The present disclosure relates to rim generators for use with a shrouded wind turbine. In particular, a ring generator based on a rotor/stator assembly is modified to serve as a permanent magnet generator. The magnets included in the ring generator are arranged in a Halbach array in order to enhance power generation by the shrouded wind turbine. Methods of making and using such systems are also disclosed.
Conventional wind turbines used for power generation generally have two to five open blades arranged like a propeller, the blades being mounted to a horizontal shaft attached to a gear box which drives a power generator. Such turbines are generally known as horizontal axis wind turbines, or HAWTs. Although HAWTs have achieved widespread usage, their efficiency is not optimized. In particular, they will not exceed the Betz limit of 59.3% efficiency in capturing the potential energy of the wind passing through it. These turbines typically require a supporting tower ranging from 60 to 90 meters in height. The blades generally rotate at a rotational speed of about 10 to 22 rpm. A gear box is commonly used to step up the speed to drive the generator, although some designs may directly drive an annular electric generator. Some turbines operate at a constant speed. However, more energy can be collected by using a variable speed turbine and a solid state power converter to interface the turbine with the generator.
It would be desirable to collect additional energy from the wind turbine.
The present disclosure relates to shrouded wind turbines comprising a ring generator. The permanent magnets in the ring generator are arranged in a Halbach array to maximize the power generation capability of the wind turbine.
Disclosed in embodiments is a wind turbine comprising: a turbine shroud and an impeller. The turbine shroud encloses or surrounds the impeller. The turbine shroud also includes a static ring that has at least one phase winding. The impeller comprises a rotor. The rotor has a central ring, an outer ring, a plurality of rotor blades extending between the central ring and the outer ring, and a plurality of permanent magnets on the outer ring. The static ring of the turbine shroud and the outer ring of the rotor are aligned with each other. The plurality of permanents magnets are arranged on the outer ring to form a Halbach cylinder that produces a magnetic field exterior to the rotor.
The turbine shroud may further comprise a ring of mixing lobes formed on a trailing edge. A trailing edge of the turbine shroud may have a circular crenellated shape.
The permanent magnets may comprise a rare earth element. In particular embodiments, the permanent magnets are Nd2Fe14B magnets. The plurality of permanent magnets may more specifically be located along a rear end of the outer ring.
In embodiments, the static ring has three phase windings connected in series.
The wind turbine may further comprise an ejector shroud, an inlet end of the ejector shroud surrounding an outlet end of the turbine shroud. The wind turbine may also further comprise a stator defining an inlet end of the wind turbine, the stator comprising a plurality of stator vanes.
Disclosed in other embodiments is a wind turbine comprising: a turbine shroud, an impeller, and an ejector shroud. The turbine shroud encloses or surrounds the impeller. The turbine shroud also includes a static ring that has at least one phase winding. The impeller comprises a rotor. The rotor has a central ring, an outer ring, a plurality of rotor blades extending between the central ring and the outer ring, and a plurality of permanent magnets on the outer ring. The static ring of the turbine shroud and the outer ring of the rotor are aligned with each other. The plurality of permanents magnets are arranged on the outer ring to form a Halbach cylinder that produces a magnetic field exterior to the rotor. An inlet end of the ejector shroud surrounds an outlet end of the turbine shroud.
In particular embodiments, the turbine shroud further comprises a ring of mixing lobes formed on a trailing edge, and the ejector shroud has an airfoil shape (i.e. the ejector shroud does not have mixing lobes).
Also disclosed is a wind turbine comprising: a turbine shroud enclosing an impeller; wherein the turbine shroud encloses a static ring that has at least one phase winding and has a ring of mixing lobes formed on a trailing edge; wherein the impeller comprises a stator and a rotor, the stator being upstream of the rotor and the rotor having a central ring, an outer ring, a plurality of rotor blades extending between the central ring and the outer ring, and a plurality of permanent magnets on the outer ring; wherein the static ring and the outer ring are aligned with each other; and wherein the plurality of permanents magnets are arranged on the outer ring to form a Halbach cylinder that produces a magnetic field exterior to the rotor; and an ejector shroud having an airfoil shape, an inlet end of the ejector shroud surrounding an outlet end of the turbine shroud.
