Silver halide color photographic light-sensitive material

Information

  • Patent Application
  • 20010014434
  • Publication Number
    20010014434
  • Date Filed
    December 22, 2000
    23 years ago
  • Date Published
    August 16, 2001
    23 years ago
Abstract
A silver halide color photographic light-sensitive material comprising, a photographic structural layer coated on a support, which structural layer includes at least one photographic light-sensitive layer containing a light-sensitive silver halide, a compound that forms a dye by a coupling reaction with an oxidized product of a developing agent, and a binder, wherein at least one photographic light-sensitive layer of the light-sensitive material contains a silver halide emulsion comprising a tabular silver halide grain that has principal faces composed of (111) planes, an average equivalent circle diameter of at least 0.70 μm, and an average thickness of less than 0.20 μm, and the emulsion is chemically sensitized by a tellurium sensitizer is disclosed. The light-sensitive material is a color photographic light-sensitive material improved in the relation of sensitivity and granularity.
Description


FIELD OF THE INVENTION

[0001] The present invention relates to a novel silver halide color photographic light-sensitive material, which is utilized to record an image.



BACKGROUND OF THE INVENTION

[0002] Photographic light-sensitive materials utilizing a silver halide have been increasingly developed in recent years, bringing about the present situation in which a high-quality image is readily available. For instance, in a system generally called color photography, a color negative film is used to take a photograph, and image information that is recorded on the color negative film after processing, is optically printed on color photographic printing paper, to obtain a color print. This process has been highly developed in recent years, driving the spread of color laboratories, which are large-scaled central bases producing a large number of color prints with high efficiency, and so-called minilabs, which are small-sized and simple printer processors set up in shops; and it becomes possible to allow anyone to enjoy color photography conveniently.


[0003] The principle of color photography, which is currently spreading, is based on color reproduction according to a subtractive color process. In usual color negative, light-sensitive layers, utilizing silver halide emulsions, which are light-sensitive elements provided with light sensitivity in blue, green, and red regions, are provided on a transparent support, and so-called color couplers that respectively form a yellow, a magenta, and a cyan dye, which has a complementary hue in each light-sensitive layers, are contained in these light-sensitive layers in combination, respectively. The color negative film, exposed image-wise by photographing, is processed in a color-developing solution containing an aromatic primary amine developing agent. At this time, the sensitized silver halide grain is developed, i.e. reduced, by the developing agent, and each dye is formed by a coupling reaction between the oxidized product of the developing agent, which is formed concurrently with the foregoing reduction, and the above-mentioned respective color coupler. Metal silver (developed silver) produced by the development, and unreacted silver halide, are removed through bleaching and fixing processes, to obtain a dye image. A color photographic printing paper, which is a color light-sensitive material, obtained by applying, on a reflective support, light-sensitive layers having a combination of a light-sensitive wavelength regions and hues to be produced in each layer similar to that of the color negative film, is optically exposed through the processed color negative film. Then, the resultant paper is subjected to the color-developing, bleaching, and fixing processes similar to the case of the negative film, to obtain a color print composed of dye images, with which the original scene is reproduced.


[0004] These systems are widespread at present, but there is an increasingly strong need to improve the simplicity of these systems. First, for processing baths used to carry out the aforementioned color-developing, bleaching, and fixing processes, the compositions and temperatures of these baths must be exactly controlled, requiring special knowledge and skilled operation. Second, these processing solutions contain substances, such as a color developing agent and bleaching agent of iron chelating compounds, whose discharge must be regulated from the environmental viewpoint, therefore special equipment is often required for the installation of processing instruments. Third, it takes time for these development processings, though the processing time required for these processings is reduced by recent development in the technologies concerned. It can be said that the level of time reduction is still insufficient to satisfy the present need for reproducing a recorded image rapidly.


[0005] In view of these standpoints, many proposals concerning improved techniques have been offered. A variety of techniques utilizing heat development have been proposed with the intention of, particularly, simplifying and accelerating a development processing.


[0006] There are descriptions concerning heat-developable light-sensitive materials and processes used for these material in, for example, “Shasin Kogaku no Kiso”, Higinen Shashin-hen, (published by Corona-sha, 1982), pp.242-255.


[0007] Many methods have been proposed concerning methods to obtain a color image by heat development. For instance, methods of forming a color image by a binding reaction of an oxidized product of a developing agent and a coupler are proposed in U.S. Pat. No. 3,531,286, No. 3,761,270, and No. 4,021,240; Belgian Patent No. 802519, Research Disclosure (hereinafter abbreviated as RD), September (1975), pp.31-32, and the like.


[0008] These methods, however, have the drawbacks that a relatively long time is generally required for processing, and the resulted image is highly foggy and has low image density.


[0009] As a system which does not require a processing solution containing a color-developing agent, a Pictrography System, and a Pictrostat System, are provided by Fuji Photo Film Co., Ltd. In this system, a small amount of water is supplied to a light-sensitive material containing a base precursor, and the light-sensitive material is applied to an image-receiving material, followed by heating, to cause a developing reaction. This system is environmentally advantageous in the point that the aforementioned processing solution is not used. However, this system is used for the purpose of fixing the formed dye to a dye-fixing layer, and appreciating it as a dye image.


[0010] All of the aforementioned systems are used for the purpose of appreciation use, and the development of a system that can be used for recording material for photographing is desired.


[0011] Generally, because it is demanded that silver halide light-sensitive materials for photographing have high sensitivity, it is essential to increase the sensitivity of a silver halide grain, and a tabular-like grain is therefore desirably used.


[0012] Various silver halide grain preferably used in heat development systems, in which processing is carried out at high temperatures, have been proposed. For instance, JP-B-2-48101 (“JP-B” means examined Japanese patent publication) discloses a technique for improving the thermal-developing progress characteristics by using a tabular silver halide having a grain diameter five times the grain thickness or more, in a thermal-developing light-sensitive material.


[0013] Also, JP-A-62-78555 (“JP-A” means unexamined published Japanese patent application) discloses a technique for improving the long-term storage stability of a thermal-developing light-sensitive material, by allowing the material to contain a tabular light-sensitive silver halide grain, in which the content of silver iodide is 4 to 40 mol %, and the ratio of the grain diameter to the grain thickness is 5 or more, in an amount of 0.05 to 1 mol, per 1 mol of an organic silver salt.


[0014] Moreover, JP-A-62-79447 discloses a technique for improving the sensitivity and the maximum density in processing, by allowing the material to contain a tabular light-sensitive silver halide grain in which the ratio of the grain diameter to the grain thickness is 5 or more, and a light-sensitive silver halide grain in which the content of a silver iodide is 4 to 40 mol % and the average grain diameter of 0.4 μm or less.


[0015] An attempt has been made to make a structure of a light-sensitive material for photographing that can be treated simply and rapidly, by applying each of these emulsions to the aforementioned thermal-developing system. However, it was found that the use of the tabular grain brings about a tendency to impaired graininess, creating a hindrance to grain use.


