The invention relates to the field of semiconductor devices, particularly to detectors with high efficiency of light emission detection, including, visible part of the spectrum, and can be used in nuclear and laser technology, and also in industrial and medical tomography etc.
The device for single-photon detection is known [“Avalanche photodiodes and quenching circuits for single-photon detection”, S. Cova, M. Ghioni, A. Lacaita, C. Samori and F. Zappa APPLIED OPTICS Vol. 35 No. 12 20 Apr. 1996], the known device comprises a silicon substrate with an epitaxial layer made on it, said layer having on a surface a small (10-200 microns) region (a cell) of conductive type that is opposite to the given layer conductive type. The cell is supplied with reverse bias that exceeds breakdown voltage. When a photon is absorbed in this region the Geiger discharge takes place, said discharge is limited with an external damping resistor. Such single-photon detector has high light detection efficiency, however it has a very small sensitive region, and also it is not able to measure the light flux intensity. In order to eliminate these defects it is necessary to use a large number (≧103) of such the cells located on a common substrate having ≧1
The device described in RU 2086047 C1, pub. 27 Jul. 1997, is accepted as the nearest prior art for the silicon photoelectric multiplier. The known device comprises a silicon substrate, a plenty of cells which sizes are 20-40 microns and which are located on a surface of said substrate in an epitaxial layer. A layer of special material is used as a damping resistor. Defects of this device are the following:
The technical effect is to raise the efficiency of light detection in a broad band of wave lengths with the coefficient of amplification up to 107 due to increasing cell sensitiveness, to achieve high single-electron resolution, and to repress the excess noise factor.
The single cell structure (about 20 microns of the size) which is made in a thin epitaxial layer and which provides the uniformity of the electrical field in a depletion layer having about 1 micron of depth is accepted as the nearest prior art for the cell of the silicon photoelectric multiplier. The cell structure provides a low working voltage (M. Ghioni, S. Cova, A. Lacaita, G. Ripamonti “New epitaxial avalanche diode for single-photon timing at room temperature”, Electronics Letters, 24, No 24 (1988) 1476). The defect of the known cell is insufficient detection efficiency of the long-wave part of the spectrum (≧450 microns).
The technical effect is to raise the light detection efficiency in a broad band of wave lengths due to increased cell sensitiveness, to achieve the high single-electron resolution.
Two embodiments of the silicon photoelectric multiplier, and the structure of the cell for the photoelectric multiplier are considered.
The technical effect is obtained (embodiment 1) due to a silicon photoelectric multiplier, comprising a p++ conductance type substrate having 1018-1020 cm−3 of a doping agent concentration, consists of identical cells independent of one another, each the cell includes an p conductance type epitaxial layer grown on a substrate, said layer having 1018-1014 cm−3 of the doping agent concentration varied gradiently, a p conductance type layer having 1015-1017 cm−3 of the doping agent concentration, a n+ conductance type layer having 1018-1020 cm−3 of the doping agent concentration, said n+ conductance type layer forming a donor part of a p-n boundary, a polysilicon resistor is located on a silicon oxide layer in each the cell, said polysilicon resistor connecting the n+ conductance type layer with a voltage distribution bus, and separating elements are disposed between the cells.
The technical effect is obtained (embodiment 2) due to a silicon photoelectric multiplier, comprising a n conductance type substrate, a p++ conductance type layer having 1018-1020 cm−3 of a doping agent concentration, said layer applied on said n conductance type substrate, consists of identical cells independent of one another, each the cell includes a p conductance type epitaxial layer having 1018-1014 cm−3 of the doping agent concentration varied gradiently, said p conductance type epitaxial layer grown on the p++ conductance type layer, a p conductance type layer having 1015-1017 cm−3 of the doping agent concentration, a n+ conductance type layer having 1018-1020 cm−3 of the doping agent concentration, a polysilicon resistor is located on a silicon oxide layer in each the cell, said polysilicon resistor connecting the n+ conductance type layer with a voltage distribution bus, and separating elements are disposed between the cells.
In the second embodiment the n conductance type substrate is used (instead of the substrate 1, used in the first embodiment of the device), said substrate forms along with the p-layers of the cells a reverse n-p boundary.
The silicon photoelectric multiplier pursuant to the first embodiment contains p++ conductance type substrate 1, epitaxial layer 2 (EPI), grown on substrate 1, p conductance type layer 3, n+ conductance type layer 4 polysilicon resistor 5, connecting layer 4 with voltage distribution bus 6, silicon oxide layer 7, separating elements 10.
The silicon photoelectric multiplier pursuant to the second embodiment contains, except for the above indicated elements and connections, p++ conductance type layer 8 and n-conductance type substrate 9 (instead of p++ conductance type substrate 1).
The cell for the silicon photoelectric multiplier comprises p conductance type epitaxial layer 2 having 1018-1014 cm−3 of a doping agent concentration varied gradually, p conductance type layer 3 having 1015-1017 cm−3 of the doping agent concentration, n+ layer which forms the donor part of a p-n boundary, and which has 1018-1020 cm−3 of the doping agent concentration, polysilicon resistor 5 is located in each cell on silicon oxide layer 7 applied on a photosensitive surface of the epitaxial layer, said resistor 5 connects n+ layer 4 with voltage distribution bus 6. The efficient light detection in a broad part of the spectrum (300-900 nm) along with the low working voltage and high uniformity of an electrical field is reached in such the structure by creation of the built-in electrical field, which arises due to the doping agent distribution gradiant profile specially formed in the epitaxial layer.
