGCCGCTCGGCCCCAAGTGCAGCTCGTGGAATCGGGTGGCGGACTG


nt

GTGCAGCCGGGGGGCTCACTTAGACTGTCCTGCGCGGCCAGCGGATTC


Full CART

ACTTTCTCCTCCTACGCCATGTCCTGGGTCAGACAGGCCCCTGGAAAG




GGCCTGGAATGGGTGTCCGCAATCAGCGGCAGCGGCGGCTCGACCTAT




TACGCGGATTCAGTGAAGGGCAGATTCACCATTTCCCGGGACAACGCC




AAGAACTCCTTGTACCTTCAAATGAACTCCCTCCGCGCGGAAGATACC




GCAATCTACTACTGCGCTCGGGCCACTTACAAGAGGGAACTGCGCTAC




TACTACGGGATGGACGTCTGGGGCCAGGGAACCATGGTCACCGTGTCC




AGCGGAGGAGGAGGATCGGGAGGAGGCGGTAGCGGGGGTGGAGGGTCG




GAGATCGTGATGACCCAGTCCCCCGGCACTGTGTCGCTGTCCCCCGGC




GAACGGGCCACCCTGTCATGTCGGGCCAGCCAGTCAGTGTCGTCAAGC




TTCCTCGCCTGGTACCAGCAGAAACCGGGACAAGCTCCCCGCCTGCTG




ATCTACGGAGCCAGCAGCCGGGCCACCGGTATTCCTGACCGGTTCTCC




GGTTCGGGGTCCGGGACCGACTTTACTCTGACTATCTCTCGCCTCGAG




CCAGAGGACTCCGCCGTGTATTACTGCCAGCAGTACCACTCCTCCCCG




TCCTGGACGTTCGGACAGGGCACAAGGCTGGAGATTAAGACCACTACC




CCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCT




CTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTG




CATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCT




CTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTT




TACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCC




TTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGC




CGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTC




AGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTC




TACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGAC




AAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAG




AATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCA




GAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAA




GGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACC




TATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1978-C7









BCMA_EBB-
1123
EVQLVETGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1978-C7-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNTLKAEDTAVYYC


aa

ARATYKRELRYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVLT


ScFv

QSPSTLSLSPGESATLSCRASQSVSTTFLAWYQQKPGQAPRLLIYGSS


domain

NRATGIPDRFSGSGSGTDFTLTIRRLEPEDFAVYYCQQYHSSPSWTFG




QGTKVEIK





BCMA_EBB-
1124
GAGGTGCAGCTTGTGGAAACCGGTGGCGGACTGGTGCAGCCCGGAGGA


C1978-C7-

AGCCTCAGGCTGTCCTGCGCCGCGTCCGGCTTCACCTTCTCCTCGTAC


nt

GCCATGTCCTGGGTCCGCCAGGCCCCCGGAAAGGGCCTGGAATGGGTG


ScFv

TCCGCCATCTCTGGAAGCGGAGGTTCCACGTACTACGCGGACAGCGTC


domain

AAGGGAAGGTTCACAATCTCCCGCGATAATTCGAAGAACACTCTGTAC




CTTCAAATGAACACCCTGAAGGCCGAGGACACTGCTGTGTACTACTGC




GCACGGGCCACCTACAAGAGAGAGCTCCGGTACTACTACGGAATGGAC




GTCTGGGGCCAGGGAACTACTGTGACCGTGTCCTCGGGAGGGGGTGGC




TCCGGGGGGGGCGGCTCCGGCGGAGGCGGTTCCGAGATTGTGCTGACC




CAGTCACCTTCAACTCTGTCGCTGTCCCCGGGAGAGAGCGCTACTCTG




AGCTGCCGGGCCAGCCAGTCCGTGTCCACCACCTTCCTCGCCTGGTAT




CAGCAGAAGCCGGGGCAGGCACCACGGCTCTTGATCTACGGGTCAAGC




AACAGAGCGACCGGAATTCCTGACCGCTTCTCGGGGAGCGGTTCAGGC




ACCGACTTCACCCTGACTATCCGGCGCCTGGAACCCGAAGATTTCGCC




GTGTATTACTGTCAACAGTACCACTCCTCGCCGTCCTGGACCTTTGGC




CAAGGAACCAAAGTGGAAATCAAG





BCMA_EBB-
1125
EVQLVETGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1978-C7-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNTLKAEDTAVYYC


aa

ARATYKRELRYYYGMDVWGQGTTVTVSS


VH





BCMA_EBB-
1126
EIVLTQSPSTLSLSPGESATLSCRASQSVSTTFLAWYQQKPGQAPRLL


C1978-C7-

IYGSSNRATGIPDRFSGSGSGTDFTLTIRRLEPEDFAVYYCQQYHSSP


aa

SWTFGQGTKVEIK


VL





BCMA_EBB-
1127
MALPVTALLLPLALLLHAARPEVQLVETGGGLVQPGGSLRLSCAASGF


C1978-C7-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNS


aa

KNTLYLQMNTLKAEDTAVYYCARATYKRELRYYYGMDVWGQGTTVTVS


Full CART

SGGGGSGGGGSGGGGSEIVLTQSPSTLSLSPGESATLSCRASQSVSTT




FLAWYQQKPGQAPRLLIYGSSNRATGIPDRFSGSGSGTDFTLTIRRLE




PEDFAVYYCQQYHSSPSWTFGQGTKVEIKTTTPAPRPPTPAPTIASQP




LSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




YCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF




SRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT




YDALHMQALPPR





BCMA_EBB-
1128
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1978-C7-

CACGCCGCTCGGCCCGAGGTGCAGCTTGTGGAAACCGGTGGCGGACTG


nt

GTGCAGCCCGGAGGAAGCCTCAGGCTGTCCTGCGCCGCGTCCGGCTTC


Full CART

ACCTTCTCCTCGTACGCCATGTCCTGGGTCCGCCAGGCCCCCGGAAAG




GGCCTGGAATGGGTGTCCGCCATCTCTGGAAGCGGAGGTTCCACGTAC




TACGCGGACAGCGTCAAGGGAAGGTTCACAATCTCCCGCGATAATTCG




AAGAACACTCTGTACCTTCAAATGAACACCCTGAAGGCCGAGGACACT




GCTGTGTACTACTGCGCACGGGCCACCTACAAGAGAGAGCTCCGGTAC




TACTACGGAATGGACGTCTGGGGCCAGGGAACTACTGTGACCGTGTCC




TCGGGAGGGGGTGGCTCCGGGGGGGGCGGCTCCGGCGGAGGCGGTTCC




GAGATTGTGCTGACCCAGTCACCTTCAACTCTGTCGCTGTCCCCGGGA




GAGAGCGCTACTCTGAGCTGCCGGGCCAGCCAGTCCGTGTCCACCACC




TTCCTCGCCTGGTATCAGCAGAAGCCGGGGCAGGCACCACGGCTCTTG




ATCTACGGGTCAAGCAACAGAGCGACCGGAATTCCTGACCGCTTCTCG




GGGAGCGGTTCAGGCACCGACTTCACCCTGACTATCCGGCGCCTGGAA




CCCGAAGATTTCGCCGTGTATTACTGTCAACAGTACCACTCCTCGCCG




TCCTGGACCTTTGGCCAAGGAACCAAAGTGGAAATCAAGACCACTACC




CCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCT




CTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTG




CATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCT




CTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTT




TACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCC




TTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGC




CGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTC




AGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTC




TACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGAC




AAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAG




AATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCA




GAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAA




GGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACC




TATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1978-D10









BCMA_EBB-
1129
EVQLVETGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWV


C1978-

SGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYC


D10-aa

ARVGKAVPDVWGQGTTVTVSSGGGGSGGGGSGGGGSDIVMTQTPSSLS


ScFv

ASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPS


domain

RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYSFGQGTRLEIK





BCMA_EBB-
1130
GAAGTGCAGCTCGTGGAAACTGGAGGTGGACTCGTGCAGCCTGGACGG


C1978-

TCGCTGCGGCTGAGCTGCGCTGCATCCGGCTTCACCTTCGACGATTAT


D10-nt

GCCATGCACTGGGTCAGACAGGCGCCAGGGAAGGGACTTGAGTGGGTG


ScFv

TCCGGTATCAGCTGGAATAGCGGCTCAATCGGATACGCGGACTCCGTG


domain

AAGGGAAGGTTCACCATTTCCCGCGACAACGCCAAGAACTCCCTGTAC




TTGCAAATGAACAGCCTCCGGGATGAGGACACTGCCGTGTACTACTGC




GCCCGCGTCGGAAAAGCTGTGCCCGACGTCTGGGGCCAGGGAACCACT




GTGACCGTGTCCAGCGGCGGGGGTGGATCGGGCGGTGGAGGGTCCGGT




GGAGGGGGCTCAGATATTGTGATGACCCAGACCCCCTCGTCCCTGTCC




GCCTCGGTCGGCGACCGCGTGACTATCACATGTAGAGCCTCGCAGAGC




ATCTCCAGCTACCTGAACTGGTATCAGCAGAAGCCGGGGAAGGCCCCG




AAGCTCCTGATCTACGCGGCATCATCACTGCAATCGGGAGTGCCGAGC




CGGTTTTCCGGGTCCGGCTCCGGCACCGACTTCACGCTGACCATTTCT




TCCCTGCAACCCGAGGACTTCGCCACTTACTACTGCCAGCAGTCCTAC




TCCACCCCTTACTCCTTCGGCCAAGGAACCAGGCTGGAAATCAAG





BCMA_EBB-
1131
EVQLVETGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWV


C1978-

SGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYC


D10-aa

ARVGKAVPDVWGQGTTVTVSS


VH





BCMA_EBB-
1132
DIVMTQTPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI


C1978-

YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPY


D10-aa

SFGQGTRLEIK


VL





BCMA_EBB-
1133
MALPVTALLLPLALLLHAARPEVQLVETGGGLVQPGRSLRLSCAASGF


C1978-

TFDDYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNA


D10-aa

KNSLYLQMNSLRDEDTAVYYCARVGKAVPDVWGQGTTVTVSSGGGGSG


Full CART

GGGSGGGGSDIVMTQTPSSLSASVGDRVTITCRASQSISSYLNWYQQK




PGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYY




CQQSYSTPYSFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACR




PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




KQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNE




LQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQAL




PPR





BCMA_EBB-
1134
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1978-

CACGCCGCTCGGCCCGAAGTGCAGCTCGTGGAAACTGGAGGTGGACTC


D10-nt

GTGCAGCCTGGACGGTCGCTGCGGCTGAGCTGCGCTGCATCCGGCTTC


Full CART

ACCTTCGACGATTATGCCATGCACTGGGTCAGACAGGCGCCAGGGAAG




GGACTTGAGTGGGTGTCCGGTATCAGCTGGAATAGCGGCTCAATCGGA




TACGCGGACTCCGTGAAGGGAAGGTTCACCATTTCCCGCGACAACGCC




AAGAACTCCCTGTACTTGCAAATGAACAGCCTCCGGGATGAGGACACT




GCCGTGTACTACTGCGCCCGCGTCGGAAAAGCTGTGCCCGACGTCTGG




GGCCAGGGAACCACTGTGACCGTGTCCAGCGGCGGGGGTGGATCGGGC




GGTGGAGGGTCCGGTGGAGGGGGCTCAGATATTGTGATGACCCAGACC




CCCTCGTCCCTGTCCGCCTCGGTCGGCGACCGCGTGACTATCACATGT




AGAGCCTCGCAGAGCATCTCCAGCTACCTGAACTGGTATCAGCAGAAG




CCGGGGAAGGCCCCGAAGCTCCTGATCTACGCGGCATCATCACTGCAA




TCGGGAGTGCCGAGCCGGTTTTCCGGGTCCGGCTCCGGCACCGACTTC




ACGCTGACCATTTCTTCCCTGCAACCCGAGGACTTCGCCACTTACTAC




TGCCAGCAGTCCTACTCCACCCCTTACTCCTTCGGCCAAGGAACCAGG




CTGGAAATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCT




CCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGA




CCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGC




GATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTG




CTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTG




CTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAA




GAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGC




TGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTAC




AAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGA




GAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATG




GGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAG




CTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAA




GGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTC




AGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTG




CCGCCTCGG










BCMA_EBB-C1979-C12









BCMA_EBB-
1135
EVQLVESGGGLVQPGRSLRLSCTASGFTFDDYAMHWVRQRPGKGLEWV


C1979-

ASINWKGNSLAYGDSVKGRFAISRDNAKNTVFLQMNSLRTEDTAVYYC


C12-aa

ASHQGVAYYNYAMDVWGRGTLVTVSSGGGGSGGGGSGGGGSEIVLTQS


ScFv

PGTLSLSPGERATLSCRATQSIGSSFLAWYQQRPGQAPRLLIYGASQR


domain

ATGIPDRFSGRGSGTDFTLTISRVEPEDSAVYYCQHYESSPSWTFGQG




TKVEIK





BCMA_EBB-
1136
GAAGTGCAGCTCGTGGAGAGCGGGGGAGGATTGGTGCAGCCCGGAAGG


C1979-

TCCCTGCGGCTCTCCTGCACTGCGTCTGGCTTCACCTTCGACGACTAC


C12-nt

GCGATGCACTGGGTCAGACAGCGCCCGGGAAAGGGCCTGGAATGGGTC


ScFv

GCCTCAATCAACTGGAAGGGAAACTCCCTGGCCTATGGCGACAGCGTG


domain

AAGGGCCGCTTCGCCATTTCGCGCGACAACGCCAAGAACACCGTGTTT




CTGCAAATGAATTCCCTGCGGACCGAGGATACCGCTGTGTACTACTGC




GCCAGCCACCAGGGCGTGGCATACTATAACTACGCCATGGACGTGTGG




GGAAGAGGGACGCTCGTCACCGTGTCCTCCGGGGGCGGTGGATCGGGT




GGAGGAGGAAGCGGTGGCGGGGGCAGCGAAATCGTGCTGACTCAGAGC




CCGGGAACTCTTTCACTGTCCCCGGGAGAACGGGCCACTCTCTCGTGC




CGGGCCACCCAGTCCATCGGCTCCTCCTTCCTTGCCTGGTACCAGCAG




AGGCCAGGACAGGCGCCCCGCCTGCTGATCTACGGTGCTTCCCAACGC




GCCACTGGCATTCCTGACCGGTTCAGCGGCAGAGGGTCGGGAACCGAT




TTCACACTGACCATTTCCCGGGTGGAGCCCGAAGATTCGGCAGTCTAC




TACTGTCAGCATTACGAGTCCTCCCCTTCATGGACCTTCGGTCAAGGG




ACCAAAGTGGAGATCAAG





BCMA_EBB-
1137
EVQLVESGGGLVQPGRSLRLSCTASGFTFDDYAMHWVRQRPGKGLEWV


C1979-

ASINWKGNSLAYGDSVKGRFAISRDNAKNTVFLQMNSLRTEDTAVYYC


C12-aa

ASHQGVAYYNYAMDVWGRGTLVTVSS


VH





BCMA_EBB-
1138
EIVLTQSPGTLSLSPGERATLSCRATQSIGSSFLAWYQQRPGQAPRLL


C1979-

IYGASQRATGIPDRFSGRGSGTDFTLTISRVEPEDSAVYYCQHYESSP


C12-aa

SWTFGQGTKVEIK


VL





BCMA_EBB-
1139
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGRSLRLSCTASGF


C1979-

TFDDYAMHWVRQRPGKGLEWVASINWKGNSLAYGDSVKGRFAISRDNA


C12-aa

KNTVFLQMNSLRTEDTAVYYCASHQGVAYYNYAMDVWGRGTLVTVSSG


Full CART

GGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRATQSIGSSFL




AWYQQRPGQAPRLLIYGASQRATGIPDRFSGRGSGTDFTLTISRVEPE




DSAVYYCQHYESSPSWTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLS




LRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





BCMA_EBB-
1140
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1979-

CACGCCGCTCGGCCCGAAGTGCAGCTCGTGGAGAGCGGGGGAGGATTG


C12-nt

GTGCAGCCCGGAAGGTCCCTGCGGCTCTCCTGCACTGCGTCTGGCTTC


Full CART

ACCTTCGACGACTACGCGATGCACTGGGTCAGACAGCGCCCGGGAAAG




GGCCTGGAATGGGTCGCCTCAATCAACTGGAAGGGAAACTCCCTGGCC




TATGGCGACAGCGTGAAGGGCCGCTTCGCCATTTCGCGCGACAACGCC




AAGAACACCGTGTTTCTGCAAATGAATTCCCTGCGGACCGAGGATACC




GCTGTGTACTACTGCGCCAGCCACCAGGGCGTGGCATACTATAACTAC




GCCATGGACGTGTGGGGAAGAGGGACGCTCGTCACCGTGTCCTCCGGG




GGCGGTGGATCGGGTGGAGGAGGAAGCGGTGGCGGGGGCAGCGAAATC




GTGCTGACTCAGAGCCCGGGAACTCTTTCACTGTCCCCGGGAGAACGG




GCCACTCTCTCGTGCCGGGCCACCCAGTCCATCGGCTCCTCCTTCCTT




GCCTGGTACCAGCAGAGGCCAGGACAGGCGCCCCGCCTGCTGATCTAC




GGTGCTTCCCAACGCGCCACTGGCATTCCTGACCGGTTCAGCGGCAGA




GGGTCGGGAACCGATTTCACACTGACCATTTCCCGGGTGGAGCCCGAA




GATTCGGCAGTCTACTACTGTCAGCATTACGAGTCCTCCCCTTCATGG




ACCTTCGGTCAAGGGACCAAAGTGGAGATCAAGACCACTACCCCAGCA




CCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCC




CTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACC




CGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCT




GGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGT




AAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATG




AGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTC




CCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGC




AGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC




GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGG




AGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCC




CAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCC




TATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCAC




GACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGAC




GCTCTTCACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1980-G4









BCMA_EBB-
1141
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1980-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


G4-aa

AKVVRDGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLS


ScFv

LSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIP


domain

DRFSGNGSGTDFTLTISRLEPEDFAVYYCQQYGSPPRFTFGPGTKVDI




K





BCMA_EBB-
1142
GAGGTGCAGTTGGTCGAAAGCGGGGGCGGGCTTGTGCAGCCTGGCGGA


C1980-

TCACTGCGGCTGTCCTGCGCGGCATCAGGCTTCACGTTTTCTTCCTAC


G4-nt

GCCATGTCCTGGGTGCGCCAGGCCCCTGGAAAGGGACTGGAATGGGTG


ScFv

TCCGCGATTTCGGGGTCCGGCGGGAGCACCTACTACGCCGATTCCGTG


domain

AAGGGCCGCTTCACTATCTCGCGGGACAACTCCAAGAACACCCTCTAC




CTCCAAATGAATAGCCTGCGGGCCGAGGATACCGCCGTCTACTATTGC




GCTAAGGTCGTGCGCGACGGAATGGACGTGTGGGGACAGGGTACCACC




GTGACAGTGTCCTCGGGGGGAGGCGGTAGCGGCGGAGGAGGAAGCGGT




GGTGGAGGTTCCGAGATTGTGCTGACTCAATCACCCGCGACCCTGAGC




CTGTCCCCCGGCGAAAGGGCCACTCTGTCCTGTCGGGCCAGCCAATCA




GTCTCCTCCTCGTACCTGGCCTGGTACCAGCAGAAGCCAGGACAGGCT




CCGAGACTCCTTATCTATGGCGCATCCTCCCGCGCCACCGGAATCCCG




GATAGGTTCTCGGGAAACGGATCGGGGACCGACTTCACTCTCACCATC




TCCCGGCTGGAACCGGAGGACTTCGCCGTGTACTACTGCCAGCAGTAC




GGCAGCCCGCCTAGATTCACTTTCGGCCCCGGCACCAAAGTGGACATC




AAG





BCMA_EBB-
1143
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1980-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


G4-aa

AKVVRDGMDVWGQGTTVTVSS


VH





BCMA_EBB-
1144
EIVLTQSPATLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLL


C1980-

IYGASSRATGIPDRFSGNGSGTDFTLTISRLEPEDFAVYYCQQYGSPP


G4-aa

RFTFGPGTKVDIK


VL





BCMA_EBB-
1145
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLSCAASGF


C1980-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNS


G4-aa

KNTLYLQMNSLRAEDTAVYYCAKVVRDGMDVWGQGTTVTVSSGGGGSG


Full CART

GGGSGGGGSEIVLTQSPATLSLSPGERATLSCRASQSVSSSYLAWYQQ




KPGQAPRLLIYGASSRATGIPDRFSGNGSGTDFTLTISRLEPEDFAVY




YCQQYGSPPRFTFGPGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEA




CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP




AYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY




NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQ




ALPPR





BCMA_EBB-
1146
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1980-

CACGCCGCTCGGCCCGAGGTGCAGTTGGTCGAAAGCGGGGGCGGGCTT


G4-nt

GTGCAGCCTGGCGGATCACTGCGGCTGTCCTGCGCGGCATCAGGCTTC


Full CART

ACGTTTTCTTCCTACGCCATGTCCTGGGTGCGCCAGGCCCCTGGAAAG




GGACTGGAATGGGTGTCCGCGATTTCGGGGTCCGGCGGGAGCACCTAC




TACGCCGATTCCGTGAAGGGCCGCTTCACTATCTCGCGGGACAACTCC




AAGAACACCCTCTACCTCCAAATGAATAGCCTGCGGGCCGAGGATACC




GCCGTCTACTATTGCGCTAAGGTCGTGCGCGACGGAATGGACGTGTGG




GGACAGGGTACCACCGTGACAGTGTCCTCGGGGGGAGGCGGTAGCGGC




GGAGGAGGAAGCGGTGGTGGAGGTTCCGAGATTGTGCTGACTCAATCA




CCCGCGACCCTGAGCCTGTCCCCCGGCGAAAGGGCCACTCTGTCCTGT




CGGGCCAGCCAATCAGTCTCCTCCTCGTACCTGGCCTGGTACCAGCAG




AAGCCAGGACAGGCTCCGAGACTCCTTATCTATGGCGCATCCTCCCGC




GCCACCGGAATCCCGGATAGGTTCTCGGGAAACGGATCGGGGACCGAC




TTCACTCTCACCATCTCCCGGCTGGAACCGGAGGACTTCGCCGTGTAC




TACTGCCAGCAGTACGGCAGCCCGCCTAGATTCACTTTCGGCCCCGGC




ACCAAAGTGGACATCAAGACCACTACCCCAGCACCGAGGCCACCCACC




CCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCA




TGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTC




GCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTC




CTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAG




AAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACT




ACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAA




GGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCA




GCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGT




CGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCA




GAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTAC




AACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGT




ATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAG




GGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGCAG




GCCCTGCCGCCTCGG










BCMA_EBB-C1980-D2









BCMA_EBB-
1147
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1980-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


D2-aa

AKIPQTGTFDYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTL


ScFv

SLSPGERATLSCRASQSVSSSYLAWYQQRPGQAPRLLIYGASSRATGI


domain

PDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYGSSPSWTFGQGTRLE




IK





BCMA_EBB-
1148
GAAGTGCAGCTGCTGGAGTCCGGCGGTGGATTGGTGCAACCGGGGGGA


C1980-

TCGCTCAGACTGTCCTGTGCGGCGTCAGGCTTCACCTTCTCGAGCTAC


D2-nt

GCCATGTCATGGGTCAGACAGGCCCCTGGAAAGGGTCTGGAATGGGTG


ScFv

TCCGCCATTTCCGGGAGCGGGGGATCTACATACTACGCCGATAGCGTG


domain

AAGGGCCGCTTCACCATTTCCCGGGACAACTCCAAGAACACTCTCTAT




CTGCAAATGAACTCCCTCCGCGCTGAGGACACTGCCGTGTACTACTGC




GCCAAAATCCCTCAGACCGGCACCTTCGACTACTGGGGACAGGGGACT




CTGGTCACCGTCAGCAGCGGTGGCGGAGGTTCGGGGGGAGGAGGAAGC




GGCGGCGGAGGGTCCGAGATTGTGCTGACCCAGTCACCCGGCACTTTG




TCCCTGTCGCCTGGAGAAAGGGCCACCCTTTCCTGCCGGGCATCCCAA




TCCGTGTCCTCCTCGTACCTGGCCTGGTACCAGCAGAGGCCCGGACAG




GCCCCACGGCTTCTGATCTACGGAGCAAGCAGCCGCGCGACCGGTATC




CCGGACCGGTTTTCGGGCTCGGGCTCAGGAACTGACTTCACCCTCACC




ATCTCCCGCCTGGAACCCGAAGATTTCGCTGTGTATTACTGCCAGCAC




TACGGCAGCTCCCCGTCCTGGACGTTCGGCCAGGGAACTCGGCTGGAG




ATCAAG





BCMA_EBB-
1149
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1980-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


D2-aa

AKIPQTGTFDYWGQGTLVTVSS


VH





BCMA_EBB-
1150
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQRPGQAPRLL


C1980-

IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYGSSP


D2-aa

SWTFGQGTRLEIK


VL





BCMA_EBB-
1151
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCAASGF


C1980-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNS


D2-aa

KNTLYLQMNSLRAEDTAVYYCAKIPQTGTFDYWGQGTLVTVSSGGGGS


Full CART

GGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQ




QRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAV




YYCQHYGSSPSWTFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPE




ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGR




KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA




PAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGL




YNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHM




QALPPR





BCMA_EBB-
1152
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1980-

CACGCCGCTCGGCCCGAAGTGCAGCTGCTGGAGTCCGGCGGTGGATTG


D2-nt

GTGCAACCGGGGGGATCGCTCAGACTGTCCTGTGCGGCGTCAGGCTTC


Full CART

ACCTTCTCGAGCTACGCCATGTCATGGGTCAGACAGGCCCCTGGAAAG




GGTCTGGAATGGGTGTCCGCCATTTCCGGGAGCGGGGGATCTACATAC




TACGCCGATAGCGTGAAGGGCCGCTTCACCATTTCCCGGGACAACTCC




AAGAACACTCTCTATCTGCAAATGAACTCCCTCCGCGCTGAGGACACT




GCCGTGTACTACTGCGCCAAAATCCCTCAGACCGGCACCTTCGACTAC




TGGGGACAGGGGACTCTGGTCACCGTCAGCAGCGGTGGCGGAGGTTCG




GGGGGAGGAGGAAGCGGCGGCGGAGGGTCCGAGATTGTGCTGACCCAG




TCACCCGGCACTTTGTCCCTGTCGCCTGGAGAAAGGGCCACCCTTTCC




TGCCGGGCATCCCAATCCGTGTCCTCCTCGTACCTGGCCTGGTACCAG




CAGAGGCCCGGACAGGCCCCACGGCTTCTGATCTACGGAGCAAGCAGC




CGCGCGACCGGTATCCCGGACCGGTTTTCGGGCTCGGGCTCAGGAACT




GACTTCACCCTCACCATCTCCCGCCTGGAACCCGAAGATTTCGCTGTG




TATTACTGCCAGCACTACGGCAGCTCCCCGTCCTGGACGTTCGGCCAG




GGAACTCGGCTGGAGATCAAGACCACTACCCCAGCACCGAGGCCACCC




ACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAG




GCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGAC




TTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGG




GTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGG




AAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAG




ACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAG




GAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCT




CCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTT




GGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGAC




CCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTG




TACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAGATT




GGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTAC




CAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATG




CAGGCCCTGCCGCCTCGG










BCMA_EBB-C1978-A10









BCMA_EBB-
1153
EVQLVETGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1978-

SAISGSGGSTYYADSVKGRFTMSRENDKNSVFLQMNSLRVEDTGVYYC


A10-aa

ARANYKRELRYYYGMDVWGQGTMVTVSSGGGGSGGGGSGGGGSEIVMT


ScFv

QSPGTLSLSPGESATLSCRASQRVASNYLAWYQHKPGQAPSLLISGAS


domain

SRATGVPDRFSGSGSGTDFTLAISRLEPEDSAVYYCQHYDSSPSWTFG




QGTKVEIK





BCMA_EBB-
1154
GAAGTGCAACTGGTGGAAACCGGTGGAGGACTCGTGCAGCCTGGCGGC


C1978-

AGCCTCCGGCTGAGCTGCGCCGCTTCGGGATTCACCTTTTCCTCCTAC


A10-nt

GCGATGTCTTGGGTCAGACAGGCCCCCGGAAAGGGGCTGGAATGGGTG


ScFv

TCAGCCATCTCCGGCTCCGGCGGATCAACGTACTACGCCGACTCCGTG


domain

AAAGGCCGGTTCACCATGTCGCGCGAGAATGACAAGAACTCCGTGTTC




CTGCAAATGAACTCCCTGAGGGTGGAGGACACCGGAGTGTACTATTGT




GCGCGCGCCAACTACAAGAGAGAGCTGCGGTACTACTACGGAATGGAC




GTCTGGGGACAGGGAACTATGGTGACCGTGTCATCCGGTGGAGGGGGA




AGCGGCGGTGGAGGCAGCGGGGGCGGGGGTTCAGAAATTGTCATGACC




CAGTCCCCGGGAACTCTTTCCCTCTCCCCCGGGGAATCCGCGACTTTG




TCCTGCCGGGCCAGCCAGCGCGTGGCCTCGAACTACCTCGCATGGTAC




CAGCATAAGCCAGGCCAAGCCCCTTCCCTGCTGATTTCCGGGGCTAGC




AGCCGCGCCACTGGCGTGCCGGATAGGTTCTCGGGAAGCGGCTCGGGT




ACCGATTTCACCCTGGCAATCTCGCGGCTGGAACCGGAGGATTCGGCC




GTGTACTACTGCCAGCACTATGACTCATCCCCCTCCTGGACATTCGGA




CAGGGCACCAAGGTCGAGATCAAG





BCMA_EBB-
1155
EVQLVETGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1978-

SAISGSGGSTYYADSVKGRFTMSRENDKNSVFLQMNSLRVEDTGVYYC


A10-aa

ARANYKRELRYYYGMDVWGQGTMVTVSS


VH





BCMA_EBB-
1156
EIVMTQSPGTLSLSPGESATLSCRASQRVASNYLAWYQHKPGQAPSLL


C1978-

ISGASSRATGVPDRFSGSGSGTDFTLAISRLEPEDSAVYYCQHYDSSP


A10-aa

SWTFGQGTKVEIK


VL





BCMA_EBB-
1157
MALPVTALLLPLALLLHAARPEVQLVETGGGLVQPGGSLRLSCAASGF


C1978-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTMSREND


A10-aa

KNSVFLQMNSLRVEDTGVYYCARANYKRELRYYYGMDVWGQGTMVTVS


Full CART

SGGGGSGGGGSGGGGSEIVMTQSPGTLSLSPGESATLSCRASQRVASN




YLAWYQHKPGQAPSLLISGASSRATGVPDRFSGSGSGTDFTLAISRLE




PEDSAVYYCQHYDSSPSWTFGQGTKVEIKTTTPAPRPPTPAPTIASQP




LSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




YCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF




SRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT




YDALHMQALPPR





BCMA_EBB-
1158
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1978-

CACGCCGCTCGGCCCGAAGTGCAACTGGTGGAAACCGGTGGAGGACTC


A10-nt

GTGCAGCCTGGCGGCAGCCTCCGGCTGAGCTGCGCCGCTTCGGGATTC


Full CART

ACCTTTTCCTCCTACGCGATGTCTTGGGTCAGACAGGCCCCCGGAAAG




GGGCTGGAATGGGTGTCAGCCATCTCCGGCTCCGGCGGATCAACGTAC




TACGCCGACTCCGTGAAAGGCCGGTTCACCATGTCGCGCGAGAATGAC




AAGAACTCCGTGTTCCTGCAAATGAACTCCCTGAGGGTGGAGGACACC




GGAGTGTACTATTGTGCGCGCGCCAACTACAAGAGAGAGCTGCGGTAC




TACTACGGAATGGACGTCTGGGGACAGGGAACTATGGTGACCGTGTCA




TCCGGTGGAGGGGGAAGCGGCGGTGGAGGCAGCGGGGGCGGGGGTTCA




GAAATTGTCATGACCCAGTCCCCGGGAACTCTTTCCCTCTCCCCCGGG




GAATCCGCGACTTTGTCCTGCCGGGCCAGCCAGCGCGTGGCCTCGAAC




TACCTCGCATGGTACCAGCATAAGCCAGGCCAAGCCCCTTCCCTGCTG




ATTTCCGGGGCTAGCAGCCGCGCCACTGGCGTGCCGGATAGGTTCTCG




GGAAGCGGCTCGGGTACCGATTTCACCCTGGCAATCTCGCGGCTGGAA




CCGGAGGATTCGGCCGTGTACTACTGCCAGCACTATGACTCATCCCCC




TCCTGGACATTCGGACAGGGCACCAAGGTCGAGATCAAGACCACTACC




CCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCT




CTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTG




CATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCT




CTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTT




TACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCC




TTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGC




CGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTC




AGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTC




TACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGAC




AAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAG




AATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCA




GAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAA




GGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACC




TATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1978-D4









BCMA_EBB-
1159
EVQLLETGGGLVQPGGSLRLSCAASGFSFSSYAMSWVRQAPGKGLEWV


C1978-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


D4-aa

AKALVGATGAFDIWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPG


ScFv

TLSLSPGERATLSCRASQSLSSNFLAWYQQKPGQAPGLLIYGASNWAT


domain

GTPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQYYGTSPMYTFGQGTK




VEIK





BCMA_EBB-
1160
GAAGTGCAGCTGCTCGAAACCGGTGGAGGGCTGGTGCAGCCAGGGGGC


C1978-

TCCCTGAGGCTTTCATGCGCCGCTAGCGGATTCTCCTTCTCCTCTTAC


D4-nt

GCCATGTCGTGGGTCCGCCAAGCCCCTGGAAAAGGCCTGGAATGGGTG


ScFv

TCCGCGATTTCCGGGAGCGGAGGTTCGACCTATTACGCCGACTCCGTG


domain

AAGGGCCGCTTTACCATCTCCCGGGATAACTCCAAGAACACTCTGTAC




CTCCAAATGAACTCGCTGAGAGCCGAGGACACCGCCGTGTATTACTGC




GCGAAGGCGCTGGTCGGCGCGACTGGGGCATTCGACATCTGGGGACAG




GGAACTCTTGTGACCGTGTCGAGCGGAGGCGGCGGCTCCGGCGGAGGA




GGGAGCGGGGGCGGTGGTTCCGAAATCGTGTTGACTCAGTCCCCGGGA




ACCCTGAGCTTGTCACCCGGGGAGCGGGCCACTCTCTCCTGTCGCGCC




TCCCAATCGCTCTCATCCAATTTCCTGGCCTGGTACCAGCAGAAGCCC




GGACAGGCCCCGGGCCTGCTCATCTACGGCGCTTCAAACTGGGCAACG




GGAACCCCTGATCGGTTCAGCGGAAGCGGATCGGGTACTGACTTTACC




CTGACCATCACCAGACTGGAACCGGAGGACTTCGCCGTGTACTACTGC




CAGTACTACGGCACCTCCCCCATGTACACATTCGGACAGGGTACCAAG




GTCGAGATTAAG





BCMA_EBB-
1161
EVQLLETGGGLVQPGGSLRLSCAASGFSFSSYAMSWVRQAPGKGLEWV


C1978-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


D4-aa

AKALVGATGAFDIWGQGTLVTVSS


VH





BCMA_EBB-
1162
EIVLTQSPGTLSLSPGERATLSCRASQSLSSNFLAWYQQKPGQAPGLL


C1978-

IYGASNWATGTPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQYYGTSP


D4-aa

MYTFGQGTKVEIK


VL





BCMA_EBB-
1163
MALPVTALLLPLALLLHAARPEVQLLETGGGLVQPGGSLRLSCAASGF


C1978-

SFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNS


D4-aa

KNTLYLQMNSLRAEDTAVYYCAKALVGATGAFDIWGQGTLVTVSSGGG


Full CART

GSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSLSSNFLAW




YQQKPGQAPGLLIYGASNWATGTPDRFSGSGSGTDFTLTITRLEPEDF




AVYYCQYYGTSPMYTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLR




PEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKR




GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA




DAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR





BCMA_EBB-
1164
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1978-

CACGCCGCTCGGCCCGAAGTGCAGCTGCTCGAAACCGGTGGAGGGCTG


D4-nt

GTGCAGCCAGGGGGCTCCCTGAGGCTTTCATGCGCCGCTAGCGGATTC


Full CART

TCCTTCTCCTCTTACGCCATGTCGTGGGTCCGCCAAGCCCCTGGAAAA




GGCCTGGAATGGGTGTCCGCGATTTCCGGGAGCGGAGGTTCGACCTAT




TACGCCGACTCCGTGAAGGGCCGCTTTACCATCTCCCGGGATAACTCC




AAGAACACTCTGTACCTCCAAATGAACTCGCTGAGAGCCGAGGACACC




GCCGTGTATTACTGCGCGAAGGCGCTGGTCGGCGCGACTGGGGCATTC




GACATCTGGGGACAGGGAACTCTTGTGACCGTGTCGAGCGGAGGCGGC




GGCTCCGGCGGAGGAGGGAGCGGGGGCGGTGGTTCCGAAATCGTGTTG




ACTCAGTCCCCGGGAACCCTGAGCTTGTCACCCGGGGAGCGGGCCACT




CTCTCCTGTCGCGCCTCCCAATCGCTCTCATCCAATTTCCTGGCCTGG




TACCAGCAGAAGCCCGGACAGGCCCCGGGCCTGCTCATCTACGGCGCT




TCAAACTGGGCAACGGGAACCCCTGATCGGTTCAGCGGAAGCGGATCG




GGTACTGACTTTACCCTGACCATCACCAGACTGGAACCGGAGGACTTC




GCCGTGTACTACTGCCAGTACTACGGCACCTCCCCCATGTACACATTC




GGACAGGGTACCAAGGTCGAGATTAAGACCACTACCCCAGCACCGAGG




CCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGT




CCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGT




CTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACT




TGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGC




GGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCT




GTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAG




GAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCA




GATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTC




AATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGA




CGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAG




GGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGC




GAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGA




CTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTT




CACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1980-A2









BCMA_EBB-
1165
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1980-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


A2-aa

VLWFGEGFDPWGQGTLVTVSSGGGGSGGGGSGGGGSDIVLTQSPLSLP


ScFv

VTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRA


domain

SGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPLTFGGGTK




VDIK





BCMA_EBB-
1166
GAAGTGCAGCTGCTTGAGAGCGGTGGAGGTCTGGTGCAGCCCGGGGGA


C1980-

TCACTGCGCCTGTCCTGTGCCGCGTCCGGTTTCACTTTCTCCTCGTAC


A2-nt

GCCATGTCGTGGGTCAGACAGGCACCGGGAAAGGGACTGGAATGGGTG


ScFv

TCAGCCATTTCGGGTTCGGGGGGCAGCACCTACTACGCTGACTCCGTG


domain

AAGGGCCGGTTCACCATTTCCCGCGACAACTCCAAGAACACCTTGTAC




CTCCAAATGAACTCCCTGCGGGCCGAAGATACCGCCGTGTATTACTGC




GTGCTGTGGTTCGGAGAGGGATTCGACCCGTGGGGACAAGGAACACTC




GTGACTGTGTCATCCGGCGGAGGCGGCAGCGGTGGCGGCGGTTCCGGC




GGCGGCGGATCTGACATCGTGTTGACCCAGTCCCCTCTGAGCCTGCCG




GTCACTCCTGGCGAACCAGCCAGCATCTCCTGCCGGTCGAGCCAGTCC




CTCCTGCACTCCAATGGGTACAACTACCTCGATTGGTATCTGCAAAAG




CCGGGCCAGAGCCCCCAGCTGCTGATCTACCTTGGGTCAAACCGCGCT




TCCGGGGTGCCTGATAGATTCTCCGGGTCCGGGAGCGGAACCGACTTT




ACCCTGAAAATCTCGAGGGTGGAGGCCGAGGACGTCGGAGTGTACTAC




TGCATGCAGGCGCTCCAGACTCCCCTGACCTTCGGAGGAGGAACGAAG




GTCGACATCAAGA





BCMA_EBB-
1167
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1980-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


A2-aa

VLWFGEGFDPWGQGTLVTVSS


VH





BCMA_EBB-
1168
DIVLTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS


C1980-

PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA


A2-aa

LQTPLTFGGGTKVDIK


VL





BCMA_EBB-
1169
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSCAASGF


C1980-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNS


A2-aa

KNTLYLQMNSLRAEDTAVYYCVLWFGEGFDPWGQGTLVTVSSGGGGSG


Full CART

GGGSGGGGSDIVLTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLD




WYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAED




VGVYYCMQALQTPLTFGGGTKVDIKTTTPAPRPPTPAPTIASQPLSLR




PEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKR




GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA




DAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR





BCMA_EBB-
1170
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1980-

CACGCCGCTCGGCCCGAAGTGCAGCTGCTTGAGAGCGGTGGAGGTCTG


A2-nt

GTGCAGCCCGGGGGATCACTGCGCCTGTCCTGTGCCGCGTCCGGTTTC


Full CART

ACTTTCTCCTCGTACGCCATGTCGTGGGTCAGACAGGCACCGGGAAAG




GGACTGGAATGGGTGTCAGCCATTTCGGGTTCGGGGGGCAGCACCTAC




TACGCTGACTCCGTGAAGGGCCGGTTCACCATTTCCCGCGACAACTCC




AAGAACACCTTGTACCTCCAAATGAACTCCCTGCGGGCCGAAGATACC




GCCGTGTATTACTGCGTGCTGTGGTTCGGAGAGGGATTCGACCCGTGG




GGACAAGGAACACTCGTGACTGTGTCATCCGGCGGAGGCGGCAGCGGT




GGCGGCGGTTCCGGCGGCGGCGGATCTGACATCGTGTTGACCCAGTCC




CCTCTGAGCCTGCCGGTCACTCCTGGCGAACCAGCCAGCATCTCCTGC




CGGTCGAGCCAGTCCCTCCTGCACTCCAATGGGTACAACTACCTCGAT




TGGTATCTGCAAAAGCCGGGCCAGAGCCCCCAGCTGCTGATCTACCTT




GGGTCAAACCGCGCTTCCGGGGTGCCTGATAGATTCTCCGGGTCCGGG




AGCGGAACCGACTTTACCCTGAAAATCTCGAGGGTGGAGGCCGAGGAC




GTCGGAGTGTACTACTGCATGCAGGCGCTCCAGACTCCCCTGACCTTC




GGAGGAGGAACGAAGGTCGACATCAAGACCACTACCCCAGCACCGAGG




CCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGT




CCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGT




CTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACT




TGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGC




GGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCT




GTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAG




GAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCA




GATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAACTC




AATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGGA




CGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAG




GGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGC




GAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGA




CTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTT




CACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1981-C3









BCMA_EBB-
1171
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1981-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


C3-aa

AKVGYDSSGYYRDYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSEIV


ScFv

LTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYG


domain

TSSRATGISDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYGNSPPKF




TFGPGTKLEIK





BCMA_EBB-
1172
CAAGTGCAGCTCGTGGAGTCAGGCGGAGGACTGGTGCAGCCCGGGGGC


C1981-

TCCCTGAGACTTTCCTGCGCGGCATCGGGTTTTACCTTCTCCTCCTAT


C3-nt

GCTATGTCCTGGGTGCGCCAGGCCCCGGGAAAGGGACTGGAATGGGTG


ScFv

TCCGCAATCAGCGGTAGCGGGGGCTCAACATACTACGCCGACTCCGTC


domain

AAGGGTCGCTTCACTATTTCCCGGGACAACTCCAAGAATACCCTGTAC




CTCCAAATGAACAGCCTCAGGGCCGAGGATACTGCCGTGTACTACTGC




GCCAAAGTCGGATACGATAGCTCCGGTTACTACCGGGACTACTACGGA




ATGGACGTGTGGGGACAGGGCACCACCGTGACCGTGTCAAGCGGCGGA




GGCGGTTCAGGAGGGGGAGGCTCCGGCGGTGGAGGGTCCGAAATCGTC




CTGACTCAGTCGCCTGGCACTCTGTCGTTGTCCCCGGGGGAGCGCGCT




ACCCTGTCGTGTCGGGCGTCGCAGTCCGTGTCGAGCTCCTACCTCGCG




TGGTACCAGCAGAAGCCCGGACAGGCCCCTAGACTTCTGATCTACGGC




ACTTCTTCACGCGCCACCGGGATCAGCGACAGGTTCAGCGGCTCCGGC




TCCGGGACCGACTTCACCCTGACCATTAGCCGGCTGGAGCCTGAAGAT




TTCGCCGTGTATTACTGCCAACACTACGGAAACTCGCCGCCAAAGTTC




ACGTTCGGACCCGGAACCAAGCTGGAAATCAAG





BCMA_EBB-
1173
QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1981-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


C3-aa

AKVGYDSSGYYRDYYGMDVWGQGTTVTVSS


VH





BCMA_EBB-
1174
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLL


C1981-

IYGTSSRATGISDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYGNSP


C3-aa

PKFTFGPGTKLEIK


VL





BCMA_EBB-
1175
MALPVTALLLPLALLLHAARPQVQLVESGGGLVQPGGSLRLSCAASGF


C1981-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNS


C3-aa

KNTLYLQMNSLRAEDTAVYYCAKVGYDSSGYYRDYYGMDVWGQGTTVT


Full CART

VSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVS




SSYLAWYQQKPGQAPRLLIYGTSSRATGISDRFSGSGSGTDFTLTISR




LEPEDFAVYYCQHYGNSPPKFTFGPGTKLEIKTTTPAPRPPTPAPTIA




SQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLV




ITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELR




VKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP




RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT




KDTYDALHMQALPPR





BCMA_EBB-
1176
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1981-

CACGCCGCTCGGCCCCAAGTGCAGCTCGTGGAGTCAGGCGGAGGACTG


C3-nt

GTGCAGCCCGGGGGCTCCCTGAGACTTTCCTGCGCGGCATCGGGTTTT


Full CART

ACCTTCTCCTCCTATGCTATGTCCTGGGTGCGCCAGGCCCCGGGAAAG




GGACTGGAATGGGTGTCCGCAATCAGCGGTAGCGGGGGCTCAACATAC




TACGCCGACTCCGTCAAGGGTCGCTTCACTATTTCCCGGGACAACTCC




AAGAATACCCTGTACCTCCAAATGAACAGCCTCAGGGCCGAGGATACT




GCCGTGTACTACTGCGCCAAAGTCGGATACGATAGCTCCGGTTACTAC




CGGGACTACTACGGAATGGACGTGTGGGGACAGGGCACCACCGTGACC




GTGTCAAGCGGCGGAGGCGGTTCAGGAGGGGGAGGCTCCGGCGGTGGA




GGGTCCGAAATCGTCCTGACTCAGTCGCCTGGCACTCTGTCGTTGTCC




CCGGGGGAGCGCGCTACCCTGTCGTGTCGGGCGTCGCAGTCCGTGTCG




AGCTCCTACCTCGCGTGGTACCAGCAGAAGCCCGGACAGGCCCCTAGA




CTTCTGATCTACGGCACTTCTTCACGCGCCACCGGGATCAGCGACAGG




TTCAGCGGCTCCGGCTCCGGGACCGACTTCACCCTGACCATTAGCCGG




CTGGAGCCTGAAGATTTCGCCGTGTATTACTGCCAACACTACGGAAAC




TCGCCGCCAAAGTTCACGTTCGGACCCGGAACCAAGCTGGAAATCAAG




ACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCC




TCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGT




GGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATT




TGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTG




ATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTT




AAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGC




TGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGC




GTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAG




AACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGAC




GTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCG




CGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGAT




AAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGA




AGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACC




AAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG










BCMA_EBB-C1978-G4









BCMA_EBB-
1177
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1978-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


G4-aa

AKMGWSSGYLGAFDIWGQGTTVTVSSGGGGSGGGGSGGGGSEIVLTQS


ScFv

PGTLSLSPGERATLSCRASQSVASSFLAWYQQKPGQAPRLLIYGASGR


domain

ATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYGGSPRLTFGGG




TKVDIK





BCMA_EBB-
1178
GAAGTCCAACTGGTGGAGTCCGGGGGAGGGCTCGTGCAGCCCGGAGGC


C1978-

AGCCTTCGGCTGTCGTGCGCCGCCTCCGGGTTCACGTTCTCATCCTAC


G4-nt

GCGATGTCGTGGGTCAGACAGGCACCAGGAAAGGGACTGGAATGGGTG


ScFv

TCCGCCATTAGCGGCTCCGGCGGTAGCACCTACTATGCCGACTCAGTG


domain

AAGGGAAGGTTCACTATCTCCCGCGACAACAGCAAGAACACCCTGTAC




CTCCAAATGAACTCTCTGCGGGCCGAGGATACCGCGGTGTACTATTGC




GCCAAGATGGGTTGGTCCAGCGGATACTTGGGAGCCTTCGACATTTGG




GGACAGGGCACTACTGTGACCGTGTCCTCCGGGGGTGGCGGATCGGGA




GGCGGCGGCTCGGGTGGAGGGGGTTCCGAAATCGTGTTGACCCAGTCA




CCGGGAACCCTCTCGCTGTCCCCGGGAGAACGGGCTACACTGTCATGT




AGAGCGTCCCAGTCCGTGGCTTCCTCGTTCCTGGCCTGGTACCAGCAG




AAGCCGGGACAGGCACCCCGCCTGCTCATCTACGGAGCCAGCGGCCGG




GCGACCGGCATCCCTGACCGCTTCTCCGGTTCCGGCTCGGGCACCGAC




TTTACTCTGACCATTAGCAGGCTTGAGCCCGAGGATTTTGCCGTGTAC




TACTGCCAACACTACGGGGGGAGCCCTCGCCTGACCTTCGGAGGCGGA




ACTAAGGTCGATATCAAAA





BCMA_EBB-
1179
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWV


C1978-

SAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


G4-aa

AKMGWSSGYLGAFDIWGQGTTVTVSS


VH





BCMA_EBB-
1180
EIVLTQSPGTLSLSPGERATLSCRASQSVASSFLAWYQQKPGQAPRLL


C1978-

IYGASGRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQHYGGSP


G4-aa

RLTFGGGTKVDIK


VL





BCMA_EBB-
1181
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLSCAASGF


C1978-

TFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNS


G4-aa

KNTLYLQMNSLRAEDTAVYYCAKMGWSSGYLGAFDIWGQGTTVTVSSG


Full CART

GGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVASSFL




AWYQQKPGQAPRLLIYGASGRATGIPDRFSGSGSGTDFTLTISRLEPE




DFAVYYCQHYGGSPRLTFGGGTKVDIKTTTPAPRPPTPAPTIASQPLS




LRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR




SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD




ALHMQALPPR





BCMA_EBB-
1182
ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTC


C1978-

CACGCCGCTCGGCCCGAAGTCCAACTGGTGGAGTCCGGGGGAGGGCTC


G4-nt

GTGCAGCCCGGAGGCAGCCTTCGGCTGTCGTGCGCCGCCTCCGGGTTC


Full CART

ACGTTCTCATCCTACGCGATGTCGTGGGTCAGACAGGCACCAGGAAAG




GGACTGGAATGGGTGTCCGCCATTAGCGGCTCCGGCGGTAGCACCTAC




TATGCCGACTCAGTGAAGGGAAGGTTCACTATCTCCCGCGACAACAGC




AAGAACACCCTGTACCTCCAAATGAACTCTCTGCGGGCCGAGGATACC




GCGGTGTACTATTGCGCCAAGATGGGTTGGTCCAGCGGATACTTGGGA




GCCTTCGACATTTGGGGACAGGGCACTACTGTGACCGTGTCCTCCGGG




GGTGGCGGATCGGGAGGCGGCGGCTCGGGTGGAGGGGGTTCCGAAATC




GTGTTGACCCAGTCACCGGGAACCCTCTCGCTGTCCCCGGGAGAACGG




GCTACACTGTCATGTAGAGCGTCCCAGTCCGTGGCTTCCTCGTTCCTG




GCCTGGTACCAGCAGAAGCCGGGACAGGCACCCCGCCTGCTCATCTAC




GGAGCCAGCGGCCGGGCGACCGGCATCCCTGACCGCTTCTCCGGTTCC




GGCTCGGGCACCGACTTTACTCTGACCATTAGCAGGCTTGAGCCCGAG




GATTTTGCCGTGTACTACTGCCAACACTACGGGGGGAGCCCTCGCCTG




ACCTTCGGAGGCGGAACTAAGGTCGATATCAAAACCACTACCCCAGCA




CCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCC




CTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACC




CGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCT




GGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGT




AAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATG




AGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTC




CCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGC




AGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC




GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGG




AGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCC




CAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCC




TATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCAC




GACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGAC




GCTCTTCACATGCAGGCCCTGCCGCCTCGG
















TABLE 8







Additional exemplary BCMA CAR sequences











SEQ




ID


Name
Sequence
NO:





A7D12.2
QIQLVQSGPDLKKPGETVKLSCKASGYTFTNFGMNWVKQAPGKGFKWMAWINTYTGESYFA
1183


VH
DDFKGRFAFSVETSATTAYLQINNLKTEDTATYFCARGEIYYGYDGGFAYWGQGTLVTVSA





A7D12.2
DVVMTQSHRFMSTSVGDRVSITCRASQDVNTAVSWYQQKPGQSPKLLIFSASYRYTGVPDR
1184


VL
FTGSGSGADFTLTISSVQAEDLAVYYCQQHYSTPWTFGGGTKLDIK





A7D12.2
QIQLVQSGPDLKKPGETVKLSCKASGYTFTNFGMNWVKQAPGKGFKWMAWINTYTGESYFA
1185


scFv
DDFKGRFAFSVETSATTAYLQINNLKTEDTATYFCARGEIYYGYDGGFAYWGQGTLVTVSA


domain
GGGGSGGGGSGGGGSDVVMTQSHRFMSTSVGDRVSITCRASQDVNTAVSWYQQKPGQSPKL



LIFSASYRYTGVPDRFTGSGSGADFTLTISSVQAEDLAVYYCQQHYSTPWTFGGGTKLDIK





A7D12.2
QIQLVQSGPDLKKPGETVKLSCKASGYTFTNFGMNWVKQAPGKGFKWMAWINTYTGESYFA
1186


Full
DDFKGRFAFSVETSATTAYLQINNLKTEDTATYFCARGEIYYGYDGGFAYWGQGTLVTVSA


CART
GGGGSGGGGSGGGGSDVVMTQSHRFMSTSVGDRVSITCRASQDVNTAVSWYQQKPGQSPKL



LIFSASYRYTGVPDRFTGSGSGADFTLTISSVQAEDLAVYYCQQHYSTPWTFGGGTKLDIK



TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLL



SLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP



AYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYS



EIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR





C11D5.3
QIQLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLKWMGWINTETREPAYA
1187


VH
YDFRGRFAFSLETSASTAYLQINNLKYEDTATYFCALDYSYAMDYWGQGTSVTVSS





C11D5.3
DIVLTQSPASLAMSLGKRATISCRASESVSVIGAHLIHWYQQKPGQPPKLLIYLASNLETG
1188


VL
VPARFSGSGSGTDFTLTIDPVEEDDVAIYSCLQSRIFPRTFGGGTKLEIK





C11D5.3
QIQLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLKWMGWINTETREPAYA
1189


scFv
YDFRGRFAFSLETSASTAYLQINNLKYEDTATYFCALDYSYAMDYWGQGTSVTVSSGGGGS


domain
GGGGSGGGGSQIQLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLKWMGWI



NTETREPAYAYDFRGRFAFSLETSASTAYLQINNLKYEDTATYFCALDYSYAMDYWGQGTS



VTVSS





C11D5.3
QIQLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLKWMGWINTETREPAYA
1190


Full
YDFRGRFAFSLETSASTAYLQINNLKYEDTATYFCALDYSYAMDYWGQGTSVTVSSGGGGS


CART
GGGGSGGGGSQIQLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLKWMGWI



NTETREPAYAYDFRGRFAFSLETSASTAYLQINNLKYEDTATYFCALDYSYAMDYWGQGTS



VTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTC



GVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR



SADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKM



AEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR





C12A3.2
QIQLVQSGPELKKPGETVKISCKASGYTFRHYSMNWVKQAPGKGLKWMGRINTESGVPIYA
1191


VH
DDFKGRFAFSVETSASTAYLVINNLKDEDTASYFCSNDYLYSLDFWGQGTALTVSS





C12A3.2
DIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQPPTLLIQLASNVQTG
1192


VL
VPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQSRTIPRTFGGGTKLEIK





C12A3.2
QIQLVQSGPELKKPGETVKISCKASGYTFRHYSMNWVKQAPGKGLKWMGRINTESGVPIYA
1193


scFv
DDFKGRFAFSVETSASTAYLVINNLKDEDTASYFCSNDYLYSLDFWGQGTALTVSSGGGGS


domain
GGGGSGGGGSDIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQPPTLL



IQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQSRTIPRTFGGGTKLEIK





C12A3.2
QIQLVQSGPELKKPGETVKISCKASGYTFRHYSMNWVKQAPGKGLKWMGRINTESGVPIYA
1194


Full
DDFKGRFAFSVETSASTAYLVINNLKDEDTASYFCSNDYLYSLDFWGQGTALTVSSGGGGS


CART
GGGGSGGGGSDIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQPPTLL



IQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQSRTIPRTFGGGTKLEIKT



TTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDTYIWAPLAGTCGVLLLS



LVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA



YKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE



IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR





C13F12.1
QIQLVQSGPELKKPGETVKISCKASGYTFTHYSMNWVKQAPGKGLKWMGRINTETGEPLYA
1195


VH
DDFKGRFAFSLETSASTAYLVINNLKNEDTATFFCSNDYLYSCDYWGQGTTLTVSS





C13F12.1
DIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQPPTLLIQLASNVQTG
1196


VL
VPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQSRTIPRTFGGGTKLEIK





C13F12.1
QIQLVQSGPELKKPGETVKISCKASGYTFTHYSMNWVKQAPGKGLKWMGRINTETGEPLYA
1197


scFv
DDFKGRFAFSLETSASTAYLVINNLKNEDTATFFCSNDYLYSCDYWGQGTTLTVSSGGGGS


domain
GGGGSGGGGSDIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQPPTLL



IQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQSRTIPRTFGGGTKLEIK





C13F12.1
QIQLVQSGPELKKPGETVKISCKASGYTFTHYSMNWVKQAPGKGLKWMGRINTETGEPLYA
1198


Full
DDFKGRFAFSLETSASTAYLVINNLKNEDTATFFCSNDYLYSCDYWGQGTTLTVSSGGGGS


CART
GGGGSGGGGSDIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIYWYQQKPGQPPTLL



IQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQSRTIPRTFGGGTKLEIKT



TTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDTYIWAPLAGTCGVLLLS



LVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA



YKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE



IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR









Exemplary BCMA CAR constructs disclose herein comprise an scFv (e.g., a scFv as disclosed in Table 7 or 8, optionally preceded with an optional leader sequence (e.g., SEQ ID NO: 401 and SEQ ID NO: 402 for exemplary leader amino acid and nucleotide sequences, respectively). The sequences of the scFv fragments (e.g., an ScFv from any of SEQ ID NOs: 967-1182, e.g., SEQ ID NOs: 967, 973, 979, 985, 991, 997, 1003, 1009, 1015, 1021, 1027, 1033, 1039, 1045, 1051, 1057, 1063, 1069, 1075, 1081, 1087, 1093, 1099, 1105, 1111, 1117, 1123, 1129, 1135, 1141, 1147, 1153, 1159, 1165, 1171, 1177, not including the optional leader sequence) are provided herein in Tables 7 or 8. The BCMA CAR construct can further include an optional hinge domain, e.g., a CD8 hinge domain (e.g., including the amino acid sequence of SEQ ID NO: 403 or encoded by a nucleic acid sequence of SEQ ID NO: 404); a transmembrane domain, e.g., a CD8 transmembrane domain (e.g., including the amino acid sequence of SEQ ID NO: 12 or encoded by the nucleotide sequence of SEQ ID NO: 13); an intracellular domain, e.g., a 4-1BB intracellular domain (e.g., including the amino acid sequence of SEQ ID NO: 14 or encoded by the nucleotide sequence of SEQ ID NO: 15; and a functional signaling domain, e.g., a CD3 zeta domain (e.g., including amino acid sequence of SEQ ID NO: 18 or 20, or encoded by the nucleotide sequence of SEQ ID NO: 19 or 21). In certain embodiments, the domains are contiguous with and in the same reading frame to form a single fusion protein. In other embodiments, the domain are in separate polypeptides, e.g., as in an RCAR molecule as described herein.