[0016] Technologies related to a silver halide grain with a tabular grain having a small thickness; specifically, having an average circle equivalent diameter less than 0.7 μm at least (hereinafter referred to as “ultra-thin tabular grain”), are disclosed in U.S. Pat. No. 5,250,403 and the like. There is a description, in the specification of this patent, that such a silver halide grain has advantages in the efficient use of silver, in improving the relationship between sensitivity and granularity, and the like. However, when the average circle equivalent diameter was increased from 0.7 μm, the sensitivity-granularity characteristic was impaired alternatively.



SUMMARY OF THE INVENTION

[0017] As is clear from the above description, an object of the present invention is to provide an excellent color photographic light-sensitive material that is improved in the relation between sensitivity and granularity.


[0018] Other and further objects, features, and advantages of the invention will appear more fully from the following description.



DETAILED DESCRIPTION OF THE INVENTION

[0019] The above object of the present invention is efficiently attained by the present invention described below.


[0020] (1) A silver halide color photographic light-sensitive material comprising, coated on a support, a photographic structural layer that comprises at least one photographic light-sensitive layer containing a light-sensitive silver halide, a compound that forms a dye by a coupling reaction with an oxidized product of a developing agent, and a binder, wherein at least one photographic light-sensitive layer of the light-sensitive material contains a silver halide emulsion that comprises tabular silver halide grains having principal faces composed of (111) planes, an average equivalent circle diameter of at least 0.7 μm, and an average thickness of less than 0.20 μm, and the silver halide of the emulsion is chemically sensitized by a tellurium sensitizer.


[0021] (2) The silver halide color photographic light-sensitive material according to the above (1), wherein the silver halide of the emulsion contains a bromide in an amount exceeding 70 mol % in terms of silver and an iodide in an amount of at least 0.30 mol % in terms of silver, and has a latent image-forming chemically sensitized site on the surface of the grain.


[0022] (3) The silver halide color photographic light-sensitive material according to the above (1), wherein in the light-sensitive material a color developing agent is incorporated.


[0023] (4) The silver halide color photographic light-sensitive material according to any one of the above (1) to (3), wherein the photographic light-sensitive material is subjected to heat development.


[0024] The present invention will be hereinafter explained in detail.


[0025] Examples of the tellurium sensitizer used in the present invention may include known tellurium sensitizers described in U.S. Pat. No. 1,623,499, No. 3,320,069 and No. 3,772,031, U.K. Patents No. 235,211, No. 1,121,496, No. 1,295,462 and No. 1,396,696, Canadian Patent No. 800,958, JP-A-8-95184, Journal of Chemical Society Chemical Communication 635 (1980), ibid 1102 (1979), ibid 645 (1979), Journal of chemical Society Perkin Transaction 1, 2191 (1980), edited by S. Patai, The chemistry of Organic Selenium and Tellurium compounds, Vol. 1 (1986), the same Vol. 2 (1987). Among these tellurium sensitizers, compounds represented by the following formulae (I), (II) and (III) are preferable.


[0026] formula (I)
1


[0027] In the formula (I), R11, R12 and R13 each represent an aliphatic group, an aromatic group, a heterocyclic group, OR14, NR15(R16), SR17, OSiR18(R19)(R20), X, or a hydrogen atom, R14 and R17 each represent an aliphatic group, an aromatic group, a heterocyclic group, a hydrogen atom, or a cation, R15 and R16 each represent an aliphatic group, an aromatic group, a heterocyclic group, or a hydrogen atom, R18, R19 and R20 each represent an aliphatic group, and X represents a halogen atom.


[0028] In the formula (I), the aliphatic groups represented by R11, R12, R13, R14, R15, R16, R17, R18, R19 and R20 are preferably those having 1 to 30 carbon atoms, and particularly straight-chain, branched or cyclic alkyl, alkenyl, alkynyl or aralkyl groups having 1 to 20 carbon atoms can be mentioned. Examples of the alkyl group, alkenyl group, alkynyl group and aralkyl group include methyl, ethyl, n-propyl, isopropyl, t-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopentyl, cyclohexyl, allyl, 2-butenyl, 3-pentenyl, propargyl, 3-pentinyl, benzyl and phenethyl. The aromatic groups represented by R11, R12, R13, R14, R15, R16 and R17 in the formula (I) are preferably those having 6 to 30 carbon atoms, and particularly monocyclic or condensed ring aryl groups, for example, phenyl and naphthyl, can be mentioned. The heterocyclic groups represented by R11, R12, R13, R14, R15, R16 and R17 in the formula (I) are three- to ten-membered saturated or unsaturated heterocyclic groups containing at least one of a nitrogen atom, oxygen atom and sulfur atom. These groups may be respectively monocyclic, or may form a condensed ring in combination with other aromatic rings or heterocycles. Preferable examples of the heterocyclic group include five- or six-membered aromatic heterocycles, for example, pyridyl, furyl, thienyl, thiazolyl, imidazolyl, and benzimidazolyl. In the formula (I), the cation represented by R14 and R17 represents an alkali metal or ammonium. In the formula (I), the halogen atom represented by X represents, for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. Also, these aliphatic group, aromatic group and heterocyclic group may be substituted. As examples of the substituent, the following compounds can be mentioned. Typical examples of the substituent include an alkyl group, aralkyl group, alkenyl group, alkynyl group, aryl group, alkoxy group, aryloxy group, amino group, acylamino group, ureide group, urethane group, sulfonylamino group, sulfamoyl group, carbamoyl group, sulfonyl group, sulfinyl group, alkyloxycarbonyl group, aryloxycarbonyl group, acyl group, acyloxy group, phosphoric acid amide group, diacylamino group, imide group, alkylthio group, arylthio group, halogen atom, cyano group, sulfo group, carboxy group, hydroxy group, phosphono group, nitro group and heterocyclic group. These groups may be further substituted. When two or more substituents are present, they may be the same or different. R11, R12 and R13 may bond with each other to form a ring together with a phosphorus atom, and R15 and R16 may bond with each other to form a nitrogen-containing heterocycle. In the formula (I), R11, R12 and R13 preferably represent an aliphatic group or an aromatic group, and more preferably an alkyl group or an aromatic group.
2


[0029] In the formula (II), R21 represents an aliphatic group, an aromatic group, a heterocyclic group, or —NR23(R24), R22 represents —NR25(R26), —N(R27)N(R28)R29 or —OR30; R23, R24, R25, R26, R27, R28, R29 and R30 each represent a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group or an acyl group. Herein, each combination of R21 and R25, R21 and R27, R21 and R28, R21 and R30, R23 and R25, R23 and R27, R23 and R28, and R23 and R30 may bond to form a ring. Next, the formula (II) will be explained in detail. In the formula (II), the aliphatic group, aromatic group, and heterocyclic group represented by R21, R22, R23, R24, R25, R26, R27, R28, R29 and R30 have the same meanings as defined in the formula (I). The acyl groups represented by R23, R24, R25, R26, R27, R28, R29 and R30 in the formula (II) represent those having 1 to 30 carbon atoms, and particularly straight-chain or branched acyl groups having 1 to 20 carbon atoms. Examples of these acyl groups include acetyl, benzoyl, formyl, pivaloyl and decanoyl. Herein, when each of R21 and R25, R21 and R27, R21 and R28, R21 and R30, R23 and R25, R23 and R27, R23 and R28, and R23 and R30 bond to form a ring, an alkylene group, arylene group, aralkylene group or alkenylene group can be mentioned as examples of these R's. Also, the aforementioned aliphatic group, aromatic group, and heterocyclic group may be substituted with the substituent given in the formula (I). In the formula (II), preferably, R21 represents an aliphatic group, an aromatic group or —NR23(R24), and R22 represents —NR25(R26). R23, R24, R25 and R26 respectively represent an aliphatic group or an aromatic group. In the formula (II), more preferably, R21 represents an aromatic group or —NR23(R24), and R22 represents —NR25(R26). R23, R24, R25, and R26 each represent an alkyl group or an aromatic group. Herein, it is also more preferable that R21 and R25, and R23 and R25 form a ring through an alkylene group, arylene group, aralkylene group or alkenylene group.
3


