The present invention relates generally to a vehicle and in particular to a vehicle having side-by-side seating.
Side-by-side vehicles are known. The present disclosure relates to vehicles, including utility vehicles. The present disclosure relates to air handling systems for vehicles. The present disclosure relates to suspension systems for vehicles.
In exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle, comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; an operator area supported by the frame, the operator area including seating and operator controls; a rear drive unit supported by the frame and positioned rearward of the operator area; and a first rear suspension system moveably coupling the first ground engaging member to the frame. The rear drive being operatively coupled to the power source and operatively coupled to at least a first ground engaging member positioned rearward of the operator area through a drive shaft to transfer power received from the power source to the first ground engaging member. The first rear suspension system including a control arm moveably coupled to the frame at a location rearward of the drive shaft connecting the rear drive unit and the first ground engaging member and between a plane passing through a first laterally extending end of the rear drive unit and a centerline longitudinal plane of the vehicle. The plane being parallel to the centerline longitudinal plane of the vehicle. In one example, the first rear suspension includes a second control arm moveably coupled to the frame at a second location rearward of the drive shaft connecting the rear drive unit and the first ground engaging member and between the plane passing through the first laterally extending end of the rear drive unit and the centerline longitudinal plane of the vehicle. In a variation thereof, the control arm and the second control arm are coupled to a bearing carrier which is coupled to the first ground engaging member, the bearing carrier including an opening through which the drive shaft is operatively coupled to the first ground engaging member. In a further variation thereof, the first rear suspension includes a radius arm coupled to the frame at a third location forward of the rear drive unit and coupled to the bearing carrier. The third location may be forward of the power source. The third location may be under the seating of the operator area. In another variation thereof, the first rear suspension includes a dampening member having a first end coupled to the radius arm at a fourth location and a second end coupled to the frame at a fifth location, the fifth location being forward of the fourth location and closer to the longitudinal centerline plane than the fourth location. In another example, the vehicle further comprises a front drive unit supported by the frame and positioned forward of the operator area. The front drive being operatively coupled to the power source and operatively coupled to at least a second ground engaging member positioned forward of the operator area to transfer power received from the power source to the second ground engaging member.
In another exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; an operator area supported by the frame, the operator area including seating and operator controls; a rear drive unit supported by the frame and positioned rearward of the operator area, the rear drive being operatively coupled to the power source and operatively coupled to at least a first ground engaging member positioned rearward of the operator area through a drive shaft to transfer power received from the power source to the first ground engaging member; and a first rear suspension system moveably coupling the first ground engaging member to the frame. The first rear suspension system including a control arm coupled to the frame at a rear face of the frame. The control arm being unobscured by the frame from a viewing direction which is perpendicular to a centerline longitudinal plane of the vehicle and rearward of the vehicle. In one example, the rear face of the vehicle is a flat surface. In another example, the first rear suspension includes a second control arm moveably coupled to the rear face of the frame at a second location the second control arm being unobscured by the frame from the viewing direction which is perpendicular to a centerline longitudinal plane of the vehicle and rearward of the vehicle. In a variation thereof, the control arm and the second control arm are coupled to a bearing carrier which is coupled to the first ground engaging member. The bearing carrier including an opening through which a drive shaft is operatively coupled to the first ground engaging member. The first rear suspension may include a radius arm coupled to the frame at a third location forward of the power source and coupled to the bearing carrier. The third location may be under the seating of the operator area. The first rear suspension includes a dampening member having a first end coupled to the radius arm at a fourth location and a second end coupled to the frame at a fifth location. The fifth location being forward of the fourth location and closer to the longitudinal centerline plane than the fourth location. In another example, the vehicle further comprises a front drive unit supported by the frame and positioned forward of the operator area, the front drive being operatively coupled to the power source and operatively coupled to at least a second ground engaging member positioned forward of the operator area to transfer power received from the power source to the second ground engaging member.
In another exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; an operator area supported by the frame, the operator area including seating and operator controls; a rear drive unit supported by the frame and positioned rearward of the operator area. The rear drive being operatively coupled to the power source and operatively coupled to a first ground engaging member positioned rearward of the operator area through a first drive shaft to transfer power received from the power source to the first ground engaging member and to a second ground engaging member positioned rearward of the operator area through a second drive shaft to transfer power received from the power source to the second ground engaging member. The first ground engaging member being positioned on a first side of a vertical centerline longitudinal plane of the vehicle and the second ground engaging member being positioned on a second side of the vertical centerline longitudinal plane of the vehicle. The vehicle further comprising a first rear suspension system moveably coupling the first ground engaging member to the frame. The first rear suspension system including a first radius arm coupled to the first ground engaging member and coupled to the frame at a first location forward of the first ground engaging member, a first control arm coupled to the first ground engaging member and to the frame; and a first dampening member coupled to the first radius arm and to the frame. The vehicle further comprising a second rear suspension system moveably coupling the second ground engaging member to the frame. The second rear suspension system including a second radius arm coupled to the second ground engaging member and coupled to the frame at a second location forward of the second ground engaging member, a second control arm coupled to the second ground engaging member and to the frame; and a second dampening member coupled to the second radius arm and to the frame. The vehicle further comprising a sway bar coupling the first rear suspension to the second rear suspension, the sway bar being coupled to the frame at a location forward of the power source. In one example, the location at which the sway bar is coupled to the frame is rearward of the first location and the second location. In another example, the sway bar is coupled to the first radius arm through a first link and the sway bar is coupled to the second radius arm through a second link. In a variation thereof, the location at which the sway bar is coupled to the frame is rearward of the first location and the second location. In another example, the first control arm is coupled to the frame at a fourth location, the power source being positioned between the first location and the fourth location. In a variation thereof, the location at which the sway bar is coupled to the frame is rearward of the first location and the second location.
In a further exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; an operator area supported by the frame, the operator area including side-by-side seating and operator controls; a rear drive unit supported by the frame and positioned rearward of the operator area; and a first rear suspension system moveably coupling the first ground engaging member to the frame. The rear drive being operatively coupled to the power source and operatively coupled to a first ground engaging member positioned rearward of the operator area through a first drive shaft to transfer power received from the power source to the first ground engaging member and to a second ground engaging member positioned rearward of the operator area through a second drive shaft to transfer power received from the power source to the second ground engaging member, the first ground engaging member being positioned on a first side of a vertical centerline longitudinal plane of the vehicle and the second ground engaging member being positioned on a second side of the vertical centerline longitudinal plane of the vehicle. The first rear suspension system including a first moveable arm. The vehicle further comprising a second rear suspension system moveably coupling the second ground engaging member to the frame, the second rear suspension system including a second moveable arm; and a sway bar coupling the first rear suspension to the second rear suspension, the sway bar being coupled to the frame at a location forward of the power source. In one example, the sway bar is coupled to the first moveable arm and the second moveable arm. In a variation thereof, the vehicle further comprises a front drive operatively coupled to the power source and operatively coupled to a third ground engaging member positioned forward of the operator area and a fourth ground engaging member positioned forward of the operator area, the third ground engaging member being positioned on the first side of the vertical centerline longitudinal plane of the vehicle and the fourth ground engaging member being positioned on the second side of the vertical centerline longitudinal plane of the vehicle.
