The present invention relates to silicon-based MEMS devices with increased inertial mass, and more particularly to MEMS devices with wells in the device layer that are filed with tungsten, tantalum, or an alloy with tungsten or tantalum.
Microelectromechanical systems (MEMS) devices including such things as inertial sensors (e.g., capacitive, piezoelectric, and convective accelerometers and vibratory and tuning fork gyroscopes), microphones, pressure sensors, RF devices, and optical devices (e.g., optical switches) often include a number of structures that are released so as to be movable. Examples of released structures include microphone diaphragms, inertial sensor proof masses and shuttles, and suspended encapsulation layer(s) that cap sensor structures.
MEMS devices are typically formed on a substrate (e.g., a silicon or silicon-on-insulator wafer) using various micromachining techniques such as etching into the substrate and/or depositing/patterning various materials. Structures to be released are typically formed on top of one or more “sacrificial” layers of materials that are subsequently removed to release the structure from the substrate. Typical sacrificial layers for MEMS wafer fabrication include an oxide layer. The oxide layer is typically removed using a wet or dry etch process. A wet etch process (e.g., buffered oxide etch) typically requires releasing cavities that are carefully placed and spaced to allow for wet etch access, which can impose certain constraints on product design and processes. A dry etch process (e.g., vapor HF) generally reduces the likelihood of stiction during the release process and provides more freedom in the placement and spacing of etch cavities, which in turn can lead to more flexibility in the sensor design.
In one embodiment of the invention, a MEMS device includes a silicon-based movable MEMS sensor element. The MEMS device also includes a plurality of wells formed into at least one surface of the movable MEMS sensor element. Each well is filled with at least one metal so as to increase the effective mass of the movable MEMS sensor element.
In various embodiments, the at least one metal includes tungsten, a tungsten alloy, such as tungsten and nickel. The tungsten alloy may be between about 20% and about 70% tungsten. In some embodiments, the at least one metal includes tantalum or a tantalum alloy. The tantalum alloy may be between about 20% and about 70% tantalum. Moreover, each well may be filled with at least one metal so as to increase the effective mass of the movable MEMS sensor element between about 2.5 and about 7.0. In some embodiments, the plurality of wells covers between about 20% and about 82% of the surface of the silicon wafer.
In some embodiments, each well has an XY plane view shaped like a clover. A length of an edge in the clover may be about 6.4 μm, and each well may be separated from adjacent wells by about 2.0 μm.
In some embodiments, each well has an XY plane view shaped like a square. Each well may have a length of about 10.0 μm and a width of about 10.0 μm. Additionally, each well may be separated from adjacent wells by about 2.0 μm. Alternatively, each well may have a length of about 2.0 μm and a width of about 2.0 μm, and also be separated from adjacent wells by about 2.0 μm.
In some embodiments, each well has an XY plane view shaped like a rectangle. Each well may have a length of about 20.0 μm and a width of about 2.0 μm. Further, each well may be separated from adjacent wells by about 6.0 μm.
In some embodiments, each well has an XY plane view shaped like a circle. Each well may have a diameter between about 2.0 μm and about 10.0 μm. Further, each well may be separated from adjacent wells by about 2.0 μm.
The movable MEMS sensor element may be a proof mass of a MEMS accelerometer. In some embodiments, the movable MEMS sensor element may be a resonator mass of a MEMS gyroscope. Furthermore, the wells may extend only partially through the MEMS sensor element or completely through the MEMS sensor element. Additionally, the wells may be partially filled with the at least one metal, or completely filled with the at least one metal.
In another aspect, the disclosure is directed to a method of fabricating a MEMS device. The method includes forming a movable MEMS sensor element. The method also includes forming a plurality of wells into at least one surface of the movable MEMS sensor element. The method additionally includes filling the wells with at least one metal so as to increase the effective mass of the movable MEMS sensor element.
Forming the plurality of wells may include patterning a plurality of shapes on the at least one surface of the movable MEMS sensor element, and etching the at least one surface of the movable MEMS sensor element to form the plurality of wells from the plurality of shapes. Further, patterning the plurality of shapes may include patterning a plurality of clovers, a plurality of squares, a plurality of rectangles, or a plurality of circles, although the present invention is not limited to such shapes.