[0030] In the formula (III), R31 and R32 may be the same or different, and each represent an aliphatic group, an aromatic group, a heterocyclic group, or —(C═Y′)—R33; R33 represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, NR34(R35), OR36, or SR37; Y′ represents an oxygen atom, a sulfur atom, or NR38; R34, R35, R36, R37 and R38 each represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group; and n denotes 1 or 2. Next, the details of the formula (III) will be explained. In the formula (III), the aliphatic group, aromatic group, and heterocyclic group represented by R31, R32, R33, R34, R35, R36, R37 and R38 have the same meanings to the respective groups as defined in the formula (I). Also, the aliphatic group, aromatic group, and heterocyclic group represented by R31, R32, R33, R34, R35, R36, R37 and R38 may be substituted with the substituent given in the formula (I). Herein, each of R31 and R32, R34 and R35 may bond with each other to form a ring. In the formula (III), preferably, R31 and R32 represent a heterocyclic group or —(C═Y′)—R33; R33 represents NR34(R35) or OR36; Y′ represents an oxygen atom; and R34, R35 and R36 each represent an aliphatic group, an aromatic group or a heterocyclic group. In the formula (III), more preferably, R31 and R32 represent —(C═Y′)—R33; R33 represents NR34(R35); Y′ represents an oxygen atom; and R34 and R35 each represent an aliphatic group, an aromatic group or a heterocyclic group.


[0031] Specific examples of the tellurium sensitizers represented by the formulae (I), (II) or (III) may include compounds described in (Compound 22) to (Compound 36) of JP-A-8-95184. The description of these compounds are incorporated in this specification by reference.


[0032] The amount of the tellurium sensitizer used in the present invention is generally 10−8 to 10−2 mol, and preferably about 10−7 to 5×10−3 mol per 1 mol of silver halide, though it varies depending upon the type of the silver halide grain to be used, the conditions of chemical ripening, and the like.


[0033] Although no particular limitation is imposed on the condition of chemical sensitization in the present invention, the pH is generally 5 to 8, pAg is generally 6 to 11, and preferably 7 to 10, and the temperature is generally 40 to 95° C., and preferably 45 to 85° C.


[0034] In the present invention, it is preferable to use a noble metal sensitizer, such as gold, platinum, palladium, or iridium in combination. It is particularly preferable to use a gold sensitizer. Specific examples of the gold sensitizer include chloroauric acid, potassium chloroaurate, potassium auric thiocyanate, gold sulfide, gold selenide, and the like. The gold sensitizer may be used in amount of about 10−7 to 10−2 mol.


[0035] In the present invention, further, a sulfur sensitizer may be used in combination. Specific examples of the sulfur sensitizer may include unstable sulfur compounds, such as thiosulfates (e.g., hypo), thioureas (e.g., diphenylthiourea, triethylurea and allylthiourea) and rhodanines. The sulfur sensitizer may be used in an amount of about 10−7 to 10−2 mol per 1 mol of silver halide.


[0036] In the present invention, to constitute a light-sensitive material used for recording an original scene and reproducing the original scene as a color image, the color reproduction according to the subtractive color process may be used. Specifically, at least three types of light-sensitive layers, each having light sensitivities in blue, green and red regions respectively, are provided, and each light-sensitive layer is made to contain a color coupler capable of forming a dye of yellow, magenta or cyan, which is on relations of a complementary color with the light-sensitive wavelength region of the light-sensitive layer, whereby the color information of the original scene can be recorded. A color photographic printing paper having the same relationship between the light-sensitive wavelength and the developed color hue to that of the light-sensitive material, is exposed through the dye image obtained in this manner, whereby the original scene can be reproduced. Also, the information of a dye image obtained by taking a photograph of an original scene is read out by a scanner or the like, and based on this information, an image for enjoyment can be reproduced.


[0037] The light-sensitive material of the present invention may be provided with light-sensitive layers having light-sensitivity to three or more types of wavelength regions.


[0038] Also, it is possible to make the relationship between light-sensitive wavelength region and developed color hue become other than the above complementary color relationship. In this case, original color information can be reproduced by performing image processing, such as hue conversion, after the image information is read out as mentioned above.


[0039] In the present invention, it is preferable to contain at least two types of silver halide emulsions that have light-sensitivities in the same wavelength region but that are different from each other in the average projected area of grains. The meaning of the sentence “have light-sensitivity in the same wavelength region” indicates that the silver halide emulsions have light-sensitivity at the substantially same wavelength region. Therefore, even emulsions differing slightly in the distribution of spectral sensitivity are deemed to be emulsions having light-sensitivity in the same wavelength region, as long as the primary light-sensitive regions are overlapped each other.


[0040] In the above case, it is preferable to employ the emulsions so that the difference in the average projected area of grains between the emulsions become at least 1.25 times. The difference is more preferably 1.4 times or more, and most preferably 1.6 times or more. When three or more types of emulsion are used, it is preferable that the above relation is established between an emulsion having the smallest average projected area of grains and an emulsion having the largest average projected area of grains.


[0041] In the present invention, in order to contain a plurality of emulsions respectively having light-sensitivity in the same wavelength region but differing in the average projected area of grains, either each emulsions may be coated to form a separate light-sensitive layer, respectively, or the aforementioned plurality of emulsions may be mixed and contained in one light-sensitive layer.


[0042] When these emulsions are respectively contained in separate layers, it is preferable to dispose an emulsion having a large average projected area of grains on a upper layer (the position close to the direction of incidence of light).


[0043] When these emulsions are contained in separate light-sensitive layers respectively, a coupler having the same hue is preferably used as a color coupler to be used in combination. However, couplers that develop different color hues may be mixed to thereby make the developed color hues differ in every light-sensitive layer, or a coupler differing in the absorption profile of a developed color hue may be used in each light-sensitive layer.


[0044] In the present invention, in applying these emulsions having light-sensitivity in the same wavelength region, it is preferable to have the constitution that the ratio of the number of silver halide grains of an emulsion per unit area of a light-sensitive material is set at a value larger than the ratio of the value calculated by dividing the coated amount of silver of the emulsion, by the three-second (3/2) power of the average grain-projected area of the silver halide grains contained in the emulsion, in the case that a larger-grain emulsion for the average projected area is used. With such a constitution, an image having better granulation can be obtained, even in such a developing condition as heating to high temperatures. Also, high developing ability and wide exposure latitude can be satisfied at the same time.


