Claims
- 1. In combination with an automotive engine cooling fan having a plurality of radially extending blades, and an engine cooling radiator having corner portions, an improved fan shroud for the engine cooling fan, said fan shroud including an attachment structure to secure the shroud to a support structure within an engine compartment of an automotive vehicle, said fan shroud comprising a generally box like main housing with a fully opened front portion adapted to be affixed in an adjacent and overlying relationship to said engine cooling radiator to receive a flow of air therefrom, said main housing also having a rear wall offset from the adjacent radiator creating a space therebetween, said fan shroud also having a curved air ejector portion extending axially from the rear wall of said main housing and defining a circular opening therein for receiving the bladed fan operatively immersed therein for powered operative rotation in a first direction for drawing air through the engine cooling radiator and exhausting such air through the ejector portion, said main housing having an array of air directing vanes carried by said rear wall and extending radially and outwardly from said circular opening to the peripheral of said rear wall, said vanes being upstream of the fan blades for directing streams of air from the corner portions of the radiator impinging on said rear wall into an inward and rotational swirl through said opening and against the fan blades with the direction of swirl being counter to the direction of operative rotation of the fan so that the swirl of air preloads the fan blades to improve the pumping efficiency of the fan.
- 2. The fan shroud as set forth in claim 1, wherein said air ejector portion is generally cylindrical and extends axially from said rear wall of said housing.
- 3. The fan shroud as set forth in claim 1, wherein said main housing is generally rectilinear and defines corner portions extending radially outside of the circular opening defined in said rear wall by said ejector portion and wherein said fluid directing vanes are operatively positioned in said corner portions and terminate at said circular openings and are oriented so as to direct air which flows into said corner portions into the ejector portion in an inward and rotational path counter to the direction of rotation of the fan.
- 4. An improved fan shroud operatively immersing a bladed fan in an engine cooling system, said fan being selectively rotatable in a first direction for effecting air flow through an engine cooling radiator, said fan shroud having a box like main section with a fully opened and unrestricted entrance face mounted in overlying relationship to the engine cooling radiator including corner regions thereof, said main section also having an inwardly extending rear wall portion spaced from the radiator thus creating a space therebetween and cooperating with said main section to define corner regions, a curved ejector portion extending axially from said rear wall portion and defining a curved opening therein, said ejector portion defining a curved space for accommodating said bladed fan, said main section having a plurality of vanes positioned in the corner regions located outward from said ejector portion, said vanes extending on said rear wall portion and having ends terminating at points adjacent to said curved opening for redirecting the direction of streams of air flowing through the corner regions of said radiator and into said shroud inwardly and onto the pumping surface of said blades to thereby improve the fan efficiency.
- 5. An improved fan shroud for an engine cooling fan adapted to be supported in the engine compartment of a vehicle for increasing air velocity of a flow through a rectangularly configured radiator through which liquid engine coolant is circulated, comprising: a generally rectilinear main housing section adapted to be secured in overlying relationship to the radiator for receiving the flow of air passing through the radiator, said main housing section being fully opened to the radiator and having a back wall with a circular air flow opening therein, said fan shroud further comprising a generally cylindrical ejector portion extending from said opening in said back wall of said main housing and disposed around said fan blades, said main housing having corner sections radially outside of said fan blades, said corner sections having a plurality of vanes therein located only radially outward of said ejector portion and terminating near said opening, said vanes being inclined to redirect a flow of air into an inward swirling path and in a rotational direction counter to the direction of fan rotation so that some initial velocity is imparted to peripheral air as the air approaches the plane of fan rotation and so that the velocity of the mass of air flowing through the ejector section of said fan shroud is increased.