In certain embodiments, the full length BCMA CAR molecule includes the amino acid sequence of, or is encoded by the nucleotide sequence of, BCMA-1, BCMA-2, BCMA-3, BCMA-4, BCMA-5, BCMA-6, BCMA-7, BCMA-8, BCMA-9, BCMA-10, BCMA-11, BCMA-12, BCMA-13, BCMA-14, BCMA-15, 149362, 149363, 149364, 149365, 149366, 149367, 149368, 149369, BCMA_EBB-C1978-A4, BCMA_EBB-C1978-G1, BCMA_EBB-C1979-C1, BCMA_EBB-C1978-C7, BCMA_EBB-C1978-D10, BCMA_EBB-C1979-C12, BCMA_EBB-C1980-G4, BCMA_EBB-C1980-D2, BCMA_EBB-C1978-A10, BCMA_EBB-C1978-D4, BCMA_EBB-C1980-A2, BCMA_EBB-C1981-C3, BCMA_EBB-C1978-G4, A7D12.2, C11D5.3, C12A3.2, or C13F12.1 provided in Table 7 or 8, or a sequence substantially (e.g., 85%, 95-99% or higher) identical thereto.


In certain embodiments, the BCMA CAR molecule, or the anti-BCMA antigen binding domain, includes the scFv amino acid sequence of BCMA-1, BCMA-2, BCMA-3, BCMA-4, BCMA-5, BCMA-6, BCMA-7, BCMA-8, BCMA-9, BCMA-10, BCMA-11, BCMA-12, BCMA-13, BCMA-14, BCMA-15, 149362, 149363, 149364, 149365, 149366, 149367, 149368, 149369, BCMA_EBB-C1978-A4, BCMA_EBB-C1978-G1, BCMA_EBB-C1979-C1, BCMA_EBB-C1978-C7, BCMA_EBB-C1978-D10, BCMA_EBB-C1979-C12, BCMA_EBB-C1980-G4, BCMA_EBB-C1980-D2, BCMA_EBB-C1978-A10, BCMA_EBB-C1978-D4, BCMA_EBB-C1980-A2, BCMA_EBB-C1981-C3, BCMA_EBB-C1978-G4, A7D12.2, C11D5.3, C12A3.2, or C13F12.1 provided in Table 7 or 8 (with or without the leader sequence), or a sequence substantially identical (e.g., 85%, 95-99% or higher identical, or up to 20, 15, 10, 8, 6, 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.


In certain embodiments, the BCMA CAR molecule, or the anti-BCMA antigen binding domain, includes the heavy chain variable region and/or the light chain variable region of BCMA-1, BCMA-2, BCMA-3, BCMA-4, BCMA-5, BCMA-6, BCMA-7, BCMA-8, BCMA-9, BCMA-10, BCMA-11, BCMA-12, BCMA-13, BCMA-14, BCMA-15, 149362, 149363, 149364, 149365, 149366, 149367, 149368, 149369, BCMA_EBB-C1978-A4, BCMA_EBB-C1978-G1, BCMA_EBB-C1979-C1, BCMA_EBB-C1978-C7, BCMA_EBB-C1978-D10, BCMA_EBB-C1979-C12, BCMA_EBB-C1980-G4, BCMA_EBB-C1980-D2, BCMA_EBB-C1978-A10, BCMA_EBB-C1978-D4, BCMA_EBB-C1980-A2, BCMA_EBB-C1981-C3, BCMA_EBB-C1978-G4, A7D12.2, C11D5.3, C12A3.2, or C13F12.1 provided in Table 7 or 8, or a sequence substantially identical (e.g., 85%, 95-99% or higher identical, or up to 20, 15, 10, 8, 6, 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.


In certain embodiments, the BCMA CAR molecule, or the anti-BCMA antigen binding domain, includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 9; and/or one, two or three CDRs from the light chain variable region (e.g., LCDR1, LCDR2 and/or LCDR3) of BCMA-1, BCMA-2, BCMA-3, BCMA-4, BCMA-5, BCMA-6, BCMA-7, BCMA-8, BCMA-9, BCMA-10, BCMA-11, BCMA-12, BCMA-13, BCMA-14, BCMA-15, 149362, 149363, 149364, 149365, 149366, 149367, 149368, 149369, BCMA_EBB-C1978-A4,


BCMA_EBB-C1978-G1, BCMA_EBB-C1979-C1, BCMA_EBB-C1978-C7, BCMA_EBB-C1978-D10, BCMA_EBB-C1979-C12, BCMA_EBB-C1980-G4, BCMA_EBB-C1980-D2, BCMA_EBB-C1978-A10, BCMA_EBB-C1978-D4, BCMA_EBB-C1980-A2, BCMA_EBB-C1981-C3, BCMA_EBB-C1978-G4, A7D12.2, C11D5.3, C12A3.2, or C13F12.1, provided in Table 10; or a sequence substantially identical (e.g., 85%, 95-99% or higher identical, or up to 20, 15, 10, 8, 6, 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.


In certain embodiments, the BCMA CAR molecule, or the anti-BCMA antigen binding domain, includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 11; and/or one, two or three CDRs from the light chain variable region (e.g., LCDR1, LCDR2 and/or LCDR3) of BCMA-1, BCMA-2, BCMA-3, BCMA-4, BCMA-5, BCMA-6, BCMA-7, BCMA-8, BCMA-9, BCMA-10, BCMA-11, BCMA-12, BCMA-13, BCMA-14, BCMA-15, 149362, 149363, 149364, 149365, 149366, 149367, 149368, 149369, BCMA_EBB-C1978-A4, BCMA_EBB-C1978-G1, BCMA_EBB-C1979-C1, BCMA_EBB-C1978-C7, BCMA_EBB-C1978-D10, BCMA_EBB-C1979-C12, BCMA_EBB-C1980-G4, BCMA_EBB-C1980-D2, BCMA_EBB-C1978-A10, BCMA_EBB-C1978-D4, BCMA_EBB-C1980-A2, BCMA_EBB-C1981-C3, BCMA_EBB-C1978-G4, A7D12.2, C11D5.3, C12A3.2, or C13F12.1, provided in Table 12; or a sequence substantially identical (e.g., 85%, 95-99% or higher identical, or up to 20, 15, 10, 8, 6, 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.


In certain embodiments, the BCMA CAR molecule, or the anti-BCMA antigen binding domain, includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 13; and/or one, two or three CDRs from the light chain variable region (e.g., LCDR1, LCDR2 and/or LCDR3) of BCMA-1, BCMA-2, BCMA-3, BCMA-4, BCMA-5, BCMA-6, BCMA-7, BCMA-8, BCMA-9, BCMA-10, BCMA-11, BCMA-12, BCMA-13, BCMA-14, BCMA-15, 149362, 149363, 149364, 149365, 149366, 149367, 149368, 149369, BCMA_EBB-C1978-A4, BCMA_EBB-C1978-G1, BCMA_EBB-C1979-C1, BCMA_EBB-C1978-C7, BCMA_EBB-C1978-D10, BCMA_EBB-C1979-C12, BCMA_EBB-C1980-G4, BCMA_EBB-C1980-D2, BCMA_EBB-C1978-A10, BCMA_EBB-C1978-D4, BCMA_EBB-C1980-A2, BCMA_EBB-C1981-C3, BCMA_EBB-C1978-G4, A7D12.2, C11D5.3, C12A3.2, or C13F12.1, provided in Table 14; or a sequence substantially identical (e.g., 85%, 95-99% or higher identical, or up to 20, 15, 10, 8, 6, 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.


The sequences of human CDR sequences of the scFv domains are shown in Tables 9, 11, and 13 for the heavy chain variable domains and in Tables 10, 12, and 14 for the light chain variable domains.









TABLE 9







Heavy Chain Variable Domain CDRs according to the Kabat numbering


scheme (Kabat et al. (1991), “Sequences of Proteins of


Immunological Interest,” 5th Ed. Public Health Service, National


Institutes of Health, Bethesda, MD)















SEQ

SEQ

SEQ




ID

ID

ID


Candidate
HCDR1
NO:
HCDR2
NO:
HCDR3
NO:





139109
NHGMS
1199
GIVYSGSTYYAASVKG
1239
HGGESDV
1279





139103
NYAMS
1200
GISRSGENTYYADSV
1240
SPAHYYGGMDV
1280





KG





139105
DYAMH
1201
GISWNSGSIGYADSV
1241
HSFLAY
1281





KG





139111
NHGMS
1202
GIVYSGSTYYAASVKG
1242
HGGESDV
1282





139100
NFGIN
1203
WINPKNNNTNYAQK
1243
GPYYYQSYMDV
1283





FQG





139101
SDAMT
1204
VISGSGGTTYYADSV
1244
LDSSGYYYARGPRY
1284





KG





139102
NYGIT
1205
WISAYNGNTNYAQK
1245
GPYYYYMDV
1285





FQG





139104
NHGMS
1206
GIVYSGSTYYAASVKG
1246
HGGESDV
1286





139106
NHGMS
1207
GIVYSGSTYYAASVKG
1247
HGGESDV
1287





139107
NHGMS
1208
GIVYSGSTYYAASVKG
1248
HGGESDV
1288





139108
DYYMS
1209
YISSSGSTIYYADSVKG
1249
ESGDGMDV
1289





139110
DYYMS
1210
YISSSGNTIYYADSVKG
1250
STMVREDY
1290





139112
NHGMS
1211
GIVYSGSTYYAASVKG
1251
HGGESDV
1291





139113
NHGMS
1212
GIVYSGSTYYAASVKG
1252
HGGESDV
1292





139114
NHGMS
1213
GIVYSGSTYYAASVKG
1253
HGGESDV
1293





149362
SSYYYWG
1214
SIYYSGSAYYNPSLKS
1254
HWQEWPDAFDI
1294





149363
TSGMCVS
1215
RIDWDEDKFYSTSLKT
1255
SGAGGTSATAFDI
1295





149364
SYSMN
1216
SISSSSSYIYYADSVKG
1256
TIAAVYAFDI
1296





149365
DYYMS
1217
YISSSGSTIYYADSVKG
1257
DLRGAFDI
1297





149366
SHYIH
1218
MINPSGGVTAYSQTL
1258
EGSGSGWYFDF
1298





QG





149367
SGGYYWS
1219
YIYYSGSTYYNPSLKS
1259
AGIAARLRGAFDI
1299





149368
SYAIS
1220
GIIPIFGTANYAQKFQG
1260
RGGYQLLRWDVG
1300







LLRSAFDI





149369
SNSAAWN
1221
RTYYRSKWYSFYAIS
1261
SSPEGLFLYWFDP
1301





LKS





BCMA_EBB-
SYAMS
1222
AISGSGGSTYYADSV
1262
VEGSGSLDY
1302


C1978-A4


KG





BCMA_EBB-
RYPMS
1223
GISDSGVSTYYADSA
1263
RAGSEASDI
1303


C1978-G1


KG





BCMA_EBB-
SYAMS
1224
AISGSGGSTYYADSV
1264
ATYKRELRYYYG
1304


C1979-C1


KG

MDV





BCMA_EBB-
SYAMS
1225
AISGSGGSTYYADSV
1265
ATYKRELRYYYG
1305


C1978-C7


KG

MDV





BCMA_EBB-
DYAMH
1226
GISWNSGSIGYADSV
1266
VGKAVPDV
1306


C1978-D10


KG





BCMA_EBB-
DYAMH
1227
SINWKGNSLAYGDSV
1267
HQGVAYYNYAM
1307


C1979-C12


KG


DV





BCMA_EBB-
SYAMS
1228
AISGSGGSTYYADSV
1268
VVRDGMDV
1308


C1980-G4


KG





BCMA_EBB-
SYAMS
1229
AISGSGGSTYYADSV
1269
IPQTGTFDY
1309


C1980-D2


KG





BCMA_EBB-
SYAMS
1230
AISGSGGSTYYADSV
1270
ANYKRELRYYYG
1310


C1978-A10


KG

MDV





BCMA_EBB-
SYAMS
1231
AISGSGGSTYYADSV
1271
ALVGATGAFDI
1311


C1978-D4


KG





BCMA_EBB-
SYAMS
1232
AISGSGGSTYYADSV
1272
WFGEGFDP
1312


C1980-A2


KG





BCMA_EBB-
SYAMS
1233
AISGSGGSTYYADSV
1273
VGYDSSGYYRDY
1313


C1981-C3


KG

YGMDV





BCMA_EBB-
SYAMS
1234
AISGSGGSTYYADSV
1274
MGWSSGYLGAFDI
1314


C1978-G4


KG





A7D12.2
NFGMN
1235
WINTYTGESYFADDF
1275
GEIYYGYDGGFAY
1315





KG





C11D5.3
DYSIN
1236
WINIETREPAYAYDF
1276
DYSYAMDY
1316





RG





C12A3.2
HYSMN
1237
RINIESGVPIYADDFKG
1277
DYLYSLDF
1317





C13F12.1
HYSMN
1238
RINIETGEPLYADDF
1278
DYLYSCDY
1318





KG
















TABLE 10







Light Chain Variable Domain CDRs according to the Kabat


numbering scheme (Kabat et al. (1991), “Sequences of


Proteins of Immunological Interest,” 5th Ed. Public


Health Service, National Institutes of Health, Bethesda, MD)















SEQ

SEQ

SEQ




ID

ID

ID


Candidate
LCDR1
NO:
LCDR2
NO:
LCDR3
NO:





139109
RASQSISSYLN
1319
AASSLQS
1359
QQSYSTPYT
1399





139103
RASQSISSSFLA
1320
GASRRAT
1360
QQYHSSPSWT
1400





139105
RSSQSLLHSNGYNYLD
1321
LGSNRAS
1361
MQALQTPYT
1401





139111
KSSQSLLRNDGKTPLY
1322
EVSNRFS
1362
MQNIQFPS
1402





139100
RSSQSLLHSNGYNYLN
1323
LGSKRAS
1363
MQALQTPYT
1403





139101
RASQSISSYLN
1324
GASTLAS
1364
QQSYKRAS
1404





139102
RSSQSLLYSNGYNYVD
1325
LGSNRAS
1365
MQGRQFPYS
1405





139104
RASQSVSSNLA
1326
GASTRAS
1366
QQYGSSLT
1406





139106
RASQSVSSKLA
1327
GASIRAT
1367
QQYGSSSWT
1407





139107
RASQSVGSTNLA
1328
DASNRAT
1368
QQYGSSPPWT
1408





139108
RASQSISSYLN
1329
AASSLQS
1369
QQSYTLA
1409





139110
KSSESLVHNSGKTYLN
1330
EVSNRDS
1370
MQGTHWPGT
1410





139112
QASEDINKFLN
1331
DASTLQT
1371
QQYESLPLT
1411





139113
RASQSVGSNLA
1332
GASTRAT
1372
QQYNDWLPVT
1412





139114
RASQSIGSSSLA
1333
GASSRAS
1373
QQYAGSPPFT
1413





149362
KASQDIDDAMN
1334
SATSPVP
1374
LQHDNFPLT
1414





149363
RASQDIYNNLA
1335
AANKSQS
1375
QHYYRFPYS
1415





149364
RSSQSLLHSNGYNYLD
1336
LGSNRAS
1376
MQALQTPYT
1416





149365
GGNNIGTKSVH
1337
DDSVRPS
1377
QVWDSDSEHVV
1417





149366
SGDGLSKKYVS
1338
RDKERPS
1378
QAWDDTTVV
1418





149367
RASQGIRNWLA
1339
AASNLQS
1379
QKYNSAPFT
1419





149368
GGNNIGSKSVH
1340
GKNNRPS
1380
SSRDSSGDHLRV
1420





149369
QGDSLGNYYAT
1341
GTNNRPS
1381
NSRDSSGHHLL
1421





BCMA_EBB-
RASQSVSSAYLA
1342
GASTRAT
1382
QHYGSSFNGSS
1422


C1978-




LFT


A4





BCMA_EBB-
RASQSVSNSLA
1343
DASSRAT
1383
QQFGTSSGLT
1423


C1978-


G1





BCMA_EBB-
RASQSVSSSFLA
1344
GASSRAT
1384
QQYHSSPSWT
1424


C1979-


C1





BCMA_EBB-
RASQSVSTTFLA
1345
GSSNRAT
1385
QQYHSSPSWT
1425


C1978-


C7





BCMA_EBB-
RASQSISSYLN
1346
AASSLQS
1386
QQSYSTPYS
1426


C1978-


D10





BCMA_EBB-
RATQSIGSSFLA
1347
GASQRAT
1387
QHYESSPSWT
1427


C1979-


C12





BCMA_EBB-
RASQSVSSSYLA
1348
GASSRAT
1388
QQYGSPPRFT
1428


C1980-


G4





BCMA_EBB-
RASQSVSSSYLA
1349
GASSRAT
1389
QHYGSSPSWT
1429


C1980-


D2





BCMA_EBB-
RASQRVASNYLA
1350
GASSRAT
1390
QHYDSSPSWT
1430


C1978-


A10





BCMA_EBB-
RASQSLSSNFLA
1351
GASNWAT
1391
QYYGTSPMYT
1431


C1978-


D4





BCMA_EBB-
RSSQSLLHSNGYNYLD
1352
LGSNRAS
1392
MQALQTPLT
1432


C1980-


A2





BCMA_EBB-
RASQSVSSSYLA
1353
GTSSRAT
1393
QHYGNSPPKFT
1433


C1981-


C3





BCMA_EBB-
RASQSVASSFLA
1354
GASGRAT
1394
QHYGGSPRLT
1434


C1978-


G4





A7D12.2
RASQDVNTAVS
1355
SASYRYT
1395
QQHYSTPWT
1435





C11D5.3
RASESVSVIGAHLIH
1356
LASNLET
1396
LQSRIFPRT
1436





C12A3.2
RASESVTILGSHLIY
1357
LASNVQT
1397
LQSRTIPRT
1437





C13F12.1
RASESVTILGSHLIY
1358
LASNVQT
1398
LQSRTIPRT
1438
















TABLE 11







Heavy Chain Variable Domain CDRs according to the


Chothia numbering scheme (A1-Lazikani et al., (1997)


JMB 273, 927-948)















SEQ

SEQ

SEQ




ID

ID

ID


Candidate
HCDR1
NO:
HCDR2
NO:
HCDR3
NO:





139109
GFALSNH
1439
VYSGS
1479
HGGESDV
1519





139103
GFTFSNY
1440
SRSGEN
1480
SPAHYYGGMDV
1520





139105
GFTFDDY
1441
SWNSGS
1481
HSFLAY
1521





139111
GFALSNH
1442
VYSGS
1482
HGGESDV
1522





139100
GYIFDNF
1443
NPKNNN
1483
GPYYYQSYMDV
1523





139101
GFTFSSD
1444
SGSGGT
1484
LDSSGYYYARGPRY
1524





139102
GYTFSNY
1445
SAYNGN
1485
GPYYYYMDV
1525





139104
GFALSNH
1446
VYSGS
1486
HGGESDV
1526





139106
GFALSNH
1447
VYSGS
1487
HGGESDV
1527





139107
GFALSNH
1448
VYSGS
1488
HGGESDV
1528





139108
GFTFSDY
1449
SSSGST
1489
ESGDGMDV
1529





139110
GFTFSDY
1450
SSSGNT
1490
STMVREDY
1530





139112
GFALSNH
1451
VYSGS
1491
HGGESDV
1531





139113
GFALSNH
1452
VYSGS
1492
HGGESDV
1532





139114
GFALSNH
1453
VYSGS
1493
HGGESDV
1533





149362
GGSISSSYY
1454
YYSGS
1494
HWQEWPDAFDI
1534





149363
GFSLRTSGM
1455
DWDED
1495
SGAGGTSATAFDI
1535





149364
GFTFSSY
1456
SSSSSY
1496
TIAAVYAFDI
1536





149365
GFTFSDY
1457
SSSGST
1497
DLRGAFDI
1537





149366
GYTVTSH
1458
NPSGGV
1498
EGSGSGWYFDF
1538





149367
GGSISSGGY
1459
YYSGS
1499
AGIAARLRGAFDI
1539





149368
GGTFSSY
1460
IPIFGT
1500
RGGYQLLRWDVGLL
1540







RSAFDI





149369
GDSVSSNSA
1461
YYRSKWY
1501
SSPEGLFLYWFDP
1541





BCMA_EBB-
GFTFSSY
1462
SGSGGS
1502
VEGSGSLDY
1542


C1978-A4





BCMA_EBB-
GITFSRY
1463
SDSGVS
1503
RAGSEASDI
1543


C1978-G1





BCMA_EBB-
GFTFSSY
1464
SGSGGS
1504
ATYKRELRYYYGMDV
1544


C1979-C1





BCMA_EBB-
GFTFSSY
1465
SGSGGS
1505
ATYKRELRYYYGMDV
1545


C1978-C7





BCMA_EBB-
GFTFDDY
1466
SWNSGS
1506
VGKAVPDV
1546


C1978-D10





BCMA_EBB-
GFTFDDY
1467
NWKGNS
1507
HQGVAYYNYAMDV
1547


C1979-C12





BCMA_EBB-
GFTFSSY
1468
SGSGGS
1508
VVRDGMDV
1548


C1980-G4





BCMA_EBB-
GFTFSSY
1469
SGSGGS
1509
IPQTGTFDY
1549


C1980-D2





BCMA_EBB-
GFTFSSY
1470
SGSGGS
1510
ANYKRELRYYYGMDV
1550


C1978-A10





BCMA_EBB-
GFSFSSY
1471
SGSGGS
1511
ALVGATGAFDI
1551


C1978-D4





BCMA_EBB-
GFTFSSY
1472
SGSGGS
1512
WFGEGFDP
1552


C1980-A2





BCMA_EBB-
GFTFSSY
1473
SGSGGS
1513
VGYDSSGYYRDYYG
1553


C1981-C3




MDV





BCMA_EBB-
GFTFSSY
1474
SGSGGS
1514
MGWSSGYLGAFDI
1554


C1978-G4





A7D12.2
GYTFTNF
1475
NTYTGE
1515
GEIYYGYDGGFAY
1555





C11D5.3
GYTFTDY
1476
NTETRE
1516
DYSYAMDY
1556





C12A3.2
GYTFRHY
1477
NTESGV
1517
DYLYSLDF
1557





C13F12.1
GYTFTHY
1478
NTETGE
1518
DYLYSCDY
1558
















TABLE 12







Light Chain Variable Domain CDRs according to the


Chothia numbering scheme (A1-Lazikani et al., (1997)


JMB 273, 927-948)















SEQ ID

SEQ ID

SEQ ID


Candidate
LCDR1
NO:
LCDR2
NO:
LCDR3
NO:





139109
SQSISSY
1559
AAS
1599
SYSTPY
1639





139103
SQSISSSF
1560
GAS
1600
YHSSPSW
1640





139105
SQSLLHSNGYNY
1561
LGS
1601
ALQTPY
1641





139111
SQSLLRNDGKTP
1562
EVS
1602
NIQFP
1642





139100
SQSLLHSNGYNY
1563
LGS
1603
ALQTPY
1643





139101
SQSISSY
1564
GAS
1604
SYKRA
1644





139102
SQSLLYSNGYNY
1565
LGS
1605
GRQFPY
1645





139104
SQSVSSN
1566
GAS
1606
YGSSL
1646





139106
SQSVSSK
1567
GAS
1607
YGSSSW
1647





139107
SQSVGSTN
1568
DAS
1608
YGSSPPW
1648





139108
SQSISSY
1569
AAS
1609
SYTL
1649





139110
SESLVHNSGKTY
1570
EVS
1610
GTHWPG
1650





139112
SEDINKF
1571
DAS
1611
YESLPL
1651





139113
SQSVGSN
1572
GAS
1612
YNDWLPV
1652





139114
SQSIGSSS
1573
GAS
1613
YAGSPPF
1653





149362
SQDIDDA
1574
SAT
1614
HDNFPL
1654





149363
SQDIYNN
1575
AAN
1615
YYRFPY
1655





149364
SQSLLHSNGYNY
1576
LGS
1616
ALQTPY
1656





149365
NNIGTKS
1577
DDS
1617
WDSDSEHV
1657





149366
DGLSKKY
1578
RDK
1618
WDDTTV
1658





149367
SQGIRNW
1579
AAS
1619
YNSAPF
1659





149368
NNIGSKS
1580
GKN
1620
RDSSGDHLR
1660





149369
DSLGNYY
1581
GTN
1621
RDSSGHHL
1661





BCMA_EBB-
SQSVSSAY
1582
GAS
1622
YGSSFNGSSLF
1662


C1978-A4





BCMA_EBB-
SQSVSNS
1583
DAS
1623
FGTSSGL
1663


C1978-G1





BCMA_EBB-
SQSVSSSF
1584
GAS
1624
YHSSPSW
1664


C1979-C1





BCMA_EBB-
SQSVSTTF
1585
GSS
1625
YHSSPSW
1665


C1978-C7





BCMA_EBB-
SQSISSY
1586
AAS
1626
SYSTPY
1666


C1978-D10





BCMA_EBB-
TQSIGSSF
1587
GAS
1627
YESSPSW
1667


C1979-C12





BCMA_EBB-
SQSVSSSY
1588
GAS
1628
YGSPPRF
1668


C1980-G4





BCMA_EBB-
SQSVSSSY
1589
GAS
1629
YGSSPSW
1669


C1980-D2





BCMA_EBB-
SQRVASNY
1590
GAS
1630
YDSSPSW
1670


C1978-A10





BCMA_EBB-
SQSLSSNF
1591
GAS
1631
YGTSPMY
1671


C1978-D4





BCMA_EBB-
SQSLLHSNGYNY
1592
LGS
1632
ALQTPL
1672


C1980-A2





BCMA_EBB-
SQSVSSSY
1593
GTS
1633
YGNSPPKF
1673


C1981-C3





BCMA_EBB-
SQSVASSF
1594
GAS
1634
YGGSPRL
1674


C1978-G4





A7D12.2
SQDVNTA
1595
SAS
1635
HYSTPW
1675





C11D5.3
SESVSVIGAHL
1596
LAS
1636
SRIFPR
1676





C12A3.2
SESVTILGSHL
1597
LAS
1637
SRTIPR
1677





C13F12.1
SESVTILGSHL
1598
LAS
1638
SRTIPR
1678
















TABLE 13







Heavy Chain Variable Domain CDRs according to a combination


of the Kabat numbering scheme (Kabat et al. (1991), “Sequences


of Proteins of Immunological Interest,” 5th Ed. Public Health


Service, National Institutes of Health, Bethesda, MD) and the


Chothia numbering scheme (A1-Lazikani et al., (1997) JMB


273, 927-948).















SEQ

SEQ

SEQ




ID

ID

ID


Candidate
HCDR1
NO:
HCDR2
NO:
HCDR3
NO:





139109
GFALSNHGMS
1679
GIVYSGSTYYAAS
1719
HGGESDV
1759





VKG





139103
GFTFSNYAMS
1680
GISRSGENTYYAD
1720
SPAHYYGGMDV
1760





SVKG





139105
GFTFDDYAMH
1681
GISWNSGSIGYAD
1721
HSFLAY
1761





SVKG





139111
GFALSNHGMS
1682
GIVYSGSTYYAAS
1722
HGGESDV
1762





VKG





139100
GYIFDNFGIN
1683
WINPKNNNTNYA
1723
GPYYYQSYMDV
1763





QKFQG





139101
GFTFSSDAMT
1684
VISGSGGTTYYAD
1724
LDSSGYYYAR
1764





SVKG

GPRY





139102
GYTFSNYGIT
1685
WISAYNGNTNYA
1725
GPYYYYMDV
1765





QKFQG





139104
GFALSNHGMS
1686
GIVYSGSTYYAAS
1726
HGGESDV
1766





VKG





139106
GFALSNHGMS
1687
GIVYSGSTYYAAS
1727
HGGESDV
1767





VKG





139107
GFALSNHGMS
1688
GIVYSGSTYYAAS
1728
HGGESDV
1768





VKG





139108
GFTFSDYYMS
1689
YISSSGSTIYYADS
1729
ESGDGMDV
1769





VKG





139110
GFTFSDYYMS
1690
YISSSGNTIYYAD
1730
STMVREDY
1770





SVKG





139112
GFALSNHGMS
1691
GIVYSGSTYYAAS
1731
HGGESDV
1771





VKG





139113
GFALSNHGMS
1692
GIVYSGSTYYAAS
1732
HGGESDV
1772





VKG





139114
GFALSNHGMS
1693
GIVYSGSTYYAAS
1733
HGGESDV
1773





VKG





149362
GGSISSSYYYWG
1694
SIYYSGSAYYNPS
1734
HWQEWPDAFDI
1774





LKS





149363
GFSLRTSGMC
1695
RIDWDEDKFYSTS
1735
SGAGGTSATAF
1775



VS

LKT

DI





149364
GFTFSSYSMN
1696
SISSSSSYIYYADS
1736
TIAAVYAFDI
1776





VKG





149365
GFTFSDYYMS
1697
YISSSGSTIYYADS
1737
DLRGAFDI
1777





VKG





149366
GYTVTSHYIH
1698
MINPSGGVTAYS
1738
EGSGSGWYFDF
1778





QTLQG





149367
GGSISSGGYY
1699
YIYYSGSTYYNPS
1739
AGIAARLRGAF
1779



WS

LKS

DI





149368
GGTFSSYAIS
1700
GIIPIFGTANYAQ
1740
RGGYQLLRWD
1780





KFQG

VGLLRSAFDI





149369
GDSVSSNSAA
1701
RTYYRSKWYSFY
1741
SSPEGLFLYWF
1781



WN

AISLKS

DP





BCMA_EBB-
GFTFSSYAMS
1702
AISGSGGSTYYAD
1742
VEGSGSLDY
1782


C1978-A4


SVKG





BCMA_EBB-
GITFSRYPMS
1703
GISDSGVSTYYAD
1743
RAGSEASDI
1783


C1978-G1


SAKG





BCMA_EBB-
GFTFSSYAMS
1704
AISGSGGSTYYAD
1744
ATYKRELRYY
1784


C1979-C1


SVKG

YGMDV





BCMA_EBB-
GFTFSSYAMS
1705
AISGSGGSTYYAD
1745
ATYKRELRYY
1785


C1978-C7


SVKG

YGMDV





BCMA_EBB-
GFTFDDYAMH
1706
GISWNSGSIGYAD
1746
VGKAVPDV
1786


C1978-D10


SVKG





BCMA_EBB-
GFTFDDYAMH
1707
SINWKGNSLAYG
1747
HQGVAYYNYA
1787


C1979-C12


DSVKG

MDV





BCMA_EBB-
GFTFSSYAMS
1708
AISGSGGSTYYAD
1748
VVRDGMDV
1788


C1980-G4


SVKG





BCMA_EBB-
GFTFSSYAMS
1709
AISGSGGSTYYAD
1749
IPQTGTFDY
1789


C1980-D2


SVKG





BCMA_EBB-
GFTFSSYAMS
1710
AISGSGGSTYYAD
1750
ANYKRELRYY
1790


C1978-A10


SVKG

YGMDV





BCMA_EBB-
GFSFSSYAMS
1711
AISGSGGSTYYAD
1751
ALVGATGAFDI
1791


C1978-D4


SVKG





BCMA_EBB-
GFTFSSYAMS
1712
AISGSGGSTYYAD
1752
WFGEGFDP
1792


C1980-A2


SVKG





BCMA_EBB-
GFTFSSYAMS
1713
AISGSGGSTYYAD
1753
VGYDSSGYYR
1793


C1981-C3


SVKG

DYYGMDV





BCMA_EBB-
GFTFSSYAMS
1714
AISGSGGSTYYAD
1754
MGWSSGYLGA
1794


C1978-G4


SVKG

FDI





A7D12.2
GYTFTNFGMN
1715
WINTYTGESYFA
1755
GEIYYGYDGGF
1795





DDFKG

AY





C11D5.3
GYTFTDYSIN
1716
WINTETREPAYA
1756
DYSYAMDY
1796





YDFRG





C12A3.2
GYTFRHYSMN
1717
RINTESGVPIYAD
1757
DYLYSLDF
1797





DFKG





C13F12.1
GYTFTHYSMN
1718
RINTETGEPLYAD
1758
DYLYSCDY
1798





DFKG
















TABLE 14







Light Chain Variable Domain CDRs according to a combination


of the Kabat numbering scheme (Kabat et al. (1991),


“Sequences of Proteins of Immunological Interest,”


5th Ed. Public Health Service, National Institutes of


Health, Bethesda, MD) and the Chothia numbering scheme


(A1-Lazikani et al., (1997) JMB 273, 927-948).















SEQ

SEQ

SEQ




ID

ID

ID


Candidate
LCDR1
NO:
LCDR2
NO:
LCDR3
NO:





139109
RASQSISSYLN
1799
AASSLQS
1839
QQSYSTPYT
1879





139103
RASQSISSSFLA
1800
GASRRAT
1840
QQYHSSPSWT
1880





139105
RSSQSLLHSNGYNYLD
1801
LGSNRAS
1841
MQALQTPYT
1881





139111
KSSQSLLRNDGKTPLY
1802
EVSNRFS
1842
MQNIQFPS
1882





139100
RSSQSLLHSNGYNYLN
1803
LGSKRAS
1843
MQALQTPYT
1883





139101
RASQSISSYLN
1804
GASTLAS
1844
QQSYKRAS
1884





139102
RSSQSLLYSNGYNYVD
1805
LGSNRAS
1845
MQGRQFPYS
1885





139104
RASQSVSSNLA
1806
GASTRAS
1846
QQYGSSLT
1886





139106
RASQSVSSKLA
1807
GASIRAT
1847
QQYGSSSWT
1887





139107
RASQSVGSTNLA
1808
DASNRAT
1848
QQYGSSPPWT
1888





139108
RASQSISSYLN
1809
AASSLQS
1849
QQSYTLA
1889





139110
KSSESLVHNSGKTYLN
1810
EVSNRDS
1850
MQGTHWPGT
1890





139112
QASEDINKFLN
1811
DASTLQT
1851
QQYESLPLT
1891





139113
RASQSVGSNLA
1812
GASTRAT
1852
QQYNDWLPVT
1892





139114
RASQSIGSSSLA
1813
GASSRAS
1853
QQYAGSPPFT
1893





149362
KASQDIDDAMN
1814
SATSPVP
1854
LQHDNFPLT
1894





149363
RASQDIYNNLA
1815
AANKSQS
1855
QHYYRFPYS
1895





149364
RSSQSLLHSNGYNYLD
1816
LGSNRAS
1856
MQALQTPYT
1896





149365
GGNNIGTKSVH
1817
DDSVRPS
1857
QVWDSDSEHVV
1897





149366
SGDGLSKKYVS
1818
RDKERPS
1858
QAWDDTTVV
1898





149367
RASQGIRNWLA
1819
AASNLQS
1859
QKYNSAPFT
1899





149368
GGNNIGSKSVH
1820
GKNNRPS
1860
SSRDSSGDHL
1900







RV





149369
QGDSLGNYYAT
1821
GTNNRPS
1861
NSRDSSGHHLL
1901





BCMA_EBB-
RASQSVSSAYLA
1822
GASTRAT
1862
QHYGSSFNGS
1902


C1978-A4




SLFT





BCMA_EBB-
RASQSVSNSLA
1823
DASSRAT
1863
QQFGTSSGLT
1903


C1978-G1





BCMA_EBB-
RASQSVSSSFLA
1824
GASSRAT
1864
QQYHSSPSWT
1904


C1979-C1





BCMA_EBB-
RASQSVSTTFLA
1825
GSSNRAT
1865
QQYHSSPSWT
1905


C1978-C7





BCMA_EBB-
RASQSISSYLN
1826
AASSLQS
1866
QQSYSTPYS
1906


C1978-D10





BCMA_EBB-
RATQSIGSSFLA
1827
GASQRAT
1867
QHYESSPSWT
1907


C1979-C12





BCMA_EBB-
RASQSVSSSYLA
1828
GASSRAT
1868
QQYGSPPRFT
1908


C1980-G4





BCMA_EBB-
RASQSVSSSYLA
1829
GASSRAT
1869
QHYGSSPSWT
1909


C1980-D2





BCMA_EBB-
RASQRVASNYLA
1830
GASSRAT
1870
QHYDSSPSWT
1910


C1978-A10





BCMA_EBB-
RASQSLSSNFLA
1831
GASNWAT
1871
QYYGTSPMYT
1911


C1978-D4





BCMA_EBB-
RSSQSLLHSNGYNYLD
1832
LGSNRAS
1872
MQALQTPLT
1912


C1980-A2





BCMA_EBB-
RASQSVSSSYLA
1833
GTSSRAT
1873
QHYGNSPPKFT
1913


C1981-C3





BCMA_EBB-
RASQSVASSFLA
1834
GASGRAT
1874
QHYGGSPRLT
1914


C1978-G4





A7D12.2
RASQDVNTAVS
1835
SASYRYT
1875
QQHYSTPWT
1915





C11D5.3
RASESVSVIGAHLIH
1836
LASNLET
1876
LQSRIFPRT
1916





C12A3.2
RASESVTILGSHLIY
1837
LASNVQT
1877
LQSRTIPRT
1917





C13F12.1
RASESVTILGSHLIY
1838
LASNVQT
1878
LQSRTIPRT
1918









In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) or a BCMA binding domain includes:


(1) one, two, or three light chain (LC) CDRs chosen from one of the following:


(i) a LC CDR1 of SEQ ID NO: 1320, LC CDR2 of SEQ ID NO: 1360 and LC CDR3 of SEQ ID NO: 1400 of BCMA-4 CAR (139103);


(ii) a LC CDR1 of SEQ ID NO: 1319, LC CDR2 of SEQ ID NO: 1359 and LC CDR3 of SEQ ID NO: 1399 of BCMA-10 CAR (139109);


(iii) a LC CDR1 of SEQ ID NO: 1331, LC CDR2 of SEQ ID NO: 137 land LC CDR3 of SEQ ID NO: 1411of BCMA-13 CAR (139112); or


(iv) a LC CDR1 of SEQ ID NO: 1333, LC CDR2 of SEQ ID NO: 1373 and LC CDR3 of SEQ ID NO: 1413 of BCMA-15 CAR (139114), and/or


(2) one, two, or three heavy chain (HC) CDRs from one of the following:


(i) a HC CDR1 of SEQ ID NO: 1200, HC CDR2 of SEQ ID NO: 1240 and HC CDR3 of SEQ ID NO: 1280 of BCMA-4 CAR (139103);


(ii) a HC CDR1 of SEQ ID NO: 1199, HC CDR2 of SEQ ID NO: 1239 and HC CDR3 of SEQ ID NO: 1279 of BCMA-10 CAR (139109);


(iii) a HC CDR1 of SEQ ID NO: 1121, HC CDR2 of SEQ ID NO: 1251 and HC CDR3 of SEQ ID NO: 1291 of BCMA-13 CAR (139112); or


(iv) a HC CDR1 of SEQ ID NO: 1213, HC CDR2 of SEQ ID NO: 1253 and HC CDR3 of SEQ ID NO: 1293 of BCMA-15 (139114).


In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:


(1) one, two, or three light chain (LC) CDRs chosen from one of the following:


(i) a LC CDR1 of SEQ ID NO: 1560, LC CDR2 of SEQ ID NO: 1600 and LC CDR3 of SEQ ID NO: 1640 of BCMA-4 CAR (139103);


(ii) a LC CDR1 of SEQ ID NO: 1559, LC CDR2 of SEQ ID NO: 1599 and LC CDR3 of SEQ ID NO: 1639 of BCMA-10 CAR (139109);


(iii) a LC CDR1 of SEQ ID NO: 1571, LC CDR2 of SEQ ID NO: 1611 and LC CDR3 of SEQ ID NO: 1651 of BCMA-13 CAR (139112); or


(iv) a LC CDR1 of SEQ ID NO: 1573, LC CDR2 of SEQ ID NO: 1613 and LC CDR3 of SEQ ID NO: 1653 of BCMA-15 CAR (139114); and/or


(2) one, two, or three heavy chain (HC) CDRs chosen from one of the following:


(i) a HC CDR1 of SEQ ID NO: 1440, HC CDR2 of SEQ ID NO: 1480 and HC CDR3 of SEQ ID NO: 1520 of BCMA-4 CAR (139103);


(ii) a HC CDR1 of SEQ ID NO: 1439, HC CDR2 of SEQ ID NO: 1479 and HC CDR3 of SEQ ID NO: 1519 of BCMA-10 CAR (139109);


(iii) a HC CDR1 of SEQ ID NO: 1451, HC CDR2 of SEQ ID NO: 1491 and HC CDR3 of SEQ ID NO: 1531 of BCMA-13 CAR (139112); or


(iv) a HC CDR1 of SEQ ID NO: 1453, HC CDR2 of SEQ ID NO: 1493 and HC CDR3 of SEQ ID NO: 1533 of BCMA-15 CAR (139114).


In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:


(1) one, two, or three light chain (LC) CDRs chosen from one of the following:


(i) a LC CDR1 of SEQ ID NO: 1800 LC CDR2 of SEQ ID NO: 1840 and LC CDR3 of SEQ ID NO: 1880 of BCMA-4 CAR (139103);


(ii) a LC CDR1 of SEQ ID NO: 1799, LC CDR2 of SEQ ID NO: 1839 and LC CDR3 of SEQ ID NO: 1879 of BCMA-10 CAR (139109);


(iii) a LC CDR1 of SEQ ID NO: 1811, LC CDR2 of SEQ ID NO: 1851 and LC CDR3 of SEQ ID NO: 1891 of BCMA-13 CAR (139112); or


(iv) a LC CDR1 of SEQ ID NO: 1813, LC CDR2 of SEQ ID NO: 1853 and LC CDR3 of SEQ ID NO: 1893 of BCMA-15 CAR (139114); and/or


(2) one, two, or three heavy chain (HC) CDRs chosen from one of the following:


(i) a HC CDR1 of SEQ ID NO: 1680, HC CDR2 of SEQ ID NO: 1720 and HC CDR3 of SEQ ID NO: 1760 of BCMA-4 CAR (139103);


(ii) a HC CDR1 of SEQ ID NO: 1679, HC CDR2 of SEQ ID NO: 1719 and HC CDR3 of SEQ ID NO: 1759 of BCMA-10 CAR (139109);


(iii) a HC CDR1 of SEQ ID NO: 1691, HC CDR2 of SEQ ID NO: 1731 and HC CDR3 of SEQ ID NO: 1771 of BCMA-13 CAR (139112);


(iv) a HC CDR1 of SEQ ID NO: 1693, HC CDR2 of SEQ ID NO: 1733 and HC CDR3 of SEQ ID NO: 1773 of BCMA-15 CAR (139114).


Exemplary Components of the CAR Molecules:









Leader (amino acid sequence) (SEQ ID NO: 1919)


MALPVTALLLPLALLLHAARP





leader (nucleic acid sequence) (SEQ ID NO: 1920)


ATGGCCCTGCCTGTGACAGCCCTGCTGCTGCCTCTGGCTCTGCTGCTGC





ATGCCGCTAGACCC





leader (nucleic acid sequence) (SEQ ID NO: 1942)


ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCC





ACGCCGCTCGGCCC





CD8 hinge (amino acid sequence) (SEQ ID NO: 1921)


TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD





CD8 hinge (nucleic acid sequence)


(SEQ ID NO: 1922)


ACCACGACGCCAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGT





CGCAGCCCCTGTCCCTGCGCCCAGAGGCGTGCCGGCCAGCGGCGGGGGG





CGCAGTGCACACGAGGGGGCTGGACTTCGCCTGTGAT





CD8 transmembrane (amino acid sequence)


(SEQ ID NO: 1923)


IYIWAPLAGTCGVLLLSLVITLYC





CD8 transmembrane (nucleic acid sequence)


(SEQ ID NO: 1924)


ATCTACATCTGGGCGCCCTTGGCCGGGACTTGTGGGGTCCTTCTCCTGT





CACTGGTTATCACCCTTTACTGC





CD8 transmembrane (nucleic acid sequence)


(SEQ ID NO: 1943)


ATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTT





CACTCGTGATCACTCTTTACTGT





4-1BB Intracellular domain (amino acid sequence)


(SEQ ID NO: 1925)


KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL





4-1BB Intracellular domain (nucleic acid sequence)


(SEQ ID NO: 1926)


AAACGGGGCAGAAAGAAACTCCTGTATATATTCAAACAACCATTTATGA





GACCAGTACAAACTACTCAAGAGGAAGATGGCTGTAGCTGCCGATTTCC





AGAAGAAGAAGAAGGAGGATGTGAACTG





4-1BB Intracellular domain (nucleic acid sequence)


(SEQ ID NO: 1944)


AAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGA





GGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCC





AGAGGAGGAGGAAGGCGGCTGCGAACTG





CD28 Intracellular domain (amino acid sequence)


(SEQ ID NO: 1927)







(SEQ ID NO: 1927)







RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS





CD28 Intracellular domain (nucleotide sequence)


(SEQ ID NO: 1928)







(SEQ ID NO: 1928)







AGGAGTAAGAGGAGCAGGCTCCTGCACAGTGACTACATGAACATGACTC





CCCGCCGCCCCGGGCCCACCCGCAAGCATTACCAGCCCTATGCCCCACC





ACGCGACTTCGCAGCCTATCGCTCC





ICOS Intracellular domain (amino acid sequence)


(SEQ ID NO: 1929)







(SEQ ID NO: 1929)







T K K K Y S S S V H D P N G E Y M F M R A V N T A





K K S R L T D V T L





ICOS Intracellular domain (nucleotide sequence)


(SEQ ID NO: 1930)







(SEQ ID NO: 1930)







ACAAAAAAGAAGTATTCATCCAGTGTGCACGACCCTAACGGTGAATACA





TGTTCATGAGAGCAGTGAACACAGCCAAAAAATCCAGACTCACAGATGT





GACCCTA





CD3 zeta domain (amino acid sequence)


(SEQ ID NO: 1931)


RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP





RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK





DTYDALHMQALPPR





CD3 zeta (nucleic acid sequence) (SEQ ID NO: 1932)


AGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACAAGCAGGGCC





AGAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGA





TGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAAAGCCG





AGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATA





AGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAG





GGGCAAGGGGCACGATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAG





GACACCTACGACGCCCTTCACATGCAGGCCCTGCCCCCTCGC





CD3 zeta (nucleic acid sequence) (SEQ ID NO: 1945)


CGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGC





AGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGA





CGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCG





CGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATA





AGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAG





AGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCACCAAG





GACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG





CD3 zeta domain (amino acid sequence; NCBI


Reference NM_000734.3) (SEQ ID NO: 1933)


RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP





RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK





DTYDALHMQALPPR





CD3 zeta (nucleic acid sequence; NCBI Reference


Sequence NM_000734.3); (SEQ ID NO: 1934)


AGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACCAGCAGGGCC





AGAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGA





TGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAAAGCCG





AGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATA





AGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAG





GGGCAAGGGGCACGATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAG





GACACCTACGACGCCCTTCACATGCAGGCCCTGCCCCCTCGC





IgG4 Hinge (amino acid sequence) (SEQ ID NO: 1935)


ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNG





KEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSL





TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDK





SRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKM





IgG4 Hinge (nucleotide sequence) (SEQ ID NO: 1936)


GAGAGCAAGTACGGCCCTCCCTGCCCCCCTTGCCCTGCCCCCGAG





TTCCTGGGCGGACCCAGCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACA





CCCTGATGATCAGCCGGACCCCCGAGGTGACCTGTGTGGTGGTGGACGT





GTCCCAGGAGGACCCCGAGGTCCAGTTCAACTGGTACGTGGACGGCGTG





GAGGTGCACAACGCCAAGACCAAGCCCCGGGAGGAGCAGTTCAATAGCA





CCTACCGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAA





CGGCAAGGAATACAAGTGTAAGGTGTCCAACAAGGGCCTGCCCAGCAGC





ATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCTCGGGAGCCCCAGG





TGTACACCCTGCCCCCTAGCCAAGAGGAGATGACCAAGAACCAGGTGTC





CCTGACCTGCCTGGTGAAGGGCTTCTACCCCAGCGACATCGCCGTGGAG





TGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTG





TGCTGGACAGCGACGGCAGCTTCTTCCTGTACAGCCGGCTGACCGTGGA





CAAGAGCCGGTGGCAGGAGGGCAACGTCTTTAGCTGCTCCGTGATGCAC





GAGGCCCTGCACAACCACTACACCCAGAAGAGCCTGAGCCTGTCCCTGG





GCAAGATG






In an embodiment, the CAR molecule comprises a mesothelin CAR described herein, e.g., a mesothelin CAR described in WO 2015/090230, incorporated herein by reference. In embodiments, the mesothelin CAR comprises an amino acid, or has a nucleotide sequence shown in WO 2015/090230 incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid mesothelin CAR sequences). In one embodiment, the CAR molecule comprises a mesothelin CAR, or an antigen binding domain according to Tables 2-3, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical thereto). The amino acid and nucleotide sequences encoding the mesothelin CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO 2015/090230.


In an embodiment, the CAR molecule comprises a CLL1 CAR described herein, e.g., a CLL1 CAR described in US2016/0051651A1, incorporated herein by reference. In embodiments, the CLL1 CAR comprises an amino acid, or has a nucleotide sequence shown in US2016/0051651A1, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CLL1 CAR sequences).


In other embodiments, the CLL1 CAR includes a CAR molecule, or an antigen binding domain according to Table 2 of WO2016/014535, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CLL1 CAR sequences). The amino acid and nucleotide sequences encoding the CLL-1 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/014535.


In an embodiment, the CAR molecule comprises a CD33 CAR described herein, e.g., a CD33 CAR described in US2016/0096892A1, incorporated herein by reference. In embodiments, the CD33 CAR comprises an amino acid, or has a nucleotide sequence shown in US2016/0096892A1, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD33 CAR sequences). In other embodiments, the CD33 CAR CAR or antigen binding domain thereof can include a CAR molecule (e.g., any of CAR33-1 to CAR-33-9), or an antigen binding domain according to Table 2 or 9 of WO2016/014576, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD33 CAR sequences). The amino acid and nucleotide sequences encoding the CD33 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/014576.


In embodiments, the CAR molecule comprises a CD123 CAR described herein, e.g., a CD123 CAR described in US2014/0322212A1 or US2016/0068601A1, both incorporated herein by reference. In embodiments, the CD123 CAR comprises an amino acid, or has a nucleotide sequence shown in US2014/0322212A1 or US2016/0068601A1, both incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD123 CAR sequences). In one embodiment, the CAR molecule comprises a CD123 CAR (e.g., any of the CAR1-CAR8), or an antigen binding domain according to Tables 1-2 of WO 2014/130635, incorporated herein by reference, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD123 CAR sequences). The amino acid and nucleotide sequences encoding the CD123 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO 2014/130635.