[0045] In conventional color negative films used for photographing, in order to attain the intended granularity, not only the improvement of the silver halide emulsion but also a technique, for example, using the so-called DIR coupler, which releases a development-inhibiting compound in a coupling reaction with an oxidized product of a developing agent, is incorporated. In the light-sensitive material of the present invention, excellent granularity can be obtained even if a DIR coupler is not used. Further, if a DIR compound is used in combination, the granularity can be improved even better.


[0046] The emulsion for use in the present invention will be hereinafter explained.


[0047] The tabular grain (in some cases also referred to as “tabular-like grain”) in the present invention means a silver halide grain having two parallel principal faces facing to each other.


[0048] The tabular grain of the present invention has one twin plane, or two or more parallel twin planes. When ions disposed at all lattice points are in the reflected image relations on the both sides of a (111) plane, the twin plane means the (111) plane.


[0049] The tabular grain has triangular or hexagonal shape, or circular shape in which each corner of triangle or hexagon is made round off, as viewed from above, and has external surfaces parallel to each other.


[0050] In the emulsion for use in the present invention, the tabular grain occupies preferably 50 to 100%, more preferably 80 to 100%, and particularly preferably 90 to 100%, of the total projected area of all grains.


[0051] If the percentage of the projected area occupied by the tabular grains is less than 50%, it becomes impossible to make use of the merit of the tabular grain (sensitivity/granularity ratio, and improvement in sharpness), and it is therefore undesirable.


[0052] The average grain thickness of the tabular grain for use in the present invention is preferably 0.01 to 0.20 μm, more preferably 0.01 to 0.17 μm, and particularly preferably 0.01 to 0.14 μm.


[0053] The average grain thickness is an arithmetic mean of grain thicknesses of all tabular grains in the emulsion.


[0054] When the average grain thickness is less than 0.01 μm, the pressure resistance is impaired, which is undesirable. When the average grain thickness exceeds 0.20 μm, it is hard to obtain the effect of the present invention, which is undesirable.


[0055] The average equivalent circle diameter of the tabular grain for use in the present invention is preferably 0.7 to 5 μm, more preferably 1 to 4.5 μm, and particularly preferably 1 to 4 μm.


[0056] The average equivalent-circle diameter means an arithmetic mean of equivalent-circle diameters of all tabular grains in the emulsion.


[0057] If the average equivalent-circle diameter is less than 0.7 μm, it is hard to obtain the effect of the present invention, which is undesirable. If the average equivalent circle diameter exceeds 5 μm, the pressure resistance is impaired, which is undesirable.


[0058] The ratio of the equivalent-circle diameter to the thickness of the silver halide grain is referred to as an aspect ratio. Namely, the aspect ratio is a value obtained by dividing the circle-equivalent diameter of the projected area of each silver halide grain by the thickness of the grain.


[0059] As one example of a method of measuring the aspect ratio, there is a method in which transmission electron microphotograph of each grain is taken using a replica method, to find the diameter of a circle having the equivalent area to the projected area of each grain (equivalent-circle diameter) and the thickness of each grain.


[0060] In this case, the thickness is calculated from the length of the shadow of the replica.


[0061] In the emulsion for use in the present invention, the average aspect ratio of all tabular grains is preferably 3.5 to 100, more preferably 12 to 80, and particularly preferably 15 to 50.


[0062] The average aspect ratio is an arithmetic mean of the aspect ratios of all tabular grains in the emulsion.


[0063] When the average aspect ratio is less than 3.5, it is hard to obtain the effect of the present invention, which is undesirable, whereas when the average aspect ratio exceeds 100, the pressure resistance is impaired, which is undesirable.


[0064] As a method of forming the tabular grain that has a thin grain thickness and a high aspect ratio, for use in the present invention, various methods may be used. For instance, a grain formation method described in U.S. Pat. No. 5,250,403 may be used.


[0065] In the emulsion of the present invention, hexagonal tabular grain, in which the ratio of the length of a side having a minimum length to the length of a side having a maximum length is 1 to 2, occupy preferably 100 to 50%, more preferably 100 to 70%, and particularly preferably 100 to 90%, of the projected area of all grains in the emulsion. The mingling of tabular grains having a form other than the above hexagonal form is undesirable in light of the uniformity between grains.


[0066] The emulsion for use in the present invention preferably has monodispersibility.


[0067] The coefficient of variation in the circle-equivalent diameter of the projected area of all silver halide grains in the present invention, is preferably 30 to 3%, more preferably 25 to 3%, and particularly preferably 20 to 3%. A coefficient of variation exceeding 30% is undesirable in light of the uniformity between grains.


[0068] The coefficient of variation of the circle-equivalent diameter is a value obtained by dividing the standard deviation of the circle-equivalent diameter of each silver halide grains by the average circle equivalent diameter.


[0069] As the composition of the tabular grain for use in the present invention, silver bromide, silver chlorobromide, silver iodobromide, silver chloroiodobromide, or the like may be used and it is preferable to use silver bromide, silver iodobromide or silver chloroiodobromide.


[0070] In the case where the tabular grain has phases containing an iodide or a chloride, these phases may be distributed uniformly, or localized in the grain.


[0071] Other silver slats, for example, silver rhodanate, silver sulfide, silver selenate, silver carbonate, silver phosphate and organic acid silver may be contained as separate grains or a part of silver halide grain.


[0072] The range of the silver iodide content of the tabular grain for use in the present invention is preferably 0.1 to 20 mol %, more preferably 0.2 to 15 mol %, and particularly preferably 0.3 to 10 mol %.


[0073] When the content is less than 0.1 mol %, it is hard to obtain effects, such as an enhancement in dye adsorption and a rise in intrinsic sensitivity, which is undesirable. When the content exceeds 20 mol %, development rate is usually delayed and this is therefore undesirable.


[0074] The coefficient of variation in the distribution of the content of silver iodide between grains in the emulsion grain for use in the present invention, is preferably 30 to 3%, more preferably 25 to 3%, and particularly preferably 20 to 3%. A coefficient of variation exceeding 30% is undesirable in light of uniformity between grains.


[0075] The silver iodide content in each emulsion grain may be measured, by analyzing the composition of an individual grain by using an X-ray microanalyzer.


[0076] The coefficient of variation in the distribution of the silver iodide content is a value obtained by dividing the scatter (standard deviation) of the silver iodide content of each grain by the average silver iodide content.


[0077] The tabular grain for use in the present invention may have a dislocation line.


[0078] The dislocation line means a linear lattice defect present at the boundary between a slipped region and a non-slipped region on a slip plane of a crystal.


[0079] There are following references concerning the dislocation line of a silver halide crystal: 1) C. R. Berry, J. Appl. Phys., 27, 636 (1956), 2) C. R. Berry, D. C. Skilman, J. Appl. Phys., 35, 2165 (1964), 3) J. F. Hamilton, Phot. Sci. Eng., 11, 57 (1967), 4) T. Shiozawa, J. Soc. Phot. Sci. Jap., 34, 16 (1971), 5) T. Shiozawa, J. Soc. Phot. Sci. Jap., 35, 213 (1972), and the like. The dislocation line may be analyzed by an X-ray diffractometry or by direct observation method using a low-temperature transmission type electron microscope.


