The present invention relates generally to a cooling system for a reciprocating engine, and in particular to a radiator core having a side tank that provides enhanced heat dissipation and an adjustable mounting system.
Cooling systems such as radiators, engine oil coolers, inner coolers, and transmission oil coolers, have always been an essential component of internal combustion engines, such as engines used in automobiles and boats. The cooling systems are sold both as original equipment and as aftermarket replacements or upgrades. When the cooling systems are sold in the aftermarket, they are sold as either direct-fit replacement units, which are tailored to a particular vehicle, or as universal-fit replacement units, which require custom mounting.
Direct-fit replacement units have existing fixed mounting points that align to the mounting points of a vehicle, which can be located on an engine of the vehicle. The direct-fit replacement units, however, do not provide adjustability in the mounting points. Thus, any manufacturing misalignments would greatly hinder the assembly of the unit. Similarly, attempting to modify the engine can result in clearance problems when assembling necessary cooling components.
Universal-fit replacement units have no predetermined mounting points, wherein vehicle-specific mounting points are typically provided by welding a custom bracket to the unit body. One problem with this type of mounting system is that it does not provide means for easily adjusting the mounting points after the bracket has been welded to the unit body.
In the case of radiators and some oil coolers, in addition to mounting the cooling system onto a vehicle, accessories such as fans, air-conditioning condensers, oil coolers, or other smaller cooling component elements may be mounted onto the cooling system itself. One method of attaching these accessories is by using internal ties. The ties are generally inserted through thin cooling fins of the main cooling device, e.g., the radiator core, and tightened onto the accessory in order to hold the accessory and the radiator together. Unfortunately, the ties have a tendency to damage the thin cooling fins and to subsequently reduce the efficiency of the cooling device. The alternative to the ties is to use either another fixed mounting point, which has been welded to the main cooling device, or to drill an additional fixed mounting point in the existing mounting bracket. Nevertheless, neither alternative option provides adjustability after an initial mounting point has been fixed.
A purpose of cooling systems is to cool a fluid, such as an engine coolant. In the case of radiators, an inlet side tank distributes the fluid to a series of tubes of a radiator core, wherein heat from the fluid is dissipated in part via fins attached to the tubes. Upon exiting the tubes, the fluid is collected in and expelled through an outlet side tank.
The available space for a cooling device, such as a radiator, is determined by the design of an original equipment manufacturer. Maximizing the heat rejection of the cooling device within the available space results in a more efficient heat transfer. A more efficient heat transfer is desirable because it can result in a higher engine performance, e.g., it can allow the increase of horsepower. In general, the cooling function in current systems is performed mostly by the radiator core, wherein the side tanks have marginal cooling capability. Thus, one problem associated with current cooling systems is that they do not maximize the available cooling space.
Thus, there is a need to overcome problems associated with current cooling systems. The present invention is directed to satisfying these and other needs.
A cooling system for a reciprocating engine includes a main cooling device and a side tank. The main cooling device includes at least one heat dissipation tube that contains an internal fluid for transporting excess heat developed by a reciprocating engine. The side tank is attached to the main cooling device and includes a plurality of exterior fins for dissipating heat to cool airflow. The exterior fins form an adjustable mounting location.
In an alternative aspect of the present invention, a radiator for a reciprocating engine includes a radiator core and an extruded side tank. The side tank is attached to the radiator core and is configured to receive a cooling fluid from the radiator core.
In another aspect of the present invention, a method for assembling a cooling system for a reciprocating engine includes providing a main cooling device. The main cooling device includes at least one heat dissipation tube, which contains an internal fluid for transporting excess heat developed by a reciprocating engine. The method further includes attaching a side tank to the main cooling device. The side tank has a plurality of exterior fins for adjustably securing an attachment device to an adjustable mounting location of the exterior fins.
The above summary of the present invention is not intended to represent each embodiment, or every aspect, of the present invention. Additional features and benefits of the present invention are apparent from the detailed description, figures, and claims set forth below.
While the invention is susceptible to various modifications and alternative forms, specific embodiments are shown by way of example in the drawings and are described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referring to
The cooling system 10 can be provided in either a cross-flow configuration (shown in
Existing cooling systems are attached to a vehicle using fixed mounting points. For example, some cooling systems are manufactured with a fixed mounting point that is used for attaching the cooling system to a vehicle. Other cooling systems are manufactured without any fixed mounting points, wherein a bracket assembly is welded to provide a mounting point for attaching the cooling system to a vehicle. Neither type of cooling system provides adjustability in the mounting process. In contrast, the cooling system 10 of the present invention is mounted to a vehicle device, such as an engine, using an adjustable mounting location that is integrated in the side tanks 14a, 14b. In addition, other accessories, such as cooling hardware, can be adjustably mounted to the side tanks 14a, 14b. Further, the present invention allows pre-assembly of the cooling system 10 for easy installation at a factory. The mounting of the cooling system 10 to other devices, and of accessories to the cooling system 10, will be described in more detail below.