- 6. A shroud for an engine driven fan having blades which rotate in a predetermined direction comprising a main body portion and a curved air ejector portion encompassing at least a portion of said fan, said fan having a plurality of arcuately spaced blades extending radially with respect to said axis of rotation and arranged to pump air generally in an axial direction through said air ejector portion, said main body portion of said shroud having a rectilinear and forwardly extending peripheral wall defining a fully opened front for the passage of air therethrough and an air deflecting rear wall extending transversely and inwardly from said peripheral wall to define corner areas therewith said rear wall further extending to said air ejector portion which defines an opening in said rear wall allowing air to pass from said main body portion into said ejector portion, said rear wall carrying a plurality of air deflecting vanes in said corner areas and terminating adjacent to said opening, said vanes being disposed in a predetermined pattern thereon and located only radially outward of said blades of said fan for redirecting streams of air impinging on said rear wall and particularly said corner areas into an inward rotational flow and into said opening and said air ejector portion and onto the pumping surfaces of said fan blades to preload the fan blades for increasing the pumping efficiency of said fan.
- 7. A shroud as set forth in claim 6 wherein said vanes extend between said peripheral wall and said opening.
- 8. A shroud as set forth in claim 7 wherein said vane is formed in a curved shape for directing said stream of air flow through said opening and into the fan in a direction opposite of the predetermined rotation of the fan blades.
- 9. A shroud as set forth in claim 8 wherein said opening is positioned eccentric to said deflecting surface.
- 10. A shroud as set forth in claim 8 including a plurality of vanes operatively spaced from one another to form air flow channels therebetween to direct streams of air flow into the fan in a direction opposite of the predetermined rotation of the fan blades.
- 11. A shroud as set forth in claim 10 wherein said vanes are arranged in generally parallel rows between said reinforcing edge and said opening defining air channels between adjacent vanes.
- 12. A shroud for an engine driven fan having blades which rotate in a predetermined direction, said shroud comprising:
- a generally flat air deflecting surface extending from an outer perimeter to a tubular collar defining an air flow opening adapted to receive the fan;
- a reinforcing edge disposed along said outer perimeter of said air deflecting surface and extending forwardly therefrom and cooperating therein to define a fully opened air entrance area leading into said shroud and cooperating with said surface to define corner areas therein; and
- a plurality of vanes having a curved shape extending only between said reinforcing edge and said opening for directing a plurality streams of air flow through said opening and into the fan in a direction opposite of the predetermined rotation of the fan blades.
- 13. A shroud as set forth in claim 12 wherein said vanes are arranged in generally parallel rows between said reinforcing edge and said opening defining air channels between adjacent vanes for directing a flow of air into said opening and onto said blades of said fan.
- 14. A combination of an engine cooling fan driven for rotation in one direction about an axis of rotation and a fan shroud fixed with respect to said fan, said shroud having a main body portion and a circular air ejector portion encompassing at least a portion of said fan, said fan having a plurality of arcuately spaced blades extending radially with respect to said axis of rotation and arranged to pump air generally in an axial direction through said air ejector portion, said main body portion of said shroud having a rectilinear and forwardly extending peripheral wall providing an unrestricted air entrance into said shroud and an air deflecting rear wall extending transversely and inwardly from said peripheral wall to define corner areas therewith, said rear wall further extending to said circular air ejector portion, said rear wall carrying a plurality of air deflecting vanes extending from said peripheral wall and across said back wall to terminal points adjacent to said circular air ejector portion, such air ejector portion extending axially from said rear wall and defining a curved opening therein for the passage of air into said air ejector portion and being arranged to redirect streams of air impinging on said rear wall and particularly said corner areas into an inward rotational flow into said air ejector portion and onto the pumping surfaces of said fan blades to preload the fan blades for increasing the pumping efficiency of said fan.
BACKGROUND OF THE INVENTION
This patent application is a continuation-in-part of a previously filed and copending application by the same inventors, entitled "Shroud for an Engine Cooling Fan"; filed Aug. 12, 1998 assigned Ser. No. 09/132,884.
US Referenced Citations (15)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
132884 |
Aug 1998 |
|