In other embodiments, the CAR molecule comprises a CD123 CAR comprises a CAR molecule (e.g., any of the CAR123-1 to CAR123-4 and hzCAR123-1 to hzCAR123-32), or an antigen binding domain according to Tables 2, 6, and 9 of WO2016/028896, incorporated herein by reference, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid CD123 CAR sequences). The amino acid and nucleotide sequences encoding the CD123 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/028896.


In an embodiment, the CAR molecule comprises an EGFRvIII CAR molecule described herein, e.g., an EGFRvIII CAR described US2014/0322275A1, incorporated herein by reference. In embodiments, the EGFRvIII CAR comprises an amino acid, or has a nucleotide sequence shown in US2014/0322275A1, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid EGFRvIII CAR sequences). In one embodiment, the CAR molecule comprises an EGFRvIII CAR, or an antigen binding domain according to Table 2 or SEQ ID NO:11 of WO 2014/130657, incorporated herein by reference, or a sequence substantially identical thereto (e.g., at least 85%, 90%, 95% or more identical thereto). The amino acid and nucleotide sequences encoding the EGFRvIII CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO 2014/130657.


In other embodiments, the CAR molecule comprises an a GFR ALPHA-4 CAR, e.g., can include a CAR molecule, or an antigen binding domain according to Table 2 of WO2016/025880, incorporated herein by reference, or a sequence substantially identical to any of the aforesaid sequences (e.g., at least 85%, 90%, 95% or more identical to any of the aforesaid GFR ALPHA-4 sequences). The amino acid and nucleotide sequences encoding the GFR ALPHA-4 CAR molecules and antigen binding domains (e.g., including one, two, three VH CDRs; and one, two, three VL CDRs according to Kabat or Chothia), are specified in WO2016/025880.


In other embodiments, the CAR molecule comprises an axicabtagene ciloleucel molecule, or one or more sequences of an axicabtagene ciloleucel molecule (Table 15). In one embodiment, the CAR molecule comprises a VL that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 409. In one embodiment, the CAR molecule comprises a VH that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 410. In one embodiment, the CAR molecule comprises an scFv that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 411. In one embodiment, the CAR molecule comprises a sequence at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 412. In one embodiment, the CAR molecule comprises a sequence at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 413 (mut 2). In one embodiment, the CAR molecule comprises a sequence at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 414 (mut 3).









TABLE 15







Axicabtagene ciloleucel sequences









SEQ ID




NO
Domain
Sequence





409
VL
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQ




KPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYF




CQQGNTLPYTFGGGTKLEIT





410
VH
EVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYG




VSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLK




M NSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSS





411
ScFv
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQ




KPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYF




CQQGNTLPYTFGGGTKLEITGSTSGSGKPGSGEGSTKGEVKLQESGPG




LVAPSQSLSVTC




TVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIK




DNSKSQVFLKM




NSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSS





412
Full (1)
MLLLVTSLLLCELPHPAFLLIPDIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQK




PDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGG




GTKLEITGSTSGSGKPGSGEGSTKGEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVS




WIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYC




AKHYYYGGSYAMDYWGQGTSVTVSSAAAIEVMYPPPYLDNEKSNGTIIHVKGKHLCPS




PLFPGPSKPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMFMTPRRPGPT




RKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRR




GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAY




SEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR





413
Full (2)
MLLLVTSLL LCELPHPAFL LIPDIQMTQT TSSLSASLGD RVTISCRASQ DISKYLNWYQ




QKPDGTVKLL IYHTSRLHSG




VPSRFSGSGS GTDYSLTISN LEQEDIATYF CQQGNTLPYT FGGGTKLEIT




GSTSGSGKPG SGEGSTKGEV KLQESGPGLV




APSQSLSVTC TVSGVSLPDY GVSWIRQPPR KGLEWLGVIW GSETTYYNSA




LKSRLTIIKD NSKSQVFLKM NSLQTDDTAI




YYCAKHYYYG GSYAMDYWGQ GTSVTVSSAA AIEVMYPPPY LDNEKSNGTI




IHVKGKHLCP SPLFPGPSKP FWVLVVVGGV




LACYSLLVTV AFIIFWVRSK RSRLLHSDFM NMTPRRPGPT RKHYQPYAPP




RDFAAYRSRV KFSRSADAPA YQQGQNQLYN




ELNLGRREEY DVLDKRRGRD PEMGGKPRRK NPQEGLYNEL QKDKMAEAYS




EIGMKGERRR GKGHDGLYQG LSTATKDTYD




ALHMQALPPR





414
Full (3)
MLLLVTSLLL CELPHPAFLL IPDIQMTQTT SSLSASLGDR




VTISCRASQD ISKYLNWYQQ KPDGTVKLLI YHTSRLHSGV




PSRFSGSGSG TDYSLTISNL EQEDIATYFC QQGNTLPYTF




GGGTKLEITG STSGSGKPGS GEGSTKGEVK LQESGPGLVA




PSQSLSVTCT VSGVSLPDYG VSWIRQPPRK GLEWLGVIWG




SETTYYNSAL KSRLTIIKDN SKSQVFLKMN SLQTDDTAIY




YCAKHYYYGG SYAMDYWGQG TSVTVSSAAA IEVMYPPPYL




DNEKSNGTII HVKGKHLCPS PLFPGPSKPF WVLVVVGGVL




ACYSLLVTVA HIFWVRSKR SRLLHSDFMF MTPRRPGPTR




KHYQPYAPPR DFAAYRSRVK FSRSADAPAY QQGQNQLYNE




LNLGRREEYD VLDKRRGRDP EMGGKPRRKN PQEGLYNELQ




KDKMAEAYSE IGMKGERRRG KGHDGLYQGL STATKDTYDA




LHMQALPPR









In other embodiments, the CAR molecule comprises one or more sequences selected from Table 16. In one embodiment, the CAR molecule comprises a VL that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 415. In one embodiment, the CAR molecule comprises a VH that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 416. In one embodiment, the CAR molecule comprises an ScFv that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 417. In one embodiment, the CAR molecule comprises a sequence at least 85%, 90%, 95% or more identical to SEQ ID NO: 418. In one embodiment, the CAR molecule comprises a sequence at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 419. In one embodiment, the CAR molecule comprises a sequence at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 420.











TABLE 16





SEQ ID




NO
Domain
Sequence







415
VL
ELVLTQSPKFMSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKPLI




YSATYRNSGVPDRFTGSGSGTDFTLTITNVQSKDLADYFCQYNRYPYTSF




FFTKLEIKRRS





416
VH
QVQLLESGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWI




GQIYPGDGDTNYNGKFKGQATLTADKSSSTAYMQLSGLTSEDSAVYSC




ARKTISSVVDFYFDYWGQGTTVT





417
ScFv
QVQLLESGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWI




GQIYPGDGDTNYNGKFKGQATLTADKSSSTAYMQLSGLTSEDSAVYSC




ARKTISSVVDFYFDYWGQGTTVTGGGSGGGSGGGSGGGSELVLTQSPKF




MSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKPLIYSATYRNSGV




PDRFTGSGSGTDFTLTITNVQSKDLADYFCQYNRYPYTSFFFTKLEIKRRS





418
Full (1)
QVQLLESGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWI




GQIYPGDGDTNYNGKFKGQATLTADKSSSTAYMQLSGLTSEDSAVYSC




ARKTISSVVDFYFDYWGQGTTVTGGGSGGGSGGGSGGGSELVLTQSPKF




MSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKPLIYSATYRNSGV




PDRFTGSGSGTDFTLTITNVQSKDLADYFCQYNRYPYTSFFFTKLEIKRRS




KIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGV




LACYSLLVTVAFIIFWV




RSKRSRLLHSDYMFMTPRRPGPTRKHYQPYAPPRDFAAYRS




RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG




KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLS




TATKDTYDALHMQALPPR





419
Full (2)
QVQLLESGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWI




GQIYPGDGDTNYNGKFKGQATLTADKSSSTAYMQLSGLTSEDSAVYSC




ARKTISSVVDFYFDYWGQGTTVTGGGSGGGSGGGSGGGSELVLTQSPKF




MSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKPLIYSATYRNSGV




PDRFTGSGSGTDFTLTITNVQSKDLADYFCQYNRYPYTSFFFTKLEIKRRS




KIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGV




LACYSLLVTVAFIIFWV




RSKRSRLLHSDFMNMTPRRPGPTRKHYQPYAPPRDFAAYRS




RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG




KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLS




TATKDTYDALHMQALPPR





420
Full (3)
QVQLLESGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWI




GQIYPGDGDTNYNGKFKGQATLTADKSSSTAYMQLSGLTSEDSAVYSC




ARKTISSVVDFYFDYWGQGTTVTGGGSGGGSGGGSGGGSELVLTQSPKF




MSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKPLIYSATYRNSGV




PDRFTGSGSGTDFTLTITNVQSKDLADYFCQYNRYPYTSFFFTKLEIKRRS




KIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGV




LACYSLLVTVAFIIFWV




RSKRSRLLHSDFMFMTPRRPGPTRKHYQPYAPPRDFAAYRS




RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG




KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLS




TATKDTYDALHMQALPPR









In other embodiments, the CAR molecule comprises one or more sequences selected from Table 17. In one embodiment, the CAR molecule comprises a VL that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 421. In one embodiment, the CAR molecule comprises a VH that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 422. In one embodiment, the CAR molecule comprises an ScFv that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 423.











TABLE 17





SEQ ID




NO
Domain
Sequence







421
VL
DIQMTQTT SSLSASLGDR VTISCRASQD ISKYLNWYQQ




KPDGTVKLLI YHTSRLHSGV PSRFSGSGSG TDYSLTISNL EQEDIATYFC




QQGNTLPYTF GGGTKLEIT





422
VH
EVK LQESGPGLVA PSQSLSVTCT VSGVSLPDYG VSWIRQPPRK




GLEWLGVIWG SETTYYNSAL KSRLTIIKDN SKSQVFLKMN




SLQTDDTAIY YCAKHYYYGG SYAMDYWGQG TSVTVSSE





423
ScFv
DIQMTQTT SSLSASLGDR VTISCRASQD ISKYLNWYQQ




KPDGTVKLLI YHTSRLHSGV PSRFSGSGSG TDYSLTISNL EQEDIATYFC




QQGNTLPYTF GGGTKLEITG STSGSGKPGS GEGSTKGEVK




LQESGPGLVA PSQSLSVTCT VSGVSLPDYG




VSWIRQPPRK GLEWLGVIWG SETTYYNSAL KSRLTIIKDN




SKSQVFLKMN SLQTDDTAIY YCAKHYYYGG SYAMDYWGQG




TSVTVSSE









In other embodiments, the CAR molecule comprises one or more sequences selected from Table 18. In one embodiment, the CAR molecule comprises a VL that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 424. In one embodiment, the CAR molecule comprises a VH that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 425. In one embodiment, the CAR molecule comprises an ScFv that is at least 85%, 90%, 95%, 98%, 99%, or 100% identical to SEQ ID NO: 426.











TABLE 18





SEQ




ID


NO
Domain
Sequence







424
VL
DIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIHWYQQKPGQPPTLLI




QLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAVYYCLQSRTIPRTF




GGGTKLEIK





425
VH
QIQLVQSGPELKKPGETVKISCKASGYTFTDYSINWVKRAPGKGLKWMG




WINTETREPAYAYDFRGRFAFSLETSASTAYLQINNLKYEDTATYFCALD




YSYAMDYWGQGTSVTVSS





426
ScFv
DIVLTQSPPSLAMSLGKRATISCRASESVTILGSHLIHW




YQQKPGQPPTLLIQLASNVQTGVPARFSGSGSRTDFTLTIDPVEEDDVAV




YYCLQSRTIPRTFGGGTKLEIKGSTSGSGKPGSGEGSTKGQIQLVQSGPEL




KKPGETVKISCKASGYTFTDYSINWVKRAPGKGLKWMGWINTETREPA




YAYDFRGRFAFSLETSASTAYLQINNLKYEDTATYFCALDYSYAMDYW




GQGTSVTVSS









RNA Transfection

Disclosed herein are methods for producing an in vitro transcribed RNA CAR. The present invention also includes a CAR encoding RNA construct that can be directly transfected into a cell. A method for generating mRNA for use in transfection can involve in vitro transcription (IVT) of a template with specially designed primers, followed by polyA addition, to produce a construct containing 3′ and 5′ untranslated sequence (“UTR”), a 5′ cap and/or Internal Ribosome Entry Site (IRES), the nucleic acid to be expressed, and a polyA tail, typically 50-2000 bases in length (SEQ ID NO:32). RNA so produced can efficiently transfect different kinds of cells. In one aspect, the template includes sequences for the CAR.


In one aspect, a CAR of the present invention is encoded by a messenger RNA (mRNA). In one aspect, the mRNA encoding a CAR described herein is introduced into an immune effector cell, e.g., a T cell or a NK cell, for production of a CAR-expressing cell, e.g., a CART cell or a CAR NK cell.


In one embodiment, the in vitro transcribed RNA CAR can be introduced to a cell as a form of transient transfection. The RNA is produced by in vitro transcription using a polymerase chain reaction (PCR)-generated template. DNA of interest from any source can be directly converted by PCR into a template for in vitro mRNA synthesis using appropriate primers and RNA polymerase. The source of the DNA can be, for example, genomic DNA, plasmid DNA, phage DNA, cDNA, synthetic DNA sequence or any other appropriate source of DNA. The desired temple for in vitro transcription is a CAR described herein. For example, the template for the RNA CAR comprises an extracellular region comprising a single chain variable domain of an antibody to a tumor associated antigen described herein; a hinge region (e.g., a hinge region described herein), a transmembrane domain (e.g., a transmembrane domain described herein such as a transmembrane domain of CD8a); and a cytoplasmic region that includes an intracellular signaling domain, e.g., an intracellular signaling domain described herein, e.g., comprising the signaling domain of CD3-zeta and the signaling domain of 4-1BB.


In one embodiment, the DNA to be used for PCR contains an open reading frame. The DNA can be from a naturally occurring DNA sequence from the genome of an organism. In one embodiment, the nucleic acid can include some or all of the 5′ and/or 3′ untranslated regions (UTRs). The nucleic acid can include exons and introns. In one embodiment, the DNA to be used for PCR is a human nucleic acid sequence. In another embodiment, the DNA to be used for PCR is a human nucleic acid sequence including the 5′ and 3′ UTRs. The DNA can alternatively be an artificial DNA sequence that is not normally expressed in a naturally occurring organism. An exemplary artificial DNA sequence is one that contains portions of genes that are ligated together to form an open reading frame that encodes a fusion protein. The portions of DNA that are ligated together can be from a single organism or from more than one organism.


PCR is used to generate a template for in vitro transcription of mRNA which is used for transfection. Methods for performing PCR are well known in the art. Primers for use in PCR are designed to have regions that are substantially complementary to regions of the DNA to be used as a template for the PCR. “Substantially complementary,” as used herein, refers to sequences of nucleotides where a majority or all of the bases in the primer sequence are complementary, or one or more bases are non-complementary, or mismatched. Substantially complementary sequences are able to anneal or hybridize with the intended DNA target under annealing conditions used for PCR. The primers can be designed to be substantially complementary to any portion of the DNA template. For example, the primers can be designed to amplify the portion of a nucleic acid that is normally transcribed in cells (the open reading frame), including 5′ and 3′ UTRs. The primers can also be designed to amplify a portion of a nucleic acid that encodes a particular domain of interest. In one embodiment, the primers are designed to amplify the coding region of a human cDNA, including all or portions of the 5′ and 3′ UTRs. Primers useful for PCR can be generated by synthetic methods that are well known in the art. “Forward primers” are primers that contain a region of nucleotides that are substantially complementary to nucleotides on the DNA template that are upstream of the DNA sequence that is to be amplified. “Upstream” is used herein to refer to a location 5, to the DNA sequence to be amplified relative to the coding strand. “Reverse primers” are primers that contain a region of nucleotides that are substantially complementary to a double-stranded DNA template that are downstream of the DNA sequence that is to be amplified. “Downstream” is used herein to refer to a location 3′ to the DNA sequence to be amplified relative to the coding strand.


Any DNA polymerase useful for PCR can be used in the methods disclosed herein. The reagents and polymerase are commercially available from a number of sources.


Chemical structures with the ability to promote stability and/or translation efficiency may also be used. The RNA preferably has 5′ and 3′ UTRs. In one embodiment, the 5′ UTR is between one and 3000 nucleotides in length. The length of 5′ and 3′ UTR sequences to be added to the coding region can be altered by different methods, including, but not limited to, designing primers for PCR that anneal to different regions of the UTRs. Using this approach, one of ordinary skill in the art can modify the 5′ and 3′ UTR lengths required to achieve optimal translation efficiency following transfection of the transcribed RNA.


The 5′ and 3′ UTRs can be the naturally occurring, endogenous 5′ and 3′ UTRs for the nucleic acid of interest. Alternatively, UTR sequences that are not endogenous to the nucleic acid of interest can be added by incorporating the UTR sequences into the forward and reverse primers or by any other modifications of the template. The use of UTR sequences that are not endogenous to the nucleic acid of interest can be useful for modifying the stability and/or translation efficiency of the RNA. For example, it is known that AU-rich elements in 3′ UTR sequences can decrease the stability of mRNA. Therefore, 3′ UTRs can be selected or designed to increase the stability of the transcribed RNA based on properties of UTRs that are well known in the art.


In one embodiment, the 5′ UTR can contain the Kozak sequence of the endogenous nucleic acid. Alternatively, when a 5′ UTR that is not endogenous to the nucleic acid of interest is being added by PCR as described above, a consensus Kozak sequence can be redesigned by adding the 5′ UTR sequence. Kozak sequences can increase the efficiency of translation of some RNA transcripts, but does not appear to be required for all RNAs to enable efficient translation. The requirement for Kozak sequences for many mRNAs is known in the art. In other embodiments the 5′ UTR can be 5′UTR of an RNA virus whose RNA genome is stable in cells. In other embodiments various nucleotide analogues can be used in the 3′ or 5′ UTR to impede exonuclease degradation of the mRNA.


To enable synthesis of RNA from a DNA template without the need for gene cloning, a promoter of transcription should be attached to the DNA template upstream of the sequence to be transcribed. When a sequence that functions as a promoter for an RNA polymerase is added to the 5′ end of the forward primer, the RNA polymerase promoter becomes incorporated into the PCR product upstream of the open reading frame that is to be transcribed. In one preferred embodiment, the promoter is a T7 polymerase promoter, as described elsewhere herein. Other useful promoters include, but are not limited to, T3 and SP6 RNA polymerase promoters. Consensus nucleotide sequences for T7, T3 and SP6 promoters are known in the art.


In a preferred embodiment, the mRNA has both a cap on the 5′ end and a 3′ poly(A) tail which determine ribosome binding, initiation of translation and stability mRNA in the cell. On a circular DNA template, for instance, plasmid DNA, RNA polymerase produces a long concatameric product which is not suitable for expression in eukaryotic cells. The transcription of plasmid DNA linearized at the end of the 3′ UTR results in normal sized mRNA which is not effective in eukaryotic transfection even if it is polyadenylated after transcription.


On a linear DNA template, phage T7 RNA polymerase can extend the 3′ end of the transcript beyond the last base of the template (Schenborn and Mierendorf, Nuc Acids Res., 13:6223-36 (1985); Nacheva and Berzal-Herranz, Eur. J. Biochem., 270:1485-65 (2003).


The conventional method of integration of polyA/T stretches into a DNA template is molecular cloning. However polyA/T sequence integrated into plasmid DNA can cause plasmid instability, which is why plasmid DNA templates obtained from bacterial cells are often highly contaminated with deletions and other aberrations. This makes cloning procedures not only laborious and time consuming but often not reliable. That is why a method which allows construction of DNA templates with polyA/T 3′ stretch without cloning highly desirable.


The polyA/T segment of the transcriptional DNA template can be produced during PCR by using a reverse primer containing a polyT tail, such as 100T tail (SEQ ID NO: 35) (size can be 50-5000 T (SEQ ID NO: 36)), or after PCR by any other method, including, but not limited to, DNA ligation or in vitro recombination. Poly(A) tails also provide stability to RNAs and reduce their degradation. Generally, the length of a poly(A) tail positively correlates with the stability of the transcribed RNA. In one embodiment, the poly(A) tail is between 100 and 5000 adenosines (SEQ ID NO: 37).


Poly(A) tails of RNAs can be further extended following in vitro transcription with the use of a poly(A) polymerase, such as E. coli polyA polymerase (E-PAP). In one embodiment, increasing the length of a poly(A) tail from 100 nucleotides to between 300 and 400 nucleotides (SEQ ID NO: 38) results in about a two-fold increase in the translation efficiency of the RNA. Additionally, the attachment of different chemical groups to the 3′ end can increase mRNA stability. Such attachment can contain modified/artificial nucleotides, aptamers and other compounds. For example, ATP analogs can be incorporated into the poly(A) tail using poly(A) polymerase. ATP analogs can further increase the stability of the RNA.


5′ caps on also provide stability to RNA molecules. In a preferred embodiment, RNAs produced by the methods disclosed herein include a 5′ cap. The 5′ cap is provided using techniques known in the art and described herein (Cougot, et al., Trends in Biochem. Sci., 29:436-444 (2001); Stepinski, et al., RNA, 7:1468-95 (2001); Elango, et al., Biochim. Biophys. Res. Commun., 330:958-966 (2005)).


The RNAs produced by the methods disclosed herein can also contain an internal ribosome entry site (IRES) sequence. The IRES sequence may be any viral, chromosomal or artificially designed sequence which initiates cap-independent ribosome binding to mRNA and facilitates the initiation of translation. Any solutes suitable for cell electroporation, which can contain factors facilitating cellular permeability and viability such as sugars, peptides, lipids, proteins, antioxidants, and surfactants can be included.


RNA can be introduced into target cells using any of a number of different methods, for instance, commercially available methods which include, but are not limited to, electroporation (Amaxa Nucleofector-II (Amaxa Biosystems, Cologne, Germany)), (ECM 830 (BTX) (Harvard Instruments, Boston, Mass.) or the Gene Pulser II (BioRad, Denver, Colo.), Multiporator (Eppendort, Hamburg Germany), cationic liposome mediated transfection using lipofection, polymer encapsulation, peptide mediated transfection, or biolistic particle delivery systems such as “gene guns” (see, for example, Nishikawa, et al. Hum Gene Ther., 12(8):861-70 (2001).


Non-Viral Delivery Methods

In some aspects, non-viral methods can be used to deliver a nucleic acid encoding a CAR described herein into a cell or tissue or a subject.


In some embodiments, the non-viral method includes the use of a transposon (also called a transposable element). In some embodiments, a transposon is a piece of DNA that can insert itself at a location in a genome, for example, a piece of DNA that is capable of self-replicating and inserting its copy into a genome, or a piece of DNA that can be spliced out of a longer nucleic acid and inserted into another place in a genome. For example, a transposon comprises a DNA sequence made up of inverted repeats flanking genes for transposition.


Exemplary methods of nucleic acid delivery using a transposon include a Sleeping Beauty transposon system (SBTS) and a piggyBac (PB) transposon system. See, e.g., Aronovich et al. Hum. Mol. Genet. 20.R1(2011):R14-20; Singh et al. Cancer Res. 15(2008):2961-2971; Huang et al. Mol. Ther. 16(2008):580-589; Grabundzija et al. Mol. Ther. 18(2010):1200-1209; Kebriaei et al. Blood. 122.21(2013):166; Williams. Molecular Therapy 16.9(2008):1515-16; Bell et al. Nat. Protoc. 2.12(2007):3153-65; and Ding et al. Cell. 122.3(2005):473-83, all of which are incorporated herein by reference.


The SBTS includes two components: 1) a transposon containing a transgene and 2) a source of transposase enzyme. The transposase can transpose the transposon from a carrier plasmid (or other donor DNA) to a target DNA, such as a host cell chromosome/genome. For example, the transposase binds to the carrier plasmid/donor DNA, cuts the transposon (including transgene(s)) out of the plasmid, and inserts it into the genome of the host cell. See, e.g., Aronovich et al. supra.


Exemplary transposons include a pT2-based transposon. See, e.g., Grabundzija et al. Nucleic Acids Res. 41.3(2013):1829-47; and Singh et al. Cancer Res. 68.8(2008): 2961-2971, all of which are incorporated herein by reference. Exemplary transposases include a Tc1/mariner-type transposase, e.g., the SB10 transposase or the SB11 transposase (a hyperactive transposase which can be expressed, e.g., from a cytomegalovirus promoter). See, e.g., Aronovich et al.; Kebriaei et al.; and Grabundzija et al., all of which are incorporated herein by reference.


Use of the SBTS permits efficient integration and expression of a transgene, e.g., a nucleic acid encoding a CAR described herein. Provided herein are methods of generating a cell, e.g., T cell or NK cell, that stably expresses a CAR described herein, e.g., using a transposon system such as SBTS.


In accordance with methods described herein, in some embodiments, one or more nucleic acids, e.g., plasmids, containing the SBTS components are delivered to a cell (e.g., T or NK cell). For example, the nucleic acid(s) are delivered by standard methods of nucleic acid (e.g., plasmid DNA) delivery, e.g., methods described herein, e.g., electroporation, transfection, or lipofection. In some embodiments, the nucleic acid contains a transposon comprising a transgene, e.g., a nucleic acid encoding a CAR described herein. In some embodiments, the nucleic acid contains a transposon comprising a transgene (e.g., a nucleic acid encoding a CAR described herein) as well as a nucleic acid sequence encoding a transposase enzyme. In other embodiments, a system with two nucleic acids is provided, e.g., a dual-plasmid system, e.g., where a first plasmid contains a transposon comprising a transgene, and a second plasmid contains a nucleic acid sequence encoding a transposase enzyme. For example, the first and the second nucleic acids are co-delivered into a host cell.


In some embodiments, cells, e.g., T or NK cells, are generated that express a CAR described herein by using a combination of gene insertion using the SBTS and genetic editing using a nuclease (e.g., Zinc finger nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas system, or engineered meganuclease re-engineered homing endonucleases).


In some embodiments, use of a non-viral method of delivery permits reprogramming of cells, e.g., T or NK cells, and direct infusion of the cells into a subject. Advantages of non-viral vectors include but are not limited to the ease and relatively low cost of producing sufficient amounts required to meet a patient population, stability during storage, and lack of immunogenicity.


Nucleic Acid Constructs Encoding a CAR

The present invention also provides nucleic acid molecules encoding one or more CAR constructs described herein. In one aspect, the nucleic acid molecule is provided as a messenger RNA transcript. In one aspect, the nucleic acid molecule is provided as a DNA construct.


Accordingly, in one aspect, the invention pertains to a nucleic acid molecule encoding a chimeric antigen receptor (CAR), wherein the CAR comprises an antigen binding domain that binds to a tumor antigen described herein, a transmembrane domain (e.g., a transmembrane domain described herein), and an intracellular signaling domain (e.g., an intracellular signaling domain described herein) comprising a stimulatory domain, e.g., a costimulatory signaling domain (e.g., a costimulatory signaling domain described herein) and/or a primary signaling domain (e.g., a primary signaling domain described herein, e.g., a zeta chain described herein). In one embodiment, the transmembrane domain is transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD154. In some embodiments, a transmembrane domain may include at least the transmembrane region(s) of, e.g., KIRDS2, OX40, CD2, CD27, LFA-1 (CD11a, CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD160, CD19, IL2R beta, IL2R gamma, IL7Rα, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, or a functional variant thereof.


In one embodiment, the transmembrane domain comprises a sequence of SEQ ID NO: 12, or a sequence with 95-99% identity thereof. In one embodiment, the antigen binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge described herein. In one embodiment, the hinge region comprises SEQ ID NO:403 or SEQ ID NO:405 or SEQ ID NO:407 or SEQ ID NO:10, or a sequence with 95-99% identity thereof. In one embodiment, the isolated nucleic acid molecule further comprises a sequence encoding a costimulatory domain. In one embodiment, the costimulatory domain is a functional signaling domain of a protein selected from the group consisting of OX40, CD27, CD28, CD5, ICAM-1, LFA-1 (CD11a/CD18), ICOS (CD278), and 4-1BB (CD137). Further examples of such costimulatory molecules include CD5, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, and PAG/Cbp, or a functional variant thereof. In one embodiment, the costimulatory domain comprises a sequence of any one of SEQ ID NOs:14, 16, 427-430, or 5, or a sequence with 95-99% identity thereof. In one embodiment, the intracellular signaling domain comprises a functional signaling domain of CD28 and a functional signaling domain of CD3 zeta. In one embodiment, the intracellular signaling domain comprises the sequence of any one of SEQ ID NOs: 427-430 and 5, or a sequence with 95-99% identity thereof, and the sequence of SEQ ID NO: 18 or SEQ ID NO:20, or a sequence with 95-99% identity thereof, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.


In another aspect, the invention pertains to an isolated nucleic acid molecule encoding a CAR construct comprising a leader sequence of SEQ ID NO: 401, a scFv domain as described herein, a hinge region of SEQ ID NO:403 or SEQ ID NO:405 or SEQ ID NO:407 or SEQ ID NO:10 (or a sequence with 95-99% identity thereof), a transmembrane domain having a sequence of SEQ ID NO: 12 (or a sequence with 95-99% identity thereof), a CD28 costimulatory domain having a sequence selected from SEQ ID NOs: 427-430 and 5 (or a sequence with 95-99% identity thereof), and a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:18 or SEQ ID NO:20 (or a sequence with 95-99% identity thereof).


In another aspect, the invention pertains to a nucleic acid molecule encoding a chimeric antigen receptor (CAR) molecule that comprises an antigen binding domain, a transmembrane domain, and an intracellular signaling domain comprising a stimulatory domain, and wherein said antigen binding domain binds to a tumor antigen selected from a group consisting of: CD19, CD123, CD22, CD30, CD171, CS-1, CLL-1 (CLECL1), CD33, EGFRvIII, GD2, GD3, BCMA, Tn Ag, PSMA, ROR1, FLT3, FAP, TAG72, CD38, CD44v6, CEA, EPCAM, B7H3, KIT, IL-13Ra2, Mesothelin, IL-11Ra, PSCA, VEGFR2, LewisY, CD24, PDGFR-beta, SSEA-4, CD20, Folate receptor alpha, ERBB2 (Her2/neu), MUC1, EGFR, NCAM, Prostase, PRSS21, PAP, ELF2M, Ephrin B2, IGF-I receptor, CAIX, LMP2, gp100, bcr-abl, tyrosinase, EphA2, Fucosyl GM1, sLe, GM3, TGS5, HMWMAA, o-acetyl-GD2, Folate receptor beta, TEM1/CD248, TEM7R, CLDN6, TSHR, GPRC5D, CXORF61, CD97, CD179a, ALK, Polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TARP, WT1, NY-ESO-1, LAGE-1a, MAGE-A1, legumain, HPV E6,E7, MAGE A1, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT-1, MAD-CT-2, Fos-related antigen 1, p53, p53 mutant, prostein, survivin and telomerase, PCTA-1/Galectin 8, MelanA/MART1, Ras mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B1, MYCN, RhoC, TRP-2, CYP1B1, BORIS, SART3, PAX5, OY-TES1, LCK, AKAP-4, SSX2, RAGE-1, human telomerase reverse transcriptase, RU1, RU2, intestinal carboxyl esterase, mut hsp70-2, CD79a, CD79b, CD72, LAIR1, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, and IGLL1.


In one embodiment, the encoded CAR molecule further comprises a sequence encoding a costimulatory domain. In one embodiment, the costimulatory domain is a functional signaling domain of a protein selected from the group consisting of OX40, CD27, CD28, CD5, ICAM-1, LFA-1 (CD11a/CD18) and 4-1BB (CD137), or a functional variant thereof. In one embodiment, the costimulatory domain comprises a sequence selected from SEQ ID NOs: 14, 16, 427-430, or 5. In one embodiment, the transmembrane domain is a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD154, or a functional variant thereof. In one embodiment, the transmembrane domain comprises a sequence of SEQ ID NO:12. In one embodiment, the intracellular signaling domain comprises a functional signaling domain of CD28 and a functional signaling domain of zeta. In one embodiment, the intracellular signaling domain comprises a sequence selected from SEQ ID NOs: 427-430 and 5 and the sequence of SEQ ID NO: 18, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain. In one embodiment, the anti-a cancer associated antigen as described herein binding domain is connected to the transmembrane domain by a hinge region. In one embodiment, the hinge region comprises SEQ ID NO:403. In one embodiment, the hinge region comprises SEQ ID NO:405 or SEQ ID NO:407 or SEQ ID NO:10.


The nucleic acid sequences coding for the desired molecules can be obtained using recombinant methods known in the art, such as, for example by screening libraries from cells expressing the gene, by deriving the gene from a vector known to include the same, or by isolating directly from cells and tissues containing the same, using standard techniques. Alternatively, the gene of interest can be produced synthetically, rather than cloned.


The present invention also provides vectors in which a DNA of the present invention is inserted. Vectors derived from retroviruses such as the lentivirus are suitable tools to achieve long-term gene transfer since they allow long-term, stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors have the added advantage over vectors derived from onco-retroviruses such as murine leukemia viruses in that they can transduce non-proliferating cells, such as hepatocytes. They also have the added advantage of low immunogenicity. A retroviral vector may also be, e.g., a gammaretroviral vector. A gammaretroviral vector may include, e.g., a promoter, a packaging signal (ψ), a primer binding site (PBS), one or more (e.g., two) long terminal repeats (LTR), and a transgene of interest, e.g., a gene encoding a CAR. A gammaretroviral vector may lack viral structural gens such as gag, pol, and env. Exemplary gammaretroviral vectors include Murine Leukemia Virus (MLV), Spleen-Focus Forming Virus (SFFV), and Myeloproliferative Sarcoma Virus (MPSV), and vectors derived therefrom. Other gammaretroviral vectors are described, e.g., in Tobias Maetzig et al., “Gammaretroviral Vectors: Biology, Technology and Application” Viruses. 2011 June; 3(6): 677-713.


In another embodiment, the vector comprising the nucleic acid encoding the desired CAR of the invention is an adenoviral vector (A5/35). In another embodiment, the expression of nucleic acids encoding CARs can be accomplished using of transposons such as sleeping beauty, crisper, CAS9, and zinc finger nucleases. See below June et al. 2009 Nature Reviews Immunology 9.10: 704-716, is incorporated herein by reference.


In brief summary, the expression of natural or synthetic nucleic acids encoding CARs is typically achieved by operably linking a nucleic acid encoding the CAR polypeptide or portions thereof to a promoter, and incorporating the construct into an expression vector. The vectors can be suitable for replication and integration eukaryotes. Typical cloning vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the desired nucleic acid sequence.


The expression constructs of the present invention may also be used for nucleic acid immunization and gene therapy, using standard gene delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Pat. Nos. 5,399,346, 5,580,859, 5,589,466, incorporated by reference herein in their entireties. In another embodiment, the invention provides a gene therapy vector.


The nucleic acid can be cloned into a number of types of vectors. For example, the nucleic acid can be cloned into a vector including, but not limited to a plasmid, a phagemid, a phage derivative, an animal virus, and a cosmid. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.


Further, the expression vector may be provided to a cell in the form of a viral vector. Viral vector technology is well known in the art and is described, for example, in Sambrook et al., 2012, MOLECULAR CLONING: A LABORATORY MANUAL, volumes 1-4, Cold Spring Harbor Press, NY), and in other virology and molecular biology manuals. Viruses, which are useful as vectors include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, and lentiviruses. In general, a suitable vector contains an origin of replication functional in at least one organism, a promoter sequence, convenient restriction endonuclease sites, and one or more selectable markers, (e.g., WO 01/96584; WO 01/29058; and U.S. Pat. No. 6,326,193).


A number of viral based systems have been developed for gene transfer into mammalian cells. For example, retroviruses provide a convenient platform for gene delivery systems. A selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo. A number of retroviral systems are known in the art. In some embodiments, adenovirus vectors are used. A number of adenovirus vectors are known in the art. In one embodiment, lentivirus vectors are used.


Additional promoter elements, e.g., enhancers, regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the thymidine kinase (tk) promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline. Depending on the promoter, it appears that individual elements can function either cooperatively or independently to activate transcription. Exemplary promoters include the CMV IE gene, EF-1α, ubiquitin C, or phosphoglycerokinase (PGK) promoters.


An example of a promoter that is capable of expressing a CAR encoding nucleic acid molecule in a mammalian T cell is the EF1a promoter. The native EF1a promoter drives expression of the alpha subunit of the elongation factor-1 complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome. The EF1a promoter has been extensively used in mammalian expression plasmids and has been shown to be effective in driving CAR expression from nucleic acid molecules cloned into a lentiviral vector. See, e.g., Milone et al., Mol. Ther. 17(8): 1453-1464 (2009). In one aspect, the EF1a promoter comprises the sequence provided as SEQ ID NO:400.


Another example of a promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of any polynucleotide sequence operatively linked thereto. However, other constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the elongation factor-1α promoter, the hemoglobin promoter, and the creatine kinase promoter. Further, the invention should not be limited to the use of constitutive promoters. Inducible promoters are also contemplated as part of the invention. The use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired. Examples of inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter.


A vector may also include, e.g., a signal sequence to facilitate secretion, a polyadenylation signal and transcription terminator (e.g., from Bovine Growth Hormone (BGH) gene), an element allowing episomal replication and replication in prokaryotes (e.g. SV40 origin and ColE1 or others known in the art) and/or elements to allow selection (e.g., ampicillin resistance gene and/or zeocin marker).


In order to assess the expression of a CAR polypeptide or portions thereof, the expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors. In other aspects, the selectable marker may be carried on a separate piece of DNA and used in a co-transfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the host cells. Useful selectable markers include, for example, antibiotic-resistance genes, such as neo and the like.


Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences. In general, a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells. Suitable reporter genes may include genes encoding luciferase, beta-galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tei et al., 2000 FEBS Letters 479: 79-82). Suitable expression systems are well known and may be prepared using known techniques or obtained commercially. In general, the construct with the minimal 5′ flanking region showing the highest level of expression of reporter gene is identified as the promoter. Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter-driven transcription.


Methods of introducing and expressing genes into a cell are known in the art. In the context of an expression vector, the vector can be readily introduced into a host cell, e.g., mammalian, bacterial, yeast, or insect cell by any method in the art. For example, the expression vector can be transferred into a host cell by physical, chemical, or biological means.


Physical methods for introducing a polynucleotide into a host cell include calcium phosphate precipitation, lipofection, particle bombardment, microinjection, electroporation, and the like. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Sambrook et al., 2012, MOLECULAR CLONING: A LABORATORY MANUAL, volumes 1-4, Cold Spring Harbor Press, NY). A preferred method for the introduction of a polynucleotide into a host cell is calcium phosphate transfection


Biological methods for introducing a polynucleotide of interest into a host cell include the use of DNA and RNA vectors. Viral vectors, and especially retroviral vectors, have become the most widely used method for inserting genes into mammalian, e.g., human cells. Other viral vectors can be derived from lentivirus, poxviruses, herpes simplex virus I, adenoviruses and adeno-associated viruses, and the like. See, for example, U.S. Pat. Nos. 5,350,674 and 5,585,362.


Chemical means for introducing a polynucleotide into a host cell include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. An exemplary colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (e.g., an artificial membrane vesicle). Other methods of state-of-the-art targeted delivery of nucleic acids are available, such as delivery of polynucleotides with targeted nanoparticles or other suitable sub-micron sized delivery system.


In the case where a non-viral delivery system is utilized, an exemplary delivery vehicle is a liposome. The use of lipid formulations is contemplated for the introduction of the nucleic acids into a host cell (in vitro, ex vivo or in vivo). In another aspect, the nucleic acid may be associated with a lipid. The nucleic acid associated with a lipid may be encapsulated in the aqueous interior of a liposome, interspersed within the lipid bilayer of a liposome, attached to a liposome via a linking molecule that is associated with both the liposome and the oligonucleotide, entrapped in a liposome, complexed with a liposome, dispersed in a solution containing a lipid, mixed with a lipid, combined with a lipid, contained as a suspension in a lipid, contained or complexed with a micelle, or otherwise associated with a lipid. Lipid, lipid/DNA or lipid/expression vector associated compositions are not limited to any particular structure in solution. For example, they may be present in a bilayer structure, as micelles, or with a “collapsed” structure. They may also simply be interspersed in a solution, possibly forming aggregates that are not uniform in size or shape. Lipids are fatty substances which may be naturally occurring or synthetic lipids. For example, lipids include the fatty droplets that naturally occur in the cytoplasm as well as the class of compounds which contain long-chain aliphatic hydrocarbons and their derivatives, such as fatty acids, alcohols, amines, amino alcohols, and aldehydes.


Lipids suitable for use can be obtained from commercial sources. For example, dimyristyl phosphatidylcholine (“DMPC”) can be obtained from Sigma, St. Louis, Mo.; dicetyl phosphate (“DCP”) can be obtained from K & K Laboratories (Plainview, N.Y.); cholesterol (“Choi”) can be obtained from Calbiochem-Behring; dimyristyl phosphatidylglycerol (“DMPG”) and other lipids may be obtained from Avanti Polar Lipids, Inc. (Birmingham, Ala.). Stock solutions of lipids in chloroform or chloroform/methanol can be stored at about −20° C. Chloroform is used as the only solvent since it is more readily evaporated than methanol. “Liposome” is a generic term encompassing a variety of single and multilamellar lipid vehicles formed by the generation of enclosed lipid bilayers or aggregates. Liposomes can be characterized as having vesicular structures with a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh et al., 1991 Glycobiology 5: 505-10). However, compositions that have different structures in solution than the normal vesicular structure are also encompassed. For example, the lipids may assume a micellar structure or merely exist as nonuniform aggregates of lipid molecules. Also contemplated are lipofectamine-nucleic acid complexes.


Regardless of the method used to introduce exogenous nucleic acids into a host cell or otherwise expose a cell to the inhibitor of the present invention, in order to confirm the presence of the recombinant DNA sequence in the host cell, a variety of assays may be performed. Such assays include, for example, “molecular biological” assays well known to those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR; “biochemical” assays, such as detecting the presence or absence of a particular peptide, e.g., by immunological means (ELISAs and Western blots) or by assays described herein to identify agents falling within the scope of the invention.


The present invention further provides a vector comprising a CAR encoding nucleic acid molecule. In one aspect, a CAR vector can be directly transduced into a cell, e.g., a T cell or a NK cell. In one aspect, the vector is a cloning or expression vector, e.g., a vector including, but not limited to, one or more plasmids (e.g., expression plasmids, cloning vectors, minicircles, minivectors, double minute chromosomes), retroviral and lentiviral vector constructs. In one aspect, the vector is capable of expressing the CAR construct in mammalian immune effector cells (e.g., T cells, NK cells). In one aspect, the mammalian T cell is a human T cell. In one aspect, the mammalian NK cell is a human NK cell.


Sources of Cells

Prior to expansion and genetic modification or other modification, a source of cells, e.g., T cells or natural killer (NK) cells, can be obtained from a subject. The term “subject” is intended to include living organisms in which an immune response can be elicited (e.g., mammals). Examples of subjects include humans, monkeys, chimpanzees, dogs, cats, mice, rats, and transgenic species thereof. T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors.


In certain aspects of the present disclosure, immune effector cells, e.g., T cells, can be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as Ficoll™ separation. In one preferred aspect, cells from the circulating blood of an individual are obtained by apheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. In one aspect, the cells collected by apheresis may be washed to remove the plasma fraction and, optionally, to place the cells in an appropriate buffer or media for subsequent processing steps. In one embodiment, the cells are washed with phosphate buffered saline (PBS). In an alternative embodiment, the wash solution lacks calcium and may lack magnesium or may lack many if not all divalent cations.


Initial activation steps in the absence of calcium can lead to magnified activation. As those of ordinary skill in the art would readily appreciate a washing step may be accomplished by methods known to those in the art, such as by using a semi-automated “flow-through” centrifuge (for example, the Cobe 2991 cell processor, the Baxter CytoMate, or the Haemonetics Cell Saver 5) according to the manufacturer's instructions. After washing, the cells may be resuspended in a variety of biocompatible buffers, such as, for example, Ca-free, Mg-free PBS, PlasmaLyte A, or other saline solution with or without buffer. Alternatively, the undesirable components of the apheresis sample may be removed and the cells directly resuspended in culture media.


It is recognized that the methods of the application can utilize culture media conditions comprising 5% or less, for example 2%, human AB serum, and employ known culture media conditions and compositions, for example those described in Smith et al., “Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement” Clinical & Translational Immunology (2015) 4, e31; doi:10.1038/cti.2014.31.


In one aspect, T cells are isolated from peripheral blood lymphocytes by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a PERCOLL™ gradient or by counterflow centrifugal elutriation.


The methods described herein can include, e.g., selection of a specific subpopulation of immune effector cells, e.g., T cells, that are a T regulatory cell-depleted population, CD25+ depleted cells, using, e.g., a negative selection technique, e.g., described herein. Preferably, the population of T regulatory depleted cells contains less than 30%, 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, 1% of CD25+ cells.


In one embodiment, T regulatory cells, e.g., CD25+ T cells, are removed from the population using an anti-CD25 antibody, or fragment thereof, or a CD25-binding ligand, IL-2. In one embodiment, the anti-CD25 antibody, or fragment thereof, or CD25-binding ligand is conjugated to a substrate, e.g., a bead, or is otherwise coated on a substrate, e.g., a bead. In one embodiment, the anti-CD25 antibody, or fragment thereof, is conjugated to a substrate as described herein.


In one embodiment, the T regulatory cells, e.g., CD25+ T cells, are removed from the population using CD25 depletion reagent from Miltenyi™. In one embodiment, the ratio of cells to CD25 depletion reagent is 1e7 cells to 20 uL, or 1e7 cells to 15 uL, or 1e7 cells to 10 uL, or 1e7 cells to 5 uL, or 1e7 cells to 2.5 uL, or 1e7 cells to 1.25 uL. In one embodiment, e.g., for T regulatory cells, e.g., CD25+ depletion, greater than 500 million cells/ml is used. In a further aspect, a concentration of cells of 600, 700, 800, or 900 million cells/ml is used.


In one embodiment, the population of immune effector cells to be depleted includes about 6×109 CD25+ T cells. In other aspects, the population of immune effector cells to be depleted include about 1×109 to 1×1010 CD25+ T cell, and any integer value in between. In one embodiment, the resulting population T regulatory depleted cells has 2×109 T regulatory cells, e.g., CD25+ cells, or less (e.g., 1×109, 5×108, 1×108, 5×107, 1×107, or less CD25+ cells).


In one embodiment, the T regulatory cells, e.g., CD25+ cells, are removed from the population using the CliniMAC system with a depletion tubing set, such as, e.g., tubing 162-01. In one embodiment, the CliniMAC system is run on a depletion setting such as, e.g., DEPLETION2.1.


Without wishing to be bound by a particular theory, decreasing the level of negative regulators of immune cells (e.g., decreasing the number of unwanted immune cells, e.g., TREG cells), in a subject prior to apheresis or during manufacturing of a CAR-expressing cell product can reduce the risk of subject relapse. For example, methods of depleting TREG cells are known in the art. Methods of decreasing TREG cells include, but are not limited to, cyclophosphamide, anti-GITR antibody (an anti-GITR antibody described herein), CD25-depletion, and combinations thereof.


In some embodiments, the manufacturing methods comprise reducing the number of (e.g., depleting) TREG cells prior to manufacturing of the CAR-expressing cell. For example, manufacturing methods comprise contacting the sample, e.g., the apheresis sample, with an anti-GITR antibody and/or an anti-CD25 antibody (or fragment thereof, or a CD25-binding ligand), e.g., to deplete TREG cells prior to manufacturing of the CAR-expressing cell (e.g., T cell, NK cell) product.


In an embodiment, a subject is pre-treated with one or more therapies that reduce TREG cells prior to collection of cells for CAR-expressing cell product manufacturing, thereby reducing the risk of subject relapse to CAR-expressing cell treatment. In an embodiment, methods of decreasing TREG cells include, but are not limited to, administration to the subject of one or more of cyclophosphamide, anti-GITR antibody, CD25-depletion, or a combination thereof. Administration of one or more of cyclophosphamide, anti-GITR antibody, CD25-depletion, or a combination thereof, can occur before, during or after an infusion of the CAR-expressing cell product.


In an embodiment, a subject is pre-treated with cyclophosphamide prior to collection of cells for CAR-expressing cell product manufacturing, thereby reducing the risk of subject relapse to CAR-expressing cell treatment. In an embodiment, a subject is pre-treated with an anti-GITR antibody prior to collection of cells for CAR-expressing cell product manufacturing, thereby reducing the risk of subject relapse to CAR-expressing cell treatment.


In one embodiment, the population of cells to be removed are neither the regulatory T cells or tumor cells, but cells that otherwise negatively affect the expansion and/or function of CART cells, e.g. cells expressing CD14, CD11b, CD33, CD15, or other markers expressed by potentially immune suppressive cells. In one embodiment, such cells are envisioned to be removed concurrently with regulatory T cells and/or tumor cells, or following said depletion, or in another order.


The methods described herein can include more than one selection step, e.g., more than one depletion step. Enrichment of a T cell population by negative selection can be accomplished, e.g., with a combination of antibodies directed to surface markers unique to the negatively selected cells. One method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail can include antibodies to CD14, CD20, CD11b, CD16, HLA-DR, and CD8.


The methods described herein can further include removing cells from the population which express a tumor antigen, e.g., a tumor antigen that does not comprise CD25, e.g., CD19, CD30, CD38, CD123, CD20, CD14 or CD11b, to thereby provide a population of T regulatory depleted, e.g., CD25+ depleted, and tumor antigen depleted cells that are suitable for expression of a CAR, e.g., a CAR described herein. In one embodiment, tumor antigen expressing cells are removed simultaneously with the T regulatory, e.g., CD25+ cells. For example, an anti-CD25 antibody, or fragment thereof, and an anti-tumor antigen antibody, or fragment thereof, can be attached to the same substrate, e.g., bead, which can be used to remove the cells or an anti-CD25 antibody, or fragment thereof, or the anti-tumor antigen antibody, or fragment thereof, can be attached to separate beads, a mixture of which can be used to remove the cells. In other embodiments, the removal of T regulatory cells, e.g., CD25+ cells, and the removal of the tumor antigen expressing cells is sequential, and can occur, e.g., in either order.


Also provided are methods that include removing cells from the population which express a check point inhibitor, e.g., a check point inhibitor described herein, e.g., one or more of PD1+ cells, LAG3+ cells, and TIM3+ cells, to thereby provide a population of T regulatory depleted, e.g., CD25+ depleted cells, and check point inhibitor depleted cells, e.g., PD1+, LAG3+ and/or TIM3+ depleted cells. Exemplary check point inhibitors include B7-H1, B7-1, CD160, P1H, 2B4, PD1, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, TIGIT, CTLA-4, BTLA and LAIR1. In one embodiment, check point inhibitor expressing cells are removed simultaneously with the T regulatory, e.g., CD25+ cells. For example, an anti-CD25 antibody, or fragment thereof, and an anti-check point inhibitor antibody, or fragment thereof, can be attached to the same bead which can be used to remove the cells, or an anti-CD25 antibody, or fragment thereof, and the anti-check point inhibitor antibody, or fragment there, can be attached to separate beads, a mixture of which can be used to remove the cells. In other embodiments, the removal of T regulatory cells, e.g., CD25+ cells, and the removal of the check point inhibitor expressing cells is sequential, and can occur, e.g., in either order.


Methods described herein can include a positive selection step. For example, T cells can isolated by incubation with anti-CD3/anti-CD28 (e.g., 3×28)-conjugated beads, such as DYNABEADS® M-450 CD3/CD28 T, for a time period sufficient for positive selection of the desired T cells. In one embodiment, the time period is about 30 minutes. In a further embodiment, the time period ranges from 30 minutes to 36 hours or longer and all integer values there between. In a further embodiment, the time period is at least 1, 2, 3, 4, 5, or 6 hours. In yet another embodiment, the time period is 10 to 24 hours, e.g., 24 hours. Longer incubation times may be used to isolate T cells in any situation where there are few T cells as compared to other cell types, such in isolating tumor infiltrating lymphocytes (TIL) from tumor tissue or from immunocompromised individuals. Further, use of longer incubation times can increase the efficiency of capture of CD8+ T cells. Thus, by simply shortening or lengthening the time T cells are allowed to bind to the CD3/CD28 beads and/or by increasing or decreasing the ratio of beads to T cells (as described further herein), subpopulations of T cells can be preferentially selected for or against at culture initiation or at other time points during the process. Additionally, by increasing or decreasing the ratio of anti-CD3 and/or anti-CD28 antibodies on the beads or other surface, subpopulations of T cells can be preferentially selected for or against at culture initiation or at other desired time points.


In one embodiment, a T cell population can be selected that expresses one or more of IFN-γ, TNFα, IL-17A, IL-2, IL-3, IL-4, GM-CSF, IL-10, IL-13, granzyme B, and perforin, or other appropriate molecules, e.g., other cytokines. Methods for screening for cell expression can be determined, e.g., by the methods described in PCT Publication No.: WO 2013/126712.


For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In certain aspects, it may be desirable to significantly decrease the volume in which beads and cells are mixed together (e.g., increase the concentration of cells), to ensure maximum contact of cells and beads. For example, in one aspect, a concentration of 10 billion cells/ml, 9 billion/ml, 8 billion/ml, 7 billion/ml, 6 billion/ml, or 5 billion/ml is used. In one aspect, a concentration of 1 billion cells/ml is used. In yet one aspect, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further aspects, concentrations of 125 or 150 million cells/ml can be used.


Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells, or from samples where there are many tumor cells present (e.g., leukemic blood, tumor tissue, etc.). Such populations of cells may have therapeutic value and would be desirable to obtain. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.


In a related aspect, it may be desirable to use lower concentrations of cells. By significantly diluting the mixture of T cells and surface (e.g., particles such as beads), interactions between the particles and cells is minimized This selects for cells that express high amounts of desired antigens to be bound to the particles. For example, CD4+ T cells express higher levels of CD28 and are more efficiently captured than CD8+ T cells in dilute concentrations. In one aspect, the concentration of cells used is 5×106/ml. In other aspects, the concentration used can be from about 1×105/ml to 1×106/ml, and any integer value in between.


In other aspects, the cells may be incubated on a rotator for varying lengths of time at varying speeds at either 2-10° C. or at room temperature.


T cells for stimulation can also be frozen after a washing step. Wishing not to be bound by theory, the freeze and subsequent thaw step provides a more uniform product by removing granulocytes and to some extent monocytes in the cell population. After the washing step that removes plasma and platelets, the cells may be suspended in a freezing solution. While many freezing solutions and parameters are known in the art and will be useful in this context, one method involves using PBS containing 20% DMSO and 8% human serum albumin, or culture media containing 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin and 7.5% DMSO, or 31.25% Plasmalyte-A, 31.25% Dextrose 5%, 0.45% NaCl, 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin, and 7.5% DMSO or other suitable cell freezing media containing for example, Hespan and PlasmaLyte A, the cells then are frozen to −80° C. at a rate of 1° per minute and stored in the vapor phase of a liquid nitrogen storage tank. Other methods of controlled freezing may be used as well as uncontrolled freezing immediately at −20° C. or in liquid nitrogen.


In certain aspects, cryopreserved cells are thawed and washed as described herein and allowed to rest for one hour at room temperature prior to activation using the methods of the present invention.


Also contemplated in the context of the invention is the collection of blood samples or apheresis product from a subject at a time period prior to when the expanded cells as described herein might be needed. As such, the source of the cells to be expanded can be collected at any time point necessary, and desired cells, such as T cells, isolated and frozen for later use in immune effector cell therapy for any number of diseases or conditions that would benefit from immune effector cell therapy, such as those described herein. In one aspect a blood sample or an apheresis is taken from a generally healthy subject. In certain aspects, a blood sample or an apheresis is taken from a generally healthy subject who is at risk of developing a disease, but who has not yet developed a disease, and the cells of interest are isolated and frozen for later use. In certain aspects, the T cells may be expanded, frozen, and used at a later time. In certain aspects, samples are collected from a patient shortly after diagnosis of a particular disease as described herein but prior to any treatments. In a further aspect, the cells are isolated from a blood sample or an apheresis from a subject prior to any number of relevant treatment modalities, including but not limited to treatment with agents such as natalizumab, efalizumab, antiviral agents, chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies, cytoxan, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, and irradiation.


