The present invention relates generally to coating applicator systems in which a variety of coatings are applied. More specifically, the invention relates to paint applicators in which color changes are frequent, and cleaning systems for the applicators.
In coating applicator systems, it is known to provide interchangeable coating sources so that an applicator can be connected to different sources to provide different coatings on objects. For example, in the manufacture of automobile bodies it is known to provide robotic painting stations in which successive body parts may be painted with any of a large variety of paint colors. Therefore, when painting on one object is complete, it is often necessary to change the color source for the next object to be painted.
A variety of different systems have been both proposed and used for providing multiple sources of coatings, and for switching the applicator connection from one source to another. However, in some such systems, extended lengths of tubing or hoses are used between the applicator and a reservoir from which the coating is dispensed to the applicator; and/or between a coating kitchen and the reservoir or applicator. Whenever a change is made, it is necessary to clean the applicator and all hoses or tubes through which the coating is supplied. Cleaning must be thorough so that subsequent coatings passed through the tubes are not contaminated with residue from previous coatings.
Coating still in the tubes or hoses when an application of coating is complete is wasted when the cleaning function is performed. Even if the hoses or tubes are relatively short, frequent changes result in the waste of a substantial volume of the coating material. If the tubes or hoses are relatively long, waste is even more significant. Accordingly, it has been proposed to use various push-systems for pushing the paint through the tube to the destination during the final moments of coating transfer so that the application or transfer includes most of the material in the tube, and less coating is left in the tube to be wasted.
It also is necessary to perform cleaning and switching functions quickly, preferably in the time it takes to move one coated object from the coating location and to position the next object for coating in the coating location. It has been proposed to use cleaning solvent to push coating through the tubes to the ultimate destination so that initial stages of cleaning are performed even while coating is being completed on the target object. A problem has been experienced in some situations as a result of the relatively high viscosity of the coatings used and the relatively low viscosity of the appropriate solvent. When solvent is used to displace the coating in a tube, the interface between the coating and the solvent following the coating is not well supported. Coating tends to cling to the surfaces of the tube, and the solvent tends to tunnel into the body of coating, advancing in a narrow front through the center of the coating in the tube. As a result, while solvent push systems can be used to displace some of the paint or other coating toward its destination, the intermingling of coating and solvent at the interface between the two liquids prevents substantial portions of the coating from being used.
The present invention provides an object, such as a ball, inserted at the interface between coating and solvent in a coating applicator system. The object is pushed through a coating supply tube by the solvent to move coating efficiently through the supply tube to the applicator.
In one aspect thereof, the present invention provides a coating applicator system with an applicator, a coating source and a supply tube establishing flow communication between the applicator and the coating source. A first shuttle box has an inlet connection to the supply tube at a first location, and a second shuttle box has an outlet connection to the supply tube at a second location. A return tube interconnects the first and second shuttle boxes. A displacing object is in selective circulation along a path from the first shuttle box to the second shuttle box via the supply tube and from the second shuttle box to the first shuttle box via the return tube.
In another aspect thereof, the present invention provides a paint supply tube cleaning system with a first shuttle box having an inlet connection to the supply tube at a first location, and a second shuttle box having an outlet connection to the supply tube at a second location in the supply tube remote from the first location. A return tube interconnects the first and second shuttle boxes. A displacing object is injected into the supply tube by the first shuttle box and removed from the supply tube by the second shuttle box, and is transported from the second shuttle box to the first shuttle box via the return tube.
In a still further aspect thereof, the present invention provides a method to clean a coating system having an applicator, a supply system and a coating supply tube in flow communication with and between the applicator and the supply system. The method includes steps of inserting an object into the supply tube near the supply system; pushing the object through the supply tube while operating the applicator for at least a part of the time involved during the pushing step; removing the object from the supply tube near the applicator; and moving the object from the second location to the first location via a return tube.
An advantage of the present invention is efficient cleaning of a supply tube for coating between a coating supply source and a coating applicator.
Another advantage of the present invention is providing a system to clean a tube efficiently, with little intermingling between a first fluid in the tube and a cleaning fluid following the first fluid.
Yet another advantage of the present invention is providing rapid cleaning of a coating applicator apparatus by commencing cleaning in upstream portions of the system before application is complete by the applicator.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings in which like numerals are used to designate like features.
Before the embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use herein of “including”, “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof, as well as additional items and equivalents thereof.
Referring now more specifically to the drawings,
In the exemplary schematic illustration of
The present invention can be utilized with different types of coating, not only paint, and can be used with different types of coating sources alternately connected to supply tube 26 by a coating changer or the like. For example, the present invention can be utilized in an applicator system having a coating kitchen connected via a coating changer to supply tube 26. The present invention also can be used with various types of canister coating sources supplied from a coating kitchen with individual batches of coating sufficient for a single coating operation. Further, while the exemplary embodiment illustrates shuttle system 10 operating between supply system 14 and applicator 24, it should be understood that the present invention can be used between a coating source and a coating destination of various types. Again, by way of example and not limitation, shuttle system 10 can be used between a large volume source and a smaller volume destination, such as an accumulator sufficient for a coating volume to cover a single item. Accordingly, a coating system may include several shuttle systems of the present invention, such as one operating between a coating kitchen or other primary supply source and an accumulator for smaller batches of coating, and another shuttle system operating between the accumulator and the applicator.