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context otherwise requires:
A “well” is a cavity formed (e.g., etched) into a surface of a MEMS sensor element. In many embodiments, a well does not extend all the way through the MEMS sensor element, although in certain embodiments, a well may extend all the way through the MEMS sensor element.
A well is “filled” with a material by being at least partially filled with the material. The filled well may be flush with the surface of the MEMS sensor element, may dip below the surface of the MEMS sensor element, may extend slightly above the surface of the MEMS sensor element, or may have internal voids (e.g., cavities).
A “silicon-based” MEMS sensor element is formed primarily from silicon or polysilicon.
A “movable” MEMS sensor element is a MEMS sensor element that is designed to move. Typically, the movable MEMS sensor element is anchored or otherwise supported so that it does not move while the wells are formed and filled with at least one metal. Later, the movable MEMS sensor element is “released” so that it becomes free to move. A movable MEMS sensor element may take any of a wide variety of forms depending on the type of MEMS device. For example, the movable MEMS sensor element may be a proof mass in a MEMS accelerometer or in a MEMS gyroscope.
Increasing the mass of a MEMS sensor element improves its performance because the resulting element exhibits a stronger output signal. Moreover, sensors with higher mass experience less noise, such as Brownian noise, and have greater insensitivity to stress (e.g., the sensors have higher stability in offset). These MEMS sensor elements are desirable for applications that require ultra-low noise and offsets, such as seismic or geo-sensing applications and high-end industrial applications. For some applications, sensor elements may need to exhibit noise levels on the order of, or less than, 1 μg/rtHz to produce accurate and useful measurements.
Three conventional ways of increasing sensor mass are increasing the thickness of layers in the MEMS sensor elements, increasing the size of the die, and depositing substances on top of the MEMS sensor elements. However, these approaches have significant drawbacks. Thicker layers of silicon and polysilicon are more prone to fabrication errors. Etching agents inevitably disperse from their originally deposited locations, and because forming features in thicker layers requires exposure to these chemicals for longer periods of time, the walls for the features are more likely to have sloped edges. As a result, the features are less precise and accurate. Moreover, the larger sensing gaps for thicker walls produce less sensitive MEMS sensor elements.
The second approach, fabricating a larger die, increases the cost of production. Moreover, since a larger MEMS sensor element is more sensitive to stress, the device may have greater sensitivity to stress and larger offset than its smaller counterparts. The last approach, depositing substances on top of the MEMS sensor elements, increases the thickness of the device so that the device experiences greater stress, and this stress would create unwanted and temperature-dependent curvature for the proof mass and deteriorate the device's offset performance. Moreover, the additional layer(s) may change the position of the device's center of mass. Since the layer(s) may cause the center of mass to lie above the plane of the MEMS sensor element, the center of mass may be misaligned with surrounding elements, such as springs. When such misalignment is present, an X axis acceleration could cause an out-of-plane tilting of the proof mass and cause motion in the Y or Z axis. This cross-axis problem may impact the device's performance.
It is also recognized that MEMS sensor elements may be fabricated entirely from tungsten or tungsten alloys, e.g., the entire device layer of a MEMS device may be tungsten rather than silicon or polysilicon. It is also recognized that if tungsten mechanical structures could be incorporated into electronics in a way similar to that taught by Sherman et al. in U.S. Pat. No. 5,417,111, then the cost and accuracy of the devices would be substantially improved. The cost for a given level of performance could be reduced by reducing the mechanical structure size or the accuracy enhanced in a given size by exploiting the greater inertial signal from tungsten.
The properties of tungsten metal account for these features. First, like silicon, tungsten is a brittle material at normal temperatures (i.e., in the sense of not being plastic). It does not assume a permanent deformation when strained to an extent less than breaking. Thus, tungsten forms moving structures with stable geometry and stiffness. Second, tungsten has a density 8.3 times that of silicon. As a result, a tungsten structure would experience about eight times the inertial force compared with a similar size silicon structure, whereas a tungsten structure might be expected to get more nearly the same perturbing forces from non-inertial sources such as Brownian motion of the surrounding medium (or alternatively a tungsten structure can be approximately one-eighth the size of a silicon structure to experience the same inertial force, e.g., 4 μm thickness of tungsten is approximately the same mass as 33 μm thickness of silicon). Thus, tungsten would yield a much improved signal to noise ratio (SNR). Third, tungsten has 2.5 times greater Young's modulus than silicon. Greater structural stiffness can be obtained from a given size, making it less susceptible to perturbation. Fourth, the absolute strengths of tungsten microstructures are comparable with those of silicon. Strength is a critical parameter in designing moving structures. Fifth, unlike silicon, tungsten has electrically conductive oxides. Silicon naturally forms an insulating surface oxide which, to a varying extent over temperature, time and environmental factors, traps electrical charge. This destabilizes micromachined gyroscope and accelerometer null bias, generally the most important measure of inertial instrument accuracy. It has been found that coating active surfaces of silicon sensors with a conductor vastly improves their stability, as taught by O'Brien et al. in U.S. Pat. No. 5,205,171. Although it may, like silicon, absorb foreign species on the surface, tungsten is free of the dominant charging effect.