In a further exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; an operator area supported by the frame, the operator area including seating and operator controls; a rear drive unit supported by the frame and positioned rearward of the operator area, the rear drive being operatively coupled to the power source and operatively coupled to a first ground engaging member positioned rearward of the operator area through a first drive shaft to transfer power received from the power source to the first ground engaging member; and a first rear suspension system moveably coupling the first ground engaging member to the frame. The first rear suspension system including a first radius arm coupled to the first ground engaging member and coupled to the frame at a first location forward of the first ground engaging member, a first control arm coupled to the first ground engaging member and to the frame; and a first dampening member coupled to the first radius arm and to the frame. The vehicle further comprising a bearing carrier coupled to the first ground engaging member, the first radius arm, and the first control arm. The bearing carrier including an opening through which the drive shaft is operatively coupled to the first ground engaging member. The first radius arm may be uncoupled from the frame at the first location and uncoupled from the bearing carrier without uncoupling the drive shaft from the first ground engaging member. In one example, the first radius arm includes an open end which receives the drive shaft.
In still another exemplary embodiment of the present disclosure, a method of removing a radius arm of a rear suspension of a vehicle is provided. The method comprising the steps of (a) uncoupling a first portion of the radius arm of the rear suspension from a frame of the vehicle; (b) uncoupling a second portion of the radius arm of the rear suspension from a bearing carrier which is coupled to a wheel of the vehicle, the bearing carrier having an opening through which a drive shaft is operatively coupled to the ground engaging member; and (c) removing the radius arm from the vehicle, wherein the drive shaft remains coupled to the wheel throughout steps (a) through (c). In one example, the method further comprises the step of uncoupling a third portion of the radius arm of the rear suspension from the frame of the vehicle, the third portion being spaced apart from the first portion and the second portion. In a variation thereof, the step of uncoupling the third portion of the radius arm of the rear suspension from the frame of the vehicle includes the step of uncoupling the third portion of the radius arm of the rear suspension from a dampening member which is coupled to the frame.
In yet a further exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; and a unit. The unit including a power source supported by the frame through less than three connections, a transmission supported by the frame through less than three connections, and a spacer coupled to the power source housing and coupled to the transmission housing to position the transmission relative to the power source. The power source having a power source housing and a power source output drive member. The transmission having a transmission housing and a transmission input drive member and a transmission output drive member. The transmission input drive member being operatively coupled to the power source output drive member and the transmission output drive member being operatively coupled to at least one of the plurality of the plurality of ground engaging members to propel the vehicle. The power source output drive member and the transmission input drive member being completely outside of the spacer. The unit being supported by the frame through at least a first connection, a second connection, and a third connection. In one example, the spacer is coupled to the power source through a first fastener and a second fastener and the spacer is coupled to the transmission through a third fastener and a fourth fastener. In a variation thereof, the first fastener is parallel to the second fastener and the third fastener is parallel to the fourth fastener. In another example, the spacer is received by a portion of the power source housing and is coupled to the power source housing through a first connection and a second connection and wherein the spacer is received by a portion of the transmission housing and is coupled to the transmission through a third connection and a fourth connection.
In a further exemplary embodiment of the present disclosure, a method of supporting a power source and a transmission on a frame of a vehicle is provided. The method comprising the steps of coupling the power source to the transmission with a spacer, a power source output drive member of the power source and an input drive member of the transmission being completely outside of the spacer; and supporting the power source, the transmission, and the spacer on the frame through at least three connections, less than three connections supporting the power source and less than three connection supporting the transmission.
In still a further exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; an operator area supported by the frame, the operator area including seating and operator controls; a rear drive unit supported by the frame and positioned rearward of the operator area, the rear drive being operatively coupled to the power source and operatively coupled to at least a first ground engaging member positioned rearward of the operator area through a drive shaft to transfer power received from the power source to the first ground engaging member; and a first rear suspension system moveably coupling the first ground engaging member to the frame. The first rear suspension system including a radius arm moveably coupled to the frame at a first location forward of the drive shaft; a control arm moveably coupled to the frame at second location rearward of the drive shaft; and a dampening member moveably coupled to the frame at a third location and moveably coupled to the radius arm at a fourth location. The third location being forward of the fourth location and closer to the longitudinal centerline plane than the fourth location. In one example, the vehicle further comprises a bearing carrier coupled to the control arm and the radius arm, the first suspension being generally rotatable about a first suspension axis generally passing through the first location and the second location. A top view projection of the first suspension axis intersecting a longitudinal centerline of the vehicle. In a variation thereof, a top view projection of a centerline of the dampening member is angled relative to the top view projection of the first suspension axis. The top view projection of the centerline of the dampening member may be generally normal to the top view projection of the first suspension axis. The top view projection of the centerline of the dampening member may be angled up to about 30 degrees from a normal to the top view projection of the first suspension axis. The top view projection of the centerline of the dampening member may be angled up to about 20 degrees from a normal to the top view projection of the first suspension axis. The top view projection of the centerline of the dampening member may be angled up to about 10 degrees from a normal to the top view projection of the first suspension axis.
In yet another exemplary embodiment, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; an operator area supported by the frame, the operator area including seating and operator controls; a cargo carrying portion supported by the frame and located rearward of the operator area; and a first air intake system operatively coupled to the power source to communicate ambient air to the power source. The first air intake system receiving ambient air through an inlet in an exterior body panel of the cargo carrying portion. In one example, the cargo carrying portion is a cargo bed. In a variation thereof, the cargo carrying portion includes a floor and a plurality of walls. The floor including a removable cover which permits access to a portion of the first air intake system. The portion of the first air intake system may be an airbox including a filter. In another example, the first air intake system includes a resonator box located between an exterior surface of the exterior body panel of the cargo carrying portion and a wall of a cargo carrying region of the cargo carrying portion. In yet another example, the vehicle further comprises a cover coupled to the exterior body panel to cover the inlet in the exterior body panel. The cover permitting the ambient air to pass by the cover. In a variation thereof, the vehicle further comprises a filter housing positioned behind the cover and a filter removably positioned within the filter housing. The ambient air passing through the filter. The filter may be located between an exterior surface of the exterior body panel of the cargo carrying portion and a wall of a cargo carrying region of the cargo carrying portion. The inlet in the exterior body panel of the cargo carrying portion may be positioned on a first side of a vertical centerline plane of the vehicle and the first air intake system transports the ambient air to a second side of the vertical centerline plane as the ambient air travels through a fluid conduit of the first air intake system. The vehicle may further comprise a CVT unit supported by the frame and operatively coupled between the power source and the at least one of the plurality of ground engaging members; and a second air intake system operatively coupled to the CVT unit to communicate ambient air to an interior of the CVT unit. The second air intake system including a second air inlet through which ambient air enters the second air intake system. The second air inlet being completely positioned to the second side of the vertical centerline plane of the vehicle. The second air intake system transporting the ambient air received through the second air inlet to the first side of the vertical centerline plane of the vehicle as the ambient air travels towards the CVT unit.