In a further aspect of the present invention, T cells are obtained from a patient directly following treatment that leaves the subject with functional T cells. In this regard, it has been observed that following certain cancer treatments, in particular treatments with drugs that damage the immune system, shortly after treatment during the period when patients would normally be recovering from the treatment, the quality of T cells obtained may be optimal or improved for their ability to expand ex vivo. Likewise, following ex vivo manipulation using the methods described herein, these cells may be in a preferred state for enhanced engraftment and in vivo expansion. Thus, it is contemplated within the context of the present invention to collect blood cells, including T cells, dendritic cells, or other cells of the hematopoietic lineage, during this recovery phase. Further, in certain aspects, mobilization (for example, mobilization with GM-CSF) and conditioning regimens can be used to create a condition in a subject wherein repopulation, recirculation, regeneration, and/or expansion of particular cell types is favored, especially during a defined window of time following therapy. Illustrative cell types include T cells, B cells, dendritic cells, and other cells of the immune system.


In one embodiment, the immune effector cells expressing a CAR molecule, e.g., a CAR molecule described herein, are obtained from a subject that has received a low, immune enhancing dose of an mTOR inhibitor. In an embodiment, the population of immune effector cells, e.g., T cells, to be engineered to express a CAR, are harvested after a sufficient time, or after sufficient dosing of the low, immune enhancing, dose of an mTOR inhibitor, such that the level of PD1 negative immune effector cells, e.g., T cells, or the ratio of PD1 negative immune effector cells, e.g., T cells/PD1 positive immune effector cells, e.g., T cells, in the subject or harvested from the subject has been, at least transiently, increased.


In other embodiments, population of immune effector cells, e.g., T cells, which have, or will be engineered to express a CAR, can be treated ex vivo by contact with an amount of an mTOR inhibitor that increases the number of PD1 negative immune effector cells, e.g., T cells or increases the ratio of PD1 negative immune effector cells, e.g., T cells/PD1 positive immune effector cells, e.g., T cells.


In one embodiment, a T cell population is diacylglycerol kinase (DGK)-deficient. DGK-deficient cells include cells that do not express DGK RNA or protein, or have reduced or inhibited DGK activity. DGK-deficient cells can be generated by genetic approaches, e.g., administering RNA-interfering agents, e.g., siRNA, shRNA, miRNA, to reduce or prevent DGK expression. Alternatively, DGK-deficient cells can be generated by treatment with DGK inhibitors described herein.


In one embodiment, a T cell population is Ikaros-deficient. Ikaros-deficient cells include cells that do not express Ikaros RNA or protein, or have reduced or inhibited Ikaros activity, Ikaros-deficient cells can be generated by genetic approaches, e.g., administering RNA-interfering agents, e.g., siRNA, shRNA, miRNA, to reduce or prevent Ikaros expression. Alternatively, Ikaros-deficient cells can be generated by treatment with Ikaros inhibitors, e.g., lenalidomide.


In embodiments, a T cell population is DGK-deficient and Ikaros-deficient, e.g., does not express DGK and Ikaros, or has reduced or inhibited DGK and Ikaros activity. Such DGK and Ikaros-deficient cells can be generated by any of the methods described herein.


In an embodiment, the NK cells are obtained from the subject. In another embodiment, the NK cells are an NK cell line, e.g., NK-92 cell line (Conkwest).


Allogeneic CAR

In embodiments described herein, the immune effector cell can be an allogeneic immune effector cell, e.g., T cell or NK cell. For example, the cell can be an allogeneic T cell, e.g., an allogeneic T cell lacking expression of a functional T cell receptor (TCR) and/or human leukocyte antigen (HLA), e.g., HLA class I and/or HLA class II.


A T cell lacking a functional TCR can be, e.g., engineered such that it does not express any functional TCR on its surface, engineered such that it does not express one or more subunits that comprise a functional TCR or engineered such that it produces very little functional TCR on its surface. Alternatively, the T cell can express a substantially impaired TCR, e.g., by expression of mutated or truncated forms of one or more of the subunits of the TCR. The term “substantially impaired TCR” means that this TCR will not elicit an adverse immune reaction in a host.


A T cell described herein can be, e.g., engineered such that it does not express a functional HLA on its surface. For example, a T cell described herein, can be engineered such that cell surface expression HLA, e.g., HLA class 1 and/or HLA class II, is downregulated.


In some embodiments, the T cell can lack a functional TCR and a functional HLA, e.g., HLA class I and/or HLA class II.


Modified T cells that lack expression of a functional TCR and/or HLA can be obtained by any suitable means, including a knock out or knock down of one or more subunit of TCR or HLA. For example, the T cell can include a knock down of TCR and/or HLA using siRNA, shRNA, clustered regularly interspaced short palindromic repeats (CRISPR) transcription-activator like effector nuclease (TALEN), or zinc finger endonuclease (ZFN).


In some embodiments, the allogeneic cell can be a cell which does not express or expresses at low levels an inhibitory molecule, e.g. by any method described herein. For example, the cell can be a cell that does not express or expresses at low levels an inhibitory molecule, e.g., that can decrease the ability of a CAR-expressing cell to mount an immune effector response. Examples of inhibitory molecules include PD1, PD-L1, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGF beta. Inhibition of an inhibitory molecule, e.g., by inhibition at the DNA, RNA or protein level, can optimize a CAR-expressing cell performance In embodiments, an inhibitory nucleic acid, e.g., an inhibitory nucleic acid, e.g., a dsRNA, e.g., an siRNA or shRNA, a clustered regularly interspaced short palindromic repeats (CRISPR), a transcription-activator like effector nuclease (TALEN), or a zinc finger endonuclease (ZFN), e.g., as described herein, can be used.


siRNA and shRNA to Inhibit TCR or HLA


In some embodiments, TCR expression and/or HLA expression can be inhibited using siRNA or shRNA that targets a nucleic acid encoding a TCR and/or HLA in a T cell.


Expression of siRNA and shRNAs in T cells can be achieved using any conventional expression system, e.g., such as a lentiviral expression system.


Exemplary shRNAs that downregulate expression of components of the TCR are described, e.g., in US Publication No.: 2012/0321667. Exemplary siRNA and shRNA that downregulate expression of HLA class I and/or HLA class II genes are described, e.g., in U.S. publication No.: US 2007/0036773.


CRISPR to Inhibit TCR or HLA

“CRISPR” or “CRISPR to TCR and/or HLA” or “CRISPR to inhibit TCR and/or HLA” as used herein refers to a set of clustered regularly interspaced short palindromic repeats, or a system comprising such a set of repeats. “Cas”, as used herein, refers to a CRISPR-associated protein. A “CRISPR/Cas” system refers to a system derived from CRISPR and Cas which can be used to silence or mutate a TCR and/or HLA gene.


Naturally-occurring CRISPR/Cas systems are found in approximately 40% of sequenced eubacteria genomes and 90% of sequenced archaea. Grissa et al. (2007) BMC Bioinformatics 8: 172. This system is a type of prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Barrangou et al. (2007) Science 315: 1709-1712; Marragini et al. (2008) Science 322: 1843-1845.


The CRISPR/Cas system has been modified for use in gene editing (silencing, enhancing or changing specific genes) in eukaryotes such as mice or primates. Wiedenheft et al. (2012) Nature 482: 331-8. This is accomplished by introducing into the eukaryotic cell a plasmid containing a specifically designed CRISPR and one or more appropriate Cas.


The CRISPR sequence, sometimes called a CRISPR locus, comprises alternating repeats and spacers. In a naturally-occurring CRISPR, the spacers usually comprise sequences foreign to the bacterium such as a plasmid or phage sequence; in the TCR and/or HLA CRISPR/Cas system, the spacers are derived from the TCR or HLA gene sequence.


RNA from the CRISPR locus is constitutively expressed and processed by Cas proteins into small RNAs. These comprise a spacer flanked by a repeat sequence. The RNAs guide other Cas proteins to silence exogenous genetic elements at the RNA or DNA level. Horvath et al. (2010) Science 327: 167-170; Makarova et al. (2006) Biology Direct 1: 7. The spacers thus serve as templates for RNA molecules, analogously to siRNAs. Pennisi (2013) Science 341: 833-836.


As these naturally occur in many different types of bacteria, the exact arrangements of the CRISPR and structure, function and number of Cas genes and their product differ somewhat from species to species. Haft et al. (2005) PLoS Comput. Biol. 1: e60; Kunin et al. (2007) Genome Biol. 8: R61; Mojica et al. (2005) J. Mol. Evol. 60: 174-182; Bolotin et al. (2005) Microbiol. 151: 2551-2561; Pourcel et al. (2005) Microbiol. 151: 653-663; and Stern et al. (2010) Trends. Genet. 28: 335-340. For example, the Cse (Cas subtype, E. coli) proteins (e.g., CasA) form a functional complex, Cascade, that processes CRISPR RNA transcripts into spacer-repeat units that Cascade retains. Brouns et al. (2008) Science 321: 960-964. In other prokaryotes, Cas6 processes the CRISPR transcript. The CRISPR-based phage inactivation in E. coli requires Cascade and Cas3, but not Cas1 or Cas2. The Cmr (Cas RAMP module) proteins in Pyrococcus furiosus and other prokaryotes form a functional complex with small CRISPR RNAs that recognizes and cleaves complementary target RNAs. A simpler CRISPR system relies on the protein Cas9, which is a nuclease with two active cutting sites, one for each strand of the double helix. Combining Cas9 and modified CRISPR locus RNA can be used in a system for gene editing. Pennisi (2013) Science 341: 833-836.


The CRISPR/Cas system can thus be used to edit a TCR and/or HLA gene (adding or deleting a basepair), or introducing a premature stop which thus decreases expression of a TCR and/or HLA. The CRISPR/Cas system can alternatively be used like RNA interference, turning off TCR and/or HLA gene in a reversible fashion. In a mammalian cell, for example, the RNA can guide the Cas protein to a TCR and/or HLA promoter, sterically blocking RNA polymerases.


Artificial CRISPR/Cas systems can be generated which inhibit TCR and/or HLA, using technology known in the art, e.g., that described in U.S. Publication No. 20140068797, and Cong (2013) Science 339: 819-823. Other artificial CRISPR/Cas systems that are known in the art may also be generated which inhibit TCR and/or HLA, e.g., that described in Tsai (2014) Nature Biotechnol., 32:6 569-576, U.S. Pat. Nos. 8,871,445; 8,865,406; 8,795,965; 8,771,945; and 8,697,359.


TALEN to Inhibit TCR and/or HLA


“TALEN” or “TALEN to HLA and/or TCR” or “TALEN to inhibit HLA and/or TCR” refers to a transcription activator-like effector nuclease, an artificial nuclease which can be used to edit the HLA and/or TCR gene.


TALENs are produced artificially by fusing a TAL effector DNA binding domain to a DNA cleavage domain. Transcription activator-like effects (TALEs) can be engineered to bind any desired DNA sequence, including a portion of the HLA or TCR gene. By combining an engineered TALE with a DNA cleavage domain, a restriction enzyme can be produced which is specific to any desired DNA sequence, including a HLA or TCR sequence. These can then be introduced into a cell, wherein they can be used for genome editing. Boch (2011) Nature Biotech. 29: 135-6; and Boch et al. (2009) Science 326: 1509-12; Moscou et al. (2009) Science 326: 3501.


TALEs are proteins secreted by Xanthomonas bacteria. The DNA binding domain contains a repeated, highly conserved 33-34 amino acid sequence, with the exception of the 12th and 13th amino acids. These two positions are highly variable, showing a strong correlation with specific nucleotide recognition. They can thus be engineered to bind to a desired DNA sequence.


To produce a TALEN, a TALE protein is fused to a nuclease (N), which is a wild-type or mutated Fold endonuclease. Several mutations to FokI have been made for its use in TALENs; these, for example, improve cleavage specificity or activity. Cermak et al. (2011) Nucl. Acids Res. 39: e82; Miller et al. (2011) Nature Biotech. 29: 143-8; Hockemeyer et al. (2011) Nature Biotech. 29: 731-734; Wood et al. (2011) Science 333: 307; Doyon et al. (2010) Nature Methods 8: 74-79; Szczepek et al. (2007) Nature Biotech. 25: 786-793; and Guo et al. (2010) J. Mol. Biol. 200: 96.


The FokI domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALE DNA binding domain and the FokI cleavage domain and the number of bases between the two individual TALEN binding sites appear to be important parameters for achieving high levels of activity. Miller et al. (2011) Nature Biotech. 29: 143-8.


A HLA or TCR TALEN can be used inside a cell to produce a double-stranded break (DSB). A mutation can be introduced at the break site if the repair mechanisms improperly repair the break via non-homologous end joining. For example, improper repair may introduce a frame shift mutation. Alternatively, foreign DNA can be introduced into the cell along with the TALEN; depending on the sequences of the foreign DNA and chromosomal sequence, this process can be used to correct a defect in the HLA or TCR gene or introduce such a defect into a wt HLA or TCR gene, thus decreasing expression of HLA or TCR.


TALENs specific to sequences in HLA or TCR can be constructed using any method known in the art, including various schemes using modular components. Zhang et al. (2011) Nature Biotech. 29: 149-53; Geibler et al. (2011) PLoS ONE 6: e19509.


Zinc Finger Nuclease to Inhibit HLA and/or TCR


“ZFN” or “Zinc Finger Nuclease” or “ZFN to HLA and/or TCR” or “ZFN to inhibit HLA and/or TCR” refer to a zinc finger nuclease, an artificial nuclease which can be used to edit the HLA and/or TCR gene.


Like a TALEN, a ZFN comprises a Fold nuclease domain (or derivative thereof) fused to a DNA-binding domain. In the case of a ZFN, the DNA-binding domain comprises one or more zinc fingers. Carroll et al. (2011) Genetics Society of America 188: 773-782; and Kim et al. (1996) Proc. Natl. Acad. Sci. USA 93: 1156-1160.


A zinc finger is a small protein structural motif stabilized by one or more zinc ions. A zinc finger can comprise, for example, Cys2His2, and can recognize an approximately 3-bp sequence. Various zinc fingers of known specificity can be combined to produce multi-finger polypeptides which recognize about 6, 9, 12, 15 or 18-bp sequences. Various selection and modular assembly techniques are available to generate zinc fingers (and combinations thereof) recognizing specific sequences, including phage display, yeast one-hybrid systems, bacterial one-hybrid and two-hybrid systems, and mammalian cells.


Like a TALEN, a ZFN must dimerize to cleave DNA. Thus, a pair of ZFNs are required to target non-palindromic DNA sites. The two individual ZFNs must bind opposite strands of the DNA with their nucleases properly spaced apart. Bitinaite et al. (1998) Proc. Natl. Acad. Sci. USA 95: 10570-5.


Also like a TALEN, a ZFN can create a double-stranded break in the DNA, which can create a frame-shift mutation if improperly repaired, leading to a decrease in the expression and amount of HLA and/or TCR in a cell. ZFNs can also be used with homologous recombination to mutate in the HLA or TCR gene.


ZFNs specific to sequences in HLA AND/OR TCR can be constructed using any method known in the art. See, e.g., Provasi (2011) Nature Med. 18: 807-815; Torikai (2013) Blood 122: 1341-1349; Cathomen et al. (2008) Mol. Ther. 16: 1200-7; Guo et al. (2010) J. Mol. Biol. 400: 96; U.S. Patent Publication 2011/0158957; and U.S. Patent Publication 2012/0060230.


Telomerase Expression

While not wishing to be bound by any particular theory, in some embodiments, a therapeutic T cell has short term persistence in a patient, due to shortened telomeres in the T cell; accordingly, transfection with a telomerase gene can lengthen the telomeres of the T cell and improve persistence of the T cell in the patient. See Carl June, “Adoptive T cell therapy for cancer in the clinic”, Journal of Clinical Investigation, 117:1466-1476 (2007). Thus, in an embodiment, an immune effector cell, e.g., a T cell, ectopically expresses a telomerase subunit, e.g., the catalytic subunit of telomerase, e.g., TERT, e.g., hTERT. In some aspects, this disclosure provides a method of producing a CAR-expressing cell, comprising contacting a cell with a nucleic acid encoding a telomerase subunit, e.g., the catalytic subunit of telomerase, e.g., TERT, e.g., hTERT. The cell may be contacted with the nucleic acid before, simultaneous with, or after being contacted with a construct encoding a CAR.


In one aspect, the disclosure features a method of making a population of immune effector cells (e.g., T cells, NK cells). In an embodiment, the method comprises: providing a population of immune effector cells (e.g., T cells or NK cells), contacting the population of immune effector cells with a nucleic acid encoding a CAR; and contacting the population of immune effector cells with a nucleic acid encoding a telomerase subunit, e.g., hTERT, under conditions that allow for CAR and telomerase expression.


In an embodiment, the nucleic acid encoding the telomerase subunit is DNA. In an embodiment, the nucleic acid encoding the telomerase subunit comprises a promoter capable of driving expression of the telomerase subunit.


In an embodiment, hTERT has the amino acid sequence of GenBank Protein ID AAC51724.1 (Meyerson et al., “hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization” Cell Volume 90, Issue 4, 22 Aug. 1997, Pages 785-795) as follows:









(SEQ ID NO: 61)







MPRAPRCRAVRSLLRSHYREVLPLATFVRRLGPQGWRLVQRGDPAAFRA





LVAQCLVCVPWDARPPPAAPSFRQVSCLKELVARVLQRLCERGAKNVLA





FGFALLDGARGGPPEAFTTSVRSYLPNTVTDALRGSGAWGLLLRRVGDD





VLVHLLARCALFVLVAPSCAYQVCGPPLYQLGAATQARPPPHASGPRRR





LGCERAWNHSVREAGVPLGLPAPGARRRGGSASRSLPLPKRPRRGAAPE





PERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEATSLEGALSGTRH





SHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRP





SFLLSSLRPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPL





FLELLGNHAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEE





DTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNERRFLRN





TKKFISLGKHAKLSLQELTWKMSVRGCAWLRRSPGVGCVPAAEHRLREE





ILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIG





IRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMD





YVVGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDI





HRAWRTFVLRVRAQDPPPELYFVKVDVTGAYDTIPQDRLTEVIASIIKP





QNTYCVRRYAVVQKAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETS





PLRDAVVIEQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQ





GSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHAKT





FLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPAHGLFPWC





GLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRL





KCHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNP





TFFLRVISDTASLCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAF





LLKLTRHRVTYVPLLGSLRTAQTQLSRKLPGTTLTALEAAANPALPSDF





KTILD






In an embodiment, the hTERT has a sequence at least 80%, 85%, 90%, 95%, 96{circumflex over ( )}, 97%, 98%, or 99% identical to the sequence of SEQ ID NO: 61. In an embodiment, the hTERT has a sequence of SEQ ID NO: 61. In an embodiment, the hTERT comprises a deletion (e.g., of no more than 5, 10, 15, 20, or 30 amino acids) at the N-terminus, the C-terminus, or both. In an embodiment, the hTERT comprises a transgenic amino acid sequence (e.g., of no more than 5, 10, 15, 20, or 30 amino acids) at the N-terminus, the C-terminus, or both.


In an embodiment, the hTERT is encoded by the nucleic acid sequence of GenBank Accession No. AF018167 (Meyerson et al., “hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization” Cell Volume 90, Issue 4, 22 Aug. 1997, Pages 785-795):










(SEQ ID NO: 62)










1
caggcagcgt ggtcctgctg cgcacgtggg aagccctggc cccggccacc cccgcgatgc






61
cgcgcgctcc ccgctgccga gccgtgcgct ccctgctgcg cagccactac cgcgaggtgc





121
tgccgctggc cacgttcgtg cggcgcctgg ggccccaggg ctggcggctg gtgcagcgcg





181
gggacccggc ggctttccgc gcgctggtgg cccagtgcct ggtgtgcgtg ccctgggacg





241
cacggccgcc ccccgccgcc ccctccttcc gccaggtgtc ctgcctgaag gagctggtgg





301
cccgagtgct gcagaggctg tgcgagcgcg gcgcgaagaa cgtgctggcc ttcggcttcg





361
cgctgctgga cggggcccgc gggggccccc ccgaggcctt caccaccagc gtgcgcagct





421
acctgcccaa cacggtgacc gacgcactgc gggggagcgg ggcgtggggg ctgctgttgc





481
gccgcgtggg cgacgacgtg ctggttcacc tgctggcacg ctgcgcgctc tttgtgctgg





541
tggctcccag ctgcgcctac caggtgtgcg ggccgccgct gtaccagctc ggcgctgcca





601
ctcaggcccg gcccccgcca cacgctagtg gaccccgaag gcgtctggga tgcgaacggg





661
cctggaacca tagcgtcagg gaggccgggg tccccctggg cctgccagcc ccgggtgcga





721
ggaggcgcgg gggcagtgcc agccgaagtc tgccgttgcc caagaggccc aggcgtggcg





781
ctgcccctga gccggagcgg acgcccgttg ggcaggggtc ctgggcccac ccgggcagga





841
cgcgtggacc gagtgaccgt ggtttctgtg tggtgtcacc tgccagaccc gccgaagaag





901
ccacctcttt ggagggtgcg ctctctggca cgcgccactc ccacccatcc gtgggccgcc





961
agcaccacgc gggcccccca tccacatcgc ggccaccacg tccctgggac acgccttgtc





1021
ccccggtgta cgccgagacc aagcacttcc tctactcctc aggcgacaag gagcagctgc





1081
ggccctcctt cctactcagc tctctgaggc ccagcctgac tggcgctcgg aggctcgtgg





1141
agaccatctt tctgggttcc aggccctgga tgccagggac tccccgcagg ttgccccgcc





1201
tgccccagcg ctactggcaa atgcggcccc tgtttctgga gctgcttggg aaccacgcgc





1261
agtgccccta cggggtgctc ctcaagacgc actgcccgct gcgagctgcg gtcaccccag





1321
cagccggtgt ctgtgcccgg gagaagcccc agggctctgt ggcggccccc gaggaggagg





1381
acacagaccc ccgtcgcctg gtgcagctgc tccgccagca cagcagcccc tggcaggtgt





1441
acggcttcgt gcgggcctgc ctgcgccggc tggtgccccc aggcctctgg ggctccaggc





1501
acaacgaacg ccgcttcctc aggaacacca agaagttcat ctccctgggg aagcatgcca





1561
agctctcgct gcaggagctg acgtggaaga tgagcgtgcg gggctgcgct tggctgcgca





1621
ggagcccagg ggttggctgt gttccggccg cagagcaccg tctgcgtgag gagatcctgg





1681
ccaagttcct gcactggctg atgagtgtgt acgtcgtcga gctgctcagg tctttctttt





1741
atgtcacgga gaccacgttt caaaagaaca ggctcttttt ctaccggaag agtgtctgga





1801
gcaagttgca aagcattgga atcagacagc acttgaagag ggtgcagctg cgggagctgt





1861
cggaagcaga ggtcaggcag catcgggaag ccaggcccgc cctgctgacg tccagactcc





1921
gcttcatccc caagcctgac gggctgcggc cgattgtgaa catggactac gtcgtgggag





1981
ccagaacgtt ccgcagagaa aagagggccg agcgtctcac ctcgagggtg aaggcactgt





2041
tcagcgtgct caactacgag cgggcgcggc gccccggcct cctgggcgcc tctgtgctgg





2101
gcctggacga tatccacagg gcctggcgca ccttcgtgct gcgtgtgcgg gcccaggacc





2161
cgccgcctga gctgtacttt gtcaaggtgg atgtgacggg cgcgtacgac accatccccc





2221
aggacaggct cacggaggtc atcgccagca tcatcaaacc ccagaacacg tactgcgtgc





2281
gtcggtatgc cgtggtccag aaggccgccc atgggcacgt ccgcaaggcc ttcaagagcc





2341
acgtctctac cttgacagac ctccagccgt acatgcgaca gttcgtggct cacctgcagg





2401
agaccagccc gctgagggat gccgtcgtca tcgagcagag ctcctccctg aatgaggcca





2461
gcagtggcct cttcgacgtc ttcctacgct tcatgtgcca ccacgccgtg cgcatcaggg





2521
gcaagtccta cgtccagtgc caggggatcc cgcagggctc catcctctcc acgctgctct





2581
gcagcctgtg ctacggcgac atggagaaca agctgtttgc ggggattcgg cgggacgggc





2641
tgctcctgcg tttggtggat gatttcttgt tggtgacacc tcacctcacc cacgcgaaaa





2701
ccttcctcag gaccctggtc cgaggtgtcc ctgagtatgg ctgcgtggtg aacttgcgga





2761
agacagtggt gaacttccct gtagaagacg aggccctggg tggcacggct tttgttcaga





2821
tgccggccca cggcctattc ccctggtgcg gcctgctgct ggatacccgg accctggagg





2881
tgcagagcga ctactccagc tatgcccgga cctccatcag agccagtctc accttcaacc





2941
gcggcttcaa ggctgggagg aacatgcgtc gcaaactctt tggggtcttg cggctgaagt





3001
gtcacagcct gtttctggat ttgcaggtga acagcctcca gacggtgtgc accaacatct





3061
acaagatcct cctgctgcag gcgtacaggt ttcacgcatg tgtgctgcag ctcccatttc





3121
atcagcaagt ttggaagaac cccacatttt tcctgcgcgt catctctgac acggcctccc





3181
tctgctactc catcctgaaa gccaagaacg cagggatgtc gctgggggcc aagggcgccg





3241
ccggccctct gccctccgag gccgtgcagt ggctgtgcca ccaagcattc ctgctcaagc





3301
tgactcgaca ccgtgtcacc tacgtgccac tcctggggtc actcaggaca gcccagacgc





3361
agctgagtcg gaagctcccg gggacgacgc tgactgccct ggaggccgca gccaacccgg





3421
cactgccctc agacttcaag accatcctgg actgatggcc acccgcccac agccaggccg





3481
agagcagaca ccagcagccc tgtcacgccg ggctctacgt cccagggagg gaggggcggc





3541
ccacacccag gcccgcaccg ctgggagtct gaggcctgag tgagtgtttg gccgaggcct





3601
gcatgtccgg ctgaaggctg agtgtccggc tgaggcctga gcgagtgtcc agccaagggc





3661
tgagtgtcca gcacacctgc cgtcttcact tccccacagg ctggcgctcg gctccacccc





3721
agggccagct tttcctcacc aggagcccgg cttccactcc ccacatagga atagtccatc





3781
cccagattcg ccattgttca cccctcgccc tgccctcctt tgccttccac ccccaccatc





3841
caggtggaga ccctgagaag gaccctggga gctctgggaa tttggagtga ccaaaggtgt





3901
gccctgtaca caggcgagga ccctgcacct ggatgggggt ccctgtgggt caaattgggg





3961
ggaggtgctg tgggagtaaa atactgaata tatgagtttt tcagttttga aaaaaaaaaa





4021
aaaaaaa






In an embodiment, the hTERT is encoded by a nucleic acid having a sequence at least 80%, 85%, 90%, 95%, 96, 97%, 98%, or 99% identical to the sequence of SEQ ID NO: 62. In an embodiment, the hTERT is encoded by a nucleic acid of SEQ ID NO: 62.


Activation and Expansion of Immune Effector Cells (e.g., T Cells)

Immune effector cells such as T cells may be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005.


As demonstrated by the data disclosed herein, expanding the T cells by the methods disclosed herein can multiply the cells by about 10 fold, 20 fold, 30 fold, 40 fold, 50 fold, 60 fold, 70 fold, 80 fold, 90 fold, 100 fold, 200 fold, 300 fold, 400 fold, 500 fold, 600 fold, 700 fold, 800 fold, 900 fold, 1000 fold, 2000 fold, 3000 fold, 4000 fold, 5000 fold, 6000 fold, 7000 fold, 8000 fold, 9000 fold, 10,000 fold, 100,000 fold, 1,000,000 fold, 10,000,000 fold, or greater, and any and all whole or partial integers therebetween. In one embodiment, the T cells expand in the range of about 20 fold to about 50 fold.


Generally, a population of immune effector cells e.g., T regulatory cell depleted cells, may be expanded by contact with a surface having attached thereto an agent that stimulates a CD3/TCR complex associated signal and a ligand that stimulates a costimulatory molecule on the surface of the T cells. In particular, T cell populations may be stimulated as described herein, such as by contact with an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore. For co-stimulation of an accessory molecule on the surface of the T cells, a ligand that binds the accessory molecule is used. For example, a population of T cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells. To stimulate proliferation of either CD4+ T cells or CD8+ T cells, an anti-CD3 antibody and an anti-CD28 antibody can be used. Examples of an anti-CD28 antibody include 9.3, B-T3, XR-CD28 (Diaclone, Besançon, France) can be used as can other methods commonly known in the art (Berg et al., Transplant Proc. 30(8):3975-3977, 1998; Haanen et al., J. Exp. Med. 190(9):13191328, 1999; Garland et al., J. Immunol Meth. 227(1-2):53-63, 1999).


In certain aspects, the primary stimulatory signal and the costimulatory signal for the T cell may be provided by different protocols. For example, the agents providing each signal may be in solution or coupled to a surface. When coupled to a surface, the agents may be coupled to the same surface (i.e., in “cis” formation) or to separate surfaces (i.e., in “trans” formation). Alternatively, one agent may be coupled to a surface and the other agent in solution. In one aspect, the agent providing the costimulatory signal is bound to a cell surface and the agent providing the primary activation signal is in solution or coupled to a surface. In certain aspects, both agents can be in solution. In one aspect, the agents may be in soluble form, and then cross-linked to a surface, such as a cell expressing Fc receptors or an antibody or other binding agent which will bind to the agents. In this regard, see for example, U.S. Patent Application Publication Nos. 20040101519 and 20060034810 for artificial antigen presenting cells (aAPCs) that are contemplated for use in activating and expanding T cells in the present invention.


In one aspect, the two agents are immobilized on beads, either on the same bead, i.e., “cis,” or to separate beads, i.e., “trans.” By way of example, the agent providing the primary activation signal is an anti-CD3 antibody or an antigen-binding fragment thereof and the agent providing the costimulatory signal is an anti-CD28 antibody or antigen-binding fragment thereof; and both agents are co-immobilized to the same bead in equivalent molecular amounts. In one aspect, a 1:1 ratio of each antibody bound to the beads for CD4+ T cell expansion and T cell growth is used. In certain aspects of the present invention, a ratio of anti CD3:CD28 antibodies bound to the beads is used such that an increase in T cell expansion is observed as compared to the expansion observed using a ratio of 1:1. In one particular aspect an increase of from about 1 to about 3 fold is observed as compared to the expansion observed using a ratio of 1:1. In one aspect, the ratio of CD3:CD28 antibody bound to the beads ranges from 100:1 to 1:100 and all integer values there between. In one aspect, more anti-CD28 antibody is bound to the particles than anti-CD3 antibody, i.e., the ratio of CD3:CD28 is less than one. In certain aspects, the ratio of anti CD28 antibody to anti CD3 antibody bound to the beads is greater than 2:1. In one particular aspect, a 1:100 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1:75 CD3:CD28 ratio of antibody bound to beads is used. In a further aspect, a 1:50 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1:30 CD3:CD28 ratio of antibody bound to beads is used. In one preferred aspect, a 1:10 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1:3 CD3:CD28 ratio of antibody bound to the beads is used. In yet one aspect, a 3:1 CD3:CD28 ratio of antibody bound to the beads is used.


Ratios of particles to cells from 1:500 to 500:1 and any integer values in between may be used to stimulate T cells or other target cells. As those of ordinary skill in the art can readily appreciate, the ratio of particles to cells may depend on particle size relative to the target cell. For example, small sized beads could only bind a few cells, while larger beads could bind many In certain aspects the ratio of cells to particles ranges from 1:100 to 100:1 and any integer values in-between and in further aspects the ratio comprises 1:9 to 9:1 and any integer values in between, can also be used to stimulate T cells. The ratio of anti-CD3- and anti-CD28-coupled particles to T cells that result in T cell stimulation can vary as noted above, however certain preferred values include 1:100, 1:50, 1:40, 1:30, 1:20, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, and 15:1 with one preferred ratio being at least 1:1 particles per T cell. In one aspect, a ratio of particles to cells of 1:1 or less is used. In one particular aspect, a preferred particle: cell ratio is 1:5. In further aspects, the ratio of particles to cells can be varied depending on the day of stimulation. For example, in one aspect, the ratio of particles to cells is from 1:1 to 10:1 on the first day and additional particles are added to the cells every day or every other day thereafter for up to 10 days, at final ratios of from 1:1 to 1:10 (based on cell counts on the day of addition). In one particular aspect, the ratio of particles to cells is 1:1 on the first day of stimulation and adjusted to 1:5 on the third and fifth days of stimulation. In one aspect, particles are added on a daily or every other day basis to a final ratio of 1:1 on the first day, and 1:5 on the third and fifth days of stimulation. In one aspect, the ratio of particles to cells is 2:1 on the first day of stimulation and adjusted to 1:10 on the third and fifth days of stimulation. In one aspect, particles are added on a daily or every other day basis to a final ratio of 1:1 on the first day, and 1:10 on the third and fifth days of stimulation. One of skill in the art will appreciate that a variety of other ratios may be suitable for use in the present invention. In particular, ratios will vary depending on particle size and on cell size and type. In one aspect, the most typical ratios for use are in the neighborhood of 1:1, 2:1 and 3:1 on the first day.


In further aspects, the cells, such as T cells, are combined with agent-coated beads, the beads and the cells are subsequently separated, and then the cells are cultured. In an alternative aspect, prior to culture, the agent-coated beads and cells are not separated but are cultured together. In a further aspect, the beads and cells are first concentrated by application of a force, such as a magnetic force, resulting in increased ligation of cell surface markers, thereby inducing cell stimulation.


By way of example, cell surface proteins may be ligated by allowing paramagnetic beads to which anti-CD3 and anti-CD28 are attached (3×28 beads) to contact the T cells. In one aspect the cells (for example, 104 to 109 T cells) and beads (for example, DYNABEADS® M-450 CD3/CD28 T paramagnetic beads at a ratio of 1:1) are combined in a buffer, for example PBS (without divalent cations such as, calcium and magnesium). Again, those of ordinary skill in the art can readily appreciate any cell concentration may be used. For example, the target cell may be very rare in the sample and comprise only 0.01% of the sample or the entire sample (i.e., 100%) may comprise the target cell of interest. Accordingly, any cell number is within the context of the present invention. In certain aspects, it may be desirable to significantly decrease the volume in which particles and cells are mixed together (i.e., increase the concentration of cells), to ensure maximum contact of cells and particles. For example, in one aspect, a concentration of about 10 billion cells/ml, 9 billion/ml, 8 billion/ml, 7 billion/ml, 6 billion/ml, 5 billion/ml, or 2 billion cells/ml is used. In one aspect, greater than 100 million cells/ml is used. In a further aspect, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet one aspect, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further aspects, concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells. Such populations of cells may have therapeutic value and would be desirable to obtain in certain aspects. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.


In one embodiment, cells transduced with a nucleic acid encoding a CAR, e.g., a CAR described herein, are expanded, e.g., by a method described herein. In one embodiment, the cells are expanded in culture for a period of several hours (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 18, 21 hours) to about 14 days (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 days). In one embodiment, the cells are expanded for a period of 4 to 9 days. In one embodiment, the cells are expanded for a period of 8 days or less, e.g., 7, 6 or 5 days. In one embodiment, the cells, e.g., a CD19 CAR cell described herein, are expanded in culture for 5 days, and the resulting cells are more potent than the same cells expanded in culture for 9 days under the same culture conditions. Potency can be defined, e.g., by various T cell functions, e.g. proliferation, target cell killing, cytokine production, activation, migration, or combinations thereof. In one embodiment, the cells, e.g., a CD19 CAR cell described herein, expanded for 5 days show at least a one, two, three or four fold increase in cells doublings upon antigen stimulation as compared to the same cells expanded in culture for 9 days under the same culture conditions. In one embodiment, the cells, e.g., the cells expressing a CD19 CAR described herein, are expanded in culture for 5 days, and the resulting cells exhibit higher proinflammatory cytokine production, e.g., IFN-γ and/or GM-CSF levels, as compared to the same cells expanded in culture for 9 days under the same culture conditions. In one embodiment, the cells, e.g., a CD19 CAR cell described herein, expanded for 5 days show at least a one, two, three, four, five, ten fold or more increase in pg/ml of proinflammatory cytokine production, e.g., IFN-γ and/or GM-CSF levels, as compared to the same cells expanded in culture for 9 days under the same culture conditions.


Several cycles of stimulation may also be desired such that culture time of T cells can be 60 days or more. Conditions appropriate for T cell culture include an appropriate media (e.g., Minimal Essential Media or RPMI Media 1640 or, X-vivo 15, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (e.g., fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN-γ, IL-4, IL-7, GM-CSF, IL-10, IL-12, IL-15, TGFβ, and TNF-α or any other additives for the growth of cells known to the skilled artisan. Other additives for the growth of cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanol. Media can include RPMI 1640, AIM-V, DMEM, MEM, α-MEM, F-12, X-Vivo 15, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T cells. Antibiotics, e.g., penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject. The target cells are maintained under conditions necessary to support growth, for example, an appropriate temperature (e.g., 37° C.) and atmosphere (e.g., air plus 5% CO2).


In one embodiment, the cells are expanded in an appropriate media (e.g., media described herein) that includes one or more interleukin that result in at least a 200-fold (e.g., 200-fold, 250-fold, 300-fold, 350-fold) increase in cells over a 14 day expansion period, e.g., as measured by a method described herein such as flow cytometry. In one embodiment, the cells are expanded in the presence of IL-15 and/or IL-7 (e.g., IL-15 and IL-7).


In embodiments, methods described herein, e.g., CAR-expressing cell manufacturing methods, comprise removing T regulatory cells, e.g., CD25+ T cells, from a cell population, e.g., using an anti-CD25 antibody, or fragment thereof, or a CD25-binding ligand, IL-2. Methods of removing T regulatory cells, e.g., CD25+ T cells, from a cell population are described herein. In embodiments, the methods, e.g., manufacturing methods, further comprise contacting a cell population (e.g., a cell population in which T regulatory cells, such as CD25+ T cells, have been depleted; or a cell population that has previously contacted an anti-CD25 antibody, fragment thereof, or CD25-binding ligand) with IL-15 and/or IL-7. For example, the cell population (e.g., that has previously contacted an anti-CD25 antibody, fragment thereof, or CD25-binding ligand) is expanded in the presence of IL-15 and/or IL-7.


In some embodiments a CAR-expressing cell described herein is contacted with a composition comprising a interleukin-15 (IL-15) polypeptide, a interleukin-15 receptor alpha (IL-15Ra) polypeptide, or a combination of both a IL-15 polypeptide and a IL-15Ra polypeptide e.g., hetIL-15, during the manufacturing of the CAR-expressing cell, e.g., ex vivo. In embodiments, a CAR-expressing cell described herein is contacted with a composition comprising a IL-15 polypeptide during the manufacturing of the CAR-expressing cell, e.g., ex vivo. In embodiments, a CAR-expressing cell described herein is contacted with a composition comprising a combination of both a IL-15 polypeptide and a IL-15 Ra polypeptide during the manufacturing of the CAR-expressing cell, e.g., ex vivo. In embodiments, a CAR-expressing cell described herein is contacted with a composition comprising hetIL-15 during the manufacturing of the CAR-expressing cell, e.g., ex vivo.


In one embodiment the CAR-expressing cell described herein is contacted with a composition comprising hetIL-15 during ex vivo expansion. In an embodiment, the CAR-expressing cell described herein is contacted with a composition comprising an IL-15 polypeptide during ex vivo expansion. In an embodiment, the CAR-expressing cell described herein is contacted with a composition comprising both an IL-15 polypeptide and an IL-15Ra polypeptide during ex vivo expansion. In one embodiment the contacting results in the survival and proliferation of a lymphocyte subpopulation, e.g., CD8+ T cells.


T cells that have been exposed to varied stimulation times may exhibit different characteristics. For example, typical blood or apheresed peripheral blood mononuclear cell products have a helper T cell population (TH, CD4+) that is greater than the cytotoxic or suppressor T cell population (TC, CD8+). Ex vivo expansion of T cells by stimulating CD3 and CD28 receptors produces a population of T cells that prior to about days 8-9 consists predominately of TH cells, while after about days 8-9, the population of T cells comprises an increasingly greater population of TC cells. Accordingly, depending on the purpose of treatment, infusing a subject with a T cell population comprising predominately of TH cells may be advantageous. Similarly, if an antigen-specific subset of TC cells has been isolated it may be beneficial to expand this subset to a greater degree.


Further, in addition to CD4 and CD8 markers, other phenotypic markers vary significantly, but in large part, reproducibly during the course of the cell expansion process. Thus, such reproducibility enables the ability to tailor an activated T cell product for specific purposes.


Once a CAR described herein is constructed, various assays can be used to evaluate the activity of the molecule, such as but not limited to, the ability to expand T cells following antigen stimulation, sustain T cell expansion in the absence of re-stimulation, and anti-cancer activities in appropriate in vitro and animal models. Assays to evaluate the effects of a cars of the present invention are described in further detail below


Western blot analysis of CAR expression in primary T cells can be used to detect the presence of monomers and dimers. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). Very briefly, T cells (1:1 mixture of CD4+ and CD8+ T cells) expressing the CARs are expanded in vitro for more than 10 days followed by lysis and SDS-PAGE under reducing conditions. CARs containing the full length TCR-ζ cytoplasmic domain and the endogenous TCR-ζ chain are detected by western blotting using an antibody to the TCR-ζ chain. The same T cell subsets are used for SDS-PAGE analysis under non-reducing conditions to permit evaluation of covalent dimer formation.


In vitro expansion of CAR+ T cells following antigen stimulation can be measured by flow cytometry. For example, a mixture of CD4+ and CD8+ T cells are stimulated with αCD3/αCD28 aAPCs followed by transduction with lentiviral vectors expressing GFP under the control of the promoters to be analyzed. Exemplary promoters include the CMV IE gene, EF-1α, ubiquitin C, or phosphoglycerokinase (PGK) promoters. GFP fluorescence is evaluated on day 6 of culture in the CD4+ and/or CD8+ T cell subsets by flow cytometry. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). Alternatively, a mixture of CD4+ and CD8+ T cells are stimulated with αCD3/αCD28 coated magnetic beads on day 0, and transduced with CAR on day 1 using a bicistronic lentiviral vector expressing CAR along with eGFP using a 2A ribosomal skipping sequence. Cultures are re-stimulated with either a cancer associated antigen as described herein+ K562 cells (K562 expressing a cancer associated antigen as described herein), wild-type K562 cells (K562 wild type) or K562 cells expressing hCD32 and 4-1BBL in the presence of antiCD3 and anti-CD28 antibody (K562-BBL-3/28) following washing. Exogenous IL-2 is added to the cultures every other day at 100 IU/ml. GFP+ T cells are enumerated by flow cytometry using bead-based counting. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009).


Sustained CAR+ T cell expansion in the absence of re-stimulation can also be measured. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). Briefly, mean T cell volume (fl) is measured on day 8 of culture using a Coulter Multisizer III particle counter, a Nexcelom Cellometer Vision or Millipore Scepter, following stimulation with αCD3/αCD28 coated magnetic beads on day 0, and transduction with the indicated CAR on day 1.


Animal models can also be used to measure a CART activity. For example, xenograft model using human a cancer associated antigen described herein-specific CAR+ T cells to treat a primary human pre-B ALL in immunodeficient mice can be used. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). Very briefly, after establishment of ALL, mice are randomized as to treatment groups. Different numbers of a cancer associated antigen-specific CARengineered T cells are coinjected at a 1:1 ratio into NOD-SCID-γ−/− mice bearing B-ALL. The number of copies of a cancer associated antigen-specific CAR vector in spleen DNA from mice is evaluated at various times following T cell injection. Animals are assessed for leukemia at weekly intervals. Peripheral blood a cancer associate antigen as described herein+ B-ALL blast cell counts are measured in mice that are injected with a cancer associated antigen described herein-ζ CAR+ T cells or mock-transduced T cells. Survival curves for the groups are compared using the log-rank test. In addition, absolute peripheral blood CD4+ and CD8+ T cell counts 4 weeks following T cell injection in NOD-SCID-γ−/− mice can also be analyzed. Mice are injected with leukemic cells and 3 weeks later are injected with T cells engineered to express CAR by a bicistronic lentiviral vector that encodes the CAR linked to eGFP. T cells are normalized to 45-50% input GFP+ T cells by mixing with mock-transduced cells prior to injection, and confirmed by flow cytometry. Animals are assessed for leukemia at 1-week intervals. Survival curves for the CAR+ T cell groups are compared using the log-rank test.


Dose dependent CAR treatment response can be evaluated. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). For example, peripheral blood is obtained 35-70 days after establishing leukemia in mice injected on day 21 with CAR T cells, an equivalent number of mock-transduced T cells, or no T cells. Mice from each group are randomly bled for determination of peripheral blood a cancer associate antigen as described herein+ ALL blast counts and then killed on days 35 and 49. The remaining animals are evaluated on days 57 and 70.


Assessment of cell proliferation and cytokine production has been previously described, e.g., at Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). Briefly, assessment of CAR-mediated proliferation is performed in microtiter plates by mixing washed T cells with K562 cells expressing a cancer associated antigen described herein (K19) or CD32 and CD137 (KT32-BBL) for a final T-cell:K562 ratio of 2:1. K562 cells are irradiated with gamma-radiation prior to use. Anti-CD3 (clone OKT3) and anti-CD28 (clone 9.3) monoclonal antibodies are added to cultures with KT32-BBL cells to serve as a positive control for stimulating T-cell proliferation since these signals support long-term CD8+ T cell expansion ex vivo. T cells are enumerated in cultures using CountBright™ fluorescent beads (Invitrogen, Carlsbad, Calif.) and flow cytometry as described by the manufacturer. CAR+ T cells are identified by GFP expression using T cells that are engineered with eGFP-2A linked CAR-expressing lentiviral vectors. For CAR+ T cells not expressing GFP, the CAR+ T cells are detected with biotinylated recombinant a cancer associate antigen as described herein protein and a secondary avidin-PE conjugate. CD4+ and CD8+ expression on T cells are also simultaneously detected with specific monoclonal antibodies (BD Biosciences). Cytokine measurements are performed on supernatants collected 24 hours following re-stimulation using the human TH1/TH2 cytokine cytometric bead array kit (BD Biosciences, San Diego, Calif.) according the manufacturer's instructions. Fluorescence is assessed using a FACScalibur flow cytometer, and data is analyzed according to the manufacturer's instructions.


Cytotoxicity can be assessed by a standard 51Cr-release assay. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). Briefly, target cells (K562 lines and primary pro-B-ALL cells) are loaded with 51Cr (as NaCrO4, New England Nuclear, Boston, Mass.) at 37° C. for 2 hours with frequent agitation, washed twice in complete RPMI and plated into microtiter plates. Effector T cells are mixed with target cells in the wells in complete RPMI at varying ratios of effector cell:target cell (E:T). Additional wells containing media only (spontaneous release, SR) or a 1% solution of triton-X 100 detergent (total release, TR) are also prepared. After 4 hours of incubation at 37° C., supernatant from each well is harvested. Released 51Cr is then measured using a gamma particle counter (Packard Instrument Co., Waltham, Mass.). Each condition is performed in at least triplicate, and the percentage of lysis is calculated using the formula: % Lysis=(ER−SR)/(TR−SR), where ER represents the average 51Cr released for each experimental condition.


Imaging technologies can be used to evaluate specific trafficking and proliferation of CARs in tumor-bearing animal models. Such assays have been described, for example, in Barrett et al., Human Gene Therapy 22:1575-1586 (2011). Briefly, NOD/SCID/γc−/− (NSG) mice are injected IV with Nalm-6 cells followed 7 days later with T cells 4 hour after electroporation with the CAR constructs. The T cells are stably transfected with a lentiviral construct to express firefly luciferase, and mice are imaged for bioluminescence. Alternatively, therapeutic efficacy and specificity of a single injection of CAR+ T cells in Nalm-6 xenograft model can be measured as the following: NSG mice are injected with Nalm-6 transduced to stably express firefly luciferase, followed by a single tail-vein injection of T cells electroporated with cars of the present invention 7 days later. Animals are imaged at various time points post injection. For example, photon-density heat maps of firefly luciferase positive leukemia in representative mice at day 5 (2 days before treatment) and day 8 (24 hr post CAR+ PBLs) can be generated.


Other assays, including those described in the Example section herein as well as those that are known in the art can also be used to evaluate the CARs described herein.


Therapeutic Application

The modified cells described herein may be included in a composition for therapy. In one aspect, the composition comprises a population of modified T cells comprising a nucleic acid sequence encoding a CAR, wherein the CAR comprises a mutant CD28 costimulatory domain. In another aspect, the composition comprises the modified T cell comprising a nucleic acid sequence encoding a CAR, wherein the CAR comprises a mutant CD28 costimulatory domain that increases anti-tumor effect and T cell persistence. In yet another embodiment, the composition includes a modified T cell comprising a CAR that comprises a costimulatory domain described herein, e.g., that increases anti-tumor effect and T cell persistence. The composition may include a pharmaceutical composition and further include a pharmaceutically acceptable carrier. A therapeutically effective amount of the pharmaceutical composition comprising the modified cells may be administered.


In one aspect, the invention includes a method comprising administering a population of modified T cells to a subject in need thereof to prevent or treat a tumor, wherein the modified T cells comprise a nucleic acid sequence encoding a CAR and a nucleic acid sequence encoding a peptide described herein, e.g., a peptide comprising an amphipathic helix domain and a cluster of basic amino acids, wherein the peptide disrupts PKA and an AKAP association.


In another aspect, the invention includes a method comprising administering a population of modified cells to a subject in need thereof to prevent or treat a tumor that is adverse to the subject, wherein the modified cells comprise a CAR and a peptide described herein, e.g., a peptide that disrupts PKA and an AKAP binding.


In one aspect, the invention provides methods for treating a disease associated with expression of a cancer associated antigen described herein.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an XCAR, wherein X represents a tumor antigen as described herein, and wherein the cancer cells express said X tumor antigen.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a XCAR described herein, wherein the cancer cells express X. In one embodiment, X is expressed on both normal cells and cancers cells, but is expressed at lower levels on normal cells. In one embodiment, the method further comprises selecting a CAR that binds X with an affinity that allows the XCAR to bind and kill the cancer cells expressing X but less than 30%, 25%, 20%, 15%, 10%, 5% or less of the normal cells expressing X are killed, e.g., as determined by an assay described herein. In one embodiment, the selected CAR has an antigen binding domain that has a binding affinity KD of 10−4 M to 10−8 M, e.g., 10−5 M to 10−7 M, e.g., 10−6 M or 10−7 M, for the target antigen. In one embodiment, the selected antigen binding domain has a binding affinity that is at least five-fold, 10-fold, 20-fold, 30-fold, 50-fold, 100-fold or 1,000-fold less than a reference antibody, e.g., an antibody described herein.


In one embodiment, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express CD19 CAR, wherein the cancer cells express CD19. In one embodiment, the cancer to be treated is ALL (acute lymphoblastic leukemia), CLL (chronic lymphocytic leukemia), DLBCL (diffuse large B-cell lymphoma), MCL (Mantle cell lymphoma, or MM (multiple myeloma).


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an EGFRvIIICAR, wherein the cancer cells express EGFRvIII. In one embodiment, the cancer to be treated is glioblastoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a mesothelinCAR, wherein the cancer cells express mesothelin. In one embodiment, the cancer to be treated is mesothelioma, pancreatic cancer, or ovarian cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD123CAR, wherein the cancer cells express CD123. In one embodiment, the cancer to be treated is AML.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD22CAR, wherein the cancer cells express CD22. In one embodiment, the cancer to be treated is B cell malignancies.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CS-1CAR, wherein the cancer cells express CS-1. In one embodiment, the cancer to be treated is multiple myeloma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CLL-1CAR, wherein the cancer cells express CLL-1. In one embodiment, the cancer to be treated is AML.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD33CAR, wherein the cancer cells express CD33. In one embodiment, the cancer to be treated is AML.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a GD2CAR, wherein the cancer cells express GD2. In one embodiment, the cancer to be treated is neuroblastoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a BCMACAR, wherein the cancer cells express BCMA. In one embodiment, the cancer to be treated is multiple myeloma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a TnCAR, wherein the cancer cells express Tn antigen. In one embodiment, the cancer to be treated is ovarian cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PSMACAR, wherein the cancer cells express PSMA. In one embodiment, the cancer to be treated is prostate cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a ROR1CAR, wherein the cancer cells express ROR1. In one embodiment, the cancer to be treated is B cell malignancies.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a FLT3 CAR, wherein the cancer cells express FLT3. In one embodiment, the cancer to be treated is AML.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a TAG72CAR, wherein the cancer cells express TAG72. In one embodiment, the cancer to be treated is gastrointestinal cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD38CAR, wherein the cancer cells express CD38. In one embodiment, the cancer to be treated is multiple myeloma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD44v6CAR, wherein the cancer cells express CD44v6. In one embodiment, the cancer to be treated is cervical cancer, AML, or MM.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CEACAR, wherein the cancer cells express CEA. In one embodiment, the cancer to be treated is gastrointestinal cancer, or pancreatic cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an EPCAMCAR, wherein the cancer cells express EPCAM. In one embodiment, the cancer to be treated is gastrointestinal cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a B7H3CAR, wherein the cancer cells express B7H3.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a KITCAR, wherein the cancer cells express KIT. In one embodiment, the cancer to be treated is gastrointestinal cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an IL-13Ra2CAR, wherein the cancer cells express IL-13Ra2. In one embodiment, the cancer to be treated is glioblastoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PRSS21CAR, wherein the cancer cells express PRSS21. In one embodiment, the cancer to be treated is selected from ovarian, pancreatic, lung and breast cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD30CAR, wherein the cancer cells express CD30. In one embodiment, the cancer to be treated is lymphomas, or leukemias.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a GD3CAR, wherein the cancer cells express GD3. In one embodiment, the cancer to be treated is melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD171CAR, wherein the cancer cells express CD171. In one embodiment, the cancer to be treated is neuroblastoma, ovarian cancer, melanoma, breast cancer, pancreatic cancer, colon cancers, or NSCLC (non-small cell lung cancer).