[0080] When the dislocation line is directly observed using a transmission type electron microscope, a silver halide grain is taken out from an emulsion while taking care so as not to apply pressure enough to generate the dislocation line, the grain is placed on a mesh for observation under the electron microscope, and the observation is carried out while the sample is kept in a cooled condition so as to prevent damages (e.g., print-out) due to electron rays.


[0081] In this case, the use of a high-voltage type electron microscope (200 kV or more for a thickness of 0.25 μm) allows clearer observation, because transmission of the electron rays become difficult as the thickness of the grain increases.


[0082] There is a description concerning a technique for introducing dislocation lines into a silver halide grain under control in JP-A-63-220238.


[0083] It is shown that tabular grains into which a dislocation line is introduced, are superior to tabular grains having no dislocation line, in photographic characteristics such as sensitivity and reciprocity law.


[0084] In the case of tabular grains, the positions and number of the dislocation lines of each grain, as viewed from a direction perpendicular to the principal face, can be found from the photograph of the grain that is taken using an electron microscope as mentioned above.


[0085] If the tabular grains for use in the present invention has the dislocation line, the position of the dislocation line is optional, and the position may be selected from among such positional situations that, for instance, it is limited to the apex portion or fringe portion of the grain, it is introduced into over the entire principal face, and the like. However, it is particularly preferable that the position of the dislocation line is limited to the fringe portion.


[0086] The “fringe portion” in the present invention indicates the outer periphery of the tabular grain. Specifically, the fringe portion is a portion placed outside of a spot where the silver iodide content exceeds or drops below the average silver iodide content of the whole grain for the first time when viewed from the peripheral side of the grain, in the distribution of silver iodide ranging from the periphery side to the center of the grain.


[0087] When the tabular grain for use in the present invention has a dislocation line, the density of the dislocation line is optional and, the density of the dislocation line can be selected according to the situation, for example, so as to be 10 lines or more, 30 lines or more, 50 lines or more per grain.


[0088] The emulsion essential in the present invention and photographic emulsions, which are to be combined therewith and are unessential in the present invention, will be hereinafter explained.


[0089] Specifically, any of silver halide emulsions can be used that are prepared by methods described, for example, in U.S. Pat. No. 4,500,626, column 50; U.S. Pat. No. 4,628,021, Research Disclosure (hereinafter abbreviated to as RD) No. 17,029 (1978), RD No. 17,643 (December 1978), pages 22 to 23; RD No. 18,716 (November 1979), page 648; RD No. 307,105 (November 1989), pages 863 to 865; JP-A-62-253159, JP-A-64-13546, JP-A-2-236546, and JP-A-3-110555; by P. Glafkides, in Chemie et Phisique Photographique, Paul Montel (1967); by G. F. Duffin, in Photographic Emulsion Chemistry, Focal Press, 1966; and by V. L. Zelikman et al., in Making and Coating Photographic Emulsion, Focal Press, 1964.


[0090] In the process for preparing the light-sensitive silver halide emulsion for use in the present invention, so-called desalting, for removing excess salts, is preferably carried out. As a means for attaining it, the noodle water-washing method, which is carried out with the gelatin gelled, can be used, and also the sedimentation method, in which inorganic salts comprising polyvalent anions (e.g. sodium sulfate), an anionic surfactant, an anionic polymer (e.g. polystyrenesulfonic acid sodium salt), or a gelatin derivative (e.g. an aliphatic-acylated gelatin, an aromatic-acylated gelatin, and an aromatic-carbamoylated gelatin) is employed, can be used, with the sedimentation method preferred.


[0091] The light-sensitive silver halide emulsion used in the present invention may contain heavy metals, such as iridium, rhodium, platinum, cadmium, zinc, thallium, lead, iron, and osmium, to achieve various purposes. These compounds may be used either singly or in combinations of two or more. The amount to be added varies depending on the purpose of the application; but the amount is generally on the order of 10−9 to 10−3 mol per mol of the silver halide. When they are incorporated, they may be incorporated uniformly in the grains, or they may be localized in the grains or on the surface of the grains. Specifically, emulsions described, for example, in JP-A-2-236542, JP-A-1-116637, and JP-A-5-181246 are preferably used.


[0092] In the step for forming grains of the light-sensitive silver halide emulsion for use in the present invention, as a silver halide solvent, a rhodanate, ammonia, a tetrasubstituted thioether compound, an organic thioether derivative described in JP-B-47-11386, or a sulfur-containing compound described in JP-A-53-144319 can be used.


[0093] As other conditions employed to prepare the emulsion in the present invention, the description, for example, by P. Glafkides in “Chemie et Phisique Photographique,” Paul Montel, 1967; by G. F. Duffin in “Photographic Emulsion Chemistry,” Focal Press, 1966; or by V. L. Zelikman et al. in “Making and Coating Photographic Emulsion,” Focal Press, 1964, can be referred to. That is, any of the acid process, the neutral process, the ammonia process, and the like can be used; and to react a soluble silver salt with a soluble halogen salt, any of the single-jet method, the double-jet method, a combination thereof, and the like can be used. To obtain monodispersed emulsion, the double-jet method is preferably used.


[0094] A method wherein grains are formed in the presence of excess silver ions (the so-called reverse precipitation process) can also be used. As one type of the double-jet method, a method wherein pAg in the liquid phase, in which a silver halide will be formed, is kept constant, that is, the so-called controlled double-jet method, can also be used.


[0095] Further, to quicken the growth of the grains, the concentrations, the amounts, and the addition speeds of the silver salt and the halide to be added may be increased (e.g. JP-A-55-142329, JP-A-55-158124, and U.S. Pat. No. 3,650,757).


[0096] As the method of stirring the reaction liquid, any of known stirring methods may be used. The temperature and the pH of the reaction liquid during the formation of the silver halide grains may be set arbitrarily to meet the purpose. Preferably the pH range is 2.2 to 7.0, and more preferably 2.5 to 6.0.


[0097] The light-sensitive silver halide emulsion is generally a chemically-sensitized silver halide emulsion. To chemically sensitize the light-sensitive silver halide emulsion, in addition to the tellurium sensitization defined in the present invention, known sensitization methods for silver halide emulsions in general light-sensitive material, for example, a chalcogen sensitization method, such as a sulfur sensitization method, a selenium sensitization method; a noble metal sensitization method, wherein gold, platinum, or palladium is used; and a reduction sensitization method, can be used alone or in combination (e.g. JP-A-3-110555 and JP-A-5-241267). These chemical sensitizations can be carried out in the presence of a nitrogen-containing heterocyclic compound (JP-A-62-253159). Further, the below-mentioned antifoggant can be added after the completion of the chemical sensitization. Specifically, methods described in JP-A-5-45833 and JP-A-62-40446 can be used.


[0098] At the time of the chemical sensitization, the pH is preferably 5.3 to 10.5, and more preferably 5.5 to 8.5, and the pAg is preferably 6.0 to 10.5, and more preferably 6.8 to 9.0.