In still another exemplary embodiment of the present disclosure, a method of providing air to a power source of a vehicle is provided. The method comprising the steps of: providing an air inlet of an air intake system in a cargo carrying portion of the vehicle, the air inlet being rearward of an operator area of the vehicle; receiving a first amount of ambient air through the air inlet; and communicating the first amount of ambient air to the power source of the vehicle. In one example, the air inlet is provided in an exterior body panel of the cargo carrying portion of the vehicle. In another example, the cargo carrying portion includes a cargo bed. In a further example, the step of communicating the first amount of ambient air to the power source of the vehicle includes the step of: passing the ambient air through a first filter located between an exterior of the cargo carrying portion and a wall of a cargo bed of the cargo carrying portion. In still another example, the step of communicating the first amount of ambient air to the power source of the vehicle includes the step of passing the ambient air through a resonator box located between an exterior of the cargo carrying portion and a wall of a cargo bed of the cargo carrying portion. In yet still another example, the step of communicating the first amount of ambient air to the power source of the vehicle includes the step of passing the ambient air through an airbox. The airbox including a base portion, a cover portion, and a filter positioned in an interior of the airbox. The ambient air passing through the filter, the airbox being located below a floor of the cargo carrying portion. In still another example, the method further comprises the steps of manipulating a portion of the floor of the cargo carrying portion to access the airbox from above the floor of the cargo carrying portion; and moving the cover portion of the airbox relative to the base portion of the airbox to access the filter of the airbox, the cover portion being rotatably coupled to the base portion.
In yet still another exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; a CVT unit supported by the frame and operatively coupled between the power source and the at least one of the plurality of ground engaging members; an operator area supported by the frame, the operator area including seating and operator controls; a cargo carrying portion supported by the frame and located rearward of the operator area; and an air intake system operatively coupled to the CVT unit to communicate ambient air to an interior of the CVT unit, the air intake system receiving ambient air through an inlet in an exterior body panel of the cargo carrying portion. In one example, the cargo carrying portion is a cargo bed. In another example the vehicle further comprises a cover coupled to the exterior body panel to cover the inlet in the exterior body panel. The cover permitting the ambient air to pass by the cover. In a further example, the vehicle further comprises a filter housing positioned behind the cover and a filter removably positioned within the filter housing. The ambient air passing through the filter. In a variation thereof, the filter is located between an exterior surface of the exterior body panel of the cargo carrying portion and a wall of a cargo carrying region of the cargo carrying portion. The inlet in the exterior body panel of the cargo carrying portion may positioned on a first side of a vertical centerline plane of the vehicle and the air intake system transports the ambient air to a second side of the vertical centerline plane as the ambient air travels through a fluid conduit of the air intake system. In another example, the CVT unit includes a drive member operatively coupled to the power source; a driven member operatively coupled to the at least one ground engaging member; a drive belt operatively coupling the driven member to the drive member; and a CVT housing having an interior containing the drive member, the driven member, and the drive belt. The CVT housing including a plurality of air inlets to the interior of the CVT housing, a first air inlet being positioned proximate the drive member and a second air inlet being positioned proximate the driven member. Both the first air inlet and the second air inlet being in fluid communication with the air intake system to receive ambient air from the air intake system. In a variation thereof, the CVT housing includes an air outlet through which air exits the interior of the CVT housing, the air outlet being in fluid communication with a fluid conduit which directs the air at a portion of the power source.
In still another exemplary embodiment of the present disclosure, a method of providing air to a CVT unit of a vehicle is provided. The method comprising the steps of: providing an air inlet of an air intake system in a cargo carrying portion of the vehicle, the air inlet being rearward of an operator area of the vehicle; receiving a first amount of ambient air through the air inlet; and communicating the first amount of ambient air to an interior of the CVT unit of the vehicle. In one example, the air inlet is provided in an exterior body panel of the cargo carrying portion of the vehicle. In another example, the cargo carrying portion includes a cargo bed. In still another example, the step of communicating the first amount of ambient air to the CVT unit of the vehicle includes the step of: passing the ambient air through a first filter located between an exterior of the cargo carrying portion and a wall of a cargo bed of the cargo carrying portion.
In yet another exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; an operator area supported by the frame, the operator area including seating and operator controls; a cargo carrying portion supported by the frame and located rearward of the operator area; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; a CVT unit supported by the frame at a first position; a first air intake system operatively coupled to the power source to communicate ambient air to the power source, the first air intake system including a first air inlet through which ambient air enters the first air intake system, the first air inlet being completely positioned to a first side of the CVT unit; and a second air intake system operatively coupled to the CVT unit to communicate ambient air to an interior of the CVT unit, the second air intake system including a second air inlet through which ambient air enters the second air intake system, the second air inlet being completely positioned to a second side of the CVT unit. The CVT unit being operatively coupled between the power source and the at least one of the plurality of ground engaging members. In one example, the first air inlet and the second air inlet are both rearward of a front plane of the seating of the operator area. In a variation thereof, the first air inlet and the second air inlet are both rearward of the operator area. In another variation thereof the vehicle further comprises a roll cage. The first air inlet and the second air inlet are both rearward of the roll cage. In another example, the first air inlet and the second air inlet are positioned above the plurality of ground engaging members. In a variation thereof the vehicle further comprises a rear drive unit supported by the frame rearward of the front plane of the seating and operatively coupled to at least one ground engaging member which is rearward of the front plane of the seating, the power source being operatively coupled to the rear drive unit; and a first suspension system coupling the at least one ground engaging member which is rearward of the front plane of the seating to the frame, the first air inlet and the second air inlet being positioned completely above the first suspension system.