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an IL-11RaCAR, wherein the cancer cells express IL-11Ra. In one embodiment, the cancer to be treated is osteosarcoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PSCACAR, wherein the cancer cells express PSCA. In one embodiment, the cancer to be treated is prostate cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a VEGFR2CAR, wherein the cancer cells express VEGFR2. In one embodiment, the cancer to be treated is a solid tumor.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a LewisYCAR, wherein the cancer cells express LewisY. In one embodiment, the cancer to be treated is ovarian cancer, or AML.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD24CAR, wherein the cancer cells express CD24. In one embodiment, the cancer to be treated is pancreatic cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PDGFR-betaCAR, wherein the cancer cells express PDGFR-beta. In one embodiment, the cancer to be treated is breast cancer, prostate cancer, GIST (gastrointestinal stromal tumor), CML, DFSP (dermatofibrosarcoma protuberans), or glioma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a SSEA-4CAR, wherein the cancer cells express SSEA-4. In one embodiment, the cancer to be treated is glioblastoma, breast cancer, lung cancer, or stem cell cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD20CAR, wherein the cancer cells express CD20. In one embodiment, the cancer to be treated is B cell malignancies.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Folate receptor alphaCAR, wherein the cancer cells express folate receptor alpha. In one embodiment, the cancer to be treated is ovarian cancer, NSCLC, endometrial cancer, renal cancer, or other solid tumors.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an ERBB2CAR, wherein the cancer cells express ERBB2 (Her2/neu). In one embodiment, the cancer to be treated is breast cancer, gastric cancer, colorectal cancer, lung cancer, or other solid tumors.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a MUC1CAR, wherein the cancer cells express MUC1. In one embodiment, the cancer to be treated is breast cancer, lung cancer, or other solid tumors.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an EGFRCAR, wherein the cancer cells express EGFR. In one embodiment, the cancer to be treated is glioblastoma, SCLC (small cell lung cancer), SCCHN (squamous cell carcinoma of the head and neck), NSCLC, or other solid tumors.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a NCAMCAR, wherein the cancer cells express NCAM. In one embodiment, the cancer to be treated is neuroblastoma, or other solid tumors.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CAIXCAR, wherein the cancer cells express CAIX. In one embodiment, the cancer to be treated is renal cancer, CRC, cervical cancer, or other solid tumors.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an EphA2CAR, wherein the cancer cells express EphA2. In one embodiment, the cancer to be treated is GBM.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a GD3CAR, wherein the cancer cells express GD3. In one embodiment, the cancer to be treated is melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Fucosyl GM1CAR, wherein the cancer cells express Fucosyl GM


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a sLeCAR, wherein the cancer cells express sLe. In one embodiment, the cancer to be treated is NSCLC, or AML.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a GM3CAR, wherein the cancer cells express GM3.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a TGS5CAR, wherein the cancer cells express TGS5.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a HMWMAACAR, wherein the cancer cells express HMWMAA. In one embodiment, the cancer to be treated is melanoma, glioblastoma, or breast cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an o-acetyl-GD2CAR, wherein the cancer cells express o-acetyl-GD2. In one embodiment, the cancer to be treated is neuroblastoma, or melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD19CAR, wherein the cancer cells express CD19. In one embodiment, the cancer to be treated is Follicular lymphoma, CLL, ALL, or myeloma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a TEM1/CD248CAR, wherein the cancer cells express TEM1/CD248. In one embodiment, the cancer to be treated is a solid tumor.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a TEM7RCAR, wherein the cancer cells express TEM7R. In one embodiment, the cancer to be treated is solid tumor.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CLDN6CAR, wherein the cancer cells express CLDN6. In one embodiment, the cancer to be treated is ovarian cancer, lung cancer, or breast cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a TSHRCAR, wherein the cancer cells express TSHR. In one embodiment, the cancer to be treated is thyroid cancer, or multiple myeloma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a GPRC5DCAR, wherein the cancer cells express GPRC5D. In one embodiment, the cancer to be treated is multiple myeloma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CXORF61CAR, wherein the cancer cells express CXORF61.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD97CAR, wherein the cancer cells express CD97. In one embodiment, the cancer to be treated is B cell malignancies, gastric cancer, pancreatic cancer, esophageal cancer, glioblastoma, breast cancer, or colorectal cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD179aCAR, wherein the cancer cells express CD179a. In one embodiment, the cancer to be treated is B cell malignancies.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an ALK CAR, wherein the cancer cells express ALK. In one embodiment, the cancer to be treated is NSCLC, ALCL (anaplastic large cell lymphoma), IMT (inflammatory myofibroblastic tumor), or neuroblastoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Polysialic acid CAR, wherein the cancer cells express Polysialic acid. In one embodiment, the cancer to be treated is small cell lung cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PLAC1CAR, wherein the cancer cells express PLAC1. In one embodiment, the cancer to be treated is HCC (hepatocellular carcinoma).


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a GloboHCAR, wherein the cancer cells express GloboH. In one embodiment, the cancer to be treated is ovarian cancer, gastric cancer, prostate cancer, lung cancer, breast cancer, or pancreatic cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a NY-BR-1CAR, wherein the cancer cells express NY-BR-1. In one embodiment, the cancer to be treated is breast cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a UPK2CAR, wherein the cancer cells express UPK2. In one embodiment, the cancer to be treated is bladder cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a HAVCR1CAR, wherein the cancer cells express HAVCR1. In one embodiment, the cancer to be treated is renal cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a ADRB3CAR, wherein the cancer cells express ADRB3. In one embodiment, the cancer to be treated is Ewing sarcoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PANX3CAR, wherein the cancer cells express PANX3. In one embodiment, the cancer to be treated is osteosarcoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a GPR20CAR, wherein the cancer cells express GPR20. In one embodiment, the cancer to be treated is GIST.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a LY6KCAR, wherein the cancer cells express LY6K. In one embodiment, the cancer to be treated is breast cancer, lung cancer, ovary caner, or cervix cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a OR51E2CAR, wherein the cancer cells express OR51E2. In one embodiment, the cancer to be treated is prostate cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a TARPCAR, wherein the cancer cells express TARP. In one embodiment, the cancer to be treated is prostate cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a WT1CAR, wherein the cancer cells express WT1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a NY-ESO-1CAR, wherein the cancer cells express NY-ESO-1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a LAGE-1a CAR, wherein the cancer cells express LAGE-1a.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a MAGE-A1CAR, wherein the cancer cells express MAGE-A1. In one embodiment, the cancer to be treated is melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a MAGE A1CAR, wherein the cancer cells express MAGE A1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a ETV6-AML CAR, wherein the cancer cells express ETV6-AML.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a sperm protein 17 CAR, wherein the cancer cells express sperm protein 17. In one embodiment, the cancer to be treated is ovarian cancer, HCC, or NSCLC.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a XAGE1CAR, wherein the cancer cells express XAGE1. In one embodiment, the cancer to be treated is Ewings, or rhabdo cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Tie 2 CAR, wherein the cancer cells express Tie 2. In one embodiment, the cancer to be treated is a solid tumor.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a MAD-CT-1CAR, wherein the cancer cells express MAD-CT-1. In one embodiment, the cancer to be treated is prostate cancer, or melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a MAD-CT-2CAR, wherein the cancer cells express MAD-CT-2. In one embodiment, the cancer to be treated is prostate cancer, melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Fos-related antigen 1 CAR, wherein the cancer cells express Fos-related antigen 1. In one embodiment, the cancer to be treated is glioma, squamous cell cancer, or pancreatic cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a p53CAR, wherein the cancer cells express p53.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a prostein CAR, wherein the cancer cells express prostein.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a survivin and telomerase CAR, wherein the cancer cells express survivin and telomerase.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PCTA-1/Galectin 8 CAR, wherein the cancer cells express PCTA-1/Galectin 8.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a MelanA/MART1CAR, wherein the cancer cells express MelanA/MART1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Ras mutant CAR, wherein the cancer cells express Ras mutant.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a p53 mutant CAR, wherein the cancer cells express p53 mutant.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a hTERT CAR, wherein the cancer cells express hTERT.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a sarcoma translocation breakpoints CAR, wherein the cancer cells express sarcoma translocation breakpoints. In one embodiment, the cancer to be treated is sarcoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a ML-IAP CAR, wherein the cancer cells express ML-IAP. In one embodiment, the cancer to be treated is melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an ERGCAR, wherein the cancer cells express ERG (TMPRSS2 ETS fusion gene).


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a NA17CAR, wherein the cancer cells express NA17. In one embodiment, the cancer to be treated is melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PAX3CAR, wherein the cancer cells express PAX3. In one embodiment, the cancer to be treated is alveolar rhabdomyosarcoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an androgen receptor CAR, wherein the cancer cells express androgen receptor. In one embodiment, the cancer to be treated is metastatic prostate cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Cyclin B1CAR, wherein the cancer cells express Cyclin B 1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a MYCNCAR, wherein the cancer cells express MYCN.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a RhoC CAR, wherein the cancer cells express RhoC.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a TRP-2CAR, wherein the cancer cells express TRP-2. In one embodiment, the cancer to be treated is melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CYP1B1CAR, wherein the cancer cells express CYP1B1. In one embodiment, the cancer to be treated is breast cancer, colon cancer, lung cancer, esophagus cancer, skin cancer, lymph node cancer, brain cancer, or testis cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a BORIS CAR, wherein the cancer cells express BORIS. In one embodiment, the cancer to be treated is lung cancer.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a SART3CAR, wherein the cancer cells express SART3


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PAX5CAR, wherein the cancer cells express PAX5.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a OY-TES1CAR, wherein the cancer cells express OY-TES1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a LCK CAR, wherein the cancer cells express LCK.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a AKAP-4CAR, wherein the cancer cells express AKAP-4.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a SSX2CAR, wherein the cancer cells express SSX2.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a RAGE-1CAR, wherein the cancer cells express RAGE-1. In one embodiment, the cancer to be treated is RCC (renal cell cancer), or other solid tumors


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a human telomerase reverse transcriptase CAR, wherein the cancer cells express human telomerase reverse transcriptase. In one embodiment, the cancer to be treated is solid tumors.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a RU1CAR, wherein the cancer cells express RU1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a RU2CAR, wherein the cancer cells express RU2.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an intestinal carboxyl esterase CAR, wherein the cancer cells express intestinal carboxyl esterase. In one embodiment, the cancer to be treated is thyroid cancer, RCC, CRC (colorectal cancer), breast cancer, or other solid tumors.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Prostase CAR, wherein the cancer cells express Prostase.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a PAPCAR, wherein the cancer cells express PAP.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an IGF-I receptor CAR, wherein the cancer cells express IGF-I receptor.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a gp100 CAR, wherein the cancer cells express gp100.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a bcr-abl CAR, wherein the cancer cells express bcr-abl.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a tyrosinase CAR, wherein the cancer cells express tyrosinase.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a Fucosyl GM1CAR, wherein the cancer cells express Fucosyl GM1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a mut hsp70-2CAR, wherein the cancer cells express mut hsp70-2. In one embodiment, the cancer to be treated is melanoma.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD79a CAR, wherein the cancer cells express CD79a.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD79b CAR, wherein the cancer cells express CD79b.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD72 CAR, wherein the cancer cells express CD72.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a LAIR1 CAR, wherein the cancer cells express LAIR1.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a FCAR CAR, wherein the cancer cells express FCAR.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a LILRA2 CAR, wherein the cancer cells express LILRA2.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CD300LF CAR, wherein the cancer cells express CD300LF.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a CLEC12A CAR, wherein the cancer cells express CLEC12A.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a BST2 CAR, wherein the cancer cells express BST2.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an EMR2 CAR, wherein the cancer cells express EMR2.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a LY75 CAR, wherein the cancer cells express LY75.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a GPC3 CAR, wherein the cancer cells express GPC3.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express a FCRL5 CAR, wherein the cancer cells express FCRL5.


In one aspect, the present invention provides methods of treating cancer by providing to the subject in need thereof immune effector cells (e.g., T cells, NK cells) that are engineered to express an IGLL1 CAR, wherein the cancer cells express IGLL1.


In one aspect, the present invention relates to treatment of a subject in vivo using an PD1 CAR such that growth of cancerous tumors is inhibited. A PD1 CAR may be used alone to inhibit the growth of cancerous tumors. Alternatively, PD1 CAR may be used in conjunction with other CARs, immunogenic agents, standard cancer treatments, or other antibodies. In one embodiment, the subject is treated with a PD1 CAR and an XCAR described herein. In an embodiment, a PD1 CAR is used in conjunction with another CAR, e.g., a CAR described herein, and a kinase inhibitor, e.g., a kinase inhibitor described herein.


In another aspect, a method of treating a subject, e.g., reducing or ameliorating, a hyperproliferative condition or disorder (e.g., a cancer), e.g., solid tumor, a soft tissue tumor, or a metastatic lesion, in a subject is provided. As used herein, the term “cancer” is meant to include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness. Examples of solid tumors include malignancies, e.g., sarcomas, adenocarcinomas, and carcinomas, of the various organ systems, such as those affecting liver, lung, breast, lymphoid, gastrointestinal (e.g., colon), genitourinary tract (e.g., renal, urothelial cells), prostate and pharynx. Adenocarcinomas include malignancies such as most colon cancers, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus. In one embodiment, the cancer is a melanoma, e.g., an advanced stage melanoma. Metastatic lesions of the aforementioned cancers can also be treated or prevented using the methods and compositions of the invention. Examples of other cancers that can be treated include bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin Disease, non-Hodgkin lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, chronic or acute leukemias including acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, solid tumors of childhood, lymphocytic lymphoma, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the renal pelvis, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, T-cell lymphoma, environmentally induced cancers including those induced by asbestos, and combinations of said cancers. Treatment of metastatic cancers, e.g., metastatic cancers that express PD-L1 (Iwai et al. (2005) Int. Immunol. 17:133-144) can be effected using the antibody molecules described herein.


Exemplary cancers whose growth can be inhibited include cancers typically responsive to immunotherapy. Non-limiting examples of cancers for treatment include melanoma (e.g., metastatic malignant melanoma), renal cancer (e.g. clear cell carcinoma), prostate cancer (e.g. hormone refractory prostate adenocarcinoma), breast cancer, colon cancer and lung cancer (e.g. non-small cell lung cancer). Additionally, refractory or recurrent malignancies can be treated using the molecules described herein.


In one aspect, the invention pertains to a vector comprising a CAR operably linked to promoter for expression in mammalian immune effector cells (e.g., T cells, NK cells). In one aspect, the invention provides a recombinant immune effector cell expressing a CAR of the present invention for use in treating cancer expressing a cancer associate antigen as described herein. In one aspect, CAR-expressing cells of the invention is capable of contacting a tumor cell with at least one cancer associated antigen expressed on its surface such that the CAR-expressing cell targets the cancer cell and growth of the cancer is inhibited.


In one aspect, the invention pertains to a method of inhibiting growth of a cancer, comprising contacting the cancer cell with a CAR-expressing cell of the present invention such that the CART is activated in response to the antigen and targets the cancer cell, wherein the growth of the tumor is inhibited.


In one aspect, the invention pertains to a method of treating cancer in a subject. The method comprises administering to the subject CAR-expressing cell of the present invention such that the cancer is treated in the subject. In one aspect, the cancer associated with expression of a cancer associate antigen as described herein is a hematological cancer. In one aspect, the hematological cancer is a leukemia or a lymphoma. In one aspect, a cancer associated with expression of a cancer associate antigen as described herein includes cancers and malignancies including, but not limited to, e.g., one or more acute leukemias including but not limited to, e.g., B-cell acute Lymphoid Leukemia (“BALL”), T-cell acute Lymphoid Leukemia (“TALL”), acute lymphoid leukemia (ALL); one or more chronic leukemias including but not limited to, e.g., chronic myelogenous leukemia (CML), Chronic Lymphoid Leukemia (CLL). Additional cancers or hematologic conditions associated with expression of a cancer associate antigen as described herein include, but are not limited to, e.g., B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, Follicular lymphoma, Hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, and “preleukemia” which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells, and the like. Further a disease associated with a cancer associate antigen as described herein expression include, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases associated with expression of a cancer associate antigen as described herein.


In some embodiments, a cancer that can be treated with CAR-expressing cell of the present invention is multiple myeloma. Multiple myeloma is a cancer of the blood, characterized by accumulation of a plasma cell clone in the bone marrow. Current therapies for multiple myeloma include, but are not limited to, treatment with lenalidomide, which is an analog of thalidomide. Lenalidomide has activities which include anti-tumor activity, angiogenesis inhibition, and immunomodulation. Generally, myeloma cells are thought to be negative for a cancer associate antigen as described herein expression by flow cytometry. Thus, in some embodiments, a CD19 CAR, e.g., as described herein, may be used to target myeloma cells. In some embodiments, cars of the present invention therapy can be used in combination with one or more additional therapies, e.g., lenalidomide treatment.


The invention includes a type of cellular therapy where immune effector cells (e.g., T cells, NK cells) are genetically modified to express a chimeric antigen receptor (CAR) and the CAR-expressing T cell or NK cell is infused to a recipient in need thereof. The infused cell is able to kill tumor cells in the recipient. Unlike antibody therapies, CAR-modified immune effector cells (e.g., T cells, NK cells) are able to replicate in vivo resulting in long-term persistence that can lead to sustained tumor control. In various aspects, the immune effector cells (e.g., T cells, NK cells) administered to the patient, or their progeny, persist in the patient for at least four months, five months, six months, seven months, eight months, nine months, ten months, eleven months, twelve months, thirteen months, fourteen month, fifteen months, sixteen months, seventeen months, eighteen months, nineteen months, twenty months, twenty-one months, twenty-two months, twenty-three months, two years, three years, four years, or five years after administration of the T cell or NK cell to the patient.


The invention also includes a type of cellular therapy where immune effector cells (e.g., T cells, NK cells) are modified, e.g., by in vitro transcribed RNA, to transiently express a chimeric antigen receptor (CAR) and the CAR T cell or NK cell is infused to a recipient in need thereof. The infused cell is able to kill tumor cells in the recipient. Thus, in various aspects, the immune effector cells (e.g., T cells, NK cells) administered to the patient, is present for less than one month, e.g., three weeks, two weeks, one week, after administration of the T cell or NK cell to the patient.


Without wishing to be bound by any particular theory, the anti-tumor immunity response elicited by the CAR-modified immune effector cells (e.g., T cells, NK cells) may be an active or a passive immune response, or alternatively may be due to a direct vs indirect immune response. In one aspect, the CAR transduced immune effector cells (e.g., T cells, NK cells) exhibit specific proinflammatory cytokine secretion and potent cytolytic activity in response to human cancer cells expressing the a cancer associate antigen as described herein, resist soluble a cancer associate antigen as described herein inhibition, mediate bystander killing and mediate regression of an established human tumor. For example, antigen-less tumor cells within a heterogeneous field of a cancer associate antigen as described herein-expressing tumor may be susceptible to indirect destruction by a cancer associate antigen as described herein-redirected immune effector cells (e.g., T cells, NK cells) that has previously reacted against adjacent antigen-positive cancer cells.


In one aspect, the fully-human CAR-modified immune effector cells (e.g., T cells, NK cells) of the invention may be a type of vaccine for ex vivo immunization and/or in vivo therapy in a mammal. In one aspect, the mammal is a human.


With respect to ex vivo immunization, at least one of the following occurs in vitro prior to administering the cell into a mammal: i) expansion of the cells, ii) introducing a nucleic acid encoding a CAR to the cells or iii) cryopreservation of the cells.


Ex vivo procedures are well known in the art and are discussed more fully below. Briefly, cells are isolated from a mammal (e.g., a human) and genetically modified (i.e., transduced or transfected in vitro) with a vector expressing a CAR disclosed herein. The CAR-modified cell can be administered to a mammalian recipient to provide a therapeutic benefit. The mammalian recipient may be a human and the CAR-modified cell can be autologous with respect to the recipient. Alternatively, the cells can be allogeneic, syngeneic or xenogeneic with respect to the recipient.


The procedure for ex vivo expansion of hematopoietic stem and progenitor cells is described in U.S. Pat. No. 5,199,942, incorporated herein by reference, can be applied to the cells of the present invention. Other suitable methods are known in the art, therefore the present invention is not limited to any particular method of ex vivo expansion of the cells. Briefly, ex vivo culture and expansion of immune effector cells (e.g., T cells, NK cells) comprises: (1) collecting CD34+ hematopoietic stem and progenitor cells from a mammal from peripheral blood harvest or bone marrow explants; and (2) expanding such cells ex vivo. In addition to the cellular growth factors described in U.S. Pat. No. 5,199,942, other factors such as flt3-L, IL-1, IL-3 and c-kit ligand, can be used for culturing and expansion of the cells.


In addition to using a cell-based vaccine in terms of ex vivo immunization, the present invention also provides compositions and methods for in vivo immunization to elicit an immune response directed against an antigen in a patient.


Generally, the cells activated and expanded as described herein may be utilized in the treatment and prevention of diseases that arise in individuals who are immunocompromised. In particular, the CAR-modified immune effector cells (e.g., T cells, NK cells) of the invention are used in the treatment of diseases, disorders and conditions associated with expression of a cancer associate antigen as described herein. In certain aspects, the cells of the invention are used in the treatment of patients at risk for developing diseases, disorders and conditions associated with expression of a cancer associate antigen as described herein. Thus, the present invention provides methods for the treatment or prevention of diseases, disorders and conditions associated with expression of a cancer associate antigen as described herein comprising administering to a subject in need thereof, a therapeutically effective amount of the CAR-modified immune effector cells (e.g., T cells, NK cells) of the invention.


In one aspect the CAR-expressing cells of the inventions may be used to treat a proliferative disease such as a cancer or malignancy or is a precancerous condition such as a myelodysplasia, a myelodysplastic syndrome or a preleukemia. Further a disease associated with a cancer associate antigen as described herein expression include, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases expressing a cancer associated antigen as described herein. Non-cancer related indications associated with expression of a cancer associate antigen as described herein include, but are not limited to, e.g., autoimmune disease, (e.g., lupus), inflammatory disorders (allergy and asthma) and transplantation.


The CAR-modified immune effector cells (e.g., T cells, NK cells) of the present invention may be administered either alone, or as a pharmaceutical composition in combination with diluents and/or with other components such as IL-2 or other cytokines or cell populations.


Hematologic Cancer


Hematological cancer conditions are the types of cancer such as leukemia, lymphoma, and malignant lymphoproliferative conditions that affect blood, bone marrow and the lymphatic system.


Leukemia can be classified as acute leukemia and chronic leukemia. Acute leukemia can be further classified as acute myelogenous leukemia (AML) and acute lymphoid leukemia (ALL). Chronic leukemia includes chronic myelogenous leukemia (CML) and chronic lymphoid leukemia (CLL). Other related conditions include myelodysplastic syndromes (MDS, formerly known as “preleukemia”) which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells and risk of transformation to AML.


Lymphoma is a group of blood cell tumors that develop from lymphocytes. Exemplary lymphomas include non-Hodgkin lymphoma and Hodgkin lymphoma.


The present invention provides for compositions and methods for treating cancer. In one aspect, the cancer is a hematologic cancer including but is not limited to hematological cancer is a leukemia or a lymphoma. In one aspect, the CAR-expressing cells of the invention may be used to treat cancers and malignancies such as, but not limited to, e.g., acute leukemias including but not limited to, e.g., B-cell acute lymphoid leukemia (“BALL”), T-cell acute lymphoid leukemia (“TALL”), acute lymphoid leukemia (ALL); one or more chronic leukemias including but not limited to, e.g., chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL); additional hematologic cancers or hematologic conditions including, but not limited to, e.g., B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, Follicular lymphoma, Hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, and “preleukemia” which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells, and the like. Further a disease associated with a cancer associate antigen as described herein expression includes, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases expressing a cancer associate antigen as described herein.


The present invention also provides methods for inhibiting the proliferation or reducing a cancer associated antigen as described herein-expressing cell population, the methods comprising contacting a population of cells comprising a cancer associated antigen as described herein-expressing cell with a CAR-expressing T cell or NK cell of the invention that binds to the a cancer associate antigen as described herein-expressing cell. In a specific aspect, the present invention provides methods for inhibiting the proliferation or reducing the population of cancer cells expressing a cancer associated antigen as described herein, the methods comprising contacting a cancer associate antigen as described herein-expressing cancer cell population with a CAR-expressing T cell or NK cell of the invention that binds to a cancer associated antigen as described herein-expressing cell. In one aspect, the present invention provides methods for inhibiting the proliferation or reducing the population of cancer cells expressing a cancer associated antigen as described herein, the methods comprising contacting a cancer associated antigen as described herein-expressing cancer cell population with a CAR-expressing T cell or NK cell of the invention that binds to a cancer associated antigen as described herein-expressing cell. In certain aspects, a CAR-expressing T cell or NK cell of the invention reduces the quantity, number, amount or percentage of cells and/or cancer cells by at least 25%, at least 30%, at least 40%, at least 50%, at least 65%, at least 75%, at least 85%, at least 95%, or at least 99% in a subject with or animal model for myeloid leukemia or another cancer associated with a cancer associated antigen as described herein-expressing cells relative to a negative control. In one aspect, the subject is a human.


The present invention also provides methods for preventing, treating and/or managing a disease associated with a cancer associated antigen as described herein-expressing cells (e.g., a hematologic cancer or atypical cancer expressing a cancer associated antigen as described herein), the methods comprising administering to a subject in need a CAR T cell or NK cell of the invention that binds to a cancer associated antigen as described herein-expressing cell. In one aspect, the subject is a human. Non-limiting examples of disorders associated with a cancer associated antigen as described herein-expressing cells include autoimmune disorders (such as lupus), inflammatory disorders (such as allergies and asthma) and cancers (such as hematological cancers or atypical cancers expressing a cancer associated antigen as described herein).


The present invention also provides methods for preventing, treating and/or managing a disease associated with a cancer associated antigen as described herein-expressing cells, the methods comprising administering to a subject in need a CAR T cell or NK cell of the invention that binds to a cancer associated antigen as described herein-expressing cell. In one aspect, the subject is a human


The present invention provides methods for preventing relapse of cancer associated with a cancer associated antigen as described herein-expressing cells, the methods comprising administering to a subject in need thereof a CAR T cell or NK cell of the invention that binds to a cancer associated antigen as described herein-expressing cell. In one aspect, the methods comprise administering to the subject in need thereof an effective amount of a CAR-expressing T cell or NK cell described herein that binds to a cancer associated antigen as described herein-expressing cell in combination with an effective amount of another therapy.


Combination Therapies

A CAR-expressing cell described herein may be used in combination with other known agents and therapies. Administered “in combination”, as used herein, means that two (or more) different treatments are delivered to the subject during the course of the subject's affliction with the disorder, e.g., the two or more treatments are delivered after the subject has been diagnosed with the disorder and before the disorder has been cured or eliminated or treatment has ceased for other reasons. In some embodiments, the delivery of one treatment is still occurring when the delivery of the second begins, so that there is overlap in terms of administration. This is sometimes referred to herein as “simultaneous” or “concurrent delivery”. In other embodiments, the delivery of one treatment ends before the delivery of the other treatment begins. In some embodiments of either case, the treatment is more effective because of combined administration. For example, the second treatment is more effective, e.g., an equivalent effect is seen with less of the second treatment, or the second treatment reduces symptoms to a greater extent, than would be seen if the second treatment were administered in the absence of the first treatment, or the analogous situation is seen with the first treatment. In some embodiments, delivery is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one treatment delivered in the absence of the other. The effect of the two treatments can be partially additive, wholly additive, or greater than additive. The delivery can be such that an effect of the first treatment delivered is still detectable when the second is delivered.


A CAR-expressing cell described herein and the at least one additional therapeutic agent can be administered simultaneously, in the same or in separate compositions, or sequentially. For sequential administration, the CAR-expressing cell described herein can be administered first, and the additional agent can be administered second, or the order of administration can be reversed.


The CAR therapy and/or other therapeutic agents, procedures or modalities can be administered during periods of active disorder, or during a period of remission or less active disease. The CAR therapy can be administered before the other treatment, concurrently with the treatment, post-treatment, or during remission of the disorder.


When administered in combination, the CAR therapy and the additional agent (e.g., second or third agent), or all, can be administered in an amount or dose that is higher, lower or the same than the amount or dosage of each agent used individually, e.g., as a monotherapy. In certain embodiments, the administered amount or dosage of the CAR therapy, the additional agent (e.g., second or third agent), or all, is lower (e.g., at least 20%, at least 30%, at least 40%, or at least 50%) than the amount or dosage of each agent used individually, e.g., as a monotherapy. In other embodiments, the amount or dosage of the CAR therapy, the additional agent (e.g., second or third agent), or all, that results in a desired effect (e.g., treatment of cancer) is lower (e.g., at least 20%, at least 30%, at least 40%, or at least 50% lower) than the amount or dosage of each agent used individually, e.g., as a monotherapy, required to achieve the same therapeutic effect.


In certain embodiments of the methods or uses described herein, the CAR molecule is administered in combination with an agent that increases the efficacy of the immune effector cell, e.g., one or more of a protein phosphatase inhibitor, a kinase inhibitor, a cytokine, an inhibitor of an immune inhibitory molecule; or an agent that decreases the level or activity of a TREG cell.


In certain embodiments of the methods or uses described herein, the protein phosphatase inhibitor is an SHP-1 inhibitor and/or an SHP-2 inhibitor.


In other embodiments of the methods or uses described herein, kinase inhibitor is chosen from one or more of a CDK4 inhibitor, a CDK4/6 inhibitor (e.g., palbociclib), a BTK inhibitor (e.g., ibrutinib or RN-486), an mTOR inhibitor (e.g., rapamycin or everolimus (RAD001)), an MNK inhibitor, or a dual P13K/mTOR inhibitor. In one embodiment, the BTK inhibitor does not reduce or inhibit the kinase activity of interleukin-2-inducible kinase (ITK).


In other embodiments of the methods or uses described herein, the agent that inhibits the immune inhibitory molecule comprises an antibody or antibody fragment, an inhibitory nucleic acid, a clustered regularly interspaced short palindromic repeats (CRISPR), a transcription-activator like effector nuclease (TALEN), or a zinc finger endonuclease (ZFN) that inhibits the expression of the inhibitory molecule.


In other embodiments of the methods or uses described herein, the agent that decreases the level or activity of the TREG cells is chosen from cyclophosphamide, anti-GITR antibody, CD25-depletion, or a combination thereof.


In certain embodiments of the methods or uses described herein, the immune inhibitory molecule is selected from the group consisting of PD1, PD-L1, CTLA-4, TIM-3, LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, TGF beta, CEACAM-1, CEACAM-3, and CEACAM-5.


In other embodiments, the agent that inhibits the inhibitory molecule comprises a first polypeptide comprising an inhibitory molecule or a fragment thereof and a second polypeptide that provides a positive signal to the cell, and wherein the first and second polypeptides are expressed on the CAR-containing immune cells, wherein (i) the first polypeptide comprises PD1, PD-L1, CTLA-4, TIM-3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, TGF beta, CEACAM-1, CEACAM-3, and CEACAM-5 or a fragment thereof; and/or (ii) the second polypeptide comprises an intracellular signaling domain comprising a primary signaling domain and/or a costimulatory signaling domain. In one embodiment, the primary signaling domain comprises a functional domain of CD3 zeta; and/or the costimulatory signaling domain comprises a functional domain of a protein selected from 41BB, CD27 and CD28, or a functional variant thereof.


In other embodiments, cytokine is chosen from IL-7, IL-15 or IL-21, or both.


In other embodiments, the immune effector cell comprising the CAR molecule and a second, e.g., any of the combination therapies disclosed herein (e.g., the agent that that increases the efficacy of the immune effector cell) are administered substantially simultaneously or sequentially.


In other embodiments, the immune cell comprising the CAR molecule is administered in combination with a molecule that targets GITR and/or modulates GITR function. In certain embodiments, the molecule targeting GITR and/or modulating GITR function is administered prior to the CAR-expressing cell or population of cells, or prior to apheresis.


In one embodiment, lymphocyte infusion, for example allogeneic lymphocyte infusion, is used in the treatment of the cancer, wherein the lymphocyte infusion comprises at least one CAR-expressing cell of the present invention. In one embodiment, autologous lymphocyte infusion is used in the treatment of the cancer, wherein the autologous lymphocyte infusion comprises at least one CAR-expressing cell described herein.


In one embodiment, the cell is a T cell and the T cell is diacylglycerol kinase (DGK) deficient. In one embodiment, the cell is a T cell and the T cell is Ikaros deficient. In one embodiment, the cell is a T cell and the T cell is both DGK and Ikaros deficient.


In one embodiment, the method includes administering a cell expressing the CAR moleculein combination with an agent which enhances the activity of a CAR-expressing cell, wherein the agent is a cytokine, e.g., IL-7, IL-15, IL-21, or a combination thereof. The cytokine can be delivered in combination with, e.g., simultaneously or shortly after, administration of the CAR-expressing cell. Alternatively, the cytokine can be delivered after a prolonged period of time after administration of the CAR-expressing cell, e.g., after assessment of the subject's response to the CAR-expressing cell. In one embodiment the cytokine is administered to the subject simultaneously (e.g., administered on the same day) with or shortly after administration (e.g., administered 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days after administration) of the cell or population of cells of any of claims 61-80. In other embodiments, the cytokine is administered to the subject after a prolonged period of time (e.g., e.g., at least 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 10 weeks, or more) after administration of the cell or population of cells of any of claims 61-80, or after assessment of the subject's response to the cell.


In other embodiments, the cells expressing a CAR molecule are administered in combination with an agent that ameliorates one or more side effects associated with administration of a cell expressing a CAR molecule. Side effects associated with the CAR-expressing cell can be chosen from cytokine release syndrome (CRS) or hemophagocytic lymphohistiocytosis (HLH).


In embodiments of any of the aforesaid methods or uses, the cells expressing the CAR molecule are administered in combination with an agent that treats the disease associated with expression of the tumor antigen, e.g., any of the second or third therapies disclosed herein. Additional exemplary combinations include one or more of the following.


In another embodiment, the cell expressing the CAR molecule, e.g., as described herein, can be administered in combination with another agent, e.g., a kinase inhibitor and/or checkpoint inhibitor described herein. In an embodiment, a cell expressing the CAR molecule can further express another agent, e.g., an agent which enhances the activity of a CAR-expressing cell.


For example, in one embodiment, the agent that enhances the activity of a CAR-expressing cell can be an agent which inhibits an inhibitory molecule (e.g., an immune inhibitor molecule). Examples of inhibitory molecules include PD1, PD-L1, CTLA-4, TIM-3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGF beta.


In one embodiment, the agent that inhibits the inhibitory molecule is an inhibitory nucleic acid is a dsRNA, a siRNA, or a shRNA. In embodiments, the inhibitory nucleic acid is linked to the nucleic acid that encodes a component of the CAR molecule. For example, the inhibitory molecule can be expressed on the CAR-expressing cell.


In another embodiment, the agent which inhibits an inhibitory molecule, e.g., is a molecule described herein, e.g., an agent that comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein. In one embodiment, the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PD-1, PD-L1, CTLA-4, TIM-3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 or TGF beta, or a fragment of any of these (e.g., at least a portion of the extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 41BB, CD27 or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein). In one embodiment, the agent comprises a first polypeptide of PD1 or a fragment thereof (e.g., at least a portion of the extracellular domain of PD1), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).


In one embodiment, the CAR-expressing immune effector cell of the present invention, e.g., T cell or NK cell, is administered to a subject that has received a previous stem cell transplantation, e.g., autologous stem cell transplantation.


In one embodiment, the CAR-expressing immune effector cell of the present invention, e.g., T cell or NK cells, is administered to a subject that has received a previous dose of melphalan.


In one embodiment, the cell expressing a CAR molecule, e.g., a CAR molecule described herein, is administered in combination with an agent that increases the efficacy of a cell expressing a CAR molecule, e.g., an agent described herein.


In one embodiment, the cells expressing a CAR molecule are administered in combination with a low, immune enhancing dose of an mTOR inhibitor. While not wishing to be bound by theory, it is believed that treatment with a low, immune enhancing, dose (e.g., a dose that is insufficient to completely suppress the immune system but sufficient to improve immune function) is accompanied by a decrease in PD-1 positive T cells or an increase in PD-1 negative cells. PD-1 positive T cells, but not PD-1 negative T cells, can be exhausted by engagement with cells which express a PD-1 ligand, e.g., PD-L1 or PD-L2.


In an embodiment this approach can be used to optimize the performance of CAR cells described herein in the subject. While not wishing to be bound by theory, it is believed that, in an embodiment, the performance of endogenous, non-modified immune effector cells, e.g., T cells or NK cells, is improved. While not wishing to be bound by theory, it is believed that, in an embodiment, the performance of a target antigen CAR-expressing cell is improved. In other embodiments, cells, e.g., T cells or NK cells, which have, or will be engineered to express a CAR, can be treated ex vivo by contact with an amount of an mTOR inhibitor that increases the number of PD1 negative immune effector cells, e.g., T cells or increases the ratio of PD1 negative immune effector cells, e.g., T cells/PD1 positive immune effector cells, e.g., T cells.


In an embodiment, administration of a low, immune enhancing, dose of an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, or a catalytic inhibitor, is initiated prior to administration of an CAR expressing cell described herein, e.g., T cells or NK cells. In an embodiment, the CAR cells are administered after a sufficient time, or sufficient dosing, of an mTOR inhibitor, such that the level of PD1 negative immune effector cells, e.g., T cells or NK cells, or the ratio of PD1 negative immune effector cells, e.g., T cells/PD1 positive immune effector cells, e.g., T cells, has been, at least transiently, increased.


In an embodiment, the cell, e.g., T cell or NK cell, to be engineered to express a CAR, is harvested after a sufficient time, or after sufficient dosing of the low, immune enhancing, dose of an mTOR inhibitor, such that the level of PD1 negative immune effector cells, e.g., T cells, or the ratio of PD1 negative immune effector cells, e.g., T cells/PD1 positive immune effector cells, e.g., T cells, in the subject or harvested from the subject has been, at least transiently, increased.


In one embodiment, the cell expressing a CAR molecule is administered in combination with an agent that ameliorates one or more side effect associated with administration of a cell expressing a CAR molecule, e.g., an agent described herein.


In one embodiment, the cell expressing a CAR molecule is administered in combination with an agent that treats the disease associated with a cancer associated antigen as described herein, e.g., an agent described herein.


In one embodiment, a cell expressing two or more CAR molecules, e.g., as described herein, is administered to a subject in need thereof to treat cancer. In one embodiment, a population of cells including a CAR expressing cell, e.g., as described herein, is administered to a subject in need thereof to treat cancer.


In one embodiment, the cell expressing a CAR molecule, is administered at a dose and/or dosing schedule described herein.


In one embodiment, the CAR molecule is introduced into immune effector cells (e.g., T cells, NK cells), e.g., using in vitro transcription, and the subject (e.g., human) receives an initial administration of cells comprising a CAR molecule and one or more subsequent administrations of cells comprising a CAR molecule wherein the one or more subsequent administrations are administered less than 15 days, e.g., 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 days after the previous administration. In one embodiment, more than one administration of cells comprising a CAR molecule are administered to the subject (e.g., human) per week, e.g., 2, 3, or 4 administrations of cells comprising a CAR molecule are administered per week. In one embodiment, the subject (e.g., human subject) receives more than one administration of cells comprising a CAR molecule per week (e.g., 2, 3 or 4 administrations per week) (also referred to herein as a cycle), followed by a week of no administration of cells comprising a CAR molecule and then one or more additional administration of cells comprising a CAR molecule (e.g., more than one administration of the cells comprising a CAR molecule per week) is administered to the subject. In another embodiment, the subject (e.g., human subject) receives more than one cycle of cells comprising a CAR molecule, and the time between each cycle is less than 10, 9, 8, 7, 6, 5, 4, or 3 days. In one embodiment, the cells comprising a CAR molecule are administered every other day for 3 administrations per week. In one embodiment, the cells comprising a CAR molecule are administered for at least two, three, four, five, six, seven, eight or more weeks.


In one embodiment, the cells expressing a CAR molecule are administered as a first line treatment for the disease, e.g., the cancer, e.g., the cancer described herein. In another embodiment, the cells expressing a CAR molecule are administered as a second, third, fourth line treatment for the disease, e.g., the cancer, e.g., the cancer described herein.


In one embodiment, a population of cells described herein is administered.


In another aspect, the invention pertains to the isolated nucleic acid molecule encoding a CAR of the invention, the isolated polypeptide molecule of a CAR of the invention, the vector comprising a CAR of the invention, and the cell comprising a CAR of the invention for use as a medicament.


In another aspect, the invention pertains to a the isolated nucleic acid molecule encoding a CAR of the invention, the isolated polypeptide molecule of a CAR of the invention, the vector comprising a CAR of the invention, and the cell comprising a CAR of the invention for use in the treatment of a disease expressing a cancer associated antigen as described herein.


In another aspect, the invention pertains to a cell expressing a CAR molecule for use as a medicament in combination with a cytokine, e.g., IL-7, IL-15 and/or IL-21 as described herein. In another aspect, the invention pertains to a cytokine described herein for use as a medicament in combination with a cell expressing a CAR molecule described herein.


In another aspect, the invention pertains to a cell expressing a CAR molecule for use as a medicament in combination with a kinase inhibitor and/or a checkpoint inhibitor as described herein. In another aspect, the invention pertains to a kinase inhibitor and/or a checkpoint inhibitor described herein for use as a medicament in combination with a cell expressing a CAR molecule described herein.


In another aspect, the invention pertains to a cell expressing a CAR molecule for use in combination with a cytokine, e.g., IL-7, IL-15 and/or IL-21 as described herein, in the treatment of a disease expressing a tumor antigen targeted by the CAR. In another aspect, the invention pertains to a cytokine described herein for use in combination with a cell expressing a CAR molecule described herein, in the treatment of a disease expressing a tumor antigen targeted by the CAR.


In another aspect, the invention pertains to a cell expressing a CAR molecule for use in combination with a kinase inhibitor and/or a checkpoint inhibitor as described herein, in the treatment of a disease expressing a tumor antigen targeted by the CAR. In another aspect, the invention pertains to a kinase inhibitor and/or a checkpoint inhibitor described herein for use in combination with a cell expressing a CAR molecule described herein, in the treatment of a disease expressing a tumor antigen targeted by the CAR.


In another aspect, the present invention provides a method comprising administering a CAR molecule or a cell comprising a nucleic acid encoding a CAR molecule. In one embodiment, the subject has a disorder described herein, e.g., the subject has cancer, e.g., the subject has a cancer and has tumor-supporting cells which express a tumor-supporting antigen described herein. In one embodiment, the subject is a human.


In another aspect, the invention pertains to a method of treating a subject having a disease associated with expression of a tumor-supporting antigen as described herein comprising administering to the subject an effective amount of a cell comprising a CAR molecule.


In yet another aspect, the invention features a method of treating a subject having a disease associated with expression of a tumor-supporting antigen, comprising administering to the subject an effective amount of a cell, e.g., an immune effector cell (e.g., a population of immune effector cells) comprising a CAR molecule, wherein the CAR molecule comprises an antigen binding domain, a transmembrane domain, and an intracellular domain, said intracellular domain comprises a costimulatory domain and/or a primary signaling domain, wherein said antigen binding domain binds to the tumor-supporting antigen associated with the disease, e.g. a tumor-supporting antigen as described herein.


In a related aspect, the invention features a method of treating a subject having a disease associated with expression of a tumor-supporting antigen. The method comprises administering to the subject an effective amount of a cell, e.g., an immune effector cell (e.g., a population of immune effector cells) comprising a CAR molecule in combination with an agent that increases the efficacy of the immune cell, wherein:


the CAR molecule comprises an antigen binding domain, a transmembrane domain, and an intracellular domain comprising a costimulatory domain and/or a primary signaling domain, wherein said antigen binding domain binds to the tumor-supporting antigen associated with the disease, e.g. a tumor-supporting antigen as disclosed herein; and


the agent that increases the efficacy of the immune cell is chosen from one or more of:


a protein phosphatase inhibitor;


a kinase inhibitor;


a cytokine;


an inhibitor of an immune inhibitory molecule; or


an agent that decreases the level or activity of a TREG cell.


In a related aspect, the invention features a method of treating a subject having a disease associated with expression of a tumor-supporting antigen, comprising administering to the subject an effective amount of a cell, e.g., an immune effector cell (e.g., a population of immune effector cells) comprising a CAR molecule:


the CAR molecule comprises an antigen binding domain, a transmembrane domain, and an intracellular domain comprising a costimulatory domain and/or a primary signaling domain, wherein said antigen binding domain binds to the tumor-supporting antigen associated with the disease, e.g., a tumor-supporting antigen as disclosed herein; and


the antigen binding domain of the CAR molecule has a binding affinity at least 5-fold less than an antibody from which the antigen binding domain is derived.


In another aspect, the invention features a composition comprising an immune effector cell (e.g., a population of immune effector cells) comprising a CAR molecule for use in the treatment of a subject having a disease associated with expression of a tumor-supporting antigen, e.g., a disorder as described herein.


In any of the aforesaid methods or uses, the disease associated with expression of the tumor-supporting antigen is selected from the group consisting of a proliferative disease, a precancerous condition, a cancer, and a non-cancer related indication associated with expression of the tumor-supporting antigen. In an embodiment, the disease associated with a tumor-supporting antigen described herein is a solid tumor.


In one embodiment of the methods or uses described herein, the CAR molecule is administered in combination with another agent. In one embodiment, the agent can be a kinase inhibitor, e.g., a CDK4/6 inhibitor, a BTK inhibitor, an mTOR inhibitor, a MNK inhibitor, or a dual PI3K/mTOR inhibitor, and combinations thereof. In one embodiment, the kinase inhibitor is a CDK4 inhibitor, e.g., a CDK4 inhibitor described herein, e.g., a CD4/6 inhibitor, such as, e.g., 6-Acetyl-8-cyclopentyl-5-methyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)-8H-pyrido[2,3-d]pyrimidin-7-one, hydrochloride (also referred to as palbociclib or PD0332991). In one embodiment, the kinase inhibitor is a BTK inhibitor, e.g., a BTK inhibitor described herein, such as, e.g., ibrutinib. In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., an mTOR inhibitor described herein, such as, e.g., rapamycin, a rapamycin analog, OSI-027. The mTOR inhibitor can be, e.g., an mTORC1 inhibitor and/or an mTORC2 inhibitor, e.g., an mTORC1 inhibitor and/or mTORC2 inhibitor described herein. In one embodiment, the kinase inhibitor is a MNK inhibitor, e.g., a MNK inhibitor described herein, such as, e.g., 4-amino-5-(4-fluoroanilino)-pyrazolo [3,4-d] pyrimidine. The MNK inhibitor can be, e.g., a MNK1a, MNK1b, MNK2a and/or MNK2b inhibitor. The dual PI3K/mTOR inhibitor can be, e.g., PF-04695102.


In one embodiment of the methods or uses described herein, the kinase inhibitor is a CDK4 inhibitor selected from aloisine A; flavopiridol or HMR-1275, 2-(2-chlorophenyl)-5,7-dihydroxy-8-[(3S,4R)-3-hydroxy-1-methyl-4-piperidinyl]-4-chromenone; crizotinib (PF-02341066; 2-(2-Chlorophenyl)-5,7-dihydroxy-8-[(2R,3S)-2-(hydroxymethyl)-1-methyl-3-pyrrolidinyl]-4H-1-benzopyran-4-one, hydrochloride (P276-00); 1-methyl-5-[[2-[5-(trifluoromethyl)-1H-imidazol-2-yl]-4-pyridinyl]oxy]-N-[4-(trifluoromethyl)phenyl]-1H-benzimidazol-2-amine (RAF265); indisulam (E7070); roscovitine (CYC202); palbociclib (PD0332991); dinaciclib (SCH727965); N-[5-[[(5-tert-butyloxazol-2-yl)methyl]thio]thiazol-2-yl]piperidine-4-carboxamide (BMS 387032); 4-[[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino]-benzoic acid (MLN8054); 5-[3-(4,6-difluoro-1H-benzimidazol-2-yl)-1H-indazol-5-yl]-N-ethyl-4-methyl-3-pyridinemethanamine (AG-024322); 4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxylic acid N-(piperidin-4-yl)amide (AT7519); 4-[2-methyl-1-(1-methylethyl)-1H-imidazol-5-yl]-N-[4-(methylsulfonyl)phenyl]-2-pyrimidinamine (AZD5438); and XL281 (BMS908662).


In one embodiment of the methods or uses described herein, the kinase inhibitor is a CDK4 inhibitor, e.g., palbociclib (PD0332991), and the palbociclib is administered at a dose of about 50 mg, 60 mg, 70 mg, 75 mg, 80 mg, 90 mg, 100 mg, 105 mg, 110 mg, 115 mg, 120 mg, 125 mg, 130 mg, 135 mg (e.g., 75 mg, 100 mg or 125 mg) daily for a period of time, e.g., daily for 14-21 days of a 28 day cycle, or daily for 7-12 days of a 21 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of palbociclib are administered.


In one embodiment of the methods or uses described herein, the kinase inhibitor is a BTK inhibitor selected from ibrutinib (PCI-32765); GDC-0834; RN-486; CGI-560; CGI-1764; HM-71224; CC-292; ONO-4059; CNX-774; and LFM-A13. In one embodiment, the BTK inhibitor does not reduce or inhibit the kinase activity of interleukin-2-inducible kinase (ITK), and is selected from GDC-0834; RN-486; CGI-560; CGI-1764; HM-71224; CC-292; ONO-4059; CNX-774; and LFM-A13.


In one embodiment of the methods or uses described herein, the kinase inhibitor is a BTK inhibitor, e.g., ibrutinib (PCI-32765), and the ibrutinib is administered at a dose of about 250 mg, 300 mg, 350 mg, 400 mg, 420 mg, 440 mg, 460 mg, 480 mg, 500 mg, 520 mg, 540 mg, 560 mg, 580 mg, 600 mg (e.g., 250 mg, 420 mg or 560 mg) daily for a period of time, e.g., daily for 21 day cycle, or daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of ibrutinib are administered.


In one embodiment of the methods or uses described herein, the kinase inhibitor is a BTK inhibitor that does not inhibit the kinase activity of ITK, e.g., RN-486, and RN-486 is administered at a dose of about 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg (e.g., 150 mg, 200 mg or 250 mg) daily for a period of time, e.g., daily a 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, or more cycles of RN-486 are administered.


In one embodiment of the methods or uses described herein, the kinase inhibitor is an mTOR inhibitor selected from temsirolimus; ridaforolimus (1R,2R,4S)-4-[(2R)-2 [(1R,9S,12S,15R,16E,18R,19R,21R, 23S,24E,26E,28Z,30S,32S,35R)-1,18-dihydroxy-19,30- dimethoxy-15,17,21,23, 29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.04,9] hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669; everolimus (RAD001); rapamycin (AY22989); simapimod; (5-{2,4-bis[(3S)-3-methylmorpholin-4-yl]pyrido[2,3-d]pyrimidin-7-yl}-2-methoxyphenyl)methanol (AZD8055); 2-amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF04691502); and N2-[1,4-dioxo-4-[[4-(4-oxo-8-phenyl-4H-1-benzopyran-2-yl)morpholinium-4-yl]methoxy]butyl]-L-arginylglycyl-L-α-aspartylL-serine- (SEQ ID NO: 112), inner salt (SF1126); and XL765.


In one embodiment of the methods or uses described herein, the kinase inhibitor is an mTOR inhibitor, e.g., rapamycin, and the rapamycin is administered at a dose of about 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg (e.g., 6 mg) daily for a period of time, e.g., daily for 21 day cycle, or daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of rapamycin are administered. In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., everolimus and the everolimus is administered at a dose of about 2 mg, 2.5 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg (e.g., 10 mg) daily for a period of time, e.g., daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of everolimus are administered.


In one embodiment of the methods or uses described herein, the kinase inhibitor is an MNK inhibitor selected from CGP052088; 4-amino-3-(p-fluorophenylamino)-pyrazolo [3,4-d] pyrimidine (CGP57380); cercosporamide; ETC-1780445-2; and 4-amino-5-(4-fluoroanilino)-pyrazolo [3,4-d] pyrimidine.


In one embodiment of the methods or uses described herein, the kinase inhibitor is a dual phosphatidylinositol 3-kinase (PI3K) and mTOR inhibitor selected from 2-Amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF-04691502); N-[4-[[4-(Dimethylamino)-1-piperidinyl]carbonyl]phenyl]-N-[4-(4,6-di-4-morpholinyl-1,3,5-triazin-2-yl)phenyl]urea (PF-05212384, PKI-587); 2-Methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl}propanenitrile (BEZ-235); apitolisib (GDC-0980, RG7422); 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458); 8-(6-methoxypyridin-3-yl)-3-methyl-1-(4-(piperazin-1-yl)-3-(trifluoromethyl)phenyl)-1H-imidazo[4,5-c]quinolin-2(3H)-one Maleic acid (NVP-BGT226); 3-[4-(4-Morpholinylpyrido[3′,2′:4,5]furo[3,2-d]pyrimidin-2-yl]phenol (PI-103); 5-(9-isopropyl-8-methyl-2-morpholino-9H-purin-6-yl)pyrimidin-2-amine (VS-5584, SB2343); and N-[2-[(3,5-Dimethoxyphenyl)amino]quinoxalin-3-yl]-4-[(4-methyl-3-methoxyphenyl)carbonyl]aminophenylsulfonamide (XL765).


In one embodiment of the methods or uses described herein, a CAR expressing immune effector cell described herein is administered to a subject in combination with a protein tyrosine phosphatase inhibitor, e.g., a protein tyrosine phosphatase inhibitor described herein. In one embodiment, the protein tyrosine phosphatase inhibitor is an SHP-1 inhibitor, e.g., an SHP-1 inhibitor described herein, such as, e.g., sodium stibogluconate. In one embodiment, the protein tyrosine phosphatase inhibitor is an SHP-2 inhibitor.


In one embodiment of the methods or uses described herein, the CAR molecule is administered in combination with another agent, and the agent is a cytokine. The cytokine can be, e.g., IL-7, IL-15, IL-21, or a combination thereof. In another embodiment, the CAR molecule is administered in combination with a checkpoint inhibitor, e.g., a checkpoint inhibitor described herein. For example, in one embodiment, the check point inhibitor inhibits an inhibitory molecule selected from PD-1, PD-L1, CTLA-4, TIM-3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGF beta.


In further aspects, a CAR-expressing cell described herein may be used in a treatment regimen in combination with surgery, chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies or other antibody therapies, cytoxin, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, cytokines, and irradiation. peptide vaccine, such as that described in Izumoto et al. 2008 J Neurosurg 108:963-971.


In one embodiment, a CAR-expressing cell described herein can be used in combination with a chemotherapeutic agent. Exemplary chemotherapeutic agents include an anthracycline (e.g., doxorubicin (e.g., liposomal doxorubicin)). a vinca alkaloid (e.g., vinblastine, vincristine, vindesine, vinorelbine), an alkylating agent (e.g., cyclophosphamide, decarbazine, melphalan, ifosfamide, temozolomide), an immune cell antibody (e.g., alemtuzamab, gemtuzumab, rituximab, ofatumumab, tositumomab, brentuximab), an antimetabolite (including, e.g., folic acid antagonists, pyrimidine analogs, purine analogs and adenosine deaminase inhibitors (e.g., fludarabine)), an mTOR inhibitor, a TNFR glucocorticoid induced TNFR related protein (GITR) agonist, a proteasome inhibitor (e.g., aclacinomycin A, gliotoxin or bortezomib), an immunomodulator such as thalidomide or a thalidomide derivative (e.g., lenalidomide).


General Chemotherapeutic agents considered for use in combination therapies include anastrozole (Arimidex®), bicalutamide (Casodex®), bleomycin sulfate (Blenoxane®), busulfan (Myleran®), busulfan injection (Busulfex®), capecitabine (Xeloda®), N4-pentoxycarbonyl-5-deoxy-5-fluorocytidine, carboplatin (Paraplatin®), carmustine (BiCNU®), chlorambucil (Leukeran®), cisplatin (Platinol®), cladribine (Leustatin®), cyclophosphamide (Cytoxan® or Neosar®), cytarabine, cytosine arabinoside (Cytosar-U®), cytarabine liposome injection (DepoCyt®), dacarbazine (DTIC-Dome®), dactinomycin (Actinomycin D, Cosmegan), daunorubicin hydrochloride (Cerubidine®), daunorubicin citrate liposome injection (DaunoXome®), dexamethasone, docetaxel (Taxotere®), doxorubicin hydrochloride (Adriamycin®, Rubex®), etoposide (Vepesid®), fludarabine phosphate (Fludara®), 5-fluorouracil (Adrucil®, Efudex®), flutamide (Eulexin®), tezacitibine, Gemcitabine (difluorodeoxycitidine), hydroxyurea (Hydrea®), Idarubicin (Idamycin®), ifosfamide (IFEX®), irinotecan (Camptosar®), L-asparaginase (ELSPAR®), leucovorin calcium, melphalan (Alkeran®), 6-mercaptopurine (Purinethol®), methotrexate (Folex®), mitoxantrone (Novantrone®), mylotarg, paclitaxel (Taxol®), phoenix (Yttrium90/MX-DTPA), pentostatin, polifeprosan 20 with carmustine implant (Gliadel®), tamoxifen citrate (Nolvadex®), teniposide (Vumon®), 6-thioguanine, thiotepa, tirapazamine (Tirazone®), topotecan hydrochloride for injection (Hycamptin®), vinblastine (Velban®), vincristine (Oncovin®), and vinorelbine (Navelbine®).