[0099] The coating amount of the light-sensitive silver halide used in the present invention is preferably in the range of 1 mg/m2 to 10 g/m2 in terms of silver, and more preferably in the range of 100 mg/m2 to 8 g/m2.


[0100] When the photosensitive silver halide used in the present invention is made to have color sensitivities of green sensitivity, red sensitivity, and the like, the photosensitive silver halide emulsion is spectrally sensitized with methine dyes or the like. If required, the blue-sensitive emulsion may be spectrally sensitized in the blue region.


[0101] Dyes that can be used include cyanine dyes, merocyanine dyes, composite cyanin dyes, composite merocyanine dyes, halopolar cyanine dyes, hemicyanine dyes, styryl dyes, and hemioxonol dyes.


[0102] Specifically, sensitizing dyes described, for example, in U.S. Pat. No. 4,617,257, and JP-A-59-180550, JP-A-64-13546, JP-A-5-45828, and JP-A-5-45834 can be mentioned.


[0103] These sensitizing dyes can be used singly or in combination, and a combination of these sensitizing dyes is often used, particularly for the purpose of adjusting the wavelength of the spectral sensitivity, and for the purpose of supersensitization.


[0104] Together with the sensitizing dye, a dye having no spectral sensitizing action itself, or a compound that does not substantially absorb visible light and that exhibits supersensitization, may be included in the emulsion (e.g. those described, for example, in U.S. Pat. No. 3,615,641 and JP-A-63-23145).


[0105] The time when these sensitizing dyes are added to the emulsion may be at a time of chemical ripening or before or after chemical ripening. Further, the sensitizing dye may be added before or after the formation of nuclei of the silver halide grains, in accordance with U.S. Pat. No. 4,183,756 and U.S. Pat. No. 4,225,666. Further, these sensitizing dyes and supersensitizers may be added in the form of a solution of an organic solvent, such as methanol, or in the form of a dispersion of gelatin, or in the form of a solution of a surface-active agent. Generally the amount of the sensitizing dye to be added is of the order of 10−8 to 10−2 mol per mol of the silver halide.


[0106] These additives used in the above process, and conventionally known additives for photography that can be used in the present invention, are described in the above mentioned RD No. 17643; RD No. 18716; and RD No. 307105, whose particular parts are given below in a table.
1Kind of AdditiveRD 17643RD 18716RD 3071051Chemicalp. 23p. 648 (rightp. 866sensitizerscolumn)2Sensitivity-p. 648 (rightenhancing agentscolumn)3Spectralpp. 23-24pp. 648 (rightpp. 866-868sensitizers andcolumn)-649Supersensitizers(right column)4Brighteningp. 24pp. 648 (rightp. 868agentscolumn)5Antifoggingpp. 24-25p. 649 (rightpp. 868-870agents andcolumn)Stabilizers6Light absorbers,p. 25-26pp. 649 (rightp. 873Filter dyes, andcolumn)-650UV Absorbers(left column)7Dye-imagep. 25p. 650 (leftp. 872stabilizerscolumn)8Hardenersp. 26p. 651 (leftpp. 874-875column)9Bindersp. 26p. 651 (leftpp. 873-874column)10Plasticizers andp. 27p. 650 (rightp. 876Lubricantscolumn)11Coating aids andpp. 26-27p. 650 (rightpp. 875-876Surfactantscolumn)12Antistaticp. 27p. 650 (rightpp. 876-877agentscolumn)13Matting agentspp. 878-879


[0107] In the present invention, an organic metal salt may be used as an oxidizing agent, together with the light-sensitive silver halide. Among these organic metal salts, organosilver salts is used particularly preferably.


[0108] Examples of organic compounds, which can be used to form the aforementioned organosilver salt oxidizing agent include benzotriazoles, fatty acids, and other compounds described in U.S. Pat. No. 4,500,626, columns 52 to 53, and the like. Silver acetylide described in U.S. Pat. No. 4,775,613 is also useful. These organosilver salts may be used in combinations of two or more.


[0109] The above organosilver salt may be used additionally in an amount of generally 0.01 to 10 mol, and preferably 0.01 to 1 mol, per one mol of the light-sensitive silver halide. The total coating amount of the light-sensitive silver halide and the organosilver salt is appropriately 0.05 to 10 g/m2, and preferably 0.1 to 4 g/m2 in terms of silver.


[0110] As the binder of the constitutional layer of the light-sensitive material, a hydrophilic binder is preferably used. Examples thereof include those described in the above-mentioned Research Disclosures and JP-A-64-13546, pages (71) to (75). Specifically, a transparent or semitransparent hydrophilic binder is preferable, and examples include natural compounds, such as proteins including gelatin, gelatin derivatives, and the like, or polysaccharides including cellulose derivatives, starches, gum-arabic, dextrans, pullulan, and the like; and synthetic polymer compounds such as polyvinyl alcohols, polyvinyl pyrrolidones, and acrylamide polymers. Further, highly water-absorptive polymers described, for example, in U.S. Pat. No. 4,960,681 and JP-A-62-245260; that is, homopolymers of vinyl monomers having —COOM or —SO3M (M represents a hydrogen atom or an alkali metal), or copolymers of these vinyl monomers, or this vinyl monomer(s) with another vinyl monomer (e.g., those comprising sodium methacrylate or ammonium methacrylate, including Sumika Gel L-5H, trade name, manufactured by Sumitomo Chemical Co., Ltd.) can also be used. Two or more of these binders can be combined and used. Particularly, combinations of gelatin with the above binders are preferable. As the gelatin, lime-processed gelatin, acid-processed gelatin, or so-called de-ashed gelatin, wherein the contents of calcium, etc., are reduced, can be selected in accordance with various purposes, and combinations of these gelatins are also preferably used.


[0111] In the present invention, the coating amount of the binder is preferably 1 g or more but 20 g or less, and particularly preferably 2 g or more but 10 g or less, per m2.


[0112] The coupler which may be used in the present invention may be a four-equivalent coupler or a two-equivalent coupler. Also, a nondiffusing group of the coupler may be in a form of a polymer chain. Specific examples of the coupler are described in detail in T. H. James “The Theory of the Photographic Process”, The fourth edition, pp.291-334, and pp.354-361, JP-A-58-123533, JP-A-58-149046, JP-A-58-149047, JP-A-59-111148, JP-A-59-124399, JP-A-59-174835, JP-A-59-231539, JP-A-59-231540, JP-A-60-2950, JP-A-60-2951, JP-A-60-14242, JP-A-60-23474, JP-A-60-66249, JP-A-8-110608, JP-A-8-146552, JP-A-8-146578, and the like.


[0113] Also, couplers as mentioned below are preferably used.


[0114] Yellow coupler: couplers represented by the formulae (I) and (II) in EP 502,424A, couplers represented by the formulae (1) and (2) in EP 513,496A, couplers represented by the formula (I) in claim 1 of JP-A-5-307248, couplers represented by the formula D in column 1, line 45 and line 55 of U.S. Pat. No. 5,066,576, couplers represented by the formula D in Paragraph 0008 of JP-A-4-274425, couplers described on page 40, in claim 1 of EP 498,381A1, couplers represented by the formula (Y) on page 4 in EP 447,969A1, and couplers represented by the formulae (I) to (IV) in Column 7, line 36 and line 58 of U.S. Pat. No. 4,476,219.