In still another exemplary embodiment of the present disclosure, a vehicle is provided. The vehicle comprising a frame; a plurality of ground engaging members supporting the frame; a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members to propel the vehicle; an air intake system operatively coupled to the CVT unit to communicate ambient air to an interior of the CVT unit; and a CVT unit supported by the frame. The CVT unit being operatively coupled between the power source and the at least one of the plurality of ground engaging members. The CVT unit comprising a drive member operatively coupled to the power source; a driven member operatively coupled to the at least one ground engaging member; a drive belt operatively coupling the driven member to the drive member; and a CVT housing having an interior containing the drive member, the driven member, and the drive belt. The CVT housing including a plurality of air inlets to the interior of the CVT housing. A first air inlet being positioned proximate the drive member and a second air inlet being positioned proximate the driven member. Both the first air inlet and the second air inlet being in fluid communication with the air intake system to receive ambient air from the air intake system. In one example, the CVT unit includes a diverter which receives the ambient air from the air intake system and directs a first portion of the ambient air to the first air inlet and a second portion of the ambient air to the second air inlet. In a variation thereof, the CVT housing includes a base portion and a cover. The cover being removably coupled to the base portion. The diverter being associated with the base portion. The diverter may be part of the base portion of the CVT housing. In another example, the first portion of the ambient air moves from the first air inlet towards an air outlet of the CVT housing in a generally counterclockwise movement and the second portion of the ambient air moves from the second air inlet towards the air outlet of the CVT housing in a generally counterclockwise movement.
The above mentioned and other features of the invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings. These above mentioned and other features of the invention may be used in any combination or permutation.
Corresponding reference characters indicate corresponding parts throughout the several views. Unless stated otherwise the drawings are proportional.
The embodiments disclosed below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. While the present disclosure is primarily directed to a side-by-side vehicle, it should be understood that the features disclosed herein may have application to other types of vehicles such as all-terrain vehicles, motorcycles, watercraft, snowmobiles, and golf carts.
Referring to
As mentioned herein one or more of ground engaging members 102 are operatively coupled to a power source 130 (see
Referring to the illustrated embodiment in
Referring to
Referring to
A first output shaft 146 of shiftable transmission 144 is coupled to a rear drive unit 148. Rear drive unit 148 is coupled to corresponding wheels 104 through half shafts 150. Rear drive unit 148 may be a differential. A second output shaft 152 of shiftable transmission 144 is coupled to a front drive unit 154. Front drive unit 154 is coupled to corresponding wheels 104 through half shafts 156. Front drive unit 154 may be a differential.
Various configurations of rear drive unit 148 and front drive unit 154 are contemplated. Regarding rear drive unit 148, in one embodiment rear drive unit 148 is a locked differential wherein power is provided to both of the wheels of axle 110 through output shafts 150. In one embodiment, rear drive unit 148 is a lockable/unlockable differential relative to output shafts 150. When rear drive unit 148 is in a locked configuration power is provided to both wheels of axle 110 through output shafts 150. When rear drive unit 148 is in an unlocked configuration, power is provided to one of the wheels of axle 110, such as the wheel having the less resistance relative to the ground, through output shafts 150. Regarding front drive unit 154, in one embodiment front drive unit 154 has a first configuration wherein power is provided to both of the wheels of front axle 108 and a second configuration wherein power is provided to one of the wheels of axle 108, such as the wheel having the less resistance relative to the ground.
In one embodiment, front drive unit 154 includes active descent control (“ADC”). ADC is an all wheel drive system that provides on-demand torque transfer to the front wheels when one of the wheels 104 of rear axle 110 lose traction and that provides engine braking torque to the wheels 104 of front axle 108. Both the on-demand torque transfer and the engine braking feature of front drive unit 154 may be active or inactive. In the case of the on-demand torque transfer, when active, power is provided to both of the wheels of front axle 108 and, when inactive, power is provided to one of the wheels of front axle 108. In the case of the engine braking, when active, engine braking is provided to the wheels of front axle 108 and, when inactive, engine braking is not provided to the wheels of front axle 108. Exemplary front drive units are disclosed in U.S. patent application Ser. No. 12/816,052, filed Jun. 15, 2010, titled ELECTRIC VEHICLE, U.S. Pat. No. 5,036,939, and U.S. Pat. No. RE38,012E, the disclosures of which are expressly incorporated herein by reference.
Referring to
The air enters an interior 184 of airbox 180. Referring to
Returning to
When couplers 206 are loosened front cover portion 196 may be rotated in direction 202 about axis 204 relative to base portion 194 placing airbox 180 in an open state. In the open state filter 188 may be removed from interior 184 of airbox 180 while front cover portion 196 remains coupled to base portion 194.
Returning to
Operator area 212 is protected with a roll cage 222. Referring to
In the illustrated embodiment, cargo carrying portion 210 includes a cargo bed 234 (see
Referring to
Body panel 236 includes a filter housing 240 having a recess therein to receive a filter 242. Filter 242 is held in place in the recess of filter housing 240 with a cover 244. In one embodiment, filter 242 is a foam filter. Cover 244 includes tabs 246 which are received in apertures (not shown) in body panel 236 to hold a first end of cover 244 relative to body panel 236. Cover 244 further includes a latch member 248 which cooperates with a latch plate 250 of body panel 236 to hold a second end of cover 244 relative to body panel 236.
Filter housing 240, filter 242, and cover 244 are part of air intake system 134. Air inlet housing 170 is positioned in the space 260 between body panel 236 and cargo bed body panel 238. Air inlet 172 of air inlet housing 170 is in fluid communication with an interior of filter housing 240. In operation, ambient air passes through openings in cover 244 and into filter housing 240. The air passes through filter 242 and into the interior of air inlet housing 170 through air inlet 172. The air travels through the interior of air inlet housing 170 and through fluid conduit 178 into interior 184 of airbox 180. Once the air passes through filter 188 it flows into the air intake of power source 130.
Referring to
Referring to
Removable cover 270 includes a plurality of tabs 274 along a first side of removable cover 270. Tabs 274 are received in openings 276 provided in a recessed portion of floor 224. Tabs 274 and openings 276 cooperate to retain removable cover 270 relative to floor 224. On the opposite side of removable cover 270, a latch mechanism 278 is coupled to removable cover 270. Latch mechanism 278 includes a handle 280 which may be actuated by an operator. As shown in
In one embodiment, removable cover 270 may be replaced with an accessory which includes the same tabs and latch placement as cover 270. This permits further customization of the vehicle 100. In one embodiment, an exemplary accessory includes a cooler for storing cold products.
Returning to
Oil reservoir 300 provides oil to a pump of power source 130. In the illustrated embodiment, power source 130 is a dry sump engine which receives oil from oil reservoir 300. By placing oil reservoir above the pump of power source 130, oil is continued to be provided to the pump of power source 130 when vehicle is on an incline. As shown in
Returning to
Returning to
Referring to
In the illustrated embodiment, holder 370 is further coupled to a shield 380 which is coupled to base portion 344. Holder 370 bounds a side of a channel 382 formed by holder 370 and shield 380. In one embodiment, channel 382 provides a routing region for wires, cables, and other items. A top of channel 382 is covered by a cover 384 which is removably coupled to holder 370 and shield 380. The wires are captured in channel 382 between shield 380 and cover 384.