Exemplary alkylating agents include, without limitation, nitrogen mustards, ethylenimine derivatives, alkyl sulfonates, nitrosoureas and triazenes): uracil mustard (Aminouracil Mustard®, Chlorethaminacil®, Demethyldopan®, Desmethyldopan®, Haemanthamine®, Nordopan®, Uracil nitrogen mustard®, Uracillost®, Uracilmostaza®, Uramustin®, Uramustine®), chlormethine (Mustargen®), cyclophosphamide (Cytoxan®, Neosar®, Clafen®, Endoxan®, Procytox®, Revimmune™), ifosfamide (Mitoxana®), melphalan (Alkeran®), Chlorambucil (Leukeran®), pipobroman (Amedel®, Vercyte®), triethylenemelamine (Hemel®, Hexalen®, Hexastat®), triethylenethiophosphoramine, Temozolomide (Temodar®), thiotepa (Thioplex®), busulfan (Busilvex®, Myleran®), carmustine (BiCNU®), lomustine (CeeNU®), streptozocin (Zanosar®), and Dacarbazine (DTIC-Dome®). Additional exemplary alkylating agents include, without limitation, Oxaliplatin (Eloxatin®); Temozolomide (Temodar® and Temodal®); Dactinomycin (also known as actinomycin-D, Cosmegen®); Melphalan (also known as L-PAM, L-sarcolysin, and phenylalanine mustard, Alkeran®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Carmustine (BiCNU®); Bendamustine (Treanda®); Busulfan (Busulfex® and Myleran®); Carboplatin (Paraplatin®); Lomustine (also known as CCNU, CeeNU®); Cisplatin (also known as CDDP, Platinol® and Platinol®-AQ); Chlorambucil (Leukeran®); Cyclophosphamide (Cytoxan® and Neosar®); Dacarbazine (also known as DTIC, DIC and imidazole carboxamide, DTIC-Dome®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Ifosfamide (Ifex®); Prednumustine; Procarbazine (Matulane®); Mechlorethamine (also known as nitrogen mustard, mustine and mechloroethamine hydrochloride, Mustargen®); Streptozocin (Zanosar®); Thiotepa (also known as thiophosphoamide, TESPA and TSPA, Thioplex®); Cyclophosphamide (Endoxan®, Cytoxan®, Neosar®, Procytox®, Revimmune®); and Bendamustine HCl (Treanda®).


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with fludarabine, cyclophosphamide, and/or rituximab. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with fludarabine, cyclophosphamide, and rituximab (FCR). In embodiments, the subject has CLL. For example, the subject has a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In embodiments, the subject comprises a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVH) gene. In other embodiments, the subject does not comprise a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVH) gene. In embodiments, the fludarabine is administered at a dosage of about 10-50 mg/m2 (e.g., about 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, or 45-50 mg/m2), e.g., intravenously. In embodiments, the cyclophosphamide is administered at a dosage of about 200-300 mg/m2 (e.g., about 200-225, 225-250, 250-275, or 275-300 mg/m2), e.g., intravenously. In embodiments, the rituximab is administered at a dosage of about 400-600 mg/m2 (e.g., 400-450, 450-500, 500-550, or 550-600 mg/m2), e.g., intravenously.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with bendamustine and rituximab. In embodiments, the subject has CLL. For example, the subject has a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In embodiments, the subject comprises a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVH) gene. In other embodiments, the subject does not comprise a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVH) gene. In embodiments, the bendamustine is administered at a dosage of about 70-110 mg/m2 (e.g., 70-80, 80-90, 90-100, or 100-110 mg/m2), e.g., intravenously. In embodiments, the rituximab is administered at a dosage of about 400-600 mg/m2 (e.g., 400-450, 450-500, 500-550, or 550-600 mg/m2), e.g., intravenously.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab, cyclophosphamide, doxorubicine, vincristine, and/or a corticosteroid (e.g., prednisone). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab, cyclophosphamide, doxorubicine, vincristine, and prednisone (R-CHOP). In embodiments, the subject has diffuse large B-cell lymphoma (DLBCL). In embodiments, the subject has nonbulky limited-stage DLBCL (e.g., comprises a tumor having a size/diameter of less than 7 cm). In embodiments, the subject is treated with radiation in combination with the R-CHOP. For example, the subject is administered R-CHOP (e.g., 1-6 cycles, e.g., 1, 2, 3, 4, 5, or 6 cycles of R-CHOP), followed by radiation. In some cases, the subject is administered R-CHOP (e.g., 1-6 cycles, e.g., 1, 2, 3, 4, 5, or 6 cycles of R-CHOP) following radiation.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and/or rituximab. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab (EPOCH-R). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with dose-adjusted EPOCH-R (DA-EPOCH-R). In embodiments, the subject has a B cell lymphoma, e.g., a Myc-rearranged aggressive B cell lymphoma.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab and/or lenalidomide. Lenalidomide ((RS)-3-(4-Amino-1-oxo 1,3-dihydro-2H-isoindol-2-yl)piperidine-2,6-dione) is an immunomodulator. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab and lenalidomide. In embodiments, the subject has follicular lymphoma (FL) or mantle cell lymphoma (MCL). In embodiments, the subject has FL and has not previously been treated with a cancer therapy. In embodiments, lenalidomide is administered at a dosage of about 10-20 mg (e.g., 10-15 or 15-20 mg), e.g., daily. In embodiments, rituximab is administered at a dosage of about 350-550 mg/m2 (e.g., 350-375, 375-400, 400-425, 425-450, 450-475, or 475-500 mg/m2), e.g., intravenously.


Exemplary mTOR inhibitors include, e.g., temsirolimus; ridaforolimus (formally known as deferolimus, (1R,2R,4S)-4-[(2R)-2 [(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28Z,30S,32S,35R)-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23, 29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.04,9] hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669, and described in PCT Publication No. WO 03/064383); everolimus (Afinitor® or RAD001); rapamycin (AY22989, Sirolimus®); simapimod (CAS 164301-51-3); emsirolimus, (5-{2,4-Bis[(3S)-3-methylmorpholin-4-yl]pyrido[2,3-d]pyrimidin-7-yl}-2-methoxyphenyl)methanol (AZD8055); 2-Amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF04691502, CAS 1013101-36-4); and N2-[1,4-dioxo-4-[[4-(4-oxo-8-phenyl-4H-1-benzopyran-2-yl)morpholinium-4-yl]methoxy]butyl]-L-arginylglycyl-L-α-aspartylL-serine- (SEQ ID NO: 112), inner salt (SF1126, CAS 936487-67-1), and XL765.


Exemplary immunomodulators include, e.g., afutuzumab (available from Roche®); pegfilgrastim (Neulasta®); lenalidomide (CC-5013, Revlimid®); thalidomide (Thalomid®), actimid (CC4047); and IRX-2 (mixture of human cytokines including interleukin 1, interleukin 2, and interferon γ, CAS 951209-71-5, available from IRX Therapeutics).


Exemplary anthracyclines include, e.g., doxorubicin (Adriamycin® and Rubex®); bleomycin (lenoxane®); daunorubicin (dauorubicin hydrochloride, daunomycin, and rubidomycin hydrochloride, Cerubidine®); daunorubicin liposomal (daunorubicin citrate liposome, DaunoXome®); mitoxantrone (DHAD, Novantrone®); epirubicin (Ellence™); idarubicin (Idamycin®, Idamycin PFS®); mitomycin C (Mutamycin®); geldanamycin; herbimycin; ravidomycin; and desacetylravidomycin.


Exemplary vinca alkaloids include, e.g., vinorelbine tartrate (Navelbine®), Vincristine (Oncovin®), and Vindesine (Eldisine®)); vinblastine (also known as vinblastine sulfate, vincaleukoblastine and VLB, Alkaban-AQ® and Velban®); and vinorelbine (Navelbine®).


Exemplary proteosome inhibitors include bortezomib (Velcade®); carfilzomib (PX-171-007, (S)-4-Methyl-N—((S)-1-(((S)-4-methyl-1-((R)-2-methyloxiran-2-yl)-1-oxopentan-2-yl)amino)-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(2-morpholinoacetamido)-4-phenylbutanamido)-pentanamide); marizomib (NPI-0052); ixazomib citrate (MLN-9708); delanzomib (CEP-18770); and O-Methyl-N-[(2-methyl-5-thiazolyl)carbonyl]-L-seryl-O-methyl-N-[(1S)-2-[(2R)-2-methyl-2-oxiranyl]-2-oxo-1-(phenylmethyl)ethyl]-L-serinamide (ONX-0912).


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with brentuximab. Brentuximab is an antibody-drug conjugate of anti-CD30 antibody and monomethyl auristatin E. In embodiments, the subject has Hodgkin's lymphoma (HL), e.g., relapsed or refractory HL. In embodiments, the subject comprises CD30+ HL. In embodiments, the subject has undergone an autologous stem cell transplant (ASCT). In embodiments, the subject has not undergone an ASCT. In embodiments, brentuximab is administered at a dosage of about 1-3 mg/kg (e.g., about 1-1.5, 1.5-2, 2-2.5, or 2.5-3 mg/kg), e.g., intravenously, e.g., every 3 weeks.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with brentuximab and dacarbazine or in combination with brentuximab and bendamustine. Dacarbazine is an alkylating agent with a chemical name of 5-(3,3-Dimethyl-1-triazenyl)imidazole-4-carboxamide. Bendamustine is an alkylating agent with a chemical name of 4-[5-[Bis(2-chloroethyl)amino]-1-methylbenzimidazol-2-yl]butanoic acid. In embodiments, the subject has Hodgkin's lymphoma (HL). In embodiments, the subject has not previously been treated with a cancer therapy. In embodiments, the subject is at least 60 years of age, e.g., 60, 65, 70, 75, 80, 85, or older. In embodiments, dacarbazine is administered at a dosage of about 300-450 mg/m2 (e.g., about 300-325, 325-350, 350-375, 375-400, 400-425, or 425-450 mg/m2), e.g., intravenously. In embodiments, bendamustine is administered at a dosage of about 75-125 mg/m2 (e.g., 75-100 or 100-125 mg/m2, e.g., about 90 mg/m2), e.g., intravenously. In embodiments, brentuximab is administered at a dosage of about 1-3 mg/kg (e.g., about 1-1.5, 1.5-2, 2-2.5, or 2.5-3 mg/kg), e.g., intravenously, e.g., every 3 weeks.


In some embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a CD20 inhibitor, e.g., an anti-CD20 antibody (e.g., an anti-CD20 mono- or bispecific antibody) or a fragment thereof. Exemplary anti-CD20 antibodies include but are not limited to rituximab, ofatumumab, ocrelizumab, veltuzumab, obinutuzumab, TRU-015 (Trubion Pharmaceuticals), ocaratuzumab, and Pro131921 (Genentech). See, e.g., Lim et al. Haematologica. 95.1(2010):135-43.


In some embodiments, the anti-CD20 antibody comprises rituximab. Rituximab is a chimeric mouse/human monoclonal antibody IgG1 kappa that binds to CD20 and causes cytolysis of a CD20 expressing cell, e.g., as described in www.accessdata.fda.gov/drugsatfda_docs/label/2010/103705s53111bl.pdf. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab. In embodiments, the subject has CLL or SLL.


In some embodiments, rituximab is administered intravenously, e.g., as an intravenous infusion. For example, each infusion provides about 500-2000 mg (e.g., about 500-550, 550-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-950, 950-1000, 1000-1100, 1100-1200, 1200-1300, 1300-1400, 1400-1500, 1500-1600, 1600-1700, 1700-1800, 1800-1900, or 1900-2000 mg) of rituximab. In some embodiments, rituximab is administered at a dose of 150 mg/m2 to 750 mg/m2, e.g., about 150-175 mg/m2, 175-200 mg/m2, 200-225 mg/m2, 225-250 mg/m2, 250-300 mg/m2, 300-325 mg/m2, 325-350 mg/m2, 350-375 mg/m2, 375-400 mg/m2, 400-425 mg/m2, 425-450 mg/m2, 450-475 mg/m2, 475-500 mg/m2, 500-525 mg/m2, 525-550 mg/m2, 550-575 mg/m2, 575-600 mg/m2, 600-625 mg/m2, 625-650 mg/m2, 650-675 mg/m2, or 675-700 mg/m2, where m2 indicates the body surface area of the subject. In some embodiments, rituximab is administered at a dosing interval of at least 4 days, e.g., 4, 7, 14, 21, 28, 35 days, or more. For example, rituximab is administered at a dosing interval of at least 0.5 weeks, e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8 weeks, or more. In some embodiments, rituximab is administered at a dose and dosing interval described herein for a period of time, e.g., at least 2 weeks, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 weeks, or greater. For example, rituximab is administered at a dose and dosing interval described herein for a total of at least 4 doses per treatment cycle (e.g., at least 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more doses per treatment cycle).


In some embodiments, the anti-CD20 antibody comprises ofatumumab. Ofatumumab is an anti-CD20 IgG1κ human monoclonal antibody with a molecular weight of approximately 149 kDa. For example, ofatumumab is generated using transgenic mouse and hybridoma technology and is expressed and purified from a recombinant murine cell line (NS0). See, e.g., www.accessdata.fda.gov/drugsatfda_docs/label/2009/125326lbl.pdf; and Clinical Trial Identifier number NCT01363128, NCT01515176, NCT01626352, and NCT01397591. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with ofatumumab. In embodiments, the subject has CLL or SLL.


In some embodiments, ofatumumab is administered as an intravenous infusion. For example, each infusion provides about 150-3000 mg (e.g., about 150-200, 200-250, 250-300, 300-350, 350-400, 400-450, 450-500, 500-550, 550-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-950, 950-1000, 1000-1200, 1200-1400, 1400-1600, 1600-1800, 1800-2000, 2000-2200, 2200-2400, 2400-2600, 2600-2800, or 2800-3000 mg) of ofatumumab. In embodiments, ofatumumab is administered at a starting dosage of about 300 mg, followed by 2000 mg, e.g., for about 11 doses, e.g., for 24 weeks. In some embodiments, ofatumumab is administered at a dosing interval of at least 4 days, e.g., 4, 7, 14, 21, 28, 35 days, or more. For example, ofatumumab is administered at a dosing interval of at least 1 week, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 26, 28, 20, 22, 24, 26, 28, 30 weeks, or more. In some embodiments, ofatumumab is administered at a dose and dosing interval described herein for a period of time, e.g., at least 1 week, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 40, 50, 60 weeks or greater, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 months or greater, or 1, 2, 3, 4, 5 years or greater. For example, ofatumumab is administered at a dose and dosing interval described herein for a total of at least 2 doses per treatment cycle (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, or more doses per treatment cycle).


In some cases, the anti-CD20 antibody comprises ocrelizumab. Ocrelizumab is a humanized anti-CD20 monoclonal antibody, e.g., as described in Clinical Trials Identifier Nos. NCT00077870, NCT01412333, NCT00779220, NCT00673920, NCT01194570, and Kappos et al. Lancet. 19.378(2011):1779-87.


In some cases, the anti-CD20 antibody comprises veltuzumab. Veltuzumab is a humanized monoclonal antibody against CD20. See, e.g., Clinical Trial Identifier No. NCT00547066, NCT00546793, NCT01101581, and Goldenberg et al. Leuk Lymphoma. 51(5)(2010):747-55.


In some cases, the anti-CD20 antibody comprises GA101. GA101 (also called obinutuzumab or R05072759) is a humanized and glyco-engineered anti-CD20 monoclonal antibody. See, e.g., Robak. Curr. Opin. Investig. Drugs. 10.6(2009):588-96; Clinical Trial Identifier Numbers: NCT01995669, NCT01889797, NCT02229422, and NCT01414205; and www.accessdata.fda.gov/drugsatfda_docs/label/2013/125486s000lbl.pdf.


In some cases, the anti-CD20 antibody comprises AME-133v. AME-133v (also called LY2469298 or ocaratuzumab) is a humanized IgG1 monoclonal antibody against CD20 with increased affinity for the FcγRIIIa receptor and an enhanced antibody dependent cellular cytotoxicity (ADCC) activity compared with rituximab. See, e.g., Robak et al. BioDrugs 25.1(2011):13-25; and Forero-Torres et al. Clin Cancer Res. 18.5(2012):1395-403.


In some cases, the anti-CD20 antibody comprises PRO131921. PRO131921 is a humanized anti-CD20 monoclonal antibody engineered to have better binding to FcγRIIIa and enhanced ADCC compared with rituximab. See, e.g., Robak et al. BioDrugs 25.1(2011):13-25; and Casulo et al. Clin Immunol. 154.1(2014):37-46; and Clinical Trial Identifier No. NCT00452127.


In some cases, the anti-CD20 antibody comprises TRU-015. TRU-015 is an anti-CD20 fusion protein derived from domains of an antibody against CD20. TRU-015 is smaller than monoclonal antibodies, but retains Fc-mediated effector functions. See, e.g., Robak et al. BioDrugs 25.1(2011):13-25. TRU-015 contains an anti-CD20 single-chain variable fragment (scFv) linked to human IgG1 hinge, CH2, and CH3 domains but lacks CH1 and CL domains.


In some embodiments, an anti-CD20 antibody described herein is conjugated or otherwise bound to a therapeutic agent, e.g., a chemotherapeutic agent (e.g., cytoxan, fludarabine, histone deacetylase inhibitor, demethylating agent, peptide vaccine, anti-tumor antibiotic, tyrosine kinase inhibitor, alkylating agent, anti-microtubule or anti-mitotic agent), anti-allergic agent, anti-nausea agent (or anti-emetic), pain reliever, or cytoprotective agent described herein.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a B-cell lymphoma 2 (BCL-2) inhibitor (e.g., venetoclax, also called ABT-199 or GDC-0199;) and/or rituximab. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with venetoclax and rituximab. Venetoclax is a small molecule that inhibits the anti-apoptotic protein, BCL-2. The structure of venetoclax (4-(4-{[2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl]methyl}piperazin-1-yl)-N-({3-nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide) is shown below.




embedded image


In embodiments, the subject has CLL. In embodiments, the subject has relapsed CLL, e.g., the subject has previously been administered a cancer therapy. In embodiments, venetoclax is administered at a dosage of about 15-600 mg (e.g., 15-20, 20-50, 50-75, 75-100, 100-200, 200-300, 300-400, 400-500, or 500-600 mg), e.g., daily. In embodiments, rituximab is administered at a dosage of about 350-550 mg/m2 (e.g., 350-375, 375-400, 400-425, 425-450, 450-475, or 475-500 mg/m2), e.g., intravenously, e.g., monthly


In an embodiment, cells expressing a CAR described herein are administered to a subject in combination with a molecule that decreases the Treg cell population. Methods that decrease the number of (e.g., deplete) Treg cells are known in the art and include, e.g., CD25 depletion, cyclophosphamide administration, modulating GITR function. Without wishing to be bound by theory, it is believed that reducing the number of Treg cells in a subject prior to apheresis or prior to administration of a CAR-expressing cell described herein reduces the number of unwanted immune cells (e.g., Tregs) in the tumor microenvironment and reduces the subject's risk of relapse. In one embodiment, cells expressing a CAR described herein are administered to a subject in combination with a molecule targeting GITR and/or modulating GITR functions, such as a GITR agonist and/or a GITR antibody that depletes regulatory T cells (Tregs). In embodiments, cells expressing a CAR described herein are administered to a subject in combination with cyclophosphamide. In one embodiment, the GITR binding molecules and/or molecules modulating GITR functions (e.g., GITR agonist and/or Treg depleting GITR antibodies) are administered prior to administration of the CAR-expressing cell. For example, in one embodiment, the GITR agonist can be administered prior to apheresis of the cells. In embodiments, cyclophosphamide is administered to the subject prior to administration (e.g., infusion or re-infusion) of the CAR-expressing cell or prior to apheresis of the cells. In embodiments, cyclophosphamide and an anti-GITR antibody are administered to the subject prior to administration (e.g., infusion or re-infusion) of the CAR-expressing cell or prior to apheresis of the cells. In one embodiment, the subject has cancer (e.g., a solid cancer or a hematological cancer such as ALL or CLL). In an embodiment, the subject has CLL. In embodiments, the subject has ALL. In embodiments, the subject has a solid cancer, e.g., a solid cancer described herein. Exemplary GITR agonists include, e.g., GITR fusion proteins and anti-GITR antibodies (e.g., bivalent anti-GITR antibodies) such as, e.g., a GITR fusion protein described in U.S. Pat. No. 6,111,090, European Patent No.: 090505B1, U.S. Pat. No. 8,586,023, PCT Publication Nos.: WO 2010/003118 and 2011/090754, or an anti-GITR antibody described, e.g., in U.S. Pat. No. 7,025,962, European Patent No.: 1947183B1, U.S. Pat. Nos. 7,812,135, 8,388,967, 8,591,886, European Patent No.: EP 1866339, PCT Publication No.: WO 2011/028683, PCT Publication No.: WO 2013/039954, PCT Publication No.: WO2005/007190, PCT Publication No.: WO 2007/133822, PCT Publication No.: WO2005/055808, PCT Publication No.: WO 99/40196, PCT Publication No.: WO 2001/03720, PCT Publication No.: WO99/20758, PCT Publication No.: WO2006/083289, PCT Publication No.: WO 2005/115451, U.S. Pat. No. 7,618,632, and PCT Publication No.: WO 2011/051726.


In one embodiment, a CAR expressing cell described herein is administered to a subject in combination with an mTOR inhibitor, e.g., an mTOR inhibitor described herein, e.g., a rapalog such as everolimus. In one embodiment, the mTOR inhibitor is administered prior to the CAR-expressing cell. For example, in one embodiment, the mTOR inhibitor can be administered prior to apheresis of the cells. In one embodiment, the subject has CLL.


In one embodiment, a CAR expressing cell described herein is administered to a subject in combination with a GITR agonist, e.g., a GITR agonist described herein. In one embodiment, the GITR agonist is administered prior to the CAR-expressing cell. For example, in one embodiment, the GITR agonist can be administered prior to apheresis of the cells. In one embodiment, the subject has CLL.


In one embodiment, a CAR-expressing cell described herein can be used in combination with a kinase inhibitor. In one embodiment, the kinase inhibitor is a CDK4 inhibitor, e.g., a CDK4 inhibitor described herein, e.g., a CD4/6 inhibitor, such as, e.g., 6-Acetyl-8-cyclopentyl-5-methyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)-8H-pyrido[2,3-d]pyrimidin-7-one, hydrochloride (also referred to as palbociclib or PD0332991). In one embodiment, the kinase inhibitor is a BTK inhibitor, e.g., a BTK inhibitor described herein, such as, e.g., ibrutinib. In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., an mTOR inhibitor described herein, such as, e.g., rapamycin, a rapamycin analog, OSI-027. The mTOR inhibitor can be, e.g., an mTORC1 inhibitor and/or an mTORC2 inhibitor, e.g., an mTORC1 inhibitor and/or mTORC2 inhibitor described herein. In one embodiment, the kinase inhibitor is a MNK inhibitor, e.g., a MNK inhibitor described herein, such as, e.g., 4-amino-5-(4-fluoroanilino)-pyrazolo [3,4-d] pyrimidine. The MNK inhibitor can be, e.g., a MNK1a, MNK1b, MNK2a and/or MNK2b inhibitor. In one embodiment, the kinase inhibitor is a dual PI3K/mTOR inhibitor described herein, such as, e.g., PF-04695102.


In one embodiment, the kinase inhibitor is a CDK4 inhibitor selected from aloisine A; flavopiridol or HMR-1275, 2-(2-chlorophenyl)-5,7-dihydroxy-8-[(3S,4R)-3-hydroxy-1-methyl-4-piperidinyl]-4-chromenone; crizotinib (PF-02341066; 2-(2-Chlorophenyl)-5,7-dihydroxy-8-[(2R,3S)-2-(hydroxymethyl)-1-methyl-3-pyrrolidinyl]-4H-1-benzopyran-4-one, hydrochloride (P276-00); 1-methyl-5-[[2-[5-(trifluoromethyl)-1H-imidazol-2-yl]-4-pyridinyl]oxy]-N-[4-(trifluoromethyl)phenyl]-1H-benzimidazol-2-amine (RAF265); indisulam (E7070); roscovitine (CYC202); palbociclib (PD0332991); dinaciclib (SCH727965); N-[5-[[(5-tert-butyloxazol-2-yl)methyl]thio]thiazol-2-yl]piperidine-4-carboxamide (BMS 387032); 4-[[9-chloro-7-(2,6-difluorophenyl)-5H-pyrimido[5,4-d][2]benzazepin-2-yl]amino]-benzoic acid (MLN8054); 5-[3-(4,6-difluoro-1H-benzimidazol-2-yl)-1H-indazol-5-yl]-N-ethyl-4-methyl-3-pyridinemethanamine (AG-024322); 4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxylic acid N-(piperidin-4-yl)amide (AT7519); 4-[2-methyl-1-(1-methylethyl)-1H-imidazol-5-yl]-N-[4-(methylsulfonyl)phenyl]-2-pyrimidinamine (AZD5438); and XL281 (BMS908662).


In one embodiment, the kinase inhibitor is a CDK4 inhibitor, e.g., palbociclib (PD0332991), and the palbociclib is administered at a dose of about 50 mg, 60 mg, 70 mg, 75 mg, 80 mg, 90 mg, 100 mg, 105 mg, 110 mg, 115 mg, 120 mg, 125 mg, 130 mg, 135 mg (e.g., 75 mg, 100 mg or 125 mg) daily for a period of time, e.g., daily for 14-21 days of a 28 day cycle, or daily for 7-12 days of a 21 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of palbociclib are administered.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a cyclin-dependent kinase (CDK) 4 or 6 inhibitor, e.g., a CDK4 inhibitor or a CDK6 inhibitor described herein. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a CDK4/6 inhibitor (e.g., an inhibitor that targets both CDK4 and CDK6), e.g., a CDK4/6 inhibitor described herein. In an embodiment, the subject has MCL. MCL is an aggressive cancer that is poorly responsive to currently available therapies, i.e., essentially incurable. In many cases of MCL, cyclin D1 (a regulator of CDK4/6) is expressed (e.g., due to chromosomal translocation involving immunoglobulin and Cyclin D1 genes) in MCL cells. Thus, without being bound by theory, it is thought that MCL cells are highly sensitive to CDK4/6 inhibition with high specificity (i.e., minimal effect on normal immune cells). CDK4/6 inhibitors alone have had some efficacy in treating MCL, but have only achieved partial remission with a high relapse rate. An exemplary CDK4/6 inhibitor is LEE011 (also called ribociclib), the structure of which is shown below.




embedded image


Without being bound by theory, it is believed that administration of a CAR-expressing cell described herein with a CDK4/6 inhibitor (e.g., LEE011 or other CDK4/6 inhibitor described herein) can achieve higher responsiveness, e.g., with higher remission rates and/or lower relapse rates, e.g., compared to a CDK4/6 inhibitor alone.


In one embodiment, the kinase inhibitor is a BTK inhibitor selected from ibrutinib (PCI-32765); GDC-0834; RN-486; CGI-560; CGI-1764; HM-71224; CC-292; ONO-4059; CNX-774; and LFM-A13. In a preferred embodiment, the BTK inhibitor does not reduce or inhibit the kinase activity of interleukin-2-inducible kinase (ITK), and is selected from GDC-0834; RN-486; CGI-560; CGI-1764; HM-71224; CC-292; ONO-4059; CNX-774; and LFM-A13.


In one embodiment, the kinase inhibitor is a BTK inhibitor, e.g., ibrutinib (PCI-32765). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a BTK inhibitor (e.g., ibrutinib). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with ibrutinib (also called PCI-32765). The structure of ibrutinib (1-[(3R)-3-[4-Amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one) is shown below.




embedded image


In embodiments, the subject has CLL, mantle cell lymphoma (MCL), or small lymphocytic lymphoma (SLL). For example, the subject has a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In embodiments, the subject has relapsed CLL or SLL, e.g., the subject has previously been administered a cancer therapy (e.g., previously been administered one, two, three, or four prior cancer therapies). In embodiments, the subject has refractory CLL or SLL. In other embodiments, the subject has follicular lymphoma, e.g., relapse or refractory follicular lymphoma. In some embodiments, ibrutinib is administered at a dosage of about 300-600 mg/day (e.g., about 300-350, 350-400, 400-450, 450-500, 500-550, or 550-600 mg/day, e.g., about 420 mg/day or about 560 mg/day), e.g., orally. In embodiments, the ibrutinib is administered at a dose of about 250 mg, 300 mg, 350 mg, 400 mg, 420 mg, 440 mg, 460 mg, 480 mg, 500 mg, 520 mg, 540 mg, 560 mg, 580 mg, 600 mg (e.g., 250 mg, 420 mg or 560 mg) daily for a period of time, e.g., daily for 21 day cycle, or daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of ibrutinib are administered. Without being bound by theory, it is thought that the addition of ibrutinib enhances the T cell proliferative response and may shift T cells from a T-helper-2 (Th2) to T-helper-1 (Th1) phenotype. Th1 and Th2 are phenotypes of helper T cells, with Th1 versus Th2 directing different immune response pathways. A Th1 phenotype is associated with proinflammatory responses, e.g., for killing cells, such as intracellular pathogens/viruses or cancerous cells, or perpetuating autoimmune responses. A Th2 phenotype is associated with eosinophil accumulation and anti-inflammatory responses.


In one embodiment, the kinase inhibitor is an mTOR inhibitor selected from temsirolimus; ridaforolimus (1R,2R,4S)-4-[(2R)-2 [(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28Z,30S,32S,35R)-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23, 29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.04,9] hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669; everolimus (RAD001); rapamycin (AY22989); simapimod; (5-{2,4-bis[(3S)-3-methylmorpholin-4-yl]pyrido[2,3-d]pyrimidin-7-yl}-2-methoxyphenyl)methanol (AZD8055); 2-amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF04691502); and N2-[1,4-dioxo-4-[[4-(4-oxo-8-phenyl-4H-1-benzopyran-2-yl)morpholinium-4-yl]methoxy]butyl]-L-arginylglycyl-L-α-aspartylL-serine- (SEQ ID NO: 112), inner salt (SF1126); and XL765.


In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., rapamycin, and the rapamycin is administered at a dose of about 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg (e.g., 6 mg) daily for a period of time, e.g., daily for 21 day cycle, or daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of rapamycin are administered. In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., everolimus and the everolimus is administered at a dose of about 2 mg, 2.5 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg (e.g., 10 mg) daily for a period of time, e.g., daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of everolimus are administered.


In one embodiment, the kinase inhibitor is an MNK inhibitor selected from CGP052088; 4-amino-3-(p-fluorophenylamino)-pyrazolo [3,4-d] pyrimidine (CGP57380); cercosporamide; ETC-1780445-2; and 4-amino-5-(4-fluoroanilino)-pyrazolo [3,4-d] pyrimidine.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a phosphoinositide 3-kinase (PI3K) inhibitor (e.g., a PI3K inhibitor described herein, e.g., idelalisib or duvelisib) and/or rituximab. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with idelalisib and rituximab. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with duvelisib and rituximab. Idelalisib (also called GS-1101 or CAL-101; Gilead) is a small molecule that blocks the delta isoform of PI3K. The structure of idelalisib (5-Fluoro-3-phenyl-2-[(1S)-1-(7H-purin-6-ylamino)propyl]-4(3H)-quinazolinone) is shown below.




embedded image


Duvelisib (also called IPI-145; Infinity Pharmaceuticals and Abbvie) is a small molecule that blocks PI3K-δ,γ. The structure of duvelisib (8-Chloro-2-phenyl-3-[(1S)-1-(9H-purin-6-ylamino)ethyl]-1(2H)-isoquinolinone) is shown below.




embedded image


In embodiments, the subject has CLL. In embodiments, the subject has relapsed CLL, e.g., the subject has previously been administered a cancer therapy (e.g., previously been administered an anti-CD20 antibody or previously been administered ibrutinib). For example, the subject has a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In embodiments, the subject comprises a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVH) gene. In other embodiments, the subject does not comprise a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVH) gene. In embodiments, the subject has a deletion in the long arm of chromosome 11 (del(11q)). In other embodiments, the subject does not have a del(11q). In embodiments, idelalisib is administered at a dosage of about 100-400 mg (e.g., 100-125, 125-150, 150-175, 175-200, 200-225, 225-250, 250-275, 275-300, 325-350, 350-375, or 375-400 mg), e.g., BID. In embodiments, duvelisib is administered at a dosage of about 15-100 mg (e.g., about 15-25, 25-50, 50-75, or 75-100 mg), e.g., twice a day. In embodiments, rituximab is administered at a dosage of about 350-550 mg/m2 (e.g., 350-375, 375-400, 400-425, 425-450, 450-475, or 475-500 mg/m2), e.g., intravenously.


In one embodiment, the kinase inhibitor is a dual phosphatidylinositol 3-kinase (PI3K) and mTOR inhibitor selected from 2-Amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-d]pyrimidin-7(8H)-one (PF-04691502); N-[4-[[4-(Dimethylamino)-1-piperidinyl]carbonyl]phenyl]-N′-[4-(4,6-di-4-morpholinyl-1,3,5-triazin-2-yl)phenyl]urea (PF-05212384, PKI-587); 2-Methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl}propanenitrile (BEZ-235); apitolisib (GDC-0980, RG7422); 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458); 8-(6-methoxypyridin-3-yl)-3-methyl-1-(4-(piperazin-1-yl)-3-(trifluoromethyl)phenyl)-1H-imidazo[4,5-c]quinolin-2(3H)-one Maleic acid (NVP-BGT226); 3-[4-(4-Morpholinylpyrido[3′,2′:4,5]furo[3,2-d]pyrimidin-2-yl]phenol (PI-103); 5-(9-isopropyl-8-methyl-2-morpholino-9H-purin-6-yl)pyrimidin-2-amine (VS-5584, SB2343); and N-[2-[(3,5-Dimethoxyphenyl)amino]quinoxalin-3-yl]-4-[(4-methyl-3-methoxyphenyl)carbonyl]aminophenylsulfonamide (XL765).


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with an anaplastic lymphoma kinase (ALK) inhibitor. Exemplary ALK kinases include but are not limited to crizotinib (Pfizer), ceritinib (Novartis), alectinib (Chugai), brigatinib (also called AP26113; Ariad), entrectinib (Ignyta), PF-06463922 (Pfizer), TSR-011 (Tesaro) (see, e.g., Clinical Trial Identifier No. NCT02048488), CEP-37440 (Teva), and X-396 (Xcovery). In some embodiments, the subject has a solid cancer, e.g., a solid cancer described herein, e.g., lung cancer.


The chemical name of crizotinib is 3-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-(1-piperidin-4-ylpyrazol-4-yl)pyridin-2-amine. The chemical name of ceritinib is 5-Chloro-N2-[2-isopropoxy-5-methyl-4-(4-piperidinyl)phenyl]-N4-[2-(isopropylsulfonyl)phenyl]-2,4-pyrimidinediamine. The chemical name of alectinib is 9-ethyl-6,6-dimethyl-8-(4-morpholinopiperidin-1-yl)-11-oxo-6,11-dihydro-5H-benzo[b]carbazole-3-carbonitrile. The chemical name of brigatinib is 5-Chloro-N2-{4-[4-(dimethylamino)-1-piperidinyl]-2-methoxyphenyl}-N4-[2-(dimethylphosphoryl)phenyl]-2,4-pyrimidinediamine The chemical name of entrectinib is N-(5-(3,5-difluorobenzyl)-1H-indazol-3-yl)-4-(4-methylpiperazin-1-yl)-2-((tetrahydro-2H-pyran-4-yl)amino)benzamide. The chemical name of PF-06463922 is (10R)-7-Amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile. The chemical structure of CEP-37440 is (S)-2-((5-chloro-2-((6-(4-(2-hydroxyethyl)piperazin-1-yl)-1-methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-2-yl)amino)pyrimidin-4-yl)amino)-N-methylbenzamide. The chemical name of X-396 is (R)-6-amino-5-(1-(2,6-dichloro-3-fluorophenyl)ethoxy)-N-(4-(4-methylpiperazine-1-carbonyl)phenyl)pyridazine-3-carboxamide.


Drugs that inhibit either the calcium dependent phosphatase calcineurin (cyclosporine and FK506) or inhibit the p70S6 kinase that is important for growth factor induced signaling (rapamycin). (Liu et al., Cell 66:807-815, 1991; Henderson et al., Immun 73:316-321, 1991; Bierer et al., Curr. Opin. Immun 5:763-773, 1993) can also be used. In a further aspect, the cell compositions of the present invention may be administered to a patient in conjunction with (e.g., before, simultaneously or following) bone marrow transplantation, T cell ablative therapy using chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, and/or antibodies such as OKT3 or CAMPATH. In one aspect, the cell compositions of the present invention are administered following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan. For example, in one embodiment, subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain embodiments, following the transplant, subjects receive an infusion of the expanded immune cells of the present invention. In an additional embodiment, expanded cells are administered before or following surgery.


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with an indoleamine 2,3-dioxygenase (IDO) inhibitor. IDO is an enzyme that catalyzes the degradation of the amino acid, L-tryptophan, to kynurenine. Many cancers overexpress IDO, e.g., prostatic, colorectal, pancreatic, cervical, gastric, ovarian, head, and lung cancer. pDCs, macrophages, and dendritic cells (DCs) can express IDO. Without being bound by theory, it is thought that a decrease in L-tryptophan (e.g., catalyzed by IDO) results in an immunosuppressive milieu by inducing T-cell anergy and apoptosis. Thus, without being bound by theory, it is thought that an IDO inhibitor can enhance the efficacy of a CAR-expressing cell described herein, e.g., by decreasing the suppression or death of a CAR-expressing immune cell. In embodiments, the subject has a solid tumor, e.g., a solid tumor described herein, e.g., prostatic, colorectal, pancreatic, cervical, gastric, ovarian, head, or lung cancer. Exemplary inhibitors of IDO include but are not limited to 1-methyl-tryptophan, indoximod (NewLink Genetics) (see, e.g., Clinical Trial Identifier Nos. NCT01191216; NCT01792050), and INCB024360 (Incyte Corp.) (see, e.g., Clinical Trial Identifier Nos. NCT01604889; NCT01685255).


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a modulator of myeloid-derived suppressor cells (MDSCs). MDSCs accumulate in the periphery and at the tumor site of many solid tumors. These cells suppress T cell responses, thereby hindering the efficacy of CAR-expressing cell therapy. Without being bound by theory, it is thought that administration of a MDSC modulator enhances the efficacy of a CAR-expressing cell described herein. In an embodiment, the subject has a solid tumor, e.g., a solid tumor described herein, e.g., glioblastoma. Exemplary modulators of MDSCs include but are not limited to MCS110 and BLZ945. MCS110 is a monoclonal antibody (mAb) against macrophage colony-stimulating factor (M-CSF). See, e.g., Clinical Trial Identifier No. NCT00757757. BLZ945 is a small molecule inhibitor of colony stimulating factor 1 receptor (CSF1R). See, e.g., Pyonteck et al. Nat. Med. 19(2013):1264-72. The structure of BLZ945 is shown below.




embedded image


In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a CD19 CART cell (e.g., CTL019, e.g., as described in WO2012/079000, incorporated herein by reference). In embodiments, the subject has a CD19+ lymphoma, e.g., a CD19+ Non-Hodgkin's Lymphoma (NHL), a CD19+ FL, or a CD19+ DLBCL. In embodiments, the subject has a relapsed or refractory CD19+ lymphoma. In embodiments, a lymphodepleting chemotherapy is administered to the subject prior to, concurrently with, or after administration (e.g., infusion) of CD19 CART cells. In an example, the lymphodepleting chemotherapy is administered to the subject prior to administration of CD19 CART cells. For example, the lymphodepleting chemotherapy ends 1-4 days (e.g., 1, 2, 3, or 4 days) prior to CD19 CART cell infusion. In embodiments, multiple doses of CD19 CART cells are administered, e.g., as described herein. For example, a single dose comprises about 5×108 CD19 CART cells. In embodiments, a lymphodepleting chemotherapy is administered to the subject prior to, concurrently with, or after administration (e.g., infusion) of a CAR-expressing cell described herein, e.g., a non-CD19 CAR-expressing cell. In embodiments, a CD19 CART is administered to the subject prior to, concurrently with, or after administration (e.g., infusion) of a non-CD19 CAR-expressing cell, e.g., a non-CD19 CAR-expressing cell described herein.


In some embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a interleukin-15 (IL-15) polypeptide, a interleukin-15 receptor alpha (IL-15Ra) polypeptide, or a combination of both a IL-15 polypeptide and a IL-15Ra polypeptide e.g., hetIL-15 (Admune Therapeutics, LLC). hetIL-15 is a heterodimeric non-covalent complex of IL-15 and IL-15Ra. hetIL-15 is described in, e.g., U.S. Pat. No. 8,124,084, U.S. 2012/0177598, U.S. 2009/0082299, U.S. 2012/0141413, and U.S. 2011/0081311, incorporated herein by reference. In embodiments, het-IL-15 is administered subcutaneously. In embodiments, the subject has a cancer, e.g., solid cancer, e.g., melanoma or colon cancer. In embodiments, the subject has a metastatic cancer.


In one embodiment, the subject can be administered an agent which reduces or ameliorates a side effect associated with the administration of a CAR-expressing cell. Side effects associated with the administration of a CAR-expressing cell include, but are not limited to CRS, and hemophagocytic lymphohistiocytosis (HLH), also termed Macrophage Activation Syndrome (MAS). Symptoms of CRS include high fevers, nausea, transient hypotension, hypoxia, and the like. CRS may include clinical constitutional signs and symptoms such as fever, fatigue, anorexia, myalgias, arthalgias, nausea, vomiting, and headache. CRS may include clinical skin signs and symptoms such as rash. CRS may include clinical gastrointestinal signs and symptoms such as nausea, vomiting and diarrhea. CRS may include clinical respiratory signs and symptoms such as tachypnea and hypoxemia. CRS may include clinical cardiovascular signs and symptoms such as tachycardia, widened pulse pressure, hypotension, increased cardiac output (early) and potentially diminished cardiac output (late). CRS may include clinical coagulation signs and symptoms such as elevated d-dimer, hypofibrinogenemia with or without bleeding. CRS may include clinical renal signs and symptoms such as azotemia. CRS may include clinical hepatic signs and symptoms such as transaminitis and hyperbilirubinemia. CRS may include clinical neurologic signs and symptoms such as headache, mental status changes, confusion, delirium, word finding difficulty or frank aphasia, hallucinations, tremor, dymetria, altered gait, and seizures.


Accordingly, the methods described herein can comprise administering a CAR-expressing cell described herein to a subject and further administering one or more agents to manage elevated levels of a soluble factor resulting from treatment with a CAR-expressing cell. In one embodiment, the soluble factor elevated in the subject is one or more of IFN-γ, TNFα, IL-2 and IL-6. In an embodiment, the factor elevated in the subject is one or more of IL-1, GM-CSF, IL-10, IL-8, IL-5 and fraktalkine. Therefore, an agent administered to treat this side effect can be an agent that neutralizes one or more of these soluble factors. In one embodiment, the agent that neutralizes one or more of these soluble forms is an antibody or antigen binding fragment thereof. Examples of such agents include, but are not limited to a steroid (e.g., corticosteroid), an inhibitor of TNFα, and an inhibitor of IL-6. An example of a TNFα inhibitor is an anti-TNFα antibody molecule such as, infliximab, adalimumab, certolizumab pegol, and golimumab. Another example of a TNFα inhibitor is a fusion protein such as entanercept. Small molecule inhibitors of TNFα include, but are not limited to, xanthine derivatives (e.g. pentoxifylline) and bupropion. An example of an IL-6 inhibitor is an anti-IL-6 antibody molecule or an anti-IL-6 receptor antibody molecule such as tocilizumab (toc), sarilumab, elsilimomab, CNTO 328, ALD518/BMS-945429, CNTO 136, CPSI-2364, CDP6038, VX30, ARGX-109, FE301, and FM101. In one embodiment, the anti-IL-6 receptor antibody molecule is tocilizumab. An example of an IL-1R based inhibitor is anakinra


In one embodiment, the subject can be administered an agent which enhances the activity of a CAR-expressing cell. For example, in one embodiment, the agent can be an agent which inhibits an inhibitory molecule. Inhibitory molecules, e.g., Programmed Death 1 (PD-1), can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response. Examples of inhibitory molecules include PD-1, PD-L1, CTLA-4, TIM-3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG-3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGF beta. Inhibition of an inhibitory molecule, e.g., by inhibition at the DNA, RNA or protein level, can optimize a CAR-expressing cell performance In embodiments, an inhibitory nucleic acid, e.g., an inhibitory nucleic acid, e.g., a dsRNA, e.g., an siRNA or shRNA, a clustered regularly interspaced short palindromic repeats (CRISPR), a transcription-activator like effector nuclease (TALEN), or a zinc finger endonuclease (ZFN), e.g., as described herein, can be used to inhibit expression of an inhibitory molecule in the CAR-expressing cell. In an embodiment the inhibitor is an shRNA. In an embodiment, the inhibitory molecule is inhibited within a CAR-expressing cell. In these embodiments, a dsRNA molecule that inhibits expression of the inhibitory molecule is linked to the nucleic acid that encodes a component, e.g., all of the components, of the CAR. In one embodiment, the inhibitor of an inhibitory signal can be, e.g., an antibody or antibody fragment that binds to an inhibitory molecule. For example, the agent can be an antibody or antibody fragment that binds to PD-1, PD-L1, PD-L2 or CTLA4 (e.g., ipilimumab (also referred to as MDX-010 and MDX-101, and marketed as Yervoy®; Bristol-Myers Squibb; Tremelimumab (IgG2 monoclonal antibody available from Pfizer, formerly known as ticilimumab, CP-675,206).). In an embodiment, the agent is an antibody or antibody fragment that binds to TIM3. In an embodiment, the agent is an antibody or antibody fragment that binds to CEACAM (CEACAM-1, CEACAM-3, and/or CEACAM-5). In an embodiment, the agent is an antibody or antibody fragment that binds to LAG3.


PD-1 is an inhibitory member of the CD28 family of receptors that also includes CD28, CTLA-4, ICOS, and BTLA. PD-1 is expressed on activated B cells, T cells and myeloid cells (Agata et al. 1996 Int. Immunol 8:765-75). Two ligands for PD-1, PD-L1 and PD-L2 have been shown to downregulate T cell activation upon binding to PD-1 (Freeman et a. 2000 J Exp Med 192:1027-34; Latchman et al. 2001 Nat Immunol 2:261-8; Carter et al. 2002 Eur J Immunol 32:634-43). PD-L1 is abundant in human cancers (Dong et al. 2003 J Mol Med 81:281-7; Blank et al. 2005 Cancer Immunol. Immunother 54:307-314; Konishi et al. 2004 Clin Cancer Res 10:5094) Immune suppression can be reversed by inhibiting the local interaction of PD-1 with PD-L1. Antibodies, antibody fragments, and other inhibitors of PD-1, PD-L1 and PD-L2 are available in the art and may be used combination with a cars of the present invention described herein. For example, nivolumab (also referred to as BMS-936558 or MDX1106; Bristol-Myers Squibb) is a fully human IgG4 monoclonal antibody which specifically blocks PD-1. Nivolumab (clone 5C4) and other human monoclonal antibodies that specifically bind to PD-1 are disclosed in U.S. Pat. No. 8,008,449 and WO2006/121168. Pidilizumab (CT-011; Cure Tech) is a humanized IgG1k monoclonal antibody that binds to PD-1. Pidilizumab and other humanized anti-PD-1 monoclonal antibodies are disclosed in WO2009/101611. Pembrolizumab (formerly known as lambrolizumab, and also referred to as MK03475; Merck) is a humanized IgG4 monoclonal antibody that binds to PD-1. Pembrolizumab and other humanized anti-PD-1 antibodies are disclosed in U.S. Pat. No. 8,354,509 and WO2009/114335. MEDI4736 (Medimmune) is a human monoclonal antibody that binds to PDL1, and inhibits interaction of the ligand with PD1. MDPL3280A (Genentech/Roche) is a human Fc optimized IgG1 monoclonal antibody that binds to PD-L1. MDPL3280A and other human monoclonal antibodies to PD-L1 are disclosed in U.S. Pat. No. 7,943,743 and U.S. Publication No.: 20120039906. Other anti-PD-L1 binding agents include YW243.55.570 (heavy and light chain variable regions are shown in SEQ ID NOs 20 and 21 in WO2010/077634) and MDX-1 105 (also referred to as BMS-936559, and, e.g., anti-PD-L1 binding agents disclosed in WO2007/005874). AMP-224 (B7-DCIg; Amplimmune; e.g., disclosed in WO2010/027827 and WO2011/066342), is a PD-L2 Fc fusion soluble receptor that blocks the interaction between PD-1 and B7-H1. Other anti-PD-1 antibodies include AMP 514 (Amplimmune), among others, e.g., anti-PD-1 antibodies disclosed in U.S. Pat. No. 8,609,089, US 2010028330, and/or US 20120114649.


TIM-3 (T cell immunoglobulin-3) also negatively regulates T cell function, particularly in IFN-g-secreting CD4+ T helper 1 and CD8+ T cytotoxic 1 cells, and plays a critical role in T cell exhaustion. Inhibition of the interaction between TIM3 and its ligands, e.g., galectin-9 (Gal9), phosphotidylserine (PS), and HMGB1, can increase immune response. Antibodies, antibody fragments, and other inhibitors of TIM3 and its ligands are available in the art and may be used combination with a CD19 CAR described herein. For example, antibodies, antibody fragments, small molecules, or peptide inhibitors that target TIM3 binds to the IgV domain of TIM3 to inhibit interaction with its ligands. Antibodies and peptides that inhibit TIM3 are disclosed in WO2013/006490 and US20100247521. Other anti-TIM3 antibodies include humanized versions of RMT3-23 (disclosed in Ngiow et al., 2011, Cancer Res, 71:3540-3551), and clone 8B. 2C12 (disclosed in Monney et al., 2002, Nature, 415:536-541). Bi-specific antibodies that inhibit TIM3 and PD-1 are disclosed in US20130156774.


In other embodiments, the agent that enhances the activity of a CAR-expressing cell is a CEACAM inhibitor (e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5 inhibitor). In one embodiment, the inhibitor of CEACAM is an anti-CEACAM antibody molecule. Exemplary anti-CEACAM-1 antibodies are described in WO 2010/125571, WO 2013/082366 WO 2014/059251 and WO 2014/022332, e.g., a monoclonal antibody 34B1, 26H7, and 5F4; or a recombinant form thereof, as described in, e.g., US 2004/0047858, U.S. Pat. No. 7,132,255 and WO 99/052552. In other embodiments, the anti-CEACAM antibody binds to CEACAM-5 as described in, e.g., Zheng et al. PLoS One. 2010 Sep. 2; 5(9). pii: e12529 (DOI:10:1371/journal.pone.0021146), or crossreacts with CEACAM-1 and CEACAM-5 as described in, e.g., WO 2013/054331 and US 2014/0271618.


Without wishing to be bound by theory, carcinoembryonic antigen cell adhesion molecules (CEACAM), such as CEACAM-1 and CEACAM-5, are believed to mediate, at least in part, inhibition of an anti-tumor immune response (see e.g., Markel et al. J Immunol. 2002 Mar. 15; 168(6):2803-10; Markel et al. J Immunol. 2006 Nov. 1; 177(9):6062-71; Markel et al. Immunology. 2009 February; 126(2):186-200; Markel et al. Cancer Immunol Immunother. 2010 February; 59(2):215-30; Ortenberg et al. Mol Cancer Ther. 2012 June; 11(6):1300-10; Stern et al. J Immunol. 2005 Jun. 1; 174(11):6692-701; Zheng et al. PLoS One. 2010 Sep. 2; 5(9). pii: e12529). For example, CEACAM-1 has been described as a heterophilic ligand for TIM-3 and as playing a role in TIM-3-mediated T cell tolerance and exhaustion (see e.g., WO 2014/022332; Huang, et al. (2014) Nature doi:10.1038/nature13848). In embodiments, co-blockade of CEACAM-1 and TIM-3 has been shown to enhance an anti-tumor immune response in xenograft colorectal cancer models (see e.g., WO 2014/022332; Huang, et al. (2014), supra). In other embodiments, co-blockade of CEACAM-1 and PD-1 reduce T cell tolerance as described, e.g., in WO 2014/059251. Thus, CEACAM inhibitors can be used with the other immunomodulators described herein (e.g., anti-PD-1 and/or anti-TIM-3 inhibitors) to enhance an immune response against a cancer, e.g., a melanoma, a lung cancer (e.g., NSCLC), a bladder cancer, a colon cancer an ovarian cancer, and other cancers as described herein.


LAG-3 (lymphocyte activation gene-3 or CD223) is a cell surface molecule expressed on activated T cells and B cells that has been shown to play a role in CD8+ T cell exhaustion. Antibodies, antibody fragments, and other inhibitors of LAG-3 and its ligands are available in the art and may be used combination with a CD19 CAR described herein. For example, BMS-986016 (Bristol-Myers Squib) is a monoclonal antibody that targets LAG3. IMP701 (Immutep) is an antagonist LAG-3 antibody and IMP731 (Immutep and GlaxoSmithKline) is a depleting LAG-3 antibody. Other LAG-3 inhibitors include IMP321 (Immutep), which is a recombinant fusion protein of a soluble portion of LAG3 and Ig that binds to MHC class II molecules and activates antigen presenting cells (APC). Other antibodies are disclosed, e.g., in WO2010/019570.


In some embodiments, the agent which enhances the activity of a CAR-expressing cell can be, e.g., a fusion protein comprising a first domain and a second domain, wherein the first domain is an inhibitory molecule, or fragment thereof, and the second domain is a polypeptide that is associated with a positive signal, e.g., a polypeptide comprising an intracellular signaling domain as described herein. In some embodiments, the polypeptide that is associated with a positive signal can include a costimulatory domain of CD28, CD27, ICOS, e.g., an intracellular signaling domain of CD28, CD27 and/or ICOS, and/or a primary signaling domain, e.g., of CD3 zeta, e.g., described herein. In one embodiment, the fusion protein is expressed by the same cell that expressed the CAR. In another embodiment, the fusion protein is expressed by a cell, e.g., a T cell that does not express a CAR of the present invention.


In one embodiment, the agent which enhances activity of a CAR-expressing cell described herein is miR-17-92.


In one embodiment, the agent which enhances activity of a CAR-described herein is a cytokine. Cytokines have important functions related to T cell expansion, differentiation, survival, and homeostasis. Cytokines that can be administered to the subject receiving a CAR-expressing cell described herein include: IL-2, IL-4, IL-7, IL-9, IL-15, IL-18, and IL-21, or a combination thereof. In preferred embodiments, the cytokine administered is IL-7, IL-15, or IL-21, or a combination thereof. The cytokine can be administered once a day or more than once a day, e.g., twice a day, three times a day, or four times a day. The cytokine can be administered for more than one day, e.g. the cytokine is administered for 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, or 4 weeks. For example, the cytokine is administered once a day for 7 days.