These and other non-limiting features or characteristics of the present disclosure will be further described below.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the disclosure set forth herein and not for the purposes of limiting the same.
A more complete understanding of the components, processes, and apparatuses disclosed herein can be obtained by reference to the accompanying figures. These figures are merely schematic representations based on convenience and the ease of demonstrating the present development and are, therefore, not intended to indicate the relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments.
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (for example, it includes at least the degree of error associated with the measurement of the particular quantity). When used in the context of a range, the modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the range “from about 2 to about 4” also discloses the range “from 2 to 4.”
A Mixer-Ejector Power System (MEPS) provides a unique and improved means of generating power from wind currents. A MEPS includes:
The resulting mixer/ejectors enhance the operational characteristics of the power system by: (a) increasing the amount of flow through the system, (b) reducing the exit or back pressure on the turbine blades, and (c) reducing the noise propagating from the system.
The MEPS may include:
Referring to the drawings in detail, the figures illustrate alternate embodiments of Applicants' axial flow Wind Turbine with Mixers and Ejectors (“MEWT”).
Referring to
a) an aerodynamically contoured turbine shroud 102;
b) an aerodynamically contoured center body 103 within and attached to the turbine shroud 102;
c) a turbine stage 104, surrounding the center body 103, comprising a stator ring 106 having stator vanes 108a and a rotor 110 having rotor blades 112a. Rotor 110 is downstream and “in-line” with the stator vanes, i.e., the leading edges of the impeller blades are substantially aligned with trailing edges of the stator vanes, in which:
d) a mixer indicated generally at 118 having a ring of mixer lobes 120a on a terminus region (i.e., end portion) of the turbine shroud 102, wherein the mixer lobes 120a extend downstream beyond the rotor blades 112a; and,
e) an ejector indicated generally at 122 comprising an ejector shroud 128, surrounding the ring of mixer lobes 120a on the turbine shroud, wherein the mixer lobes (e.g., 120a) extend downstream and into an inlet 129 of the ejector shroud 128.
The center body 103 of MEWT 100, as shown in
Applicants have calculated, for optimum efficiency, the area ratio of the ejector pump 122, as defined by the ejector shroud 128 exit area over the turbine shroud 102 exit area, will be in the range of 1.5-3.0. The number of mixer lobes 120a would be between 6 and 14. Each lobe will have inner and outer trailing edge angles between 5 and 65 degrees. These angles are measured from a tangent line that is drawn at the exit of the mixing lobe down to a line that is parallel to the center axis of the turbine, as will be explained further herein. The primary lobe exit location will be at, or near, the entrance location or inlet 129 of the ejector shroud 128. The height-to-width ratio of the lobe channels will be between 0.5 and 4.5. The mixer penetration will be between 50% and 80%. The center body 103 plug trailing edge angles will be thirty degrees or less. The length to diameter (L/D) of the overall MEWT 100 will be between 0.5 and 1.25.
First-principles-based theoretical analysis of the preferred MEWT 100, performed by Applicants, indicate the MEWT can produce three or more times the power of its un-shrouded counterparts for the same frontal area; and, the MEWT 100 can increase the productivity of wind farms by a factor of two or more. Based on this theoretical analysis, it is believed the MEWT embodiment 100 will generate three times the existing power of the same size conventional open blade wind turbine.
A satisfactory embodiment 100 of the MEWT comprises: an axial flow turbine (e.g., stator vanes and impeller blades) surrounded by an aerodynamically contoured turbine shroud 102 incorporating mixing devices in its terminus region (i.e., end portion); and a separate ejector shroud 128 overlapping, but aft, of turbine shroud 102, which itself may incorporate mixer lobes in its terminus region. The ring 118 of mixer lobes 120a combined with the ejector shroud 128 can be thought of as a mixer/ejector pump. This mixer/ejector pump provides the means for consistently exceeding the Betz limit for operational efficiency of the wind turbine. The stator vanes' exit-angle incidence may be mechanically varied in situ (i.e., the vanes are pivoted) to accommodate variations in the fluid stream velocity so as to assure minimum residual swirl in the flow exiting the rotor.