Referring now to
The exterior fins 30 are formed to create one or more slotted channels 34, preferably having a “T-channel” or “C-channel” configuration. The exterior fins 30 are used for mounting purposes, as described in more detail below, and for cooling purposes. The number and geometry of the exterior fins 30 is determined, based on a specific application, to maximize mounting adjustability and heat dissipation. The exterior fins 30, in one embodiment, include arched tops 33.
The interior fins 32, similarly to the exterior fins 30, help in enhancing the cooling capability of the cooling system 10. The number and geometry of the interior fins 32 is determined to maximize heat dissipation for a specific application. Thus, both the exterior fins 30 and the interior fins 32 act as heat sinks for removing heat from the cooling system 10. For example, to remove heat from the cooling system 10, the heat transfer mediums include a water-to-air transfer, an oil-to-air transfer, an oil-to-water transfer, and an air-to-air transfer.
The side tanks 14a, 14b are preferably manufactured using an extrusion process, using high-strength materials such as aluminum alloys. For example, one preferred high-strength aluminum alloy is 6061-T6. This type of material provides both a strong structure for mounting hardware and an excellent conductor of heat. Some existing cooling tanks are made using a plastic material, which acts as an insulator and does very little to dissipate heat. In contrast, the cooling system 10 of the present invention is preferably manufactured with extruded aluminum. The conductive nature of aluminum, coupled with the added surface area provided by fins such as the exterior fins 30 and the interior fins 32, greatly enhances heat acquisition and, then, heat dissipation.
In other embodiments, the side tanks 14a, 14b are manufactured using a cast process or a draw-forming process. Further, the material of the side tanks 14a, 14b can be alternatively selected from a group including at least one of a copper, brass, iron, and steel material. Optionally, the material of the side tanks 14a, 14b can be a plastic that is impregnated with heat-disseminating materials.
Referring now to
The interior fins 32 of the side tanks 14 are configured so as to be in contact with the internal fluid when the fluid is flowing through the cooling system 10. Due to their large surface area, the interior fins 32 remove heat from the internal fluid more rapidly than a smooth interior surface. Similarly, due to their large surface area, the exterior fins 30 act as heat sinks and dissipate heat from the side tanks 14 to the outside atmosphere more effectively than a flat surface. Thus, the exterior fins 30 dissipate heat to cool airflow to a device such as a reciprocating engine.
Referring now to
In contrast to prior cooling systems, accessories such as the cooling fan 20 can be easily adjusted in the desired position via the adjustable mounting location positioned on each of the side tanks 14. Thus, the present invention allows more flexibility in assembling the cooling system 10 to other parts of a vehicle, or in assembling accessories to the cooling system 10.
Referring now to
The bracket 16 can be adjusted along an x-axis, which is oriented in a perpendicular direction to the channels 34, and along a y-axis, which is oriented in a parallel direction to the channels 34. To adjust the bracket 16 along the x-axis from a first position 16 to a secondary position 16′, the attachment 38 is moved from a first channel 34 to a second channel 34′. Similarly, if adjustment is desired along the y-axis, the attachment 38 is slidably moved along the channel 34 to the desired location such that the bracket 16 is moved from the first position 16 to another secondary position 16″.
In one embodiment of the present invention, shown in
In general, the bolt 40 has a head that fits flatly and snugly against the walls of the exterior fins 30, such that the head of the bolt 40 does not rotate when the nut 42 is tightened onto the bolt 40. For example, in one embodiment the channel 34 is large enough to capture a standard ¼ inch or 6 millimeter bolt/nut. Alternatively, the attachment device 38 includes a square-head bolt and nut combination. Optionally, the attachment device 38 can include any fastener that can be captured within one of the slotted channels 34.
Referring now to
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and herein described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3086627 | Bernard | Apr 1963 | A |
3462110 | Cheslock | Aug 1969 | A |
4478306 | Tagami | Oct 1984 | A |
4678026 | Lenz et al. | Jul 1987 | A |
5139080 | Bolton et al. | Aug 1992 | A |
5163507 | Joshi | Nov 1992 | A |
5205349 | Nagao et al. | Apr 1993 | A |
5445219 | Hutto et al. | Aug 1995 | A |
5450896 | Bertva et al. | Sep 1995 | A |
6059322 | Nagai et al. | May 2000 | A |
6158500 | Heine | Dec 2000 | A |
6293011 | Hasegawa et al. | Sep 2001 | B1 |
6533027 | Gille et al. | Mar 2003 | B2 |
7044203 | Yagi et al. | May 2006 | B2 |
20010050160 | Ozawa et al. | Dec 2001 | A1 |
20030230397 | Southwick et al. | Dec 2003 | A1 |
20040031598 | Shimanuki et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
63271099 | Nov 1988 | JP |
2002168584 | Jun 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20060081363 A1 | Apr 2006 | US |