[0115] Magenta coupler: couplers described in JP-A-3-39737, JP-A-6-43611, JP-A-5-204106 and JP-A-4-3626.


[0116] Cyan coupler: couplers described in JP-A-4-204843, JP-A-4-43345 and JP-A-5-211989.


[0117] Polymer coupler: couplers described in JP-A-2-44345.


[0118] As couplers whose color-formed dyes have suitable diffusibility, those described in U.S. Pat. No. 4,366,237, GB 2,125,570, EP 96,570 and DE 3,234,533 are preferable.


[0119] The light-sensitive material of the present invention may contain functional couplers as mentioned below. Examples of the couplers for correcting unnecessary absorption of color-formed dyes include yellow-colored cyan couplers described in EP 456,257A1, yellow-colored magenta couplers described in the same EP publication, magenta-colored cyan couplers described in U.S. Pat. No. 4,833,069, and colorless masking couplers (particularly, exemplified compounds on Pages 36-45) represented by (2) in U.S. Pat. No. 4,837,136 and the formula (A) in claim 1 of WO92/11575.


[0120] In the present invention, a coupler or other compounds, which release a photographically useful compound by a reaction with an oxidized product of a developing agent, are preferably used.


[0121] As a compound (including a coupler) that reacts with an oxidized product of a developing agent to release a photographically useful compound residue, the following compounds may be mentioned. Developing-inhibitor-releasing compound: compounds represented by the formulae (I) to (IV) described in EP 378,236A1, page 11; compounds represented by the formula (I) described in EP 436,938A2, page 7; compounds represented by the formula (1) described in JP-A-5-307248; compounds represented by the formulae (I), (II) and (III) described in EP 440,195A2, pages 5 and 6; compounds represented by the formula (I) in claim 1 of JP-A-6-59411; and Ligand-releasing compounds represented by LIG-X described in claim 1 of U.S. Pat. No. 4,555,478.


[0122] The light-sensitive material for use in the present invention preferably incorporates a color developing agent whose oxidized product produced by silver development can conduct coupling with the aforementioned coupler to produce a dye.


[0123] In this case, a combination of a p-phenylenediamines-series developing agent with a phenol or with an active methylene coupler described in U.S. Pat. No. 3,531,256, or a combination of a p-aminophenol-series developing agent with an active methylene coupler described in U.S. Pat. No. 3,761,20 may be used.


[0124] A combination of a four-equivalent coupler and a sulfonamidophenol as described in U.S. Patent No. 4,021,240, JP-A-60-128438, and the like, is preferable, because a light-sensitive material incorporating this combination exhibits excellent raw stock (unused stock) storability.


[0125] When a color developing agent is built-in a light-sensitive material, a precursor of the color developing agent may be used. Examples of the precursor may include indoaniline-series compounds described in U.S. Pat. No. 3,342,597; Schiff base type compounds described in U.S. Pat. No. 3,342,599, and Research Disclosures No. 14,850 and No. 15,159; aldol compounds described in Research Disclosure No. 13,924; metal salt complexes described in U.S. Pat. No. 3,719,492; and urethane-series compounds described in JP-A-53-135628.


[0126] In the present invention, the amount of the coupler to be used is preferably 1/1000 to 1 mol, and more preferably 1/500 to 1/5 mol, per one mol of silver halide.


[0127] A combination of a coupler with a sulfonamidophenol-series developing agent described in JP-A-9-15806, and EP 0930528A1, or with a hydrazine-series developing agent described in JP-A-8-286340 and JP-A-8-234388 is also preferable for use in the light-sensitive material of the present invention.


[0128] In the present invention, compounds represented by the formula IV, V, VI and VII are preferably used as a developing agent. Among these compounds, particularly the compounds represented by the formulae IV and VI are preferably used.


[0129] These developing agents will be hereinafter explained in detail.
4


[0130] The compounds represented by the formula IV are compounds collectively called sulfonamidophenol, and they are known compounds in the fields concerned. When these compounds are used in the present invention, those in which at least one of the substituents R1 to R5 has a ballasting group having 8 or more carbon atoms, are preferable.


[0131] In the formula, R1, R2, R3, and R4 each represent a hydrogen atom, a halogen atom (e.g., a chloro and bromo), an alkyl group (e.g., a methyl group, ethyl group, isopropyl group, n-butyl group, and t-butyl group), an aryl group (e.g., a phenyl group, tolyl group, and xylyl group), an alkylcarbonamide group (e.g., an acetylamino group, propionylamino group and butyroylamino group), an arylcarbonamide group (e.g., a benzoylamino group), an alkylsulfonamide group (e.g., a methanesulfonylamino group and ethanesulfonylamino group), arylsulfonamide group (e.g., a benzenesulfonylamino group and toluenesulfonylamino group), an alkoxy group (e.g., a methoxy group, ethoxy group and butoxy group), an aryloxy group (e.g., a phenoxy group), an alkylthio group (e.g., a methylthio group, ethylthio group and butylthio group), an arylthio group (e.g., a phenylthio group and tolylthio group), an alkylcarbamoyl group (e.g., a methylcarbamoyl group, dimethylcarbamoyl group, ethylcarbamoyl group, diethylcarbamoyl group, dibutylcarbamoyl group, piperidylcarbamoyl group and morpholylcarbamoyl group), an arylcarbamoyl group (e.g., a phenylcarbamoyl group, methylphenylcarbamoyl group, ethylphenylcarbamoyl group and benzylphenylcarbamoyl group), a carbamoyl group, an alkylsulfamoyl group (e.g., a methylsulfamoyl group, dimethylsulfamoyl group, ethylsulfamoyl group, diethylsulfamoyl group, dibutylsulfamoyl group, piperidylsulfamoyl group and morpholylsulfamoyl group), an arylsulfamoyl group (e.g., a phenylsulfamoyl group, methylphenylsulfamoyl group, ethylphenylsulfamoyl group and benzylphenylsulfamoyl group), a sulfamoyl group, a cyano group, an alkylsulfonyl group (e.g., methanesulfonyl group and ethanesulfonyl group), an arylsulfonyl group (e.g., a phenylsulfonyl group, 4-chlorophenylsulfonyl group and p-toluenesulfonyl group), an alkoxycarbonyl group (e.g., a methoxycarbonyl group, ethoxycarbonyl group and butoxycarbonyl group), an aryloxycarbonyl group (e.g., a phenoxycarbonyl group), an alkylcarbonyl group (e.g., an acetyl group, propionyl group and butyroyl group), an arylcarbonyl group (e.g., a benzoyl group and alkylbenzoyl group) or an acyloxy group (e.g., an acetyloxy group, propionyloxy group and butyroyloxy group). Among R1, R2, R3, and R4, R2 and R4 respectively are preferably a hydrogen atom. The sum of Hammett's constants σp of R1, R2, R3, and R4 is preferably 0 or more. R5 represents an alkyl group (e.g., a methyl group, ethyl group, butyl group, octyl group, lauryl group, cetyl group and stearyl group), an aryl group (e.g., a phenyl group, tolyl group, xylyl group, 4-methoxyphenyl group, dodecylphenyl group, chlorophenyl group, trichlorophenyl group, nitrochlorophenyl group, triisopropylphenyl group, 4-dodecyloxyphenyl group and 3,5-di-(methoxycarbonyl) group), or a heterocyclic group (e.g., pyridyl group).