Others have recognized the use of tungsten in MEMS devices would have certain advantages, particularly as a substitute for silicon. For example, U.S. Pat. No. 7,367,232 and U.S. Patent Publication Nos. US 2011/0005319 and US 2011/0096623 mention tungsten as a possible material for various MEMS structures.
However, fabricating MEMS sensor elements from solid tungsten is difficult because the use of traditional fabrication processes tends to produce tungsten MEMS structures with high internal stresses such that the tungsten MEMS structures tend to warp or bend when released, resulting in devices that are unusable or have low performance. Moreover, because etching in tungsten is less precise than etching in silicon, beam gaps and sidewall angles in tungsten MEMS sensor elements will exhibit greater variation than in silicon. The imperfections would tend to degrade device matching and offset performance in a solid tungsten sensor.
The inventors have discovered that depositing heavier substances such as tungsten or tungsten alloy in wells formed inside a silicon-based MEMS sensor element increases its mass without incurring the deficiencies of conventional methods. Advantageously, because the wells are isolated from other elements, any stress induced by the wells remains local. Moreover, the wells do not induce stress on the proof mass of the MEMS sensor element. Furthermore, because the sensor elements still use silicon for features such as springs and capacitors, the elements can be fabricated with high precision micro machining, with high yield.
Tungsten may be deposited in these wells, although other silicon-compatible materials, such as tantalum, additionally or alternatively may be used. Moreover, the wells may be etched into the MEMS sensor element in a variety of configurations, such as a staggered clover pattern, a grid of squares, a grid of rectangles, or a grid of circles. Depending on the substance and the configuration of the wells, the filled wells may increase the mass of the MEMS sensor element between about 2.5× and about 7.0×. When the effective mass of the inertial sensor is increased by a factor of K, and all other conditions (e.g., stiffness, sensor geometry, cavity gas pressure) are unchanged, the output signal would increase by a factor of K and the Brownian noise would decrease by a factor of K. In this manner, the signal to noise ratio (SNR) of the MEMS sensor elements would increase by a factor of K2, improving the performance greatly.
As the graph demonstrates, tungsten is an exceptionally suitable material for filling wells formed in a surface of a MEMS sensor element. At 19.3 g/cm3, tungsten has a density that is 8.3 times that of silicon. As a result, tungsten would experience an inertial force that is about eight times greater than that of silicon or polysilicon. Its greater mass would experience fewer perturbing forces from non-inertial sources, such as Brownian motion of the surrounding medium. Moreover, tungsten has a greater density than tantalum and nickel.
Further, at about 400 GPa, tungsten has a Young's modulus that is 2.5 times greater the Young's modulus of silicon. As a result, tungsten is less susceptible to perturbation than silicon and thus is more stable. Lastly, among the materials depicted in
Tantalum is also a suitable material for filling the wells. At 16.69 g/cm3, tantalum has a density that is about 7.2 times that of silicon and would experience an inertial force that is about 7.2 times greater than that of silicon or polysilicon. At about 186 GPa, tantalum has a Young's modulus that is about 1.16 times greater the Young's modulus of silicon, making tantalum more stable. Furthermore, tantalum has a CTE of about 6.3 μm/(m° C.), which is still more comparable to the CTE of silicon than gold or nickel. For similar reasons that tungsten is a suitable material for filling the wells, tantalum also exhibits properties that match the materials to the objectives of this disclosure.