Diverter portion 364 receives the ambient air from fluid duct 328 and communicates it to interior 340 of CVT housing 342. Diverter portion 364 includes a plurality of conduits which direct the ambient air to various portions of interior 340 of CVT housing 342. In the illustrated embodiment, diverter portion 364 includes a pair of conduits, conduit 390 and conduit 392. Referring to
Referring to
Referring to
Referring to
As illustrated in
During operation of vehicle 100, the amount of air directed at each of drive member 400 and driven member 402 may change. In this embodiment, drive member 400 and driven member 402 include fins and generally act as fans. At low speeds, drive member 400 is spinning at engine rpm and driven member 402 is spinning at less than engine rpm. As such, drive member 400 draws more air than driven member 402. At higher speeds, drive member 400 is still spinning at engine rpm, but driven member 402 is now spinning at higher than engine rpm. As such, driven member 402 draws more air than drive member 400.
Returning to
In one embodiment, the air inlet 172 for air intake system 134 is positioned on a first side of vertical centerline plane 122 and the air inlet 322 for air intake system 160 is positioned on a second side of vertical centerline plane 122. In one embodiment, as represented in
Referring to
Referring to
Referring to
Referring to
Referring to
In the illustrated embodiment, adjusters 496 are also included. Adjusters 496 includes a first member 497 having an opening to receive bolt 492 and a threaded exterior surface and a second member 498 having an opening to receive bolt 492 and an interior threaded surface which is threadably engaged with the threaded exterior surface of first member 497. A first end of first member 497 contacts a bushing 495 coupled to second portion 485 of spacer 484 and a second end of first member 497 contacts the head of bolt 492. The first end of first member 497 is threadably received in the opening of attachment features 488. Second member 498 contacts an outer surface 499 of attachment features 488. In one embodiment, second member 498 is a locking nut. With this arrangement, first member 497 is generally in contact with outer surface 499 of spacer 484 and removes any bending stress from attachment features 488.
Referring to
Spacer 484 connects housing 460 and housing 462 together independent of the connection between output shaft 138 of power source 130 and input shaft 142 of shiftable transmission 144. Neither of output shaft 138 of power source 130 nor input shaft 142 of CVT unit 140 pass through spacer 484.
Spacer 484 connects housing 460 and housing 462 together to form unit 482. As explained herein unit 482 is supported relative to frame 112 through three connections, one relative to housing 460 and two relative to housing 462. Each of housing 460 and housing 462 includes at least one connection, but less than three connections. In one embodiment, one or both of housing 460 and housing 462 includes at least three connections to frame 112.
In the illustrated embodiment, a single rear connection 450 and a pair of front connections 452 are provided. Housing 462 of power source 130 is coupled to brackets 456 of support member 454. In the illustrated embodiment, support member 454 is cylindrical member having brackets 456 welded thereto. Power source 130 is coupled to brackets 456 through fasteners. Support member 454 is coupled to frame 112 through coupling members 464 (see
Each coupling member 464 includes a first base portion 466, a second base portion 468, and a connecting portion 470. Referring to
Referring to
Further, in the illustrated embodiment the power source 130, shiftable transmission 144, and CVT unit 140 are positioned completely behind seating 211. In addition, in the illustrated embodiment output shaft 138 of power source 130 and output shaft 142 of CVT unit 140 both are oriented along a lateral extent of vehicle 100. Further, the half shafts 150 extending from rear drive unit 148 are laterally extending. This arrangement eliminates the need for any right angle drives between power source 130 and the wheels 104 of rear axle 110. This reduces the width of rear drive unit 148 which permits the use of longer half shafts 150 which in turn permits greater suspension travel for rear suspensions 116. A right angle drive is included to connect front drive unit 154 to shiftable transmission 144 through output shaft 152.
Referring to
Bearing carrier 536 is also coupled to one of control arms 530 and one of control arms 532. In the illustrated embodiment, control arms 530 and control arms 532 are rotatably coupled to bearing carrier 536 about axis 540 and axis 542, respectively. Referring to
Further, referring to
Returning to
As illustrated in
As illustrated in
The angling of dampening member 560 both forward and inward causes the top of dampening member 560 to tilt towards a rotation axis 650 (see
The position of dampening member 560 relative to axis 650 results in rear suspension 116 having a progressive motion ratio, in the illustrated embodiment. The motion ratio is defined as the derivative of the dampening member travel to the wheel travel (change in dampening member travel over change in wheel travel). A progressive motion ratio exhibits a higher change in dampening member travel at a higher change in wheel travel. An exemplary plot of the motion ratio for the illustrated embodiment, is provided in
The progressive nature of suspension 116 results in vehicle 100 being softer at normal ride heights and stiffer when suspension 116 is compressed. In one embodiment, the motion ratio for suspension 116 is in the range of about 0.5 to about 0.7. In one embodiment, the motion ratio for suspension 116 is in the range of about 0.6 to about 0.8. In one embodiment, the motion ratio for suspension 116 is in the range of about 0.5 to about 0.8. In one embodiment, the motion ratio for suspension 116 is in the range of about 0.52 to about 0.59.
As shown in
Referring to
Returning to
By having sway bar 570 coupled to frame 112 at a location forward of power source 130 and the remainder of rear independent suspensions 116 not overlapping power source 130, power source 130 may be placed lower on vehicle 100 resulting in a center of gravity 580 (see
In the illustrated embodiment of
In one embodiment, the center of gravity 580 is generally aligned with a storage location of operator area 212 which reduces an amount of movement of the cargo within the storage compartment. In one example, the storage compartment is a cup holder.
The width of suspensions 116 permits an increased ground clearance without increasing the height of the center of gravity 580. In one embodiment, a ground clearance of an unloaded vehicle 100 is at least about 10 inches. In one embodiment, the ground clearance of an unloaded vehicle 100 is about 13.5 inches. In one embodiment, the ground clearance of an unloaded vehicle 100 is about 14 inches.
When vehicle 100 is at a normal ride height control arms 530 and control arms 532 are generally parallel to the ground. With control arms 530 and control arms 532 generally parallel to the ground, the vehicle 100 is more resistant to vehicle roll.
Referring to
Front portion 590B is the portion of radius arm 526B which is rotatably coupled to frame 112 at line 524. Front portion 590B includes an opening 600B which receives a fastener as does opening 601B of frame 112 to couple radius arm 526B to frame 112. In one embodiment, a bearing is provided in opening 600B. First plate member 596B includes an opening 602B which receives a fastener as does opening 603B of link 572B to moveably couple radius arm 526B to sway bar 570 through link 572B. In one embodiment, a bearing is carried by link 572B. First plate member 596B includes an opening 604B which receives a fastener as does opening 605B of dampening member 560B to moveably couple radius arm 526B to dampening member 560B. In one embodiment, a bearing is carried by dampening member 560B.
Rear portion 534B includes openings 608B-614B which align with openings 618B-624B of bearing carrier 536B. Fasteners are used to couple rear portion 534B to bearing carrier 536B such that rear portion 534B is generally not moveable relative to bearing carrier 536B.