In embodiments, the cytokine is administered in combination with CAR-expressing T cells. The cytokine can be administered simultaneously or concurrently with the CAR-expressing T cells, e.g., administered on the same day. The cytokine may be prepared in the same pharmaceutical composition as the CAR-expressing T cells, or may be prepared in a separate pharmaceutical composition. Alternatively, the cytokine can be administered shortly after administration of the CAR-expressing T cells, e.g., 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days after administration of the CAR-expressing T cells. In embodiments where the cytokine is administered in a dosing regimen that occurs over more than one day, the first day of the cytokine dosing regimen can be on the same day as administration with the CAR-expressing T cells, or the first day of the cytokine dosing regimen can be 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days after administration of the CAR-expressing T cells. In one embodiment, on the first day, the CAR-expressing T cells are administered to the subject, and on the second day, a cytokine is administered once a day for the next 7 days. In a preferred embodiment, the cytokine to be administered in combination with CAR-expressing T cells is IL-7, IL-15, or IL-21.


In other embodiments, the cytokine is administered a period of time after administration of CAR-expressing cells, e.g., at least 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 10 weeks, 12 weeks, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, or 1 year or more after administration of CAR-expressing cells. In one embodiment, the cytokine is administered after assessment of the subject's response to the CAR-expressing cells. For example, the subject is administered CAR-expressing cells according to the dosage and regimens described herein. The response of the subject to CAR-expressing cell therapy is assessed at 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 10 weeks, 12 weeks, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, or 1 year or more after administration of CAR-expressing cells, using any of the methods described herein, including inhibition of tumor growth, reduction of circulating tumor cells, or tumor regression. Subjects that do not exhibit a sufficient response to CAR-expressing cell therapy can be administered a cytokine. Administration of the cytokine to the subject that has sub-optimal response to the CAR-expressing cell therapy improves CAR-expressing cell efficacy or anti-cancer activity. In a preferred embodiment, the cytokine administered after administration of CAR-expressing cells is IL-7.


Combination with a Low Dose of an mTOR Inhibitor


In one embodiment, the cells expressing a CAR molecule, e.g., a CAR molecule described herein, are administered in combination with a low, immune enhancing dose of an mTOR inhibitor.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 5 but no more than 90%, at least 10 but no more than 90%, at least 15, but no more than 90%, at least 20 but no more than 90%, at least 30 but no more than 90%, at least 40 but no more than 90%, at least 50 but no more than 90%, at least 60 but no more than 90%, or at least 70 but no more than 90%.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 5 but no more than 80%, at least 10 but no more than 80%, at least 15, but no more than 80%, at least 20 but no more than 80%, at least 30 but no more than 80%, at least 40 but no more than 80%, at least 50 but no more than 80%, or at least 60 but no more than 80%.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 5 but no more than 70%, at least 10 but no more than 70%, at least 15, but no more than 70%, at least 20 but no more than 70%, at least 30 but no more than 70%, at least 40 but no more than 70%, or at least 50 but no more than 70%.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 5 but no more than 60%, at least 10 but no more than 60%, at least 15, but no more than 60%, at least 20 but no more than 60%, at least 30 but no more than 60%, or at least 40 but no more than 60%.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 5 but no more than 50%, at least 10 but no more than 50%, at least 15, but no more than 50%, at least 20 but no more than 50%, at least 30 but no more than 50%, or at least 40 but no more than 50%.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 5 but no more than 40%, at least 10 but no more than 40%, at least 15, but no more than 40%, at least 20 but no more than 40%, at least 30 but no more than 40%, or at least 35 but no more than 40%.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 5 but no more than 30%, at least 10 but no more than 30%, at least 15, but no more than 30%, at least 20 but no more than 30%, or at least 25 but no more than 30%.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 1, 2, 3, 4 or 5 but no more than 20%, at least 1, 2, 3, 4 or 5 but no more than 30%, at least 1, 2, 3, 4 or 5, but no more than 35, at least 1, 2, 3, 4 or 5 but no more than 40%, or at least 1, 2, 3, 4 or 5 but no more than 45%.


In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 1, 2, 3, 4 or 5 but no more than 90%.


As is discussed herein, the extent of mTOR inhibition can be expressed as the extent of P70 S6 kinase inhibition, e.g., the extent of mTOR inhibition can be determined by the level of decrease in P70 S6 kinase activity, e.g., by the decrease in phosphorylation of a P70 S6 kinase substrate. The level of mTOR inhibition can be evaluated by a method described herein, e.g. by the Boulay assay, or measurement of phosphorylated S6 levels by western blot.


Exemplary mTOR Inhibitors


As used herein, the term “mTOR inhibitor” refers to a compound or ligand, or a pharmaceutically acceptable salt thereof, which inhibits the mTOR kinase in a cell. In an embodiment an mTOR inhibitor is an allosteric inhibitor. In an embodiment an mTOR inhibitor is a catalytic inhibitor.


Allosteric mTOR inhibitors include the neutral tricyclic compound rapamycin (sirolimus), rapamycin-related compounds, that is compounds having structural and functional similarity to rapamycin including, e.g., rapamycin derivatives, rapamycin analogs (also referred to as rapalogs) and other macrolide compounds that inhibit mTOR activity.


Rapamycin is a known macrolide antibiotic produced by Streptomyces hygroscopicus having the structure shown in Formula A.




embedded image


See, e.g., McAlpine, J. B., et al., J. Antibiotics (1991) 44: 688; Schreiber, S. L., et al., J. Am. Chem. Soc. (1991) 113: 7433; U.S. Pat. No. 3,929,992. There are various numbering schemes proposed for rapamycin. To avoid confusion, when specific rapamycin analogs are named herein, the names are given with reference to rapamycin using the numbering scheme of formula A.


Rapamycin analogs useful in the invention are, for example, 0-substituted analogs in which the hydroxyl group on the cyclohexyl ring of rapamycin is replaced by OR1 in which R1 is hydroxyalkyl, hydroxyalkoxyalkyl, acylaminoalkyl, or aminoalkyl; e.g. RAD001, also known as, everolimus as described in U.S. Pat. No. 5,665,772 and WO94/09010 the contents of which are incorporated by reference. Other suitable rapamycin analogs include those substituted at the 26- or 28-position. The rapamycin analog may be an epimer of an analog mentioned above, particularly an epimer of an analog substituted in position 40, 28 or 26, and may optionally be further hydrogenated, e.g. as described in U.S. Pat. No. 6,015,815, WO95/14023 and WO99/15530 the contents of which are incorporated by reference, e.g. ABT578 also known as zotarolimus or a rapamycin analog described in U.S. Pat. No. 7,091,213, WO98/02441 and WO01/14387 the contents of which are incorporated by reference, e.g. AP23573 also known as ridaforolimus.


Examples of rapamycin analogs suitable for use in the present invention from U.S. Pat. No. 5,665,772 include, but are not limited to, 40-O-benzyl-rapamycin, 40-O-(4′-hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-dihydroxyethyl)]benzyl-rapamycin, 40-O-allyl-rapamycin, 40-O-[3′-(2,2-dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′E,4′S)-40-O-(4′,5′-dihydroxypent-2′-en-1′-yl)-rapamycin, 40-O-(2-hydroxy)ethoxycarbonylmethyl-rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-(6-hydroxy)hexyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-[(3S)-2,2-dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-dihydroxyprop-1-yl]-rapamycin, 40-O-(2-acetoxy)ethyl-rapamycin, 40-O-(2-nicotinoyloxy)ethyl-rapamycin, 40-O-[2-(N-morpholino)acetoxy]ethyl-rapamycin, 40-O-(2-N-imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(2-aminoethyl)-rapamycin, 40-O-(2-acetaminoethyl)-rapamycin, 40-O-(2-nicotinamidoethyl)-rapamycin, 40-O-(2-(N-methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 40-O-(2-ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-tolylsulfonamidoethyl)-rapamycin and 40-O-[2-(4′,5′-dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin.


Other rapamycin analogs useful in the present invention are analogs where the hydroxyl group on the cyclohexyl ring of rapamycin and/or the hydroxy group at the 28 position is replaced with an hydroxyester group are known, for example, rapamycin analogs found in U.S. Pat. No. RE44,768, e.g. temsirolimus.


Other rapamycin analogs useful in the preset invention include those wherein the methoxy group at the 16 position is replaced with another substituent, preferably (optionally hydroxy-substituted) alkynyloxy, benzyl, orthomethoxybenzyl or chlorobenzyl and/or wherein the mexthoxy group at the 39 position is deleted together with the 39 carbon so that the cyclohexyl ring of rapamycin becomes a cyclopentyl ring lacking the 39 position methyoxy group; e.g. as described in WO95/16691 and WO96/41807 the contents of which are incorporated by reference. The analogs can be further modified such that the hydroxy at the 40-position of rapamycin is alkylated and/or the 32-carbonyl is reduced.


Rapamycin analogs from WO95/16691 include, but are not limited to, 16-demthoxy-16-(pent-2-ynyl)oxy-rapamycin, 16-demthoxy-16-(but-2-ynyl)oxy-rapamycin, 16-demthoxy-16-(propargyl)oxy-rapamycin, 16-demethoxy-16-(4-hydroxy-but-2-ynyl)oxy-rapamycin, 16-demthoxy-16-benzyloxy-40-O-(2-hydroxyethyl)-rapamycin, 16-demthoxy-16-benzyloxy-rapamycin, 16-demethoxy-16-ortho-methoxybenzyl-rapamycin, 16-demethoxy-40-O-(2-methoxyethyl)-16-pent-2-ynyl)oxy-rapamycin, 39-demethoxy-40-desoxy-39-formyl-42-nor-rapamycin, 39-demethoxy-40-desoxy-39-hydroxymethyl-42-nor-rapamycin, 39-demethoxy-40-desoxy-39-carboxy-42-nor-rapamycin, 39-demethoxy-40-desoxy-39-(4-methyl-piperazin-1-yl)carbonyl-42-nor-rapamycin, 39-demethoxy-40-desoxy-39-(morpholin-4-yl)carbonyl-42-nor-rapamycin, 39-demethoxy-40-desoxy-39-[N-methyl, N-(2-pyridin-2-yl-ethyl)]carbamoyl-42-nor-rapamycin and 39-demethoxy-40-desoxy-39-(p-toluenesulfonylhydrazonomethyl)-42-nor-rapamycin.


Rapamycin analogs from WO96/41807 include, but are not limited to, 32-deoxo-rapamycin, 16-O-pent-2-ynyl-32-deoxo-rapamycin, 16-O-pent-2-ynyl-32-deoxo-40-O-(2-hydroxy-ethyl)-rapamycin, 16-O-pent-2-ynyl-32-(S)-dihydro-40-O-(2-hydroxyethyl)-rapamycin, 32(S)-dihydro-40-O-(2-methoxy)ethyl-rapamycin and 32(S)-dihydro-40-O-(2-hydroxyethyl)-rapamycin.


Another suitable rapamycin analog is umirolimus as described in US2005/0101624 the contents of which are incorporated by reference.


RAD001, otherwise known as everolimus (Afinitor®), has the chemical name (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-12-{(1R)-2-[(1S,3R,4R)-4-(2-hydroxyethoxy)-3-methoxycyclohexyl]-1-methylethyl}-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-aza-tricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentaone


Further examples of allosteric mTOR inhibitors include sirolimus (rapamycin, AY-22989), 40-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]-rapamycin (also called temsirolimus or CCI-779) and ridaforolimus (AP-23573/MK-8669). Other examples of allosteric mTor inhibitors include zotarolimus (ABT578) and umirolimus.


Alternatively or additionally, catalytic, ATP-competitive mTOR inhibitors have been found to target the mTOR kinase domain directly and target both mTORC1 and mTORC2. These are also more effective inhibitors of mTORC1 than such allosteric mTOR inhibitors as rapamycin, because they modulate rapamycin-resistant mTORC1 outputs such as 4EBP1-T37/46 phosphorylation and cap-dependent translation.


Catalytic inhibitors include: BEZ235 or 2-methyl-2-[4-(3-methyl-2-oxo-8-quinolin-3-yl-2,3-dihydro-imidazo[4,5-c]quinolin-1-yl)-phenyl]-propionitrile, or the monotosylate salt form. the synthesis of BEZ235 is described in WO2006/122806; CCG168 (otherwise known as AZD-8055, Chresta, C. M., et al., Cancer Res, 2010, 70(1), 288-298) which has the chemical name {5-[2,4-bis-((S)-3-methyl-morpholin-4-yl)-pyrido[2,3d]pyrimidin-7-yl]-2-methoxy-phenyl}-methanol; 3-[2,4-bis[(3 S)-3-methylmorpholin-4-yl]pyrido[2,3-d]pyrimidin-7-yl]-N-methylbenzamide (WO09104019); 3-(2-aminobenzo[d]oxazol-5-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (WO10051043 and WO2013023184); A N-(3-(N-(3-((3,5-dimethoxyphenyl)amino)quinoxaline-2-yl)sulfamoyl)phenyl)-3-methoxy-4-methylbenzamide (WO07044729 and WO12006552); PKI-587 (Venkatesan, A. M., J. Med. Chem., 2010, 53, 2636-2645) which has the chemical name 1-[4-[4-(dimethylamino)piperidine-1-carbonyl]phenyl]-3-[4-(4,6-dimorpholino-1,3,5-triazin-2-yl)phenyl]urea; GSK-2126458 (ACS Med. Chem. Lett., 2010, 1, 39-43) which has the chemical name 2,4-difluoro-N-{2-methoxy-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide; 5-(9-isopropyl-8-methyl-2-morpholino-9H-purin-6-yl)pyrimidin-2-amine (WO10114484); (E)-N-(8-(6-amino-5-(trifluoromethyl)pyridin-3-yl)-1-(6-(2-cyanopropan-2-yl)pyridin-3-yl)-3-methyl-1H-imidazo[4,5-c]quinolin-2(3H)-ylidene)cyanamide (WO12007926).


Further examples of catalytic mTOR inhibitors include 8-(6-methoxy-pyridin-3-yl)-3-methyl-1-(4-piperazin-1-yl-3-trifluoromethyl-phenyl)-1,3-dihydro-imidazo[4,5-c]quinolin-2-one (WO2006/122806) and Ku-0063794 (Garcia-Martinez J M, et al., Biochem J., 2009, 421(1), 29-42. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR).) WYE-354 is another example of a catalytic mTor inhibitor (Yu K, et al. (2009). Biochemical, Cellular, and In vivo Activity of Novel ATP-Competitive and Selective Inhibitors of the Mammalian Target of Rapamycin. Cancer Res. 69(15): 6232-6240).


mTOR inhibitors useful according to the present invention also include prodrugs, derivatives, pharmaceutically acceptable salts, or analogs thereof of any of the foregoing.


mTOR inhibitors, such as RAD001, may be formulated for delivery based on well-established methods in the art based on the particular dosages described herein. In particular, U.S. Pat. No. 6,004,973 (incorporated herein by reference) provides examples of formulations usable with the mTOR inhibitors described herein.


Evaluation of mTOR Inhibition


mTOR phosphorylates the kinase P70 S6, thereby activating P70 S6 kinase and allowing it to phosphorylate its substrate. The extent of mTOR inhibition can be expressed as the extent of P70 S6 kinase inhibition, e.g., the extent of mTOR inhibition can be determined by the level of decrease in P70 S6 kinase activity, e.g., by the decrease in phosphorylation of a P70 S6 kinase substrate. One can determine the level of mTOR inhibition, by measuring P70 S6 kinase activity (the ability of P70 S6 kinase to phosphorylate a substrate), in the absence of inhibitor, e.g., prior to administration of inhibitor, and in the presences of inhibitor, or after the administration of inhibitor. The level of inhibition of P70 S6 kinase gives the level of mTOR inhibition. Thus, if P70 S6 kinase is inhibited by 40%, mTOR activity, as measured by P70 S6 kinase activity, is inhibited by 40%. The extent or level of inhibition referred to herein is the average level of inhibition over the dosage interval. By way of example, if the inhibitor is given once per week, the level of inhibition is given by the average level of inhibition over that interval, namely a week.


Boulay et al., Cancer Res, 2004, 64:252-61, hereby incorporated by reference, teaches an assay that can be used to assess the level of mTOR inhibition (referred to herein as the Boulay assay). In an embodiment, the assay relies on the measurement of P70 S6 kinase activity from biological samples before and after administration of an mTOR inhibitor, e.g., RAD001. Samples can be taken at preselected times after treatment with an mTOR inhibitor, e.g., 24, 48, and 72 hours after treatment. Biological samples, e.g., from skin or peripheral blood mononuclear cells (PBMCs) can be used. Total protein extracts are prepared from the samples. P70 S6 kinase is isolated from the protein extracts by immunoprecipitation using an antibody that specifically recognizes the P70 S6 kinase. Activity of the isolated P70 S6 kinase can be measured in an in vitro kinase assay. The isolated kinase can be incubated with 40S ribosomal subunit substrates (which is an endogenous substrate of P70 S6 kinase) and gamma-32P under conditions that allow phosphorylation of the substrate. Then the reaction mixture can be resolved on an SDS-PAGE gel, and 32P signal analyzed using a PhosphorImager. A 32P signal corresponding to the size of the 40S ribosomal subunit indicates phosphorylated substrate and the activity of P70 S6 kinase. Increases and decreases in kinase activity can be calculated by quantifying the area and intensity of the 32P signal of the phosphorylated substrate (e.g., using ImageQuant, Molecular Dynamics), assigning arbitrary unit values to the quantified signal, and comparing the values from after administration with values from before administration or with a reference value. For example, percent inhibition of kinase activity can be calculated with the following formula: 1−(value obtained after administration/value obtained before administration)×100. As described above, the extent or level of inhibition referred to herein is the average level of inhibition over the dosage interval.


Methods for the evaluation of kinase activity, e.g., P70 S6 kinase activity, are also provided in U.S. Pat. No. 7,727,950, hereby incorporated by reference.


The level of mTOR inhibition can also be evaluated by a change in the ration of PD1 negative to PD1 positive T cells. T cells from peripheral blood can be identified as PD1 negative or positive by art-known methods.


Low-Dose mTOR Inhibitors


Methods described herein use low, immune enhancing, dose mTOR inhibitors, doses of mTOR inhibitors, e.g., allosteric mTOR inhibitors, including rapalogs such as RAD001. In contrast, levels of inhibitor that fully or near fully inhibit the mTOR pathway are immunosuppressive and are used, e.g., to prevent organ transplant rejection. In addition, high doses of rapalogs that fully inhibit mTOR also inhibit tumor cell growth and are used to treat a variety of cancers (See, e.g., Antineoplastic effects of mammalian target of rapamycine inhibitors. Salvadori M. World J Transplant. 2012 Oct. 24; 2(5):74-83; Current and Future Treatment Strategies for Patients with Advanced Hepatocellular Carcinoma: Role of mTOR Inhibition. Finn R S. Liver Cancer. 2012 November; 1(3-4):247-256; Emerging Signaling Pathways in Hepatocellular Carcinoma. Moeini A, Cornellà H, Villanueva A. Liver Cancer. 2012 September; 1(2):83-93; Targeted cancer therapy—Are the days of systemic chemotherapy numbered? Joo W D, Visintin I, Mor G. Maturitas. 2013 Sep. 20; Role of natural and adaptive immunity in renal cell carcinoma response to VEGFR-TKIs and mTOR inhibitor. Santoni M, Berardi R, Amantini C, Burattini L, Santini D, Santoni G, Cascinu S. Int J Cancer. 2013 Oct. 2).


The present invention is based, at least in part, on the surprising finding that doses of mTOR inhibitors well below those used in current clinical settings had a superior effect in increasing an immune response in a subject and increasing the ratio of PD-1 negative T cells/PD-1 positive T cells. It was surprising that low doses of mTOR inhibitors, producing only partial inhibition of mTOR activity, were able to effectively improve immune responses in human subjects and increase the ratio of PD-1 negative T cells/PD-1 positive T cells.


Alternatively, or in addition, without wishing to be bound by any theory, it is believed that low, a low, immune enhancing, dose of an mTOR inhibitor can increase naive T cell numbers, e.g., at least transiently, e.g., as compared to a non-treated subject. Alternatively or additionally, again while not wishing to be bound by theory, it is believed that treatment with an mTOR inhibitor after a sufficient amount of time or sufficient dosing results in one or more of the following:


an increase in the expression of one or more of the following markers: CD62Lhigh, CD127high, CD27+, and BCL2, e.g., on memory T cells, e.g., memory T cell precursors;


a decrease in the expression of KLRG1, e.g., on memory T cells, e.g., memory T cell precursors; and


an increase in the number of memory T cell precursors, e.g., cells with any one or combination of the following characteristics: increased CD62Lhigh increased CD127high, increased CD27+, decreased KLRG1, and increased BCL2;


and wherein any of the changes described above occurs, e.g., at least transiently, e.g., as compared to a non-treated subject (Araki, K et al. (2009) Nature 460:108-112). Memory T cell precursors are memory T cells that are early in the differentiation program. For example, memory T cells have one or more of the following characteristics: increased CD62Lhigh, increased CD127high increased CD27+, decreased KLRG1, and/or increased BCL2.


In an embodiment, the invention relates to a composition, or dosage form, of an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., a rapalog, rapamycin, or RAD001, or a catalytic mTOR inhibitor, which, when administered on a selected dosing regimen, e.g., once daily or once weekly, is associated with: a level of mTOR inhibition that is not associated with complete, or significant immune suppression, but is associated with enhancement of the immune response.


An mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., a rapalog, rapamycin, or RAD001, or a catalytic mTOR inhibitor, can be provided in a sustained release formulation. Any of the compositions or unit dosage forms described herein can be provided in a sustained release formulation. In some embodiments, a sustained release formulation will have lower bioavailability than an immediate release formulation. E.g., in embodiments, to attain a similar therapeutic effect of an immediate release formulation a sustained release formulation will have from about 2 to about 5, about 2.5 to about 3.5, or about 3 times the amount of inhibitor provided in the immediate release formulation.


In an embodiment, immediate release forms, e.g., of RAD001, typically used for one administration per week, having 0.1 to 20, 0.5 to 10, 2.5 to 7.5, 3 to 6, or about 5, mgs per unit dosage form, are provided. For once per week administrations, these immediate release formulations correspond to sustained release forms, having, respectively, 0.3 to 60, 1.5 to 30, 7.5 to 22.5, 9 to 18, or about 15 mgs of an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., rapamycin or RAD001. In embodiments both forms are administered on a once/week basis.


In an embodiment, immediate release forms, e.g., of RAD001, typically used for one administration per day, having 0.005 to 1.5, 0.01 to 1.5, 0.1 to 1.5, 0.2 to 1.5, 0.3 to 1.5, 0.4 to 1.5, 0.5 to 1.5, 0.6 to 1.5, 0.7 to 1.5, 0.8 to 1.5, 1.0 to 1.5, 0.3 to 0.6, or about 0.5 mgs per unit dosage form, are provided. For once per day administrations, these immediate release forms correspond to sustained release forms, having, respectively, 0.015 to 4.5, 0.03 to 4.5, 0.3 to 4.5, 0.6 to 4.5, 0.9 to 4.5, 1.2 to 4.5, 1.5 to 4.5, 1.8 to 4.5, 2.1 to 4.5, 2.4 to 4.5, 3.0 to 4.5, 0.9 to 1.8, or about 1.5 mgs of an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., rapamycin or RAD001. For once per week administrations, these immediate release forms correspond to sustained release forms, having, respectively, 0.1 to 30, 0.2 to 30, 2 to 30, 4 to 30, 6 to 30, 8 to 30, 10 to 30, 1.2 to 30, 14 to 30, 16 to 30, 20 to 30, 6 to 12, or about 10 mgs of an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., rapamycin or RAD001.


In an embodiment, immediate release forms, e.g., of RAD001, typically used for one administration per day, having 0.01 to 1.0 mgs per unit dosage form, are provided. For once per day administrations, these immediate release forms correspond to sustained release forms, having, respectively, 0.03 to 3 mgs of an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., rapamycin or RAD001.For once per week administrations, these immediate release forms correspond to sustained release forms, having, respectively, 0.2 to 20 mgs of an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., rapamycin or RAD001.


In an embodiment, immediate release forms, e.g., of RAD001, typically used for one administration per week, having 0.5 to 5.0 mgs per unit dosage form, are provided. For once per week administrations, these immediate release forms correspond to sustained release forms, having, respectively, 1.5 to 15 mgs of an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., rapamycin or RAD001.


As described above, one target of the mTOR pathway is the P70 S6 kinase. Thus, doses of mTOR inhibitors which are useful in the methods and compositions described herein are those which are sufficient to achieve no greater than 80% inhibition of P70 S6 kinase activity relative to the activity of the P70 S6 kinase in the absence of an mTOR inhibitor, e.g., as measured by an assay described herein, e.g., the Boulay assay. In a further aspect, the invention provides an amount of an mTOR inhibitor sufficient to achieve no greater than 38% inhibition of P70 S6 kinase activity relative to P70 S6 kinase activity in the absence of an mTOR inhibitor.


In one aspect the dose of mTOR inhibitor useful in the methods and compositions of the invention is sufficient to achieve, e.g., when administered to a human subject, 90 +/−5% (i.e., 85-95%), 89+/−5%, 88+/−5%, 87+/−5%, 86+/−5%, 85+/−5%, 84+/−5%, 83+/−5%, 82+/−5%, 81+/−5%, 80+/−5%, 79+/−5%, 78+/−5%, 77+/−5%, 76+/−5%, 75+/−5%, 74+/−5%, 73+/−5%, 72 +/−5%, 71 +/−5%, 70 +/−5%, 69 +/−5%, 68 +/−5%, 67 +/−5%, 66 +/−5%, 65+/−5%, 64 +/−5%, 63 +/−5%, 62 +/−5%, 61 +/−5%, 60 +/−5%, 59 +/−5%, 58 +/−5%, 57 +/−5%, 56 +/−5%, 55 +/−5%, 54 +/−5%, 54 +/−5%, 53 +/−5%, 52 +/−5%, 51 +/−5%, 50 +/−5%, 49+/−5%, 48 +/−5%, 47 +/−5%, 46 +/−5%, 45 +/−5%, 44 +/−5%, 43 +/−5%, 42 +/−5%, 41 +/−5%, 40+/−5%, 39 +/−5%, 38 +/−5%, 37 +/−5%, 36 +/−5%, 35 +/−5%, 34 +/−5%, 33 +/−5%, 32 +/−5%, 31 +/−5%, 30 +/−5%, 29 +/−5%, 28 +/−5%, 27 +/−5%, 26 +/−5%, 25 +/−5%, 24 +/−5%, 23+/−5%, 22 +/−5%, 21 +/−5%, 20 +/−5%, 19 +/−5%, 18 +/−5%, 17 +/−5%, 16 +/−5%, 15 +/−5%, 14+/−5%, 13 +/−5%, 12 +/−5%, 11 +/−5%, or 10 +/−5%, inhibition of P70 S6 kinase activity, e.g., as measured by an assay described herein, e.g., the Boulay assay.


P70 S6 kinase activity in a subject may be measured using methods known in the art, such as, for example, according to the methods described in U.S. Pat. No. 7,727,950, by immunoblot analysis of phosphoP70 S6K levels and/or phosphoP70 S6 levels or by in vitro kinase activity assays.


As used herein, the term “about” in reference to a dose of mTOR inhibitor refers to up to a +/−10% variability in the amount of mTOR inhibitor, but can include no variability around the stated dose.


In some embodiments, the invention provides methods comprising administering to a subject an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, at a dosage within a target trough level. In some embodiments, the trough level is significantly lower than trough levels associated with dosing regimens used in organ transplant and cancer patients. In an embodiment mTOR inhibitor, e.g., RAD001, or rapamycin, is administered to result in a trough level that is less than ½, ¼, 1/10, or 1/20 of the trough level that results in immunosuppression or an anticancer effect. In an embodiment mTOR inhibitor, e.g., RAD001, or rapamycin, is administered to result in a trough level that is less than ½, ¼, 1/10, or 1/20 of the trough level provided on the FDA approved packaging insert for use in immunosuppression or an anticancer indications.


In an embodiment a method disclosed herein comprises administering to a subject an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, at a dosage that provides a target trough level of 0.1 to 10 ng/ml, 0.1 to 5 ng/ml, 0.1 to 3 ng/ml, 0.1 to 2 ng/ml, or 0.1 to 1 ng/ml.


In an embodiment a method disclosed herein comprises administering to a subject an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, at a dosage that provides a target trough level of 0.2 to 10 ng/ml, 0.2 to 5 ng/ml, 0.2 to 3 ng/ml, 0.2 to 2 ng/ml, or 0.2 to 1 ng/ml.


In an embodiment a method disclosed herein comprises administering to a subject an mTOR inhibitor, e.g. an, allosteric inhibitor, e.g., RAD001, at a dosage that provides a target trough level of 0.3 to 10 ng/ml, 0.3 to 5 ng/ml, 0.3 to 3 ng/ml, 0.3 to 2 ng/ml, or 0.3 to 1 ng/ml.


In an embodiment a method disclosed herein comprises administering to a subject an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, at a dosage that provides a target trough level of 0.4 to 10 ng/ml, 0.4 to 5 ng/ml, 0.4 to 3 ng/ml, 0.4 to 2 ng/ml, or 0.4 to 1 ng/ml.


In an embodiment a method disclosed herein comprises administering to a subject an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, at a dosage that provides a target trough level of 0.5 to 10 ng/ml, 0.5 to 5 ng/ml, 0.5 to 3 ng/ml, 0.5 to 2 ng/ml, or 0.5 to 1 ng/ml.


In an embodiment a method disclosed herein comprises administering to a subject an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, at a dosage that provides a target trough level of 1 to 10 ng/ml, 1 to 5 ng/ml, 1 to 3 ng/ml, or 1 to 2 ng/ml.


As used herein, the term “trough level” refers to the concentration of a drug in plasma just before the next dose, or the minimum drug concentration between two doses.


In some embodiments, a target trough level of RAD001 is in a range of between about 0.1 and 4.9 ng/ml. In an embodiment, the target trough level is below 3 ng/ml, e.g., is between 0.3 or less and 3 ng/ml. In an embodiment, the target trough level is below 3 ng/ml, e.g., is between 0.3 or less and 1 ng/ml.


In a further aspect, the invention can utilize an mTOR inhibitor other than RAD001 in an amount that is associated with a target trough level that is bioequivalent to the specified target trough level for RAD001. In an embodiment, the target trough level for an mTOR inhibitor other than RAD001, is a level that gives the same level of mTOR inhibition (e.g., as measured by a method described herein, e.g., the inhibition of P70 S6) as does a trough level of RAD001 described herein.


Pharmaceutical Compositions: mTOR Inhibitors


In one aspect, the present invention relates to pharmaceutical compositions comprising an mTOR inhibitor, e.g., an mTOR inhibitor as described herein, formulated for use in combination with CAR cells described herein.


In some embodiments, the mTOR inhibitor is formulated for administration in combination with an additional, e.g., as described herein.


In general, compounds of the invention will be administered in therapeutically effective amounts as described above via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents.


The pharmaceutical formulations may be prepared using conventional dissolution and mixing procedures. For example, the bulk drug substance (e.g., an mTOR inhibitor or stabilized form of the compound (e.g., complex with a cyclodextrin derivative or other known complexation agent) is dissolved in a suitable solvent in the presence of one or more of the excipients described herein. The mTOR inhibitor is typically formulated into pharmaceutical dosage forms to provide an easily controllable dosage of the drug and to give the patient an elegant and easily handleable product.


Compounds of the invention can be administered as pharmaceutical compositions by any conventional route, in particular enterally, e.g., orally, e.g., in the form of tablets or capsules, or parenterally, e.g., in the form of injectable solutions or suspensions, topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form. Where an mTOR inhibitor is administered in combination with (either simultaneously with or separately from) another agent as described herein, in one aspect, both components can be administered by the same route (e.g., parenterally). Alternatively, another agent may be administered by a different route relative to the mTOR inhibitor. For example, an mTOR inhibitor may be administered orally and the other agent may be administered parenterally.


Sustained Release

mTOR inhibitors, e.g., allosteric mTOR inhibitors or catalytic mTOR inhibitors, disclosed herein can be provided as pharmaceutical formulations in form of oral solid dosage forms comprising an mTOR inhibitor disclosed herein, e.g., rapamycin or RAD001, which satisfy product stability requirements and/or have favorable pharmacokinetic properties over the immediate release (IR) tablets, such as reduced average plasma peak concentrations, reduced inter- and intra-patient variability in the extent of drug absorption and in the plasma peak concentration, reduced Cmax/Cmin ratio and/or reduced food effects. Provided pharmaceutical formulations may allow for more precise dose adjustment and/or reduce frequency of adverse events thus providing safer treatments for patients with an mTOR inhibitor disclosed herein, e.g., rapamycin or RAD001.


In some embodiments, the present disclosure provides stable extended release formulations of an mTOR inhibitor disclosed herein, e.g., rapamycin or RAD001, which are multi-particulate systems and may have functional layers and coatings.


The term “extended release, multi-particulate formulation as used herein refers to a formulation which enables release of an mTOR inhibitor disclosed herein, e.g., rapamycin or RAD001, over an extended period of time e.g. over at least 1, 2, 3, 4, 5 or 6 hours. The extended release formulation may contain matrices and coatings made of special excipients, e.g., as described herein, which are formulated in a manner as to make the active ingredient available over an extended period of time following ingestion.


The term “extended release” can be interchangeably used with the terms “sustained release” (SR) or “prolonged release”. The term “extended release” relates to a pharmaceutical formulation that does not release active drug substance immediately after oral dosing but over an extended in accordance with the definition in the pharmacopoeias Ph. Eur. (7th edition) mongraph for tablets and capsules and USP general chapter <1151> for pharmaceutical dosage forms. The term “Immediate Release” (IR) as used herein refers to a pharmaceutical formulation which releases 85% of the active drug substance within less than 60 minutes in accordance with the definition of “Guidance for Industry: “Dissolution Testing of Immediate Release Solid Oral Dosage Forms” (FDA CDER, 1997). In some embodiments, the term “immediate release” means release of everolismus from tablets within the time of 30 minutes, e.g., as measured in the dissolution assay described herein.


Stable extended release formulations of an mTOR inhibitor disclosed herein, e.g., rapamycin or RAD001, can be characterized by an in-vitro release profile using assays known in the art, such as a dissolution assay as described herein: a dissolution vessel filled with 900 mL phosphate buffer pH 6.8 containing sodium dodecyl sulfate 0.2% at 37° C. and the dissolution is performed using a paddle method at 75 rpm according to USP by according to USP testing monograph 711, and Ph. Eur. testing monograph 2.9.3. respectively.


In some embodiments, stable extended release formulations of an mTOR inhibitor disclosed herein, e.g., rapamycin or RAD001, release the mTOR inhibitor in the in-vitro release assay according to following release specifications:


0.5 h: <45%, or <40, e.g., <30%


1 h: 20-80%, e.g., 30-60%


2 h: >50%, or >70%, e.g., >75%


3 h: >60%, or >65%, e.g., >85%, e.g., >90%.


In some embodiments, stable extended release formulations of an mTOR inhibitor disclosed herein, e.g., rapamycin or RAD001, release 50% of the mTOR inhibitor not earlier than 45, 60, 75, 90, 105 min or 120 min in the in-vitro dissolution assay.


Biopolymer Delivery Methods

In some embodiments, one or more CAR-expressing cells as disclosed herein can be administered or delivered to the subject via a biopolymer scaffold, e.g., a biopolymer implant. Biopolymer scaffolds can support or enhance the delivery, expansion, and/or dispersion of the CAR-expressing cells described herein. A biopolymer scaffold comprises a biocompatible (e.g., does not substantially induce an inflammatory or immune response) and/or a biodegradable polymer that can be naturally occurring or synthetic.


Examples of suitable biopolymers include, but are not limited to, agar, agarose, alginate, alginate/calcium phosphate cement (CPC), beta-galactosidase (β-GAL), (1,2,3,4,6-pentaacetyl a-D-galactose), cellulose, chitin, chitosan, collagen, elastin, gelatin, hyaluronic acid collagen, hydroxyapatite, poly(3-hydroxybutyrate-co-3-hydroxy-hexanoate) (PHBHHx), poly(lactide), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLG), polyethylene oxide (PEO), poly(lactic-co-glycolic acid) (PLGA), polypropylene oxide (PPO), polyvinyl alcohol) (PVA), silk, soy protein, and soy protein isolate, alone or in combination with any other polymer composition, in any concentration and in any ratio. The biopolymer can be augmented or modified with adhesion- or migration-promoting molecules, e.g., collagen-mimetic peptides that bind to the collagen receptor of lymphocytes, and/or stimulatory molecules to enhance the delivery, expansion, or function, e.g., anti-cancer activity, of the cells to be delivered. The biopolymer scaffold can be an injectable, e.g., a gel or a semi-solid, or a solid composition.


In some embodiments, CAR-expressing cells described herein are seeded onto the biopolymer scaffold prior to delivery to the subject. In embodiments, the biopolymer scaffold further comprises one or more additional therapeutic agents described herein (e.g., another CAR-expressing cell, an antibody, or a small molecule) or agents that enhance the activity of a CAR-expressing cell, e.g., incorporated or conjugated to the biopolymers of the scaffold. In embodiments, the biopolymer scaffold is injected, e.g., intratumorally, or surgically implanted at the tumor or within a proximity of the tumor sufficient to mediate an anti-tumor effect. Additional examples of biopolymer compositions and methods for their delivery are described in Stephan et al., Nature Biotechnology, 2015, 33:97-101; and WO2014/110591.


Pharmaceutical Compositions and Treatments

Pharmaceutical compositions of the present invention may comprise a CAR-expressing cell, e.g., a plurality of CAR-expressing cells, as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the present invention are in one aspect formulated for intravenous administration.


Pharmaceutical compositions of the present invention may be administered in a manner appropriate to the disease to be treated (or prevented). The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease, although appropriate dosages may be determined by clinical trials.


In one embodiment, the pharmaceutical composition is substantially free of, e.g., there are no detectable levels of a contaminant, e.g., selected from the group consisting of endotoxin, mycoplasma, replication competent lentivirus (RCL), p24, VSV-G nucleic acid, HIV gag, residual anti-CD3/anti-CD28 coated beads, mouse antibodies, pooled human serum, bovine serum albumin, bovine serum, culture media components, vector packaging cell or plasmid components, a bacterium and a fungus. In one embodiment, the bacterium is at least one selected from the group consisting of Alcaligenes faecalis, Candida albicans, Escherichia coli, Haemophilus influenza, Neisseria meningitides, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumonia, and Streptococcus pyogenes group A.


When “an immunologically effective amount,” “an anti-tumor effective amount,” “a tumor-inhibiting effective amount,” or “therapeutic amount” is indicated, the precise amount of the compositions of the present invention to be administered can be determined by a physician with consideration of individual differences in age, weight, tumor size, extent of infection or metastasis, and condition of the patient (subject). It can generally be stated that a pharmaceutical composition comprising the immune effector cells (e.g., T cells, NK cells) described herein may be administered at a dosage of 104 to 109 cells/kg body weight, in some instances 105 to 106 cells/kg body weight, including all integer values within those ranges. T cell compositions may also be administered multiple times at these dosages. The cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319:1676, 1988).


In certain aspects, it may be desired to administer activated immune effector cells (e.g., T cells, NK cells) to a subject and then subsequently redraw blood (or have an apheresis performed), activate immune effector cells (e.g., T cells, NK cells) therefrom according to the present invention, and reinfuse the patient with these activated and expanded immune effector cells (e.g., T cells, NK cells). This process can be carried out multiple times every few weeks. In certain aspects, immune effector cells (e.g., T cells, NK cells) can be activated from blood draws of from 10 cc to 400 cc. In certain aspects, immune effector cells (e.g., T cells, NK cells) are activated from blood draws of 20 cc, 30 cc, 40 cc, 50 cc, 60 cc, 70 cc, 80 cc, 90 cc, or 100 cc.


The administration of the subject compositions may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The compositions described herein may be administered to a patient trans arterially, subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous (i.v.) injection, or intraperitoneally. In one aspect, the T cell compositions of the present invention are administered to a patient by intradermal or subcutaneous injection. In one aspect, the T cell compositions of the present invention are administered by i.v. injection. The compositions of immune effector cells (e.g., T cells, NK cells) may be injected directly into a tumor, lymph node, or site of infection.


In a particular exemplary aspect, subjects may undergo leukapheresis, wherein leukocytes are collected, enriched, or depleted ex vivo to select and/or isolate the cells of interest, e.g., T cells. These T cell isolates may be expanded by methods known in the art and treated such that one or more CAR constructs of the invention may be introduced, thereby creating a CAR T cell of the invention. Subjects in need thereof may subsequently undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain aspects, following or concurrent with the transplant, subjects receive an infusion of the expanded CAR T cells of the present invention. In an additional aspect, expanded cells are administered before or following surgery.


The dosage of the above treatments to be administered to a patient will vary with the precise nature of the condition being treated and the recipient of the treatment. The scaling of dosages for human administration can be performed according to art-accepted practices. The dose for CAMPATH, for example, will generally be in the range 1 to about 100 mg for an adult patient, usually administered daily for a period between 1 and 30 days. The preferred daily dose is 1 to 10 mg per day although in some instances larger doses of up to 40 mg per day may be used (described in U.S. Pat. No. 6,120,766).


In one embodiment, the CAR is introduced into immune effector cells (e.g., T cells, NK cells), e.g., using in vitro transcription, and the subject (e.g., human) receives an initial administration of CAR immune effector cells (e.g., T cells, NK cells) of the invention, and one or more subsequent administrations of the CAR immune effector cells (e.g., T cells, NK cells) of the invention, wherein the one or more subsequent administrations are administered less than 15 days, e.g., 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 days after the previous administration. In one embodiment, more than one administration of the CAR immune effector cells (e.g., T cells, NK cells) of the invention are administered to the subject (e.g., human) per week, e.g., 2, 3, or 4 administrations of the CAR immune effector cells (e.g., T cells, NK cells) of the invention are administered per week. In one embodiment, the subject (e.g., human subject) receives more than one administration of the CAR immune effector cells (e.g., T cells, NK cells) per week (e.g., 2, 3 or 4 administrations per week) (also referred to herein as a cycle), followed by a week of no CAR immune effector cells (e.g., T cells, NK cells) administrations, and then one or more additional administration of the CAR immune effector cells (e.g., T cells, NK cells) (e.g., more than one administration of the CAR immune effector cells (e.g., T cells, NK cells) per week) is administered to the subject. In another embodiment, the subject (e.g., human subject) receives more than one cycle of CAR immune effector cells (e.g., T cells, NK cells), and the time between each cycle is less than 10, 9, 8, 7, 6, 5, 4, or 3 days. In one embodiment, the CAR immune effector cells (e.g., T cells, NK cells) are administered every other day for 3 administrations per week. In one embodiment, the CAR immune effector cells (e.g., T cells, NK cells) of the invention are administered for at least two, three, four, five, six, seven, eight or more weeks.


In one aspect, CAR-expressing cells of the present inventions are generated using lentiviral viral vectors, such as lentivirus. Cells, e.g., CARTs, generated that way will have stable CAR expression.


In one aspect, CAR-expressing cells, e.g., CARTs, are generated using a viral vector such as a gammaretroviral vector, e.g., a gammaretroviral vector described herein. CARTs generated using these vectors can have stable CAR expression.


In one aspect, CARTs transiently express CAR vectors for 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 days after transduction. Transient expression of CARs can be effected by RNA CAR vector delivery. In one aspect, the CAR RNA is transduced into the T cell by electroporation.


A potential issue that can arise in patients being treated using transiently expressing CAR immune effector cells (e.g., T cells, NK cells) (particularly with murine scFv bearing CARTs) is anaphylaxis after multiple treatments.


Without being bound by this theory, it is believed that such an anaphylactic response might be caused by a patient developing humoral anti-CAR response, i.e., anti-CAR antibodies having an anti-IgE isotype. It is thought that a patient's antibody producing cells undergo a class switch from IgG isotype (that does not cause anaphylaxis) to IgE isotype when there is a ten to fourteen day break in exposure to antigen.


If a patient is at high risk of generating an anti-CAR antibody response during the course of transient CAR therapy (such as those generated by RNA transductions), CART infusion breaks should not last more than ten to fourteen days.


EXAMPLES

The invention is further described in detail by reference to the following experimental examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified. Thus, the invention should in no way be construed as being limited to the following examples, but rather, should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.


Example 1
SHP1 Inhibition by SSG

CAR T cells typically undergo hypofunction after injection into tumor-bearing immunodeficient mice that is attributable, in part, to SHP1 activity. The inability to lyse tumors and secrete cytokines in CAR TILs isolated from NSG flank tumors was reversible by exposing them ex vivo to the SHP1 inhibitor, SSG, during the overnight coculture with target tumor cells (FIG. 3). Although this observation supports SHP1 playing a role in CAR TIL hypofunction, the potential of translation to the clinic has been limited due to SSG's well-described side effects of phlebotoxicity and pancreatitis.


Example 2
Full-Length Dominant Negative SHP1

Because of the side effect issues cited in Example 1, human T cells were genetically modified with full-length dominant-negative versions of SHP1 based on point mutations (amino-acid substitutions) previously published (Paling N R, Welham M J. Biochem J 2002 Dec. 15; 368(Pt 3):885-94). Two versions were tested in comparison to wild-type SHP1 (WT): 1) R459M and 2) C453S. Plasmids encoding for WT or mutated SHP1 were first transfected into human tumor cells and SHP1 activity was measured using a kit whose readout is the fluorescence emitted by the presence of free phosphates. Compared to WT plasmid, the two mutant plasmids led to a significant decrease in SHP1 activity (FIG. 4). The mutant constructs were then subcloned into a T7 promoter-driven mRNA transcription plasmid and mRNA encoding for WT and mutated SHP1's were made. Bead-activated T cells transduced with mesothelin CAR lentivirus underwent electroporation with the mRNAs. 24 hours later, a co-culture killing assay was done to test the effects of the SHP1 mutants on CAR directed killing. There was a statistically significant increase in 18 hr lysis of mesothelin-expressing tumor targets conferred by the C453S mutation (FIG. 5).


However, achieving reasonable co-expression and function of the SHP1 mutant with CAR was technically very challenging due to three reasons:

  • 1) For permanent transfection, mutated SHP1 is difficult to co-express at high frequency with CAR due to the two constructs being at the maximum packaging limit of lentivirus.
  • 2) The modest expression levels of mutated SHP1 are incapable of successfully interfering with wild-type/native SHP1 which is expressed in abundant amounts in effector T cells. 3) mRNA electroporation can be toxic to T cells and only allows for a limited time of expression (around 6 days).


Example 3
siRNA/shRNA Knockdown of SHP1

Knockdown of SHP1 via siRNA/shRNA was also evaluated. However, multiple attempts at modifying T cells with siRNA via electroporation or shRNA via viral transduction were hindered by toxicity as manifested by suppressed proliferation after anti-CD3/28 bead activation (FIG. 6).


Example 4
SH2-N as Inhibitor of SHP1

In light of these hurdles, an alternative way to interfere with SHP1 activity was investigated, with a focus on meeting two criteria:

  • 1) Avoid having to use siRNA/shRNA.
  • 2) Find an inhibitor with a short gene length that in combination with the CAR gene would be well below the total gene length limitation for lentivirus packaging.


Detailed molecular information about how SHP1 works was utilized. The catalytic site of SHP1 is normally occupied by the N-terminus of its SH2 domain (SH2-N). This self binding keeps SHP1 in its non-catalytic conformation (Poole A W, Jones M L. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 2005 November; 17(11):1323-32). SH2-N releases from the catalytic domain upon recognition of phosphorylated tyrosine motifs (pTyr) on immunoreceptor tyrosine-based inhibition motifs (ITIMs), which are located on the cytoplasmic tails of IRs like PD1 (Yaffe M B. Nat Rev Mol Cell Biol 2002 March; 3(3):177-86; Hampel K, Kaufhold I, Zacharias M, Bohmer F D, Imhof D. Chem Med Chem 2006 August; 1(8):869-77) (FIG. 7). Once the SH2-domain binds to the ITIM, the catalytic activity of SHP1 is “released”.


Expressing the endogenous SH2-N domain of SHP1 along with the CAR was considered, with the idea that it would occupy the catalytic site and reduce SHP1 function. However, given that this small protein would also bind to phosphorylated ITIMs and be pulled away from the SHP1 catalytic site, it was hypothesized that mutating the SH2-N domain residues that were involved in ITIM binding would make a protein less likely to be dislodged from the SHP1 catalytic site and thus be a better inhibitor.


Based on this hypothesis, gene sequences encoding for SH2-N with and without an amino-acid mutation (R30K) in the pTyr recognition site were designed. The sequence for SH2-N was based off a previously published sequence (Teichmann, #999; Poole, 2005. #596). The mutation was based off of previously published description of the sequence within SH2-N which recognizes the phosphorylated tyrosine motif (Thaventhiran T, Sethu S, Yeang H X, Laith A H, Hamdam J, Sathish J G. J Clin Cell Immunol 2012;S12:1-12. #612; Hampel, 2006. #576). The specific mutation was designed to disrupt the ability of SH2-N occupying the enzymatic cleft of SHP1 to recognize phosphorylated tyrosine motifs releasing it from the cleft. This minigene was incorporated into a lentiviral expression plasmid encoding for CAR using a bicistronic 2A platform. Experiments were performed to gather in-vitro and in-vivo data describing the SH2-N-R30K's ability to augment CAR T cell function.


Example 5
SH2-N and CAR Constructs

The SH2-N and the SH2-N-R30K constructs were designed and ordered from IDT (Coralville, Iowa) (FIG. 8).


These sequences were then subcloned into a lentiviral expression plasmid encoding for the mesothelin directed CAR, SS1BBz, utilizing standard molecular biology techniques (Carpenito C, Milone M C, Hassan R, Simonet J C, Lakhal M, Suhoski M M, et al. Proc Natl Acad Sci USA 2009 Mar. 3; 106(9):3360-5) (FIG. 9). Unlike previous larger DN constructs (see Example 2), high titer lentivirus was easily packaged using 293T cells according to standard protocols utilizing third generation lentivirus packaging plasmids.


Example 6
Cytokine Production of Transduced T Cells

CD8 and CD4 human T cells acquired from healthy donors from Penn's Human Immunology Core were subjected to anti-CD3/CD28 bead activation. They were then transduced with lentivirus encoding for CAR, CAR/SH2-N, and CAR/SH2-N-R30K. Flow-cytometry analysis confirmed a transduction efficiency of approximately 50% across all three T cell types. After “resting down”, the T cells were then re-stimulated with plate-bound anti-CD3 antibody in the presences of Golgi-stop and Golgi-plug (BD, San Jose, Calif.) and were subjected to intracellular cytokine detection via flow cytometry. The hypothesis was that CAR T cells with inhibited SHP1 would activate more vigorously with TCR stimulation.


Analyzing the transduced CD8+ T cells, the SH2-N and SH2-N-R30K expressing T cells had the greatest percentage of cytokine producing cells, with SH2-N-R30K T cells having the greatest % of IL2 producers (FIG. 10). This was especially true on those transduced CD8+ T cells that had PD1 expression. Thus, for example, after CD3 stimulation, the percent of CD8 cells making IL2 was 4.3% in non-transduced T cells, 3.8% in T cells transduced with CARs, 7.2% in T cells transduced with the CAR/SH2-N construct, but 94.4% in the CAR/SH2-N-R30K construct.


Example 7
In Vitro Tumor Cell Lysis Assay

Next, to look at antigen-specific activity, the in-vitro killing ability of T cells prepared as described in Example 6 was tested. The different T cells were co-cultured with mesothelin-expressing tumor target cells (a human mesothelioma cell line, EMMESO, with constitutive expression of high levels of mesothelin and transduced to stably express firefly luciferase for purposes of measuring lytic activity via luminescence measurements) at different E:T ratios. This was also done with an EMMESO cell line transduced to stably express high levels of PDL1 (EMMESO-PDL1). CAR, CAR/SH2-N, and CAR/SH2-N-R30K T cells demonstrated very similar killing ability at four different E:T ratios over 18 hr of co-culture with EMMESO (FIG. 11, top). CAR T cell lytic activity was much reduced when reacted with high PDL1-expressing EMMESO cells (FIG. 11, bottom). The SH2-N and SH2-N-R30K CAR T cells showed significantly enhanced lytic ability when reacted against the PDL1-high tumor cells. This was especially true for the CAR/SH2-N-R30K T cells which demonstrated greater lytic ability of EMMESO-PDL1 cells than the CAR/SH1-N T cells. These data show that overexpression of the SH2-N domain of SHP1 in CAR T cells can augment cytokine secretion and in vitro tumor lytic ability especially in those CAR T cells expressing PD1. The R30K mutation, which prohibited recognition of phosphorylated tyrosines by and release of SH2-N piece, led to greater enhancement of cytokine secretion (e.g. IL2) and antigen-specific tumor lysis.


Example 8
In Vivo Anti-Tumor Activity

An in-vivo experiment testing the ability of the SHP1-based constructs to augment


CAR T cell anti-tumor activity was also conducted. NOD-scid IL2rγnull (NSG) mice of 6-8 weeks were injected subcutaneously in the flank with 5 million EMMESO-PDL1 tumor cells. After about 2 weeks, the established flank tumors reached a size of approximately 100 mm3. At this point, mice were randomly assigned to receive NTD T cells, NTD T cells+SSG (20 mg/kg every 2 days), CAR T cells, CAR T cells+SSG (20 mg/kg every 2 days), CAR/SH2-N T cells, or CAR/SH2-N-R30K T cells. The mice were injected with one dose of 10 million T cells per mouse via tail-vein. SSG injections were performed intramuscularly in the hind legs.


Caliper measurements of the flank tumor size revealed the slowing of tumor by the CAR T cells (FIG. 12, dark blue line vs. green line). There was no statistically significant augmentation of CAR T cell anti-tumor function by SSG injection. The SH2-N modification also did not lead to any significant augmentation of CAR T cell anti-tumor function (FIG. 12, light blue and green lines). The growth of the tumors in the CAR and the CAR/SH2-N T cell treated mice were essentially identical. The R30K modification was necessary to induce significant augmentation of CAR T cell anti-tumor activity. The SH2-N-R30K modification led to enhanced T cell control of EMMESO-PDL1 growth by more than 50% (FIG. 12, orange line).


Example 9
Mechanism Experiments

To evaluate the possible mechanisms underlying the results of the in-vivo experiment of Example 8, 27 days after T cell injection, the mice were sacrificed. The tumors were harvested and processed into single cell suspensions and subjected to flow cytometric analysis to examine the degree of TIL infiltration and IR expression. Compared to the mice that received CAR, CAR/SSG, and CAR/SH2-N, those mice that received CAR/SH2-N-R30K had significantly more TIL infiltration (37% of the tumor digest vs. 5-12%) (FIG. 13). Additionally, flow cytometry analysis revealed significantly less upregulation of PD1 and other IRs (i.e. Tim3/CEACAM1) on the CD8 population of TILs in the CAR/SH2-N-R30K TILs than the CAR TILs (FIG. 14).


The TILs were then isolated from the tumor digests using anti-CD45 based magnetic beads. Subsequently, the TILs were cocultured with EMMESO and EMMESO-PDL1 at different E:T ratios to test their ex-vivo anti-tumor activity. Isolated CAR TILs were significantly hypofunctional in their ability to lyse fresh tumor cells when compared to cryopreserved CAR T cells (cryoCAR; uninjected CAR T cells) (FIG. 15; “ cryoCAR” vs. “CAR TIL”). However, at multiple E:T ratios, especially at the lower ratios of 2.5:1 and 1.25:1, the CAR/SH2-N-R30K demonstrated significantly greater ex-vivo killing of both EMMESO and EMMESO-PDL1 tumor cells than CAR TILs (FIG. 15; “CAR/SH2-N-R30K TIL” vs. “CAR TIL”).