Similarly, nickel exhibits some of the same shortcomings as gold, while exhibiting less density than tungsten or tantalum. As a result, nickel fails to increase the mass of the MEMS sensor elements as well as tungsten or tantalum, and the materials also have inferior performance in other respects.
While wells may be filled with pure tungsten or tantalum, in various embodiments, wells may be filled with tungsten or tantalum alloys. For example, since tungsten may be susceptible to etching chemicals, using a tungsten alloy may preserve the integrity of the wells during the fabrication process. For example, filling the wells with an alloy of tungsten and nickel may increase mass, while keeping the wells in tact during subsequent etching procedures. In various embodiments, the tungsten content of an alloy may be between about 20% and about 70%. Because tungsten is denser than nickel, alloys with higher concentrations of tungsten are more desirable. Likewise, tantalum alloys may also be used. Although tungsten and tantalum are two exemplary materials suitable for filling the wells, any material with comparable characteristics may be used.
The clover shape enables each well to be more evenly filled during the fabrication process. In general, wells are filled by having each exposed surface covered with one or more substances until the layers of the substance converge with one another. As a result, the area between distant edges, such as the edge defined by positions 250 and 255 in
In
In theory, when the wells are filled with tungsten, the tungsten would increase the mass of the sensor element by about 7.0×. However, in practice, the wells would be difficult to fill evenly. In particular, the edge connecting opposite corners of a well, which would be 14.14 μm long, would be under filled compared to the rest of the well. Therefore, tungsten embedded according to this pattern would increase the mass by less than 7.0×, and possibly less than the pattern depicted in
In another specific exemplary embodiment of
In theory, when such wells are filled with tungsten, the tungsten would increase the mass of the sensor element by about 4.3×. For the same reasons discussed above, the wells may not fill evenly in practice and the mass may be increased by less than 4.3×. However, for this pattern, the smaller dimensions of the squares reduce the likelihood of uneven filling.
In
Similarly,
In these two embodiments, the perimeters of the holes have the same configuration as the exterior perimeter of the wells. Any other shape for the wells and their interior holes may be used, and in some embodiments, the interior holes assume different shapes compared to the wells.
The wells may be fabricated and filled according to various methods of creating features in the surfaces of silicon-based MEMS sensor elements. One exemplary method of creating the wells is depicted in
To create the wells, cavities 815, 820, 825 may be etched in the silicon layer 810. In the embodiment depicted in
Various methods may be used to fill the wells 815, 820, 825 with one or more substances 1010. For example, tungsten may be inserted in the wells 815, 820, 825 via chemical vapor deposition or electroplating. In another example, tungsten 1010 may be sputtered at a temperature less than about 500° C. (e.g., between around 400° C. and 500° C.), along with careful control of oxygen levels during sputtering. In this manner, the wells 815, 820, 825 may be filled without raising the temperature of the substrate material 810 above around 450° C., which is generally about the highest temperature that modern electronics can reach without damage, with smaller parts such as transistors generally more susceptible to damage. Another exemplary method of depositing tungsten 1010, or any other substance, in the wells 815, 820, 825 is electroplating, which generally will require an additional pre-deposited metal seed layer for conduction.
Methods of depositing substances generally coat each exposed surface with a layer of the substance(s). As a result, both the surfaces of the wells 815, 820, 825 and the surface of the silicon layer 810 are covered in the substance(s), as depicted in
In
After the surface substance 1005 is removed, another layer of the substance is deposited over the MEMS sensor element 800, according to any of the methods described herein or that would have been appreciated by one of ordinary skill in the art. As depicted in
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.