Rear portion 534B includes an open end 606B. Referring to
Further, bearing carrier 536B does not need to be removed to remove radius arm 526B. In addition, bearing carrier 536B may be made of a lighter material than radius arm 526B. In one embodiment, bearing carrier 536 is made of aluminum.
Referring to
In one embodiment, vehicle 100 includes light emitting diode headlights 640A, 640B (see
In one embodiment, vehicle 100 includes a network operatively connecting various components together. In one embodiment, the network is a CAN network. Exemplary CAN networks and vehicle components are disclosed in US Published Patent Application No. US20100090797, titled VEHICLE SECURITY SYSTEM, U.S. patent application Ser. No. 12/816,004, titled ELECTRIC VEHICLE, and U.S. patent application Ser. No. 11/218,163, titled CONTROLLER AREA NETWORK BASED SELF-CONFIGURING VEHICLE MANAGEMENT SYSTEM AND METHOD, the disclosures of which are expressly incorporated by reference.
Referring to
Placing parking brake 670 on the shaft 680 of shiftable transmission 144 increases the life span of parking brake 670. Further, the amount of braking force is reduced due to the increased mechanical advantage of coupling the parking brake 670 to the shaft 680 of shiftable transmission 144 as compared to a drive shaft 152 (see
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
This application is a continuation of U.S. patent application Ser. No. 14/225,208, filed Mar. 25, 2014, titled SIDE-BY-SIDE VEHICLE, which is a divisional application of U.S. patent application Ser. No. 12/849,516, now U.S. Pat. No. 8,746,719, filed Aug. 3, 2010, titled SIDE-BY-SIDE VEHICLE, the entire disclosures of which are expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1031497 | West | Jul 1912 | A |
2203290 | Best | Jun 1940 | A |
2468809 | Brock | May 1949 | A |
2576017 | John | Nov 1951 | A |
2755875 | Muller | Jul 1956 | A |
2757017 | Matthias et al. | Jul 1956 | A |
2757747 | MacPherson | Aug 1956 | A |
2833366 | Maurice | May 1958 | A |
2856201 | Muller et al. | Oct 1958 | A |
3149690 | Rosenkrands et al. | Sep 1964 | A |
3193302 | Hill | Jul 1965 | A |
3292944 | Dangauthier | Dec 1966 | A |
3366411 | Vittone | Jan 1968 | A |
3603422 | Cordiano | Sep 1971 | A |
3712416 | Swanson et al. | Jan 1973 | A |
3791482 | Sykora | Feb 1974 | A |
3800910 | Rose | Apr 1974 | A |
D237873 | Johnson | Dec 1975 | S |
3966014 | Gowing | Jun 1976 | A |
4109751 | Kabele | Aug 1978 | A |
4114713 | Mery | Sep 1978 | A |
4136756 | Kawamura | Jan 1979 | A |
4217970 | Chika | Aug 1980 | A |
4254746 | Chiba | Mar 1981 | A |
4340123 | Fujikawa | Jul 1982 | A |
4425976 | Kimura | Jan 1984 | A |
4592316 | Shiratsuchi et al. | Jun 1986 | A |
4600072 | Krude | Jul 1986 | A |
4641854 | Masuda et al. | Feb 1987 | A |
4681178 | Brown | Jul 1987 | A |
4705128 | Krude | Nov 1987 | A |
4765647 | Kondo et al. | Aug 1988 | A |
4773675 | Kosuge | Sep 1988 | A |
4817985 | Enokimoto et al. | Apr 1989 | A |
4969661 | Omura et al. | Nov 1990 | A |
4974697 | Krude | Dec 1990 | A |
5016728 | Zulawski | May 1991 | A |
5036939 | Johnson | Aug 1991 | A |
5046753 | Giovanni | Sep 1991 | A |
5048860 | Kanai et al. | Sep 1991 | A |
5074374 | Ohtake et al. | Dec 1991 | A |
5203585 | Pierce | Apr 1993 | A |
5251713 | Enokimoto | Oct 1993 | A |
5251718 | Inagawa et al. | Oct 1993 | A |
5327989 | Furuhashi et al. | Jul 1994 | A |
5507510 | Kami et al. | Apr 1996 | A |
5562066 | Gere et al. | Oct 1996 | A |
5566591 | Burkett | Oct 1996 | A |
5697633 | Lee | Dec 1997 | A |
5819702 | Mendler | Oct 1998 | A |
5833026 | Zetterstrom et al. | Nov 1998 | A |
5961135 | Smock | Oct 1999 | A |
6056077 | Kobayashi | May 2000 | A |
6070689 | Tanaka et al. | Jun 2000 | A |
6142123 | Galasso et al. | Nov 2000 | A |
6152253 | Monaghan | Nov 2000 | A |
D436557 | Selby et al. | Jan 2001 | S |
6216809 | Etou et al. | Apr 2001 | B1 |
6224046 | Miyamoto | May 2001 | B1 |
6247442 | Bedard et al. | Jun 2001 | B1 |
6412585 | DeAnda | Jul 2002 | B1 |
6523627 | Fukuda | Feb 2003 | B2 |
6523634 | Gagnon et al. | Feb 2003 | B1 |
RE38012 | Ochab | Mar 2003 | E |
6581716 | Matsuura | Jun 2003 | B1 |
6588536 | Chiu | Jul 2003 | B1 |
6622806 | Matsuura | Sep 2003 | B1 |
6626256 | Dennison et al. | Sep 2003 | B2 |
6626260 | Gagnon et al. | Sep 2003 | B2 |
6651768 | Fournier et al. | Nov 2003 | B2 |
6655717 | Wang | Dec 2003 | B1 |
6722463 | Reese | Apr 2004 | B1 |
6732830 | Gagnon et al. | May 2004 | B2 |
6745862 | Morii et al. | Jun 2004 | B2 |
D494890 | Katoh | Aug 2004 | S |
D497324 | Chestnut | Oct 2004 | S |
6799781 | Rasidescu et al. | Oct 2004 | B2 |
6820708 | Nakamura | Nov 2004 | B2 |
6868932 | Davis et al. | Mar 2005 | B1 |
D503658 | Lu | Apr 2005 | S |
D511317 | Tanaka et al. | Nov 2005 | S |
7004137 | Kunugi et al. | Feb 2006 | B2 |
7040437 | Fredrickson et al. | May 2006 | B1 |
7055454 | Whiting | Jun 2006 | B1 |
7143861 | Chu | Dec 2006 | B2 |
D535215 | Turner | Jan 2007 | S |
7159557 | Yasuda et al. | Jan 2007 | B2 |
7168516 | Nozaki et al. | Jan 2007 | B2 |
7172232 | Chiku et al. | Feb 2007 | B2 |
D549133 | LePage | Aug 2007 | S |
7258355 | Amano | Aug 2007 | B2 |
7275512 | Deiss et al. | Oct 2007 | B2 |
D555036 | Eck | Nov 2007 | S |
D563274 | Ramos | Mar 2008 | S |
7357207 | Vaisanen | Apr 2008 | B2 |
7357211 | Inui | Apr 2008 | B2 |
7380805 | Turner | Jun 2008 | B1 |