The doping agent concentration in the epitaxial layer is depressed in the direction from the substrate to the photosensitive surface of the photoelectric multiplier, said photosensitive surface is the epitaxial layer surface (photosensitive surface of the epitaxial layer) remoted from the substrate. Silicon oxide layer 7 is applied on the photosensitive surface of the silicon photoelectric multiplier, namely, on the photosensitive surface of the epitaxial layer. Polysilicon resistor 5, connecting n+ layer 4 with voltage distribution bus 6, is located in each cell on layer 7 of silicon oxide. Separating elements 10 executing particularly function of optical barriers are disposed between the cells.
The epitaxial layer (second embodiment of the silicon photoelectric multiplier) is grown on p++ conductance type layer 8, located on n conductance type substrate 9 (1015-1017 cm−3 of the doping agent concentration). A second (reverse) n-p boundary is made between p conductance type layers 3 and substrate 9, said boundary prevents penetration of photoelectrons, created by secondary photons of the Geiger discharge, into the sensitive region of adjacent cells. Besides the penetration of the secondary Geiger photons into the adjacent cells is prevented due to fulfillment of the separating elements (optical barriers) between the cells, (which, for example, can be the triangular form (V-groove)) by anisotropic etching of silicon having orientation <100>.
The silicon photoelectric multiplier comprises the independent cells having 20-100 microns of the size. All the cells are jointed with an aluminium bus, and the identical bias voltage, exceeded the breakdown voltage, is applied to the cells, that provides working in the Geiger mode. The quenched Geiger discharge develops in the active region of the cell when a photon gets there. The quenching, that is stopping the discharge, takes place due to fluctuations of the number of the charge carriers up to zero when the voltage of the p-n boundary drops, due to availability of polysilicon resistor 5 (current-limiting resistor) in each the cell. The current signals from the worked cells are summarized on a common load. The amplification of each cell constitutes up to 107. The spread of amplification value is defined by technological spread of the cell capacity and breakdown voltage of the cell, and constitutes less than 5%. As all the cells are identical, the response of the detector to gentle light flashes is proportional to number of the worked cells, i.e. to light intensity.
One of the features of working in the Geiger mode is the linear dependence of cell amplification from a bias voltage, that reduces requirements for stability of a power supply voltage and for a thermal stability.
Common bus 6 (anode) is supplied with positive voltage, its value should provide the Geiger mode (typical value lies in the range of U=+20-60 v), and also provide necessary depletion depth of the layers equal to 1-2 microns. At absorption of a light quantum the created charge carriers are agglomerated not from the depletion region only, but also from the undepletion transitory region, in which the built-in electrical field is due to gradient of doping agent, said field forces electrons to move to the anode. Thus, the great depth of charge congregating is reached, that significant exceeds a depth of the depletion region, defined a low working voltage. It provides maximum high light detection efficiently at fixed cell layout and fixed working voltage.
The value of polysilicon resistor 5 is selected from a condition of sufficiency for extinguishing of the avalanche discharge. The resistor is technologically simple in manufacturing. The important feature is that the resistor is applied on a cell periphery, not occluding an active part, i.e. not reducing the light detection efficiency.
In order to block connections between the cells the separating elements are disposed in the structure of the silicon photoelectric multiplier between the cells, for example, separating elements having triangular form (formed, for example, at anisotropic etching of silicon with orientation <100> in fluid etches on the base of KOH).
Allowing, that the processes in p-n and n-p boundaries run identically (with allowance for reverse signs of the electric charge carriers), at fulfillment of the claimed devices in the inverse embodiment (the layers with definite conductance type are varied to the inverse type), as shown in
Number | Date | Country | Kind |
---|---|---|---|
2004113616 | May 2004 | RU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/RU2005/000242 | 5/5/2005 | WO | 00 | 11/6/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/106971 | 11/10/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4046609 | Digoy | Sep 1977 | A |
4142200 | Mizushima et al. | Feb 1979 | A |
4458260 | McIntyre et al. | Jul 1984 | A |
4586068 | Petroff et al. | Apr 1986 | A |
4710817 | Ando | Dec 1987 | A |
5021854 | Huth | Jun 1991 | A |
5719414 | Sato et al. | Feb 1998 | A |
5844291 | Antich et al. | Dec 1998 | A |
5880490 | Antich et al. | Mar 1999 | A |
5923071 | Saito | Jul 1999 | A |
6352238 | Roman | Mar 2002 | B1 |
6838741 | Sandvik et al. | Jan 2005 | B2 |
7268339 | Farrell et al. | Sep 2007 | B1 |
20010000623 | Nozaki et al. | May 2001 | A1 |
20020139970 | Iwanczyk et al. | Oct 2002 | A1 |
20050167709 | Augusto | Aug 2005 | A1 |
20050205930 | Williams, Jr. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
1840967 | Oct 2007 | EP |
2143373 | Feb 1985 | GB |
63-124458 | May 1988 | JP |
2086047 | Jul 1997 | RU |
2105388CA | Feb 1998 | RU |
WO 0178153 | Oct 2001 | WO |
WO 2003003476 | Jan 2003 | WO |
WO 2004100200 | Nov 2004 | WO |
WO 2005048319 | May 2005 | WO |
WO 2006068184 | Jun 2006 | WO |
WO 2006111883 | Oct 2006 | WO |
WO 2006126026 | Nov 2006 | WO |
WO 2006126027 | Nov 2006 | WO |
WO 2008004547 | Jan 2008 | WO |
WO 2008011617 | Jan 2008 | WO |
WO 2008048694 | Apr 2008 | WO |
WO 2008052965 | May 2008 | WO |
WO 2008107718 | Sep 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080251692 A1 | Oct 2008 | US |