Described differently, the MEWT 100 comprises a turbine stage 104 with a stator ring 106 and a rotor 110 mounted on center body 103, surrounded by turbine shroud 102 with embedded mixer lobes 120a having trailing edges inserted slightly in the entrance plane of ejector shroud 128. The turbine stage 104 and ejector shroud 128 are structurally connected to the turbine shroud 102, which is the principal load carrying member.
These figures depict a rotor/stator assembly for generating power. The term “impeller” is used herein to refer generally to any assembly in which blades are attached to a shaft and able to rotate, allowing for the generation of power or energy from wind rotating the blades. Exemplary impellers include a propeller or a rotor/stator assembly. Any type of impeller may be enclosed within the turbine shroud 102 in the wind turbine of the present disclosure.
In some embodiments, the length of the turbine shroud 102 is equal or less than the turbine shroud's outer maximum diameter. Also, the length of the ejector shroud 128 is equal or less than the ejector shroud's outer maximum diameter. The exterior surface of the center body 103 is aerodynamically contoured to minimize the effects of flow separation downstream of the MEWT 100. It may be configured to be longer or shorter than the turbine shroud 102 or the ejector shroud 128, or their combined lengths.
The turbine shroud's entrance area and exit area will be equal to or greater than that of the annulus occupied by the turbine stage 104, but need not be circular in shape so as to allow better control of the flow source and impact of its wake. The internal flow path cross-sectional area formed by the annulus between the center body 103 and the interior surface of the turbine shroud 102 is aerodynamically shaped to have a minimum area at the plane of the turbine and to otherwise vary smoothly from their respective entrance planes to their exit planes. The turbine and ejector shrouds' external surfaces are aerodynamically shaped to assist guiding the flow into the turbine shroud inlet, eliminating flow separation from their surfaces, and delivering smooth flow into the ejector entrance 129. The ejector 128 entrance area, which may alternatively be noncircular in shape, is greater than the mixer 118 exit plane area; and the ejector's exit area may also be noncircular in shape if desired.
Optional features of the preferred embodiment 100 can include: a power take-off, in the form of a wheel-like structure, which is mechanically linked at an outer rim of the impeller to a power generator; a vertical support shaft with a rotatable coupling for rotatably supporting the MEWT, the shaft being located forward of the center-of-pressure location on the MEWT for self-aligning the MEWT; and a self-moving vertical stabilizer fin or “wing-tab” affixed to upper and lower surfaces of the ejector shroud to stabilize alignment directions with different wind streams.
The MEWT 100, when used near residences can have sound absorbing material affixed to the inner surface of its shrouds 102, 128 to absorb and thus eliminate the relatively high frequency sound waves produced by the interaction of the stator 106 wakes with the rotor 110. The MEWT 100 can also contain blade containment structures for added safety. The MEWT should be considered to be a horizontal axis wind turbine as well.
From the rear, as seen in
The trailing edge 250 can be considered as including several inner circumferentially spaced arcuate portions 252 which each have the same radius of curvature. Those inner arcuate portions are preferably evenly spaced apart from each other. In those spaces between portions 252 are several outer arcuate portions 254, which each have the same radius of curvature. The radius of curvature for the inner arcuate portions is different from the radius of curvature for the outer arcuate portions 254, but the inner arcuate portions and outer arcuate portions should share generally the same center (i.e. along the central axis). The inner portions 252 and the outer arcuate portions 254 are then connected to each other by radially extending portions 256. This results in a circular crenellated shape. The term “crenellated” or “castellated” are not used herein as requiring the inner arcuate portions, outer arcuate portions, and radially extending portions to be straight lines, but rather to refer to the general up-and-down or in-and-out shape of the trailing edge 250. This crenellated structure forms two sets of mixing lobes, high energy mixing lobes 212 and low energy mixing lobes 214.