7401797 | Cho | Jul 2008 | B2 |
D578433 | Kawaguchi et al. | Oct 2008 | S |
D578934 | Tanaka et al. | Oct 2008 | S |
7506718 | Morita et al. | Mar 2009 | B2 |
D595613 | Lai et al. | Jul 2009 | S |
7575088 | Mir et al. | Aug 2009 | B2 |
7588010 | Mochizuki et al. | Sep 2009 | B2 |
7591472 | Kinjyo | Sep 2009 | B2 |
7600769 | Bessho et al. | Oct 2009 | B2 |
D604201 | Kawaguchi et al. | Nov 2009 | S |
D605555 | Tanaka et al. | Dec 2009 | S |
D606900 | Flores | Dec 2009 | S |
7631721 | Hobbs | Dec 2009 | B2 |
7658258 | Denney | Feb 2010 | B2 |
7694769 | McGuire | Apr 2010 | B2 |
7708103 | Okuyama et al. | May 2010 | B2 |
7708106 | Bergman et al. | May 2010 | B1 |
7728212 | Fujishima | Jun 2010 | B2 |
D622631 | Lai | Aug 2010 | S |
D625662 | Li | Oct 2010 | S |
7819220 | Sunsdahl | Oct 2010 | B2 |
7891684 | Luttinen et al. | Feb 2011 | B1 |
D650311 | Bracy | Dec 2011 | S |
8100434 | Miura | Jan 2012 | B2 |
8167325 | Lee et al. | May 2012 | B2 |
8256562 | Robinette et al. | Sep 2012 | B2 |
8480106 | Cohen | Jul 2013 | B1 |
8517136 | Hurd et al. | Aug 2013 | B2 |
8522911 | Hurd et al. | Sep 2013 | B2 |
8613335 | Deckard et al. | Dec 2013 | B2 |
8613336 | Deckard et al. | Dec 2013 | B2 |
8727063 | Yamamoto et al. | May 2014 | B1 |
8746719 | Safranski et al. | Jun 2014 | B2 |
8827019 | Deckard et al. | Sep 2014 | B2 |
8827020 | Deckard et al. | Sep 2014 | B2 |
8827028 | Sunsdahl et al. | Sep 2014 | B2 |
8944449 | Hurd et al. | Feb 2015 | B2 |
20020023792 | Bouffard et al. | Feb 2002 | A1 |
20030137121 | Lenz et al. | Jul 2003 | A1 |
20040195034 | Kato et al. | Oct 2004 | A1 |
20040195797 | Nash et al. | Oct 2004 | A1 |
20040206567 | Kato et al. | Oct 2004 | A1 |
20040206568 | Davis et al. | Oct 2004 | A1 |
20050006168 | Iwasaka et al. | Jan 2005 | A1 |
20050056472 | Smith et al. | Mar 2005 | A1 |
20050173177 | Smith et al. | Aug 2005 | A1 |
20050173180 | Hypes et al. | Aug 2005 | A1 |
20050206111 | Gibson et al. | Sep 2005 | A1 |
20060032690 | Inomoto et al. | Feb 2006 | A1 |
20060032700 | Vizanko | Feb 2006 | A1 |
20060071441 | Mathis | Apr 2006 | A1 |
20060219463 | Seki et al. | Oct 2006 | A1 |
20060236980 | Maruo et al. | Oct 2006 | A1 |
20070000715 | Denney | Jan 2007 | A1 |
20070023221 | Okuyama et al. | Feb 2007 | A1 |
20070023566 | Howard | Feb 2007 | A1 |
20070119650 | Eide | May 2007 | A1 |
20070221430 | Allison | Sep 2007 | A1 |
20070227793 | Nozaki et al. | Oct 2007 | A1 |
20070256882 | Bedard et al. | Nov 2007 | A1 |
20080023240 | Sunsdahl et al. | Jan 2008 | A1 |
20080023249 | Sunsdahl | Jan 2008 | A1 |
20080257630 | Takeshima et al. | Oct 2008 | A1 |
20080283326 | Bennett et al. | Nov 2008 | A1 |
20080284124 | Brady et al. | Nov 2008 | A1 |
20080308334 | Leonard et al. | Dec 2008 | A1 |
20090001748 | Brown et al. | Jan 2009 | A1 |
20090090575 | Nagasaka | Apr 2009 | A1 |
20090178871 | Sunsdahl et al. | Jul 2009 | A1 |
20090205891 | Parrett et al. | Aug 2009 | A1 |
20090302590 | Bronkhorst et al. | Dec 2009 | A1 |
20100078256 | Kuwabara et al. | Apr 2010 | A1 |
20100090797 | Koenig | Apr 2010 | A1 |
20100289229 | Post et al. | Nov 2010 | A1 |
20100317484 | Gillingham | Dec 2010 | A1 |
20100317485 | Gillingham | Dec 2010 | A1 |
20110094818 | Suzuki et al. | Apr 2011 | A1 |
20110209937 | Belzile et al. | Sep 2011 | A1 |
20110240250 | Azuma | Oct 2011 | A1 |
20120031693 | Deckard et al. | Feb 2012 | A1 |
20130277937 | Keller et al. | Oct 2013 | A1 |
20140034409 | Nakamura et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
4129643 | Mar 1993 | DE |
2347398 | Sep 2000 | GB |
60067206 | Apr 1985 | JP |
WO2008005131 | Jan 2008 | WO |
Entry |
---|
Redline Specs, 2 pages, copyright 2008, available at www.RedlinePerforms.com. |
Photograph of the Redline Riot, 1 page, dated Jun. 28, 2010, available at http://www.buggyworksandrails.com/images/102—0657.JPG. |
Troy Merrifield & Damon Flippo, Rise of the Machine: Let the “Revolution” Begin. One Seat at a Time., CartWheelin' Magazine, pp. 14-19, published at least as early as Jan. 2008, available at http://www.1redline.com/news—events/PDF/cart—wheelin—article.pdf, last accessed on Feb. 15, 2012. |
Troy Merrifield, Redline's Rockin' Riot, UTV Off-Road Magazine, published in vol. 4 Issue 1, Feb./Mar. 2009, pp. 20-24, available at http://www.1redline.com/news—events/PDF/Redline—Riot—Article—01—2009.pdf, last accessed on Feb. 15, 2012. |
Can-Am Specifications for Commander 1000, copyright 2010, 1 page. |
Can-Am Specifications for Commander 800R, copyright 2010, 1 page. |
Can-Am, An 85-HP Side-By-Side. No. that's not a typo., 3 pages, dated Jun. 25, 2010. |
International Search Report of the International Searching Authority in PCT/US2011/046395, Apr. 9, 2012, 6 pgs. |
Written Opinion of the International Searching Authority in PCT/US2011/046395, Mar. 1, 2013, 7 pgs. |
International Preliminary Report on Patentability in PCT/US2011/046395, May 28, 2013, 31 pgs. |
Demand and Article 34 Amendment, Dec. 5, 2012, 31 pgs. |
2nd Written Opinion of the International Searching Authority in PCT/US2011/046395, Mar. 1, 2013, 9 pgs. |
Honda 89 FL400R Pilot Service Manual, Honda Motor Co., Ltd., 1988, 265 pages. |
R161 Communication in European patent application 11745641.8, May 7, 2013, 2 pages. |
Response to R161 Communication in European patent application 11745641.8, Nov. 6, 2013, 18 pages. |