This application claims priority to U.S. Application No. 62/095,257, entitled “Silicon-Based MEMS Devices Including Wells Embedded with High Density Metal” and filed Dec. 22, 2014, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4598585 | Boxenhorn | Jul 1986 | A |
4670092 | Motamedi | Jun 1987 | A |
4869107 | Murakami | Sep 1989 | A |
5205171 | O'Brien et al. | Apr 1993 | A |
5331853 | Hulsing, II | Jul 1994 | A |
5417111 | Sherman et al. | May 1995 | A |
6230566 | Lee et al. | May 2001 | B1 |
6635509 | Ouellet | Oct 2003 | B1 |
6651500 | Stewart et al. | Nov 2003 | B2 |
6841992 | Yue et al. | Jan 2005 | B2 |
7022543 | Eskridge et al. | Apr 2006 | B2 |
7121141 | McNeil | Oct 2006 | B2 |
7146856 | Malametz | Dec 2006 | B2 |
7210352 | Foster et al. | May 2007 | B2 |
7367232 | Vaganov et al. | May 2008 | B2 |
7578190 | Lin et al. | Aug 2009 | B2 |
7610809 | McNeil et al. | Nov 2009 | B2 |
8020443 | Lin et al. | Sep 2011 | B2 |
8096182 | Lin et al. | Jan 2012 | B2 |
8148790 | Morris | Apr 2012 | B2 |
8171793 | Foster | May 2012 | B2 |
8186221 | Lin et al. | May 2012 | B2 |
8220330 | Miller et al. | Jul 2012 | B2 |
8486198 | Appleyard et al. | Jul 2013 | B2 |
8502327 | Eskridge | Aug 2013 | B1 |
8919199 | Judy | Dec 2014 | B2 |
20040160232 | Yue et al. | Aug 2004 | A1 |
20050268719 | Malametz | Dec 2005 | A1 |
20060021436 | Kapser et al. | Feb 2006 | A1 |
20060169043 | McNeil | Aug 2006 | A1 |
20060185433 | Leonardson et al. | Aug 2006 | A1 |
20060205106 | Fukuda | Sep 2006 | A1 |
20070000323 | Kuisma | Jan 2007 | A1 |
20080110260 | Konno et al. | May 2008 | A1 |
20090031809 | Lin et al. | Feb 2009 | A1 |
20090139331 | Axelrod et al. | Jun 2009 | A1 |
20090293616 | Lin et al. | Dec 2009 | A1 |
20100011860 | Offenberg et al. | Jan 2010 | A1 |
20100024552 | Foster | Feb 2010 | A1 |
20100103402 | Inoue | Apr 2010 | A1 |
20100107763 | Lin et al. | May 2010 | A1 |
20100122579 | Hsu et al. | May 2010 | A1 |
20100242600 | Lin et al. | Sep 2010 | A1 |
20100242603 | Miller et al. | Sep 2010 | A1 |
20100313660 | Nishikage et al. | Dec 2010 | A1 |
20110005319 | Huang | Jan 2011 | A1 |
20110013256 | Uchiyama | Jan 2011 | A1 |
20110023606 | Burghardt et al. | Feb 2011 | A1 |
20110056295 | Classen | Mar 2011 | A1 |
20110056297 | Classen | Mar 2011 | A1 |
20110096623 | Crickmore et al. | Apr 2011 | A1 |
20110154899 | Classen et al. | Jun 2011 | A1 |
20110203373 | Konno | Aug 2011 | A1 |
20110290023 | Takagi | Dec 2011 | A1 |
20110296917 | Reinmuth et al. | Dec 2011 | A1 |
20120043627 | Lin | Feb 2012 | A1 |
20120186347 | McNeil | Jul 2012 | A1 |
20120216616 | Schultz | Aug 2012 | A1 |
20120267730 | Renard | Oct 2012 | A1 |
20120280591 | Schultz | Nov 2012 | A1 |
20120313235 | Chu | Dec 2012 | A1 |
20130167641 | Heller | Jul 2013 | A1 |
20130187245 | Chien | Jul 2013 | A1 |
20140054731 | Graham | Feb 2014 | A1 |
20140074418 | Lin et al. | Mar 2014 | A1 |
20140208849 | Zhang | Jul 2014 | A1 |
20140217929 | Lin et al. | Aug 2014 | A1 |
20140251011 | Zhang et al. | Sep 2014 | A1 |
20140264659 | Gogoi | Sep 2014 | A1 |
20150053002 | Ullrich et al. | Feb 2015 | A1 |
20150096378 | Kigure | Apr 2015 | A1 |
20160229684 | Boysel | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
5-340956 | Dec 1993 | JP |
9-189716 | Jul 1997 | JP |
2004-340716 | Dec 2004 | JP |
2005-529336 | Sep 2005 | JP |
2008-139282 | Jun 2008 | JP |
2010-210425 | Sep 2010 | JP |
WO 9524652 | Sep 1995 | WO |
WO 2008133183 | Nov 2008 | WO |
WO 2010055716 | May 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20160178656 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
62095257 | Dec 2014 | US |