The entrance area 232 of the ejector shroud 230 is larger than the exit area 234 of the ejector shroud. It will be understood that the entrance area refers to the entire mouth of the ejector shroud and not the annular area of the ejector shroud between the ejector shroud 230 and the turbine shroud 210. However, as seen further herein, the entrance area of the ejector shroud may also be smaller than the exit area 234 of the ejector shroud. As expected, the entrance area 232 of the ejector shroud 230 is larger than the exit area 218 of the turbine shroud 210, in order to accommodate the mixing lobes and to create an annular area 238 between the turbine shroud and the ejector shroud through which high energy air can enter the ejector.
As shown here, mixing lobes are present on the turbine shroud. If desired, mixing lobes may also be formed on a trailing edge of the ejector shroud.
The mixer-ejector design concepts described herein can significantly enhance fluid dynamic performance. These mixer-ejector systems provide numerous advantages over conventional systems, such as: shorter ejector lengths; increased mass flow into and through the system; lower sensitivity to inlet flow blockage and/or misalignment with the principal flow direction; reduced aerodynamic noise; added thrust; and increased suction pressure at the primary exit.
Free stream air indicated generally by arrow 306 passing through the stator 308a has its energy extracted by the rotor 310. High energy air indicated by arrow 329 bypasses the shroud 302 and stator 308a and flows over the turbine shroud 302 and directed inwardly by the high energy mixing lobes 318. The low energy mixing lobes 320 cause the low energy air exiting downstream from the rotor 310 to be mixed with the high energy air 329.
Referring to
In
In
The leading edge of the turbine shroud may be considered the front of the wind turbine, and the trailing edge of the ejector shroud may be considered the rear of the wind turbine. A first component of the wind turbine located closer to the front of the turbine may be considered “upstream” of a second component located closer to the rear of the turbine. Put another way, the second component is “downstream” of the first component.
The shrouded wind turbine of the present disclosure uses a ring generator to capture energy from wind. Essentially, moving magnets are used to generate current in a stationary phase winding. The magnets of the present disclosure are permanent magnets arranged to form a Halbach array. A Halbach array is an arrangement of permanent magnets that increases the magnetic field on one side of the array and cancels the magnetic field on the opposite side of the array to near zero. The Halbach array of magnets can be arranged into a cylindrical form, with the increased magnetic field on the interior or the exterior of the cylinder. This form of a Halbach array is also referred to as a Halbach cylinder. The Halbach cylinder of the present disclosure is arranged so that the magnetic field is on the exterior of the cylinder, as will be further explained herein.
Referring now to
In
It should be noted that in the field of electric motors, the word “stator” is used to refer to the stationary portion of a rotor/stator system. The phrase “static ring” is used here to reduce any confusion between the stationary portion 430 of the power generation system in the wind turbine and the stationary vane 408 that direct air against the rotor 420.
Referring now to
A plurality of permanent magnet arrays 440 is located on the outer ring 470. The magnets are generally evenly distributed around the circumference of the rotor and along the outer ring 470. As seen in
Permanent magnets are made from magnetized materials which create their own persistent magnetic field. Exemplary magnetic materials are ferromagnetic and ferromagnetic materials including iron, nickel, cobalt, rare earth metals, and lodestone. Permanent magnets are distinguished from electromagnets which are made up of a wire coil through which an electric current passes to create a magnetic effect.
In some embodiments, the permanent magnets comprise a rare earth metal selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The rare earth metal magnets may comprise neodymium-iron-boron material such as Nd2Fe14B or a samarium-cobalt material such as SmCo5 or SmCo7.
The present disclosure has been described with reference to exemplary embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the present disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/222,142, filed Jul. 1, 2009. This application is also a continuation-in-part from U.S. patent application Ser. No. 12/054,050, filed Mar. 24, 2008, which claimed priority from U.S. Provisional Patent Application Ser. No. 60/919,588, filed Mar. 23, 2007. This application is also a continuation-in-part from U.S. patent application Ser. No. 12/629,714, filed Dec. 2, 2009, which claimed priority from U.S. Provisional Patent Application Ser. No. 61/119,078, filed Dec. 2, 2008. The disclosures of these applications are hereby fully incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61222142 | Jul 2009 | US | |
60919588 | Mar 2007 | US | |
61119078 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12054050 | Mar 2008 | US |
Child | 12828698 | US | |
Parent | 12629714 | Dec 2009 | US |
Child | 12054050 | US |