Communication pursuant to Article 94(3) EPC in European patent application 11745641.8, Feb. 13, 2014, 4 pages. |
Declaration of Gregory W. Davis, Ph.D., P.E., 133 pages, Aug. 21, 2015, Exhibit 1001, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
Declaration of Timothy W. Benedict, 3 pages, Aug. 19, 2015, Exhibit 1006, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
2006 Arctic Cat Accessories Brochure, 69 pages, Exhibit 1007, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
“Tuning” up the chassis: suspension enhancements have moved beyond the ‘street rodders.’ Today, pickups, SUVs and even luxury cars are getting into the act, Mike Mavrigian, Motor Age, Dec. 1, 2002, vol. 121, Issue 12, 7 pages, Exhibit 1008, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
“Anti-sway bars turn for the better,” Bob Weber, Chicago Tribune, Jan. 7, 2002, http://articles.chicagotribune.com/2002-01-07/business/0201070119—1—bar-anti-sway-car, 6 pages, Exhibit 1009, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
“Sand Styling” and “Deaton's Dream,” Dune Buggies and Hot VWs, Sand Special, Oct. 2004 Edition, 7 pages, Exhibit 1010, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
2008 Revolt Service Manual, Redline Performance Products, LLC, 259 pages, Exhibit 1012, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
“Dueling Duners,” Mark A. Rolland, Sand Sports, Jan./Feb. 2008, 8 pages, Exhibit 1013, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
Honda Service Manual'89 FL400R Pilot, Honda Motor Co., Ltd., Nov. 1988, 265 pages, Exhibit 1014, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
Odyssey 350 1985 Brochure, 1984 American Honda Motor Co., Inc., 6 pages, Exhibit 1015, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
“The Automotive Chassis,” Engineering Principles, 2nd Edition, J. Reimpell et al., translated from German by AGET Limited, SAE International, 2001 Reed Educational and Professional Publishing Ltd., 5 pages, Exhibit 1016, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
Bosch Automotive Handbook, 3rd Edition, Robert Bosch GmbH, 1993, 4 pages, Exhibit 1017, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
2008 “Specs” for Redline Revolt, Redline Performance Products, 2008, 2 pages, Exhibit 1018, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
“New For 2004, Yamaha Rhino 660 4x4!”, ATV Connection Magazine, 1996-2005 ATV Connection, Inc., 4 pages, Exhibit 1019, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
“Hart's Hunter,” Dirt Wheels Magazine, Dec. 1998/Dirt Wheels 69, 6 pages, Exhibit 1020, Arctic Cat, Inc. v. Polaris Industries, Inc., United States Patent and Trademark Office before the Patent Trial and Appeal Board, Case IPR2015-01788 and Case IPR2015-01789. |
Amended Claims filed in response to First Office Action in Chinese Application No. 201180038339, 15 pages, Aug. 10, 2015. |
European Search Report and Written Opinion in European Application No. EP15152331, 4 pages, Jun. 3, 2015. |
First Office Action in Chinese Application No. 201180038339, 7 pages, Jan. 26, 2015. |
Response to European Search Report and Written Opinion in European Application No. EP15152331, 29 pages, Sep. 14, 2015. |
Second Office Action in Chinese Application No. 201180038339, 8 pages, Sep. 14, 2015. |
“Humvee”, Angelfire, www.angelfire.com/nb2/jeeppickups/humvee/html, 7 pages, Mar. 7, 2014. |
“Bobcat” Utility Vehicles brochure, 20 pages, Feb. 2009. |
Petition for Inter Partes Review of U.S. Pat. No. 8,746,719; IPR2015-01788; 65 pages; Aug. 21, 2015. |
Petition for Inter Partes Review of U.S. Pat. No. 8,746,719; IPR2015-01789; 66 pages; Aug. 21, 2015. |
Decision, Institution of Inter Partes Review, United States Patent and Trademark Office; Before the Patent Trial and Appeal Board, Artic Cat, Inc. v. Polaris Industries, Inc., Case IPR2015-01788, U.S. Pat. No. 8,746,719 B2, Paper 10 entered Feb. 4, 2016, 18 pages. |
Decision, Institution of Inter Partes Review, United States Patent and Trademark Office, Before the Patent Trial and Appeal Board, Artic Cat, Inc. v. Polaris Industries, Inc., Case IPR2015-01789, U.S. Pat. No. 8,746,719 B2, Paper 7 entered Feb. 4, 2016, 22 pages. |
Arctic Cat's Firt Amended Answer and Counterclaim, Polaris Industries Inc. v. Arctic Cat Inc., Case No. 15-cv-04475-ADM-LIB, US District of Minnesota, dated Feb. 18, 2016, (33 pages). |
Michael J. McKeen Letter, Re: Allowed U.S. Appl. No. 14/565,193, dated Apr. 6, 2016, (11 pages). |
Revolt (STV) Photo Galleries, https://web.archive.org/web/20080719163746/http://www.1redline.com/products/revolt/revolt—photo—gallery.php, archived Jul. 19, 2008; viewed Mar. 30, 2016, 4:28 PM, (1 page). |
Revolt (STV) Sport Terrain Vehicle, https://web.archive.org/web/20080719163714/http://www.1redline.com/products/revolt/features—singleseat.php, archived Jul. 19, 2008; viewed Mar. 22, 2016, 12:46 PM, (2 pages). |
Revolt (STV) Sport Terrain Vehicle Specifications, https://web.archive.org/web/20080719163602/http://www.1redline.com/products/TS750/sportUTV—specs.php, archived Jul. 19, 2008; viewed Mar. 30, 2016, 4:27 PM, (1 page). |
Number | Date | Country | |
---|---|---|---|
20150090515 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12849516 | Aug 2010 | US |
Child | 14225208 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14225208 | Mar 2014 | US |
Child | 14565193 | US |