These data show that the truncated tail of SHP1 is able to augment the anti-tumor function of adoptively transferred human CAR T cells in animals bearing human solid tumors through multiple mechanisms that include: 1) by increasing the infiltration of CAR T cells into the tumor, 2) by leading to a less hypofunctional phenotype of CAR TIL as measured by expression of PD1, Tim3, and CEACAM1, and 3) by increased preservation of ex vivo tumor-lytic function. The SH2-N construct was unable to enhance in-vivo activity of CAR T cells. While not wishing to be bound by theory, the most likely reason is that although the SH2-N occupies the enzymatic cleft of SHP1, it can easily release upon recognizing phosphorylated tyrosine motifs (like those on PD1), leaving SHP1's immunosuppressive function intact. Thus, the R30K mutation is required in the SH2-N construct to keep it in the enzymatic cleft of SHP1.


In summary, the expression of the SH2-N-R30K domain in T cells can significantly augment the efficacy of adoptive CAR T cell therapy by increasing their effector function, particularly in the setting where IR checkpoint inhibition from molecules like PD1 is important. Addition of this SHP1 inhibitory protein could be used in T cells derived from blood, cord blood, bone marrow, and iPSC. This technology could be used to enhance T cell therapy in an anti-cancer setting, and also in chronic viral infections. This approach should work with CAR targeted to any antigen. It should also work equally well in any adoptively transferred T cells, for example T cells expressing transgenic TCRs.


Example 10
Further Embodiments and Considerations

Experiments are performed to test the anti-tumor activity of human CAR/SH2-N-R30K T cells using other tumor models, particularly tumors that express ligands binding to multiple IRs that are reported to signal through SHP1. In another experiment, a similar dominant-negative gene is introduced to interfere with SHP2 (another phosphatase similar to SHP1) that has also been suggested to be involved in PD1 signaling, but is less well characterized. An experiment is performed that compares unmodified CAR T cells with those transduced with each of SHP1 and SHP2 dominant-negative genes. An experiment is performed to test the effect of the two dominant-negative genes combined.


T cells expressing the SH2-N-R30K domain can be used to inhibit tumor growth as a monotherapy and/or have additive or synergistic anti-tumor activity given in combination with other tumor-cell directed therapies. Adoptive cell therapies are likely to include the development of CAR T cells and T cells expressing transgenic TCRs.


Success with CAR therapy has been achieved in hematologic tumors, but there has been less success reported in solid cancers. One reason for this may be the rapid inactivation of CAR function by the triggering of multiple IRs, like PD1. If this is the case, CAR T cells used to treat solid tumors will need to be resistant to multiple IR signaling pathways. The SH2-N-R30K construct, which can easily be inserted into any CAR (or T cells with transgenic TCRs) in a bicistronic fashion, will accomplish this goal. The SH2-N-R30K transgene is useful for the purpose of solid cancer therapies, further improving the efficacy of CAR T cells or transgenic TCR-expressing T cells.


Published studies have examined murine T cells with a conditional knockout of SHP1 demonstrating the ability to augment tumor control by effector T cells in a murine model of leukemia (Stromnes I M, Fowler C, Casamina C C, Georgopolos C M, McAfee M S, Schmitt T M, et al. J Immunol August 15; 189(4):1812-25). However, the technology of the present invention is different in that it offers two significant advantages—1) it can successfully abrogate SHP1 signaling in human effector T cells, 2) it can successfully augment tumor control using adoptively transferred T cells against solid tumors, which is the significant hurdle for this field of immunotherapy.


Several approaches are being researched to improve T cell efficacy in solid tumors, for example, a peptide that blocks PGE2 and adenosine inhibition (RIAD protein). It is possible combinations (e.g., of RIAD and SH2-N-R30K) will be needed.


There is a chemical compound called sodium stibogluconate (SSG) that is also known to interfere with SHP-1 as well as other protein tyrosine phosphatases. It is used to treat leishmaniasis, but has also been shown to partially reverse the dysfunction of PD1+ TILs. However, due to SSG's well-known adverse effects of pancreatic and phlebotoxicity, we feel the genetic method of interfering with SHP1 signaling, presented herein, is safer and more specific and would allow patients to avoid multiple injections of SSG.


Example 11
Exemplary Experiments with SHP Inhibitor Polypeptide
Background:

Immunotherapy using chimeric antigen receptor (CAR) T cells has demonstrated profound, durable success in hematologic malignancies. Solid tumors present hurdles to the successful application of CAR T cells. One is the upregulation of inhibitory receptors (IRs), like PD1 and CTLA4, many of which rely on shared signaling molecules to shut off T cell activation. One such molecule is SHP1 (Src homology region 2 dominant-negative SHP1 (dnSHP1) that is able to augment CAR T cell control of PDL1 positive solid tumors.


Materials and Methods:

The human mesothelioma cell line, EMP, was transduced to express high levels of mesothelin and PDL1 (EMMESO-PDL1). Activated human T cells from healthy donors were lentivirally transduced to express a mesothelin-directed CAR (mesoCAR) with and without a dnSHP1. MesoCAR and mesoCAR/dnSHP1 T cells were cocultured with tumor cells×18 hrs and specific lysis was measured. These T cells were also restimulated with plate-bound anti-CD3 overnight and were subjected to intracellular flow cytometry staining (ICS) of cytokines. NSG mice were injected subcutaneously in the flanks with 5×106 EMMESO-PDL1 tumor cells. After tumors established and grew to ˜150 mm3, mice were randomly assigned to one of the following treatments: 1) non-transduced (NTD) T cells, 2) mesoCAR T cells, 3) mesoCAR T cells+sodium stibogluconate (SSG; a chemical inhibitor of SHP1), 4) mesoCAR/dnSHP1 T cells. T cells were injected IV once at a dose of 10×106 T cells/mouse. SSG was administered IM at 20 mg/kg every 2 days. Tumors were measured serially. AT the end, mice were sacrificed, tumors were harvested, digested, processed into single cell suspension, and subjected to flow cytometry analysis. The tumor infiltrating lymphocytes (TILs) were also isolated and tested for function ex-vivo.


Results/Conclusion:

In vitro, mesoCAR T cells demonstrated suppressed lysis of EMMESO-PDL1 tumor cells compared to EMMESO cells. MesoCAR/dnSHP1 T cells were able to lyse EMMESO-PDL1 and EMMESO tumor cells with similar efficiency. AntiCD3 restimulation of T cells revealed enhanced secretion of TNF-alpha and IL2 by mesoCAR/dnSHP1 vs. mesoCAR T cells as measured by ICS. In vivo, SSG injections had minimal impact on mesoCAR T cell control of tumors, whereas mesoCAR/dnSHP1 T cells demonstrated significantly enhanced control of EMMESO-PDL1 tumor growth compared to mesoCAR T cells (60% greater decrease in tumor volume compared to mesoCAR T cells). TIL infiltration was 3-fold higher in tumors harvested from mice that received mesoCAR/dnSHP1 T cells compared to other groups. Isolated mesoCAR/dnSHP1 TILs demonstrated the greatest ex-vivo lysis of fresh tumor cells. DnSHP1 engineering is a powerful and novel way of blocking the suppression of CAR T cells by PD1 and other similar IRs.


Example 12
Impact of Dominant Negative SHP on TCR Signaling and Cytokine Production in the Presence of PD-L1

This example examines the impact of dominant negative SHP (dnSHP) on T cells in the presence of PD-L1-expressing tumor cells.


T cells were transduced to express the mesothelin directed CAR SS1BBz (“CARGFP cells”), SS1BBz and SHP-1 SH2-N R30K (SEQ ID NO: 41) (“dnSHP1 CAR cells”), SS1BBz and SHP-2 SH2-N R32K (SEQ ID NO: 44) (“dnSHP2 CAR cells”), or SS1BBz, SHP-1 SH2-N R30K (SEQ ID NO: 41), and SHP-2 SH2-N R32K (SEQ ID NO: 44) (“dnSHP1&2 CAR cells”). The construct co-expressing SHP-1 SH2-N R30K and SHP-2 SH2-N R32K comprises the nucleotide sequence of SEQ ID NO: 51. In this construct, the nucleotide sequence encoding SHP-1 SH2-N R30K (SEQ ID NO: 63) and the nucleotide sequence encoding SHP-2 SH2-N R32K (SEQ ID NO: 64) are separated by a nucleotide sequence encoding the P2A cleavage site.









(SEQ ID NO: 51)







atggtgcgatggatcaccgagatctgagcggtctggatgccgaaacgctg





ctgaaaggccgcggagtacacggatccttcctggcaaagcctagtcgaaa





aaaccaaggagacttttccttgagcgttcgggtgggtgatcaggtaactc





acatccgaatccaaaattccggcgattatatgatctgtacggaggcgaaa





aattcgcaactctgaccgagctggtcgagtattatacacagcagcaggga





gtactgcaggaccgcgatgggaccatcattcatctcaaatacccgctgGG





AAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGG





AGAACCCTGGACCTATGACAAGTAGAAGGTGGTTCCATCCAAACATTACG





GGGGTGGAAGCTGAAAACCTTCTGCTCACGAGGGGTGTGGACGGTTCTTT





CCTTGCCAAACCGAGTAAATCTAATCCCGGTGATTTCACTCTTTCCGTTC





GCCGGAATGGAGCAGTCACACACATAAAAATCCAGAACACGGGTGACTAT





TATGATCTGTATGGCGGGGAGAAGTTTGCAACTCTGGCAGAACTGGTGCA





GTATTACATGGAGCACCATGGGCAACTGAAGGAGAAGAATGGAGATGTTA





TTGAACTGAAGTATCCATTG










(SEQ ID NO: 63)







atggtgcgatggatcaccgagatctgagcggtctggatgccgaaacgctg





ctgaaaggccgcggagtacacggatccttcctggcaaagcctagtcgaaa





aaaccaaggagacttttccttgagcgttcgggtgggtgatcaggtaactc





acatccgaatccaaaattccggcgattatatgatctgtacggaggcgaaa





aattcgcaactctgaccgagctggtcgagtattatacacagcagcaggga





gtactgcaggaccgcgatgggaccatcattcatctcaaatacccgctg










(SEQ ID NO: 64)







ATGACAAGTAGAAGGTGGTTCCATCCAAACATTACGGGGGTGGAAGCTGA





AAACCTTCTGCTCACGAGGGGTGTGGACGGTTCTTTCCTTGCCAAACCGA





GTAAATCTAATCCCGGTGATTTCACTCTTTCCGTTCGCCGGAATGGAGCA





GTCACACACATAAAAATCCAGAACACGGGTGACTATTATGATCTGTATGG





CGGGGAGAAGTTTGCAACTCTGGCAGAACTGGTGCAGTATTACATGGAGC





ACCATGGGCAACTGAAGGAGAAGAATGGAGATGTTATTGAACTGAAGTAT





CCATTG






In a first study, phospho-flow cytometry was performed on activated human CARGFP cells, dnSHP1 CAR cells, dnSHP2 CAR cells, and dnSHP1&2 CAR cells that were co-cultured with EMMESO tumor cells or EMMESO-PD-L1 tumor cells for 0 to 90 minutes. As shown in FIG. 16B, PD-L1 expression on tumor cells decreased the level of phosphorylated Zap70 (pZap70; downstream TCR signaling molecule) on CARGFP T cells. However, CAR T cells with dnSHP1, dnSHP2, or dnSHP1&2 were relatively unaffected (FIG. 16B).


In a second study, CARGFP cells, dnSHP1 CAR cells, dnSHP2 CAR cells, and dnSHP1&2 CAR cells were co-cultured with EMMESO-PD-L1 tumor cells at 1:1 ratio for 4 days. Fresh tumor cells were fed during the co-culture. At the end of the 4 days, the cells were stimulated for 18 hours with cross-linked anti-CD3 antibody (10 μg/ml) in the presence of monensin/brefeldin and were subjected to intracellular flow cytometry staining. As shown in FIG. 17, CAR T cells with the dnSHP1, dnSHP2, or dnSHP1&2 constructs had greater IFNγ and IL2 staining.


EQUIVALENTS

The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety. While this invention has been disclosed with reference to specific aspects, it is apparent that other aspects and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such aspects and equivalent variations.

Claims
  • 1. A nucleic acid composition comprising (a) a nucleic acid molecule encoding a chimeric antigen receptor (CAR) polypeptide and(b) a nucleic acid molecule encoding an SHP inhibitor polypeptide, wherein said SHP inhibitor polypeptide comprises: (i) a mutation (e.g., one or more deletions or substitutions) in the ITIM-binding region (e.g., an SH2 domain, e.g., the N-terminal SH2 domain) of an SHP polypeptide, and(ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain e.g., the phosphatase domain, of an SHP polypeptide.
  • 2. The nucleic acid composition of claim 1, wherein the SHP inhibitor polypeptide is an SHP-1 polypeptide, e.g., comprises the amino acid sequence of SEQ ID NO:1 or a fragment thereof, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO:1; or an SHP-2 polypeptide, e.g., comprises the amino acid sequence of SEQ ID NO:2 or a fragment thereof, or an amino acid sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO:2.
  • 3. The nucleic acid composition of claim 1 or 2, wherein the SHP inhibitor polypeptide has reduced binding, compared to a wild-type SHP, to an ITIM domain, e.g., an ITIM domain from one or more of the following proteins: PD1, PDCD1, BTLA4, LILRB1, LAIR1, CTLA4, KIR2DL 1, KIR2DL4, KIR2DL5, KIR3DL 1 or KIR3DL3.
  • 4. The nucleic acid composition of any of the preceding claims, wherein the binding of the SHP inhibitor polypeptide to the ITIM domain is reduced by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97%, or 99% compared to a wild-type SHP.
  • 5. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide (e.g., SHP-1 polypeptide or SHP-2 polypeptide) is less than 240, 220, 180, 160, 140, 120, 100, 80, 60, or 40 amino acids in length.
  • 6. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-1 polypeptide) comprises amino acids 1-240, 1-220, 1-180, 1-160, 1-140, 1-120, 1-100, 1-80, 1-60, or 1-40 of SEQ ID NO: 1, or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto.
  • 7. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-1 polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 3, wherein X is any amino acid except R.
  • 8. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-1 polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 3, wherein X is K or H.
  • 9. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-1 polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 3, wherein X is K.
  • 10. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-1 polypeptide) comprises or consists of a sequence according to SEQ ID NO: 3, wherein X is any amino acid except R.
  • 11. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-1 polypeptide) comprises or consists of a sequence according to SEQ ID NO: 3, wherein X is K or H.
  • 12. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-1 polypeptide) comprises or consists of a sequence according to SEQ ID NO: 3, wherein X is K.
  • 13. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-2 polypeptide) comprises amino acids 1-240, 1-220, 1-180, 1-160, 1-140, 1-120, 1-100, 1-80, 1-60, or 1-40 of SEQ ID NO: 2, or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto.
  • 14. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-2 polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 4, wherein X is any amino acid except R.
  • 15. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-2 polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 4, wherein X is K or H.
  • 16. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-2 polypeptide) comprises a sequence at least 90%, 95%, 97%, 98%, or 99% identical to SEQ ID NO: 4, wherein X is K.
  • 17. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-2 polypeptide) comprises or consists of a sequence according to SEQ ID NO: 4, wherein X is any amino acid except R.
  • 18. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-2 polypeptide) comprises or consists of a sequence according to SEQ ID NO: 4, wherein X is K or H.
  • 19. The nucleic acid composition of claim 5, wherein the SHP inhibitor polypeptide (e.g., SHP-2 polypeptide) comprises or consists of a sequence according to SEQ ID NO: 4, wherein X is K.
  • 20. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide has reduced phosphatase activity, compared to wild-type SHP, to one or more SHP substrates (e.g., substrates comprising phosphorylated tyrosine).
  • 21. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide has a deletion of at least part or all of the phosphatase domain.
  • 22. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide lacks its phosphatase domain.
  • 23. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell), does not result (e.g., substantially result, e.g., results in less than 10%, 9%, 8%, 7%, 6%, 5% or less change) in one of more of the following: (i) inhibition of CAR signalling;(ii) inhibition of TCR signaling;(iii) promotion of immune checkpoint inhibition,(iv) promotion of PD-1/PD-L1 signalling;(v) inhibition of phosphorylation of CD3z;(vi) inhibition of LAT (linker for activation of T cells) phosphorylation,(vii) dephosphorylation of Lck (lymphocyte-specific protein tyrosine kinase), or a combination of two, three, four, five, six or all of (i)-(vii), e.g., compared to an otherwise similar cell that lacks the SHP inhibitor polypeptide.
  • 24. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell), results in one or more of: (i) increased CAR signaling;(ii) increased TCR signaling;(iii) reduced immune checkpoint inhibition;(iv) reduced PD-1/PD-L1 signaling;(v) increased levels of CD3z phosphorylation;(vi) increased levels of LAT phosphorylation;(vii) increased phosphorylation of Lck;(viii) increased phosphorylation of ZAP70;(ix) increased expression of a cytokine, e.g., IFNγ or IL2,or a combination of two, three, four, five, six or all of (i)-(ix), e.g., compared to an otherwise similar cell that lacks the SHP inhibitor polypeptide.
  • 25. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide, results in increased cytokine secretion and/or increases the percentage of cytokine-expressing cells, wherein the cytokine is optionally IL-2, compared to an otherwise similar cell lacking the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild-type SHP polypeptide or a wild type SH2-N terminal fragment thereof (e.g., an SHP polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 10).
  • 26. The nucleic acid composition of claim 25, wherein the immune effector cell expresses PD-1.
  • 27. The composition of claim 25 or 26, wherein cytokine secretion is increased by at least 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, or 20-fold.
  • 28. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide, results in increased lysis, e.g., in vitro, of cancer cells that express PD-L1 and an antigen recognized by the CAR polypeptide, compared to an otherwise similar cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide or a wild type SH2-N terminal fragment thereof (e.g., an SHP polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 11).
  • 29. The nucleic acid composition of claim 28, wherein the immune effector cell expresses PD-1 and the cancer cell expresses PD-L1.
  • 30. The nucleic acid composition of claim 28 or 29, wherein cancer cell lysis is increased at least 1.1-fold, 1.2-fold, 1.4-fold, 1.6-fold, 1.8-fold, or 2-fold, e.g., compared to cancer cell lysis in response to an otherwise similar cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide, or a wild type SH2-N terminal fragment thereof, e.g., an SHP polypeptide according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 11.
  • 31. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide (e.g., an immune effector cell that expresses PD-1), results in decreased tumor volume (e.g., of a tumor having cells expressing PD-L1 and an antigen recognized by the CAR polypeptide), e.g., in a mouse model, compared to an otherwise similar animal treated with otherwise similar immune effector cells that that lack the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide, or a wild type SH2-N terminal fragment thereof according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 12.
  • 32. The nucleic acid composition of claim 31, wherein the tumor volume is less by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% than the tumor volume at the same timepoint in the presence of an otherwise similar cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide, or a wild type SH2-N terminal fragment thereof according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 12.
  • 33. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide (e.g., an immune effector cell that expresses PD-1), results in increased T lymphocyte infiltration into a tumor, e.g., in a mouse model, compared to an otherwise similar animal treated with otherwise similar immune effector cells that lack the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide, or a wild type SH2-N terminal fragment thereof according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 13.
  • 34. The nucleic acid composition of claim 33, wherein T lymphocyte infiltration is increased at least 1.1-fold, 1.2-fold, 1.4-fold, 1.6-fold, 1.8-fold, 2-fold, 3-fold, 4-fold, or 5-fold and/or wherein infiltrating T lymphocytes represent at least about 10%, 20%, 30%, 40%, or 50% of cells in the tumor.
  • 35. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide, results in increased phosphorylation of ZAP70, e.g., in the presence of PD-L1-expressing tumor cells, compared to an otherwise similar immune effector cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide, or a wild type SH2-N terminal fragment thereof according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 16B.
  • 36. The nucleic acid composition of any of the preceding claims, wherein the SHP inhibitor polypeptide, when expressed in an immune effector cell (e.g., a T cell) that also expresses a CAR polypeptide, results in increased expression of IFNγ or IL-2 (or increased percentage of IFNγ positive or IL-2 positive cells), e.g., in the presence of PD-L1-expressing tumor cells, compared to an otherwise similar immune effector cell that lacks the SHP inhibitor polypeptide or an otherwise similar cell comprising a wild type SHP polypeptide, or a wild type SH2-N terminal fragment thereof according to amino acids 1-100 of SEQ ID NO: 1, e.g., as shown in FIG. 17.
  • 37. The nucleic acid composition of any of the preceding claims, comprising (a) a nucleic acid molecule encoding a chimeric antigen receptor (CAR) polypeptide,(b) a nucleic acid molecule encoding an SHP1 inhibitor polypeptide, wherein said SHP1 inhibitor polypeptide comprises: (i) a mutation (e.g., one or more deletions or substitutions) in the ITIM-binding region (e.g., an SH2 domain, e.g., the N-terminal SH2 domain) of an SHP1 polypeptide, and(ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain e.g., the phosphatase domain, of an SHP1 polypeptide, and(c) a nucleic acid molecule encoding an SHP2 inhibitor polypeptide, wherein said SHP2 inhibitor polypeptide comprises: (i) a mutation (e.g., one or more deletions or substitutions) in the ITIM-binding region (e.g., an SH2 domain, e.g., the N-terminal SH2 domain) of an SHP2 polypeptide, and(ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain e.g., the phosphatase domain, of an SHP2 polypeptide, optionally wherein:the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 41 or 42 (or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto), and/orthe SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 44 or 45 (or an amino acid sequence substantially identical thereto, e.g., at least 90%, 95%, 97%, 98%, or 99% identical thereto), optionally wherein:the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 41 or 42, and the SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 44 or 45, optionally wherein:the SHP1 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 41 and the SHP2 inhibitor polypeptide comprises or consists of the amino acid sequence of SEQ ID NO: 44.
  • 38. The nucleic acid composition of any of the preceding claims, wherein the CAR polypeptide and SHP inhibitor polypeptide are encoded by a single nucleic acid molecule in the same frame and as a single polypeptide chain.
  • 39. The nucleic acid composition of any of the preceding claims, wherein said SHP inhibitor polypeptide is attached to the N-terminus of said CAR polypeptide or the C-terminus of said CAR polypeptide.
  • 40. The nucleic acid composition of any of the preceding claims, wherein said SHP inhibitor polypeptide and CAR polypeptide are separated by one or more peptide cleavage sites, optionally wherein the peptide cleavage site is an auto-cleavage site or a substrate for an intracellular protease, optionally wherein the peptide cleavage site is a T2A or P2A site.
  • 41. The nucleic acid composition of any of the preceding claims, wherein the nucleic acid molecule encoding the CAR polypeptide and the nucleic acid molecule encoding the SHP inhibitor polypeptide are separated by a nucleic acid sequence encoding T2A or P2A.
  • 42. The nucleic acid composition of claim 37, wherein the nucleic acid molecule encoding the CAR polypeptide, the nucleic acid molecule encoding the SHP1 inhibitor polypeptide, and the nucleic acid molecule encoding the SHP2 inhibitor polypeptide are separated by a nucleic acid sequence encoding T2A or P2A.
  • 43. The nucleic acid composition of any of claims 1-37, wherein said CAR polypeptide and said SHP inhibitor polypeptide are encoded by a single nucleic acid molecule and are not expressed as a single polypeptide.
  • 44. The nucleic acid composition of any of claims 1-37, wherein the expression of said CAR polypeptide and said SHP inhibitor polypeptide is controlled by: a common promoter, orseparate promoters.
  • 45. The nucleic acid composition of any of claims 1-37, wherein the nucleic acid encoding said CAR polypeptide and the nucleic acid encoding said SHP inhibitor polypeptide are separated by an internal ribosomal entry site.
  • 46. The nucleic acid composition of any of the preceding claims, wherein said composition consists of a single isolated nucleic acid.
  • 47. The nucleic acid composition of any of the preceding claims, wherein the encoded CAR polypeptide comprises an antigen binding domain, a transmembrane domain, and an intracellular signaling domain.
  • 48. The nucleic acid composition of claim 47, wherein the intracellular domain comprises a primary signaling domain, a costimulatory domain, or both of a primary signaling domain and a costimulatory domain.
  • 49. The nucleic acid composition of claim 48, wherein the primary signaling domain comprises a functional signaling domain of one or more proteins selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCER1G), FcR beta (Fc Epsilon R1b), CD79a, CD79b, Fcgamma RIIa, DAP10, and DAP12, or a functional variant thereof.
  • 50. The nucleic acid composition of claim 48 or 49 wherein the costimulatory domain comprises a functional domain of one or more proteins selected from the group consisting of CD27, CD28, 4-1BB (CD137), OX40, CD28-OX40, CD28-4-1BB, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CD5, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, NKp44, NKp30, NKp46, and NKG2D, or a functional variant thereof.
  • 51. The nucleic acid composition of any of claims 47-50, wherein the antigen binding domain binds a tumor antigen.
  • 52. The nucleic acid composition of claim 51, wherein the tumor antigen is selected from the group consisting of: CD19; CD123; CD22; CD30; CD171; CS-1 (also referred to as CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1 or CLECL1); CD33; epidermal growth factor receptor variant III (EGFRvIII); ganglioside G2 (GD2); ganglioside GD3 (aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); TNF receptor family member B cell maturation (BCMA); Tn antigen ((Tn Ag) or (GalNAcα-Ser/Thr)); prostate-specific membrane antigen (PSMA); Receptor tyrosine kinase-like orphan receptor 1 (ROR1); Fms-Like Tyrosine Kinase 3 (FLT3); Tumor-associated glycoprotein 72 (TAG72); CD38; CD44v6; Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2 or CD213A2); Mesothelin; Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (Testisin or PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y) antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); Stage-specific embryonic antigen-4 (SSEA-4); CD20; Folate receptor alpha; Receptor tyrosine-protein kinase ERBB2 (Her2/neu); Mucin 1, cell surface associated (MUC1); epidermal growth factor receptor (EGFR); neural cell adhesion molecule (NCAM); Prostase; prostatic acid phosphatase (PAP); elongation factor 2 mutated (ELF2M); Ephrin B2; fibroblast activation protein alpha (FAP); insulin-like growth factor 1 receptor (IGF-I receptor), carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); glycoprotein 100 (gp100); oncogene fusion protein consisting of breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog 1 (Abl) (bcr-abl); tyrosinase; ephrin type-A receptor 2 (EphA2); Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); transglutaminase 5 (TGS5); high molecular weight-melanoma-associated antigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor beta; tumor endothelial marker 1 (TEM1/CD248); tumor endothelial marker 7-related (TEM7R); claudin 6 (CLDN6); thyroid stimulating hormone receptor (TSHR); G protein-coupled receptor class C group 5, member D (GPRC5D); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (OR51E2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); Cancer/testis antigen 1 (NY-ESO-1); Cancer/testis antigen 2 (LAGE-1a); Melanoma-associated antigen 1 (MAGE-A1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); melanoma cancer testis antigen-1 (MAD-CT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; tumor protein p53 (p53); p53 mutant; prostein; survivin; telomerase; prostate carcinoma tumor antigen-1 (PCTA-1 or Galectin 8), melanoma antigen recognized by T cells 1 (MelanA or MART1); Rat sarcoma (Ras) mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (ML-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Tyrosinase-related protein 2 (TRP-2); Cytochrome P450 1B1 (CYP1B1); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS or Brother of the Regulator of Imprinted Sites), Squamous Cell Carcinoma Antigen Recognized By T Cells 3 (SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES1); lymphocyte-specific protein tyrosine kinase (LCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint 2 (SSX2); Receptor for Advanced Glycation Endproducts (RAGE-1); renal ubiquitous 1 (RU1); renal ubiquitous 2 (RU2); legumain; human papilloma virus E6 (HPV E6); human papilloma virus E7 (HPV E7); intestinal carboxyl esterase; heat shock protein 70-2 mutated (mut hsp70-2); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1); Fc fragment of IgA receptor (FCAR or CD89); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLEC12A); bone marrow stromal cell antigen 2 (BST2); EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); and immunoglobulin lambda-like polypeptide 1 (IGLL1).
  • 53. The nucleic acid composition of claim 51, wherein the tumor antigen is selected from CD150, 5T4, ActRIIA, B7, BMCA, CA-125, CCNA1, CD123, CD126, CD138, CD14, CD148, CD15, CD19, CD20, CD200, CD21, CD22, CD23, CD24, CD25, CD26, CD261, CD262, CD30, CD33, CD362, CD37, CD38, CD4, CD40, CD40L, CD44, CD46, CD5, CD52, CD53, CD54, CD56, CD66a-d, CD74, CD8, CD80, CD92, CE7, CS-1, CSPG4, ED-B fibronectin, EGFR, EGFRvIII, EGP-2, EGP-4, EPHa2, ErbB2, ErbB3, ErbB4, FBP, GD2, GD3, HER1-HER2 in combination, HER2-HER3 in combination, HERV-K, HIV-1 envelope glycoprotein gp120, HIV-1 envelope glycoprotein gp41, HLA-DR, HM1.24, HMW-MAA, Her2, Her2/neu, IGF-1R, IL-11Ralpha, IL-13R-alpha2, IL-2, IL-22R-alpha, IL-6, IL-6R, Ia, Ii, L1-CAM, L1-cell adhesion molecule, Lewis Y, L1-CAM, MAGE A3, MAGE-A1, MART-1, MUC1, NKG2C ligands, NKG2D Ligands, NY-ESO-1, OEPHa2, PIGF, PSCA, PSMA, ROR1, T101, TAC, TAG72, TIM-3, TRAIL-R1, TRAIL-R1 (DR4), TRAIL-R2 (DR5), VEGF, VEGFR2, WT-1, a G-protein coupled receptor, alphafetoprotein (AFP), an angiogenesis factor, an exogenous cognate binding molecule (ExoCBM), oncogene product, anti-folate receptor, c-Met, carcinoembryonic antigen (CEA), cyclin (D1), ephrinB2, epithelial tumor antigen, estrogen receptor, fetal acethycholine e receptor, folate binding protein, gp100, hepatitis B surface antigen, kappa chain, kappa light chain, kdr, lambda chain, livin, melanoma-associated antigen, mesothelin, mouse double minute 2 homolog (MDM2), mucin 16 (MUC16), mutated p53, mutated ras, necrosis antigens, oncofetal antigen, ROR2, progesterone receptor, prostate specific antigen, tEGFR, tenascin, β2-Microglobulin, Fc Receptor-like 5 (FcRL5), or molecules expressed by HIV, HCV, HBV, or other pathogens.
  • 54. The nucleic acid composition of claim 51, wherein the tumor antigen is a solid tumor antigen, e.g., mesothelin.
  • 55. The nucleic acid composition of claim 51, wherein the tumor antigen is expressed in a solid tumor that also expresses an immune checkpoint inhibitor, e.g., PD-L1.
  • 56. The nucleic acid composition of any of claims 47-55, wherein the antigen binding domain comprises an antibody, an antibody fragment, an scFv, a Fv, a Fab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.
  • 57. The nucleic acid composition of any of claims 47-56, wherein the transmembrane domain comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, KIRDS2, OX40, CD2, CD27, LFA-1 (CD11a, CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, IL2R beta, IL2R gamma, IL7Rα, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, NKp44, NKp30, NKp46, NKG2D, and NKG2C, or a functional variant thereof.
  • 58. The nucleic acid composition of any of claims 47-57, wherein the antigen binding domain is connected to the transmembrane domain by a hinge region.
  • 59. The nucleic acid composition of any of claims 47-58, which further encodes a leader sequence.
  • 60. The nucleic acid composition of any of the preceding claims, which is DNA or RNA.
  • 61. A vector comprising the nucleic acid composition of any one of claims 1-60, e.g., wherein the vector is selected from the group consisting of a DNA vector, an RNA vector, a plasmid, a lentivirus vector, adenoviral vector, or a retrovirus vector.
  • 62. The vector of claim 61, further comprising a promoter, e.g., wherein the promoter is chosen from an EF-1 promoter, a CMV IE gene promoter, an EF-1α promoter, an ubiquitin C promoter, or a phosphoglycerate kinase (PGK) promoter.
  • 63. The vector of claim 61 or 62, wherein the vector is an in vitro transcribed vector, or the vector further comprises a poly(A) tail or a 3′UTR.
  • 64. A polypeptide comprising a CAR polypeptide and a SHP inhibitor polypeptide, e.g., with a peptide cleavage site disposed therebetween, wherein the SHP inhibitor polypeptide comprises: (i) a mutation (e.g., one or more deletions or substitutions) in the ITIM-binding region (e.g., an SH2 domain, e.g., the N-terminal SH2 domain) of the SHP inhibitor polypeptide, and(ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain e.g., the phosphatase domain.
  • 65. The polypeptide of claim 64, wherein the peptide cleavage site is a T2A or P2A site.
  • 66. The polypeptide of claim 64 or 65, wherein the CAR polypeptide is a CAR polypeptide as recited in any of the preceding claims.
  • 67. The polypeptide of any of claims 64-66 wherein the SHP inhibitor polypeptide is a SHP inhibitor polypeptide as recited in any of the preceding claims.
  • 68. An immune effector cell (e.g., a population of immune effector cells), comprising a nucleic acid composition of any of claims 1-60;a vector of any one of claims 61-63; ora polypeptide of any of claims 64-67.
  • 69. An immune effector cell (e.g., a population of immune effector cells) comprising a CAR polypeptide and a SHP inhibitor polypeptide as recited in any of the preceding claims.
  • 70. An immune effector cell (e.g., a population of immune effector cells) comprising (a) a CAR polypeptide and(b) a SHP inhibitor polypeptide, wherein said SHP inhibitor polypeptide comprises: (i) a mutation (e.g., one or more deletions or substitutions) in the ITIM-binding region (e.g., an SH2 domain, e.g., the N-terminal SH2 domain) of the SHP inhibitor polypeptide, and(ii) a mutation (e.g., one or more deletions or substitutions) in a catalytic domain e.g., the phosphatase domain.
  • 71. The immune effector cell of any of claims 68-70, wherein the immune effector cell is a human T cell (e.g., CD8+ T cell or CD4+ T cell) or a human NK cell, optionally, wherein the T cell is diacylglycerol kinase (DGK) and/or Ikaros deficient.
  • 72. The immune effector cell of any of claims 68-71, wherein the immune effector cell is derived from blood, cord blood, bone marrow, or iPSC.
  • 73. The immune effector cell of any of claims 68-72, wherein the immune effector cell comprises an immune checkpoint inhibitor, e.g., a receptor.
  • 74. The immune effector cell of claim 73, wherein the immune checkpoint inhibitor is chosen from PD-1, PD-L1, LAG-3, TIM3, B7-H1, CD160, P1H, 2B4, CEACAM (e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5), TIGIT, CTLA-4, BTLA, or LAIR1.
  • 75. The immune effector cell of claim 74, wherein the immune checkpoint inhibitor is PD-1.
  • 76. A method of making a CAR-expressing immune effector cell (e.g., a population of CAR-expressing immune effector cells), comprising introducing the nucleic acid composition of any one of claims 1-60 or a vector of any of claims 61-63, into an immune effector cell, under conditions such that the CAR polypeptide is expressed.
  • 77. The method of claim 76, further comprising: (a) providing a population of immune effector cells (e.g., T cells or NK cells); and(b) removing T regulatory cells from the population, thereby providing a population of T regulatory-depleted cells;wherein steps (a) and (b) are performed prior to introducing the nucleic acid composition to the population, optionally wherein the T regulatory cells are removed from the cell population using an anti-CD25 antibody, or an anti-GITR antibody.
  • 78. A method of providing anti-tumor immunity in a subject comprising administering to the subject an effective amount of the immune effector cell of any of claims 68-75, e.g., wherein the cell is an autologous T cell or an allogeneic T cell, or an autologous NK cell or an allogeneic NK cell.
  • 79. A method of treating a subject having a disease (e.g., cancer) associated with expression of a tumor antigen, comprising administering to the subject an effective amount of an immune effector cell of any of claims 68-75, thereby treating the subject.
  • 80. The method of claim 79, wherein the cancer cells comprise an immune checkpoint inhibitor, e.g., a ligand.
  • 81. The method of claim 80, wherein the immune checkpoint inhibitor is chosen from PD-1, PD-L1, LAG-3, TIM3, B7-H1, CD160, P1H, 2B4, CEACAM (e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5), TIGIT, CTLA-4, BTLA, or LAIR1, optionally wherein the immune checkpoint inhibitor is PD-L1.
  • 82. The method of any of claims 78-81, said method further comprising administering an agent that increases the efficacy of the immune effector cell, thereby treating the subject.
  • 83. The method of claim 82, wherein said agent is chosen from one or more of: a protein phosphatase inhibitor;a kinase inhibitor;a cytokine;an inhibitor of an immune inhibitory molecule; oran agent that decreases the level or activity of a TREG cell.
  • 84. The method of any of claims 79-83, wherein the disease associated with expression of a tumor antigen is selected from the group consisting of a proliferative disease, a precancerous condition, a cancer, and a non-cancer related indication associated with expression of the tumor antigen.
  • 85. The method of any of claims 79-84, wherein the disease associated with expression of a tumor antigen is a solid tumor.
  • 86. The method of any of claims 79-85, wherein the cancer is selected from the group consisting of colon cancer, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine, cancer of the esophagus, melanoma, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, non-Hodgkin lymphoma, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, solid tumors of childhood, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the renal pelvis, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, T-cell lymphoma, environmentally induced cancers, combinations of said cancers, and metastatic lesions of said cancers.
  • 87. The method of any of claims 79-85, wherein the cancer is a hematologic cancer chosen from one or more of chronic lymphocytic leukemia (CLL), acute leukemias, acute lymphoid leukemia (ALL), B-cell acute lymphoid leukemia (B-ALL), T-cell acute lymphoid leukemia (T-ALL), chronic myelogenous leukemia (CML), B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma, hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin's lymphoma, Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, or pre-leukemia.
  • 88. The nucleic acid composition of any of claims 1-60, the vector of any of claims 61-63, the polypeptide of any of claims 64-67, or the immune effector cell of any of claims 68-75, for use as a medicament.
  • 89. The nucleic acid composition of any of claims 1-60, the vector of any of claims 61-63, the polypeptide of any of claims 64-67, or the immune effector cell of any of claims 68-75, for use in the treatment of a disease expressing a tumor antigen.
  • 90. A composition comprising: (a) a nucleic acid molecule encoding a chimeric antigen receptor (CAR) polypeptide and(b) an SHP inhibitor, wherein the SHP inhibitor is chosen from: (i) one or more components of a gene editing system targeting one or more sites within a gene encoding SHP (e.g., SHP1 or SHP2) or a regulatory element thereof, a nucleic acid molecule encoding the one or more components of the gene editing system, or a combination thereof, or(2) an agent that has RNAi or antisense inhibition activity against SHP (e.g., SHP1 or SHP2), or a nucleic acid molecule encoding the agent.
  • 91. The composition of claim 90, wherein the SHP inhibitor is one or more components of a gene editing system targeting one or more sites within a gene encoding SHP (e.g., SHP1 or SHP2) or a regulatory element thereof, a nucleic acid molecule encoding the one or more components of the gene editing system, or a combination thereof.
  • 92. The composition of claim 91, wherein the gene editing system is chosen from a CRISPR/Cas9 system, a zinc finger nuclease system, a TALEN system, or a meganuclease system.
  • 93. The composition of claim 92, wherein the gene editing system is a CRISPR/Cas9 system.
  • 94. The composition of claim 93, wherein the SHP inhibitor comprises a guide RNA (gRNA) molecule targeting a gene encoding SHP (e.g., SHP1 or SHP2) or a regulatory element thereof, optionally wherein the SHP inhibitor comprises a gRNA molecule targeting an exon of the gene encoding SHP (e.g., SHP1 or SHP2).
  • 95. The composition of claim 93 or 94, wherein the SHP inhibitor is an SHP2 inhibitor, wherein the SHP2 inhibitor comprises a gRNA molecule targeting any genomic location provided in column 4 of Table 19, e.g., wherein the SHP2 inhibitor comprises a gRNA molecule targeting any genomic target sequence provided in column 6 of Table 19, or a portion thereof.
  • 96. The composition of any one of claims 93-95, wherein the SHP inhibitor is an SHP2 inhibitor, wherein the SHP2 inhibitor comprises a gRNA molecule comprising a tracr and a crRNA, wherein the crRNA comprises a targeting domain that is complementary with a target sequence of SHP2, optionally wherein: (i) the targeting domain comprises any nucleotide sequence provided in column 5 of Table 19,(ii) the targeting domain comprises or consists of 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19, optionally wherein: (1) the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 are the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids disposed at the 3′ end of the recited nucleotide sequence provided in column 5 of Table 19, (2) the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 are the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids disposed at the 5′ end of the recited nucleotide sequence provided in column 5 of Table 19, or (3) the 17, 18, 19, 20, 21, 22, 23, or 24 consecutive nucleic acids of any nucleotide sequence provided in column 5 of Table 19 do not comprise either the 5′ or 3′ nucleic acid of the recited nucleotide sequence provided in column 5 of Table 19.
  • 97. The composition of claim 90, wherein the SHP inhibitor is an agent that has RNAi or antisense inhibition activity against SHP (e.g., SHP1 or SHP2), or a nucleic acid molecule encoding the agent.
  • 98. The composition of claim 97, wherein the SHP inhibitor is an agent that mediates RNA interference, e.g., an siRNA or shRNA specific for a gene encoding SHP (e.g., SHP1 or SHP2), or a nucleic acid molecule encoding the siRNA or shRNA.
  • 99. The composition of any one of claims 90-98, wherein the encoded CAR polypeptide comprises an antigen binding domain, a transmembrane domain, and an intracellular signaling domain.
  • 100. The composition of claim 99, wherein the intracellular domain comprises a primary signaling domain, a costimulatory domain, or both of a primary signaling domain and a costimulatory domain.
  • 101. The composition of claim 100, wherein the primary signaling domain comprises a functional signaling domain of one or more proteins selected from the group consisting of CD3 zeta, CD3 gamma, CD3 delta, CD3 epsilon, common FcR gamma (FCER1G), FcR beta (Fc Epsilon R1b), CD79a, CD79b, Fcgamma RIIa, DAP10, and DAP12, or a functional variant thereof.
  • 102. The composition of claim 100 or 101 wherein the costimulatory domain comprises a functional domain of one or more proteins selected from the group consisting of CD27, CD28, 4-1BB (CD137), OX40, CD28-OX40, CD28-4-1BB, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, CD5, ICAM-1, GITR, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, NKp44, NKp30, NKp46, and NKG2D, or a functional fragment thereof.
  • 103. The composition of any of claims 99-102, wherein the antigen binding domain binds a tumor antigen.
  • 104. The composition of claim 103, wherein the tumor antigen is selected from the group consisting of: CD19; CD123; CD22; CD30; CD171; CS-1 (also referred to as CD2 subset 1, CRACC, SLAMF7, CD319, and 19A24); C-type lectin-like molecule-1 (CLL-1 or CLECL1); CD33; epidermal growth factor receptor variant III (EGFRvIII); ganglioside G2 (GD2); ganglioside GD3 (aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); TNF receptor family member B cell maturation (BCMA); Tn antigen ((Tn Ag) or (GalNAcα-Ser/Thr)); prostate-specific membrane antigen (PSMA); Receptor tyrosine kinase-like orphan receptor 1 (ROR1); Fms-Like Tyrosine Kinase 3 (FLT3); Tumor-associated glycoprotein 72 (TAG72); CD38; CD44v6; Carcinoembryonic antigen (CEA); Epithelial cell adhesion molecule (EPCAM); B7H3 (CD276); KIT (CD117); Interleukin-13 receptor subunit alpha-2 (IL-13Ra2 or CD213A2); Mesothelin; Interleukin 11 receptor alpha (IL-11Ra); prostate stem cell antigen (PSCA); Protease Serine 21 (Testisin or PRSS21); vascular endothelial growth factor receptor 2 (VEGFR2); Lewis(Y) antigen; CD24; Platelet-derived growth factor receptor beta (PDGFR-beta); Stage-specific embryonic antigen-4 (SSEA-4); CD20; Folate receptor alpha; Receptor tyrosine-protein kinase ERBB2 (Her2/neu); Mucin 1, cell surface associated (MUC1); epidermal growth factor receptor (EGFR); neural cell adhesion molecule (NCAM); Prostase; prostatic acid phosphatase (PAP); elongation factor 2 mutated (ELF2M); Ephrin B2; fibroblast activation protein alpha (FAP); insulin-like growth factor 1 receptor (IGF-I receptor), carbonic anhydrase IX (CAIX); Proteasome (Prosome, Macropain) Subunit, Beta Type, 9 (LMP2); glycoprotein 100 (gp100); oncogene fusion protein consisting of breakpoint cluster region (BCR) and Abelson murine leukemia viral oncogene homolog 1 (Abl) (bcr-abl); tyrosinase; ephrin type-A receptor 2 (EphA2); Fucosyl GM1; sialyl Lewis adhesion molecule (sLe); ganglioside GM3 (aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer); transglutaminase 5 (TGS5); high molecular weight-melanoma-associated antigen (HMWMAA); o-acetyl-GD2 ganglioside (OAcGD2); Folate receptor beta; tumor endothelial marker 1 (TEM1/CD248); tumor endothelial marker 7-related (TEM7R); claudin 6 (CLDN6); thyroid stimulating hormone receptor (TSHR); G protein-coupled receptor class C group 5, member D (GPRC5D); chromosome X open reading frame 61 (CXORF61); CD97; CD179a; anaplastic lymphoma kinase (ALK); Polysialic acid; placenta-specific 1 (PLAC1); hexasaccharide portion of globoH glycoceramide (GloboH); mammary gland differentiation antigen (NY-BR-1); uroplakin 2 (UPK2); Hepatitis A virus cellular receptor 1 (HAVCR1); adrenoceptor beta 3 (ADRB3); pannexin 3 (PANX3); G protein-coupled receptor 20 (GPR20); lymphocyte antigen 6 complex, locus K 9 (LY6K); Olfactory receptor 51E2 (OR51E2); TCR Gamma Alternate Reading Frame Protein (TARP); Wilms tumor protein (WT1); Cancer/testis antigen 1 (NY-ESO-1); Cancer/testis antigen 2 (LAGE-1a); Melanoma-associated antigen 1 (MAGE-A1); ETS translocation-variant gene 6, located on chromosome 12p (ETV6-AML); sperm protein 17 (SPA17); X Antigen Family, Member 1A (XAGE1); angiopoietin-binding cell surface receptor 2 (Tie 2); melanoma cancer testis antigen-1 (MAD-CT-1); melanoma cancer testis antigen-2 (MAD-CT-2); Fos-related antigen 1; tumor protein p53 (p53); p53 mutant; prostein; survivin; telomerase; prostate carcinoma tumor antigen-1 (PCTA-1 or Galectin 8), melanoma antigen recognized by T cells 1 (MelanA or MART1); Rat sarcoma (Ras) mutant; human Telomerase reverse transcriptase (hTERT); sarcoma translocation breakpoints; melanoma inhibitor of apoptosis (ML-IAP); ERG (transmembrane protease, serine 2 (TMPRSS2) ETS fusion gene); N-Acetyl glucosaminyl-transferase V (NA17); paired box protein Pax-3 (PAX3); Androgen receptor; Cyclin B1; v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN); Ras Homolog Family Member C (RhoC); Tyrosinase-related protein 2 (TRP-2); Cytochrome P450 1B1 (CYP1B1); CCCTC-Binding Factor (Zinc Finger Protein)-Like (BORIS or Brother of the Regulator of Imprinted Sites), Squamous Cell Carcinoma Antigen Recognized By T Cells 3 (SART3); Paired box protein Pax-5 (PAX5); proacrosin binding protein sp32 (OY-TES1); lymphocyte-specific protein tyrosine kinase (LCK); A kinase anchor protein 4 (AKAP-4); synovial sarcoma, X breakpoint 2 (SSX2); Receptor for Advanced Glycation Endproducts (RAGE-1); renal ubiquitous 1 (RU1); renal ubiquitous 2 (RU2); legumain; human papilloma virus E6 (HPV E6); human papilloma virus E7 (HPV E7); intestinal carboxyl esterase; heat shock protein 70-2 mutated (mut hsp70-2); CD79a; CD79b; CD72; Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1); Fc fragment of IgA receptor (FCAR or CD89); Leukocyte immunoglobulin-like receptor subfamily A member 2 (LILRA2); CD300 molecule-like family member f (CD300LF); C-type lectin domain family 12 member A (CLEC12A); bone marrow stromal cell antigen 2 (BST2); EGF-like module-containing mucin-like hormone receptor-like 2 (EMR2); lymphocyte antigen 75 (LY75); Glypican-3 (GPC3); Fc receptor-like 5 (FCRL5); and immunoglobulin lambda-like polypeptide 1 (IGLL1).
  • 105. The composition of claim 103, wherein the tumor antigen is selected from CD150, 5T4, ActRIIA, B7, BMCA, CA-125, CCNA1, CD123, CD126, CD138, CD14, CD148, CD15, CD19, CD20, CD200, CD21, CD22, CD23, CD24, CD25, CD26, CD261, CD262, CD30, CD33, CD362, CD37, CD38, CD4, CD40, CD40L, CD44, CD46, CD5, CD52, CD53, CD54, CD56, CD66a-d, CD74, CD8, CD80, CD92, CE7, CS-1, CSPG4, ED-B fibronectin, EGFR, EGFRvIII, EGP-2, EGP-4, EPHa2, ErbB2, ErbB3, ErbB4, FBP, GD2, GD3, HER1-HER2 in combination, HER2-HER3 in combination, HERV-K, HIV-1 envelope glycoprotein gp120, HIV-1 envelope glycoprotein gp41, HLA-DR, HM1.24, HMW-MAA, Her2, Her2/neu, IGF-1R, IL-11Ralpha, IL-13R-alpha2, IL-2, IL-22R-alpha, IL-6, IL-6R, Ia, Ii, L1-CAM, L1-cell adhesion molecule, Lewis Y, L1-CAM, MAGE A3, MAGE-A1, MART-1, MUC1, NKG2C ligands, NKG2D Ligands, NY-ESO-1, OEPHa2, PIGF, PSCA, PSMA, ROR1, T101, TAC, TAG72, TIM-3, TRAIL-R1, TRAIL-R1 (DR4), TRAIL-R2 (DR5), VEGF, VEGFR2, WT-1, a G-protein coupled receptor, alphafetoprotein (AFP), an angiogenesis factor, an exogenous cognate binding molecule (ExoCBM), oncogene product, anti-folate receptor, c-Met, carcinoembryonic antigen (CEA), cyclin (D1), ephrinB2, epithelial tumor antigen, estrogen receptor, fetal acethycholine e receptor, folate binding protein, gp100, hepatitis B surface antigen, kappa chain, kappa light chain, kdr, lambda chain, livin, melanoma-associated antigen, mesothelin, mouse double minute 2 homolog (MDM2), mucin 16 (MUC16), mutated p53, mutated ras, necrosis antigens, oncofetal antigen, ROR2, progesterone receptor, prostate specific antigen, tEGFR, tenascin, β2-Microglobulin, Fc Receptor-like 5 (FcRL5), or molecules expressed by HIV, HCV, HBV, or other pathogens.
  • 106. The composition of claim 103, wherein the tumor antigen is a solid tumor antigen, e.g., mesothelin.
  • 107. The composition of claim 103, wherein the tumor antigen is expressed in a solid tumor that also expresses an immune checkpoint inhibitor, e.g., PD-L1.
  • 108. The composition of any one of claims 99-107, wherein the antigen binding domain comprises an antibody, an antibody fragment, an scFv, a Fv, a Fab, a (Fab′)2, a single domain antibody (SDAB), a VH or VL domain, or a camelid VHH domain.
  • 109. The composition of any one of claims 99-108, wherein the transmembrane domain comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, KIRDS2, OX40, CD2, CD27, LFA-1 (CD11a, CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD40, BAFFR, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), CD160, CD19, IL2R beta, IL2R gamma, IL7Rα, ITGA1, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, TNFR2, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, PAG/Cbp, NKp44, NKp30, NKp46, NKG2D, and NKG2C, or a functional variant thereof.
  • 110. The composition of any one of claims 99-109, wherein the antigen binding domain is connected to the transmembrane domain by a hinge region.
  • 111. The composition of any one of claims 99-110, which further encodes a leader sequence.
  • 112. The composition of any one of claims 90-111, wherein the composition comprises: (a) a nucleic acid molecule encoding a chimeric antigen receptor (CAR) polypeptide,(b) an SHP1 inhibitor, wherein the SHP1 inhibitor is chosen from: (i) one or more components of a gene editing system targeting one or more sites within a gene encoding SHP1 or a regulatory element thereof, a nucleic acid molecule encoding the one or more components of the gene editing system, or a combination thereof, or(2) an agent that has RNAi or antisense inhibition activity against SHP1, or a nucleic acid molecule encoding the agent, and(c) an SHP2 inhibitor, wherein the SHP2 inhibitor is chosen from: (i) one or more components of a gene editing system targeting one or more sites within a gene encoding SHP2 or a regulatory element thereof, a nucleic acid molecule encoding the one or more components of the gene editing system, or a combination thereof, or(2) an agent that has RNAi or antisense inhibition activity against SHP2, or a nucleic acid molecule encoding the agent.
  • 113. The composition of any one of claims 90-112, wherein the composition is DNA or RNA.
  • 114. The composition of any one of claims 90-113, wherein the SHP inhibitor comprises: (i) a nucleic acid molecule encoding the one or more components of the gene editing system targeting one or more sites within a gene encoding SHP (e.g., SHP1 or SHP2) or a regulatory element thereof, or(ii) a nucleic acid molecule encoding the agent having RNAi or antisense inhibition activity against SHP (e.g., SHP1 or SHP2), optionally wherein:the nucleic acid molecule encoding the CAR polypeptide, the nucleic acid molecule encoding the one or more components of the gene editing system, and the nucleic acid molecule encoding the agent having RNAi or antisense inhibition activity are disposed on:a single nucleic acid molecule, orseparate nucleic acid molecules.
  • 115. A vector comprising the composition of claim 113 or 114.
  • 116. A cell (e.g., a population of immune effector cells), comprising: the composition of any one of claims 90-114, orthe vector of claim 115.
  • 117. The cell of claim 116, wherein the cell is chosen from a human T cell (e.g., CD8+ T cell or CD4+ T cell) or a human NK cell.
  • 118. A method of making a CAR-expressing cell (e.g., a population of CAR-expressing immune effector cells), comprising culturing the cell of claim 116 or 117, under conditions such that the CAR polypeptide is expressed.
  • 119. A method of providing anti-tumor immunity in a subject comprising administering to the subject an effective amount of the cell of claim 116 or 117, e.g., wherein the cell is an autologous T cell or an allogeneic T cell, or an autologous NK cell or an allogeneic NK cell.
  • 120. A method of treating cancer in a subject in need thereof, comprising administering to the subject an effective amount of the cell of claim 116 or 117, thereby treating the subject.
  • 121. The method of claim 120, wherein the cancer is selected from the group consisting of colon cancer, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine, cancer of the esophagus, melanoma, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, non-Hodgkin lymphoma, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, solid tumors of childhood, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the renal pelvis, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, T-cell lymphoma, environmentally induced cancers, combinations of said cancers, and metastatic lesions of said cancers.
  • 122. The method of claim 120, wherein the cancer is a hematologic cancer chosen from one or more of chronic lymphocytic leukemia (CLL), acute leukemias, acute lymphoid leukemia (ALL), B-cell acute lymphoid leukemia (B-ALL), T-cell acute lymphoid leukemia (T-ALL), chronic myelogenous leukemia (CML), B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma, hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin's lymphoma, Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, or pre-leukemia.
RELATED APPLICATION

This application claims priority to U.S. Ser. No. 62/464,944 filed Feb. 28, 2017 and U.S. Ser. No. 62/500,806 filed May 3, 2017, the content of each of which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/020275 2/28/2018 WO 00
Provisional Applications (2)
Number Date Country
62500806 May 2017 US
62464944 Feb 2017 US