The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
Referring to
A micro electro mechanical system (MEMS) chip 10 and an application specific integrated circuit (ASIC) chip 20 are mounted on a printed circuit board (PCB) substrate 120. A connection pattern 121 corresponding to a shape of the case 110 is formed on a portion contacted with the case 110.
The case 110 includes the body 112 and plating layers 114, 116 or 118. The body 112 having a can shape is formed of the easily moldable resin and one side of the body 112 is opened. The plating layers 114, 116 and 118 are formed on the inner surface, the outer surface, or the entire surface of the body 112. Therefore, the plating layers 114, 116 and 118 can prevent an electrical connection and electromagnetic waves from being received from the outside. The body 112 may be formed in a cylindrical shape or a rectangular box shape according to the shape of the case 110. A sound hole may be formed according to a sound inflow type. The plating layers 114 and 116 are formed up to an end portion of an opening surface of the case 110 in order to contact the PCB substrate 120 when the plating layers 114 and 116 are formed on one side of the body 112, i.e., the inner surface or the outer surface of the body 112.
A size of the PCB substrate 120 is equal to or greater than that of the case 110. A connection pad or a connection terminal 122 for connecting an external device is disposed on a lateral surface of the PCB substrate 120. The connection pattern 121 is formed by plating nickel (Ni) or gold (Au) after forming a copper film through a general PCB fabrication process. A ceramic substrate, a flexible printed circuit board (FPCB) substrate, and a metal substrate may be used as a substrate besides the PCB substrate 120. The connection pattern 121 may be connected to a ground terminal through a via-hole. The whole case 110 is grounded when the case 110 is connected to the connection pattern using conductive epoxy. Hence, electromagnetic wave noise straying into the case 110 can sink into a ground.
A silicon condenser microphone according to the present invention can be formed in a rectangular box shaped silicon condenser microphone or a cylindrical silicon condenser microphone. Referring to
A case 110 is arrayed on the connection pattern of the PCB substrate 120 and then the case 110 is attached to the PCB substrate 120 using a conductive adhesive 130 to form a silicon condenser microphone package.
Referring to
Referring to
A special purpose semiconductor chip 20, e.g., ASIC chip, is connected to the MEMS chip 10 to process electrical signals. The MEMS chip 10 includes a voltage pump and a buffer integrated circuit (IC). The voltage pump provides a voltage such that the MEMS chip 10 operates as a condenser microphone. In the buffer IC, electrical sound signals detected through the MEMS chip are amplified or impedance matched to provide the amplified or impedance matched signals to the outside.
Referring to
The case 110 includes the body 112 and a plating layer 114. The body 112 formed of easily moldable resin has a can shape. The plating layer 114 formed on an inner surface of the body 112 prevents an electrical connection and electromagnetic waves from being received from the outside. One side of the body 112 is opened and the body may be formed in a cylindrical shape or a rectangular box shape according to the shape of the case 110. The plating layer 114 is formed up to an end portion of an opening surface of the case 110 in order to contact the PCB substrate 120 to the body 112.
The condenser microphone of the modification example is identical to that illustrated in
Referring to
The plating layer formed on the inner surface is denoted by a reference numeral 114, the plating layer formed on the outer surface is denoted by a reference numeral 116, and the plating layer formed on the entire surface is denoted by a reference numeral 118.
The case 110 includes the body 112 and plating layers 114, 116 or 118. The body 112 having a can shape is formed of the easily moldable resin. The plating layers 114, 116 and 118 are formed on the inner surface, the outer surface, or the entire surface of the body 112 to prevent an electrical connection and electromagnetic waves from being received from the outside. The body 112 may be formed in a cylindrical shape or a rectangular box shape according to the shape of the case 110. The step is formed along the inner periphery on the end portion of the opening surface of the case 110 to insert the PCB substrate 120 into the step.
A MEMS chip 10 and an ASIC chip 20 are mounted on the PCB substrate 120. The PCB substrate 120 has a size for being inserted into the step of the case 110. The case is attached to the PCB substrate 120 using an adhesive 130. Also, in case of the silicon condenser microphone according to another embodiment of the present invention, a sound hole may be formed in the case 110 or the PCB substrate 120 according to a sound inflow type.
As described above, in the silicon condenser microphone according to the present invention, the case can be easily formed in various shapes using the resin and the plating layer is formed on the inner, outer, or entire surface of the body to prevent electromagnetic wave noise such as an external noise from being received from the outside.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0087095 | Sep 2006 | KR | national |