Applicator 24 can be of various types, such as, for example, a rotary atomizing applicator having a bell cup 28. Applicator 24 can be a handheld, manually operated sprayer; or applicator 24 can be mounted on a robot for automated maneuvering to apply coating on an object. Further, applicator 24 can be a relatively simple sprayer or a more complex sprayer providing an electric charge on the sprayed coating and shaping air systems for controlling and directing the spray coating toward the object to be coated.
Shuttle system 10 includes a first shuttle box 30 adjacent supply system 14 and a second shuttle box 32 adjacent applicator 24, each first shuttle box 30 and second shuttle box 32 being in selective flow communication with supply tube 26 as will be described in further detail hereinafter. A return tube 34 interconnects first shuttle box 30 and second shuttle box 32. An object 36, such as a ball 36 is selectively circulated along a path including first shuttle box 30 and second shuttle box 32, via supply tube 26 and return tube 34.
Object 36 can be a spherical object, or can be of other shapes to fit snuggly within supply tube 26 so that coating ahead of object 36 is scraped from the interior wall surface of supply tube 26, and so that solvent behind object 36 does not flow past object 36 and intermingle with coating ahead of object 36.
Shuttle box 30 is illustrated in
Cartridge 40 defines a nest 50 for receiving and repositioning object 36 upon movement of cartridge 40 by actuator 42. Nest 50 is open to return tube 34 with shuttle box 30 in the receiving position illustrated in
A restricted passage 56 communicates with nest 50 and a waste line 58 leading to a dump 60 when shuttle box 30 is in the receiving position illustrated in
The operation of first shuttle box 30 can be understood by comparing the condition of shuttle box 30 illustrated in
Second shuttle box 32 is configured to move object 36 from an end position relative to supply tube 26 into return tube 34 for return to first shuttle box 30. Shuttle box 32 includes a housing 70 having a cartridge 72 movable therein by an actuator 74. A biasing means 76, such as a spring 76, urges cartridge 72 to a capture position (
Cartridge 72 defines a supply passage 78 for the flow of coating therethrough. An orifice 80 captures object 36, preventing passage of object 36 beyond orifice 80 to applicator 24. In an advantageous embodiment, object 36 engaged against orifice 80 prevents flow of fluid past object 36. An L-passage 82 is defined in cartridge 72, and has a through passage 84 and a lateral passage 86. A cleaning line 88 is in substantial alignment with through passage 84, and lateral passage 86 has a distal portion comprising a stepped down passage 90. Cleaning line 88 and step down passage 90 are provided for flow balancing and can be selected advantageously for desired flow rates.
The operation of second shuttle box 32 can be understood by comparing the condition of shuttle box 32 illustrated in
During a coating application cycle, such as a painting cycle in a painting applicator system 12, object 36 is stored in first shuttle box 30 in a position away from and out of the flow of paint or other coating through supply tube 26. Thus, object 36 does not interfere with the flow of paint or other coating through supply tube 26. As the end of a painting cycle approaches, coating flow from supply system 14 is terminated and solvent is supplied. Actuator 52 is operated to move object 36 from its stored position into the flow stream of supply tube 26, with cartridge 40 being adjusted from its receiving position illustrated in
As the final application process is complete, and object 36 is received at orifice 80, shuttle box 32, via actuator 74, moves object 36 into return tube 34 (
L-passage 82 also enables flow from supply tube 26 to return tube 34 via through passage 84, lateral passage 86 and step down passage 90. Object 36 is cleaned in return tube 34 and can also be further cleaned while positioned in shuttle box 30 such that coating does not remain on surfaces of object 36. It may be advantageous to provide return tube 34 slightly larger in diameter than object 36 so that object 36, particularly if configured as a sphere, is allowed to tumble in return tube 34 for more thorough cleaning. After all cleaning is complete, a new paint cycle can begin.
Solvent can be used to clean thin wall barrier 54 and other portions of nest 50 and cartridges 40, 72 as necessary to prevent any contamination of one coating with other coating residues. Appropriate solvent lines can be routed to shuttle boxes 30 and 32 for these purposes.
Variations and modifications of the foregoing are within the scope of the present invention. It is understood that the invention disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned or evident from the text and/or drawings. All of these different combinations constitute various alternative aspects of the present invention. The embodiments described herein explain the best modes known for practicing the invention and will enable others skilled in the art to utilize the invention. The claims are to be construed to include alternative embodiments to the extent permitted by the prior art.
Various features of the invention are set forth in the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/13378 | 4/10/2006 | WO | 00 | 10/11/2007 |
Number | Date | Country | |
---|---|---|---|
60670919 | Apr 2005 | US |