[0132] The compounds represented by the formula V are compounds which are collectively called sulfonylhydrazine. These compounds are known compounds in the fields concerned. When these compounds are used in the present invention, those in which R5 or a substituent of a ring has a ballasting group having 8 or more carbon atoms are preferable.


[0133] In the formula, Z represents a group of atoms forming an aromatic ring. The aromatic ring formed by Z should be sufficiently electron-attractive, to impart silver developing activity to the compound. For this reason, a nitrogen-containing aromatic ring, or an aromatic ring obtained, for instance, by introducing an electron attractive group into a benzene ring, is preferably used. As such an aromatic ring, a pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, and the like, is preferable. In the case of a benzene ring, examples of its substituent(s) include alkylsulfonyl groups (e.g., a methanesulfonyl group and ethanesulfonyl group), halogen atoms (e.g., a chloro and bromo), alkylcarbamoyl groups (e.g., a methylcarbamoyl group, dimethylcarbamoyl group, ethylcarbamoyl group, diethylcarbamoyl group, dibutylcarbamoyl group, piperidinecarbamoyl group and morpholinocarbamoyl group), arylcarbamoyl groups (e.g., a phenylcarbamoyl group, methylphenylcarbamoyl group, ethylphenylcarbamoyl group and benzylphenylcarbamoyl group), carbamoyl groups, alkylsulfamoyl groups (e.g., a methylsulfamoyl group, dimethylsulfamoyl group, ethylsulfamoyl group, diethylsulfamoyl group, dibutylsulfamoyl group, piperidylsulfamoyl group and morpholinylsulfamoyl group), arylsulfamoyl groups (e.g., a phenylsulfamoyl group, methylphenylsulfamoyl group, ethylphenylsulfamoyl group and benzylphenylsulfamoyl group), sulfamoyl groups, cyano groups, alkylsulfonyl groups (e.g., a methanesulfonyl group and ethanesulfonyl group), arylsulfonyl groups (e.g., a phenylsulfonyl group, 4-chlorophenylsulfonyl group and p-toluenesulfonyl group), alkoxycarbonyl groups (e.g., a methoxycarbonyl group, ethoxycarbonyl group and butoxycarbonyl group), aryloxycarbonyl groups (e.g., a phenoxycarbonyl group), alkylcarbonyl groups (e.g., an acetyl group, propionyl group and butyroyl group) and arylcarbonyl groups (e.g., a benzoyl group and alkylbenzoyl group). The sum of Hammett's constants σ values of the above substituents is preferably 1 or more.


[0134] The compounds represented by the formula VI are compounds collectively called carbamoylhydrazine, and the compounds represented by the formula VII are compounds collectively called a carbamoylhydrazone. The both are known compounds in the fields concerned. When these compounds are used in the present invention, those in which at least one of the substituents R5, R6, R7, and R8 has a ballasting group having 8 or more carbon atoms, are preferable.


[0135] In the formula, R6 represents an alkyl group (e.g., a methyl group and ethyl group). X represents an oxygen atom, a sulfur atom, a selenium atom, or an alkyl- or aryl-substituted tertiary nitrogen atom, and X is preferably an alkyl-substituted tertiary nitrogen atom. R7 and R8 each represent a hydrogen atom or a substituent (as examples of this substituent, those mentioned as examples of the substituent for the benzene ring of the aforementioned Z may be given). R7 and R8 may bond with each other to form a double bond or a ring.


[0136] Among the compounds represented by the formulae IV, V, VI, and VII, the compounds represented by the formulae IV and VI are preferable in light of raw stock storability, in the present invention.


[0137] In the above, each group of R1, R2, R3, R4, R5, R6, R7, and R8 includes those having a possible substituent, and as examples of the substituent, those exemplified as the substituent for the benzene ring of the aforementioned Z may be mentioned.


[0138] Specific examples of the compounds represented by the formulae IV, V, VI, and VII are shown below, but the compound for use in the present invention is not limited by these examples.
5


[0139] The above compounds can be generally synthesized by known methods.


[0140] When a non-diffusion developing agent is used, an electron-transport agent and/or an electron-transport agent precursor can be used additionally, if necessary, in order to accelerate the electron transport between the non-diffusion developing agent and the developable silver halide. Particularly preferably, those described, for example, in the above-mentioned U.S. Pat. No. 5,139,919, EP-A-418 743 are used. Further, a method wherein it is introduced in a layer stably as described in JP-A-2-230143 and JP-A-2-235044 is preferably used.


[0141] The electron-transport agent or its precursor can be chosen from among the above developing agents or their precursors. The electron-transport agent and its precursor are desirably greater in its movability than the non-diffusion developing agent (electron provider). Particularly useful electron-transfer agents include 1-phenyl-3-pyrazolidones or aminophenols.


[0142] Also, an electron provider-precursor as described in JP-A-3-160,443 is preferably used.


[0143] Moreover, various reducing agents may be used, for various purposes, such as prevention of color mixing and improvement in color reproduction, in an intermediate layer and protective layer. Specifically, reducing agents described in European Patent Applications Laid-open No. 524,649 and No. 357,040, JP-A-4-249,245, JP-A-2-46,450 and JP-A-63-186,240 are preferably used. Also, development-inhabitor-releasing reducing agent as described in JP-B-3-63,733, JP-A-1-150,135, JP-A-2-46,450, JP-A-2-64,634, JP-A-3-43,735, and European Patent Application Laid-open No. 451,833 are also used.


[0144] A precursor of a developing agent, which itself has no reducibility but exhibits reducibility by the action of heat or a nucleophilic reagent during the process of development, may also be used.


[0145] In addition, the light-sensitive material may include a reducing agent as mentioned below.


[0146] Examples of the reducing agent that can be used in the present invention include reducing agents and reducing agent precursors described, for example, in U.S. Pat. No. 4,500,626, columns 49 to 50, U.S. Pat. No. 4,839,272, U.S. Pat. No. 4,330,617, U.S. Pat. No. 4,590,152, U.S. Pat. No. 5,017,454, U.S. Pat. No. 5,139,919, JP-A-60-140335, pages (17) to (18), JP-A-57-40245, JP-A-56-138736, JP-A-59-178458, JP-A-59-53831, JP-A-59-182449, JP-A-59-182450, JP-A-60-119555, JP-A-60-128436, JP-A-60-128439, JP-A-60-198540, JP-A-60-181742, JP-A-61-259253, JP-A-62-244044, JP-A-62-131253, JP-A-62-131256, JP-A-64-13546, pages (40) to (57), JP-A-1-120553, and European Patent No. 220 746 A2, pages 78 to 96.


[0147] Combinations of various reducing agents as disclosed in U.S. Pat. No. 3,039,869 can also be used.


[0148] The developing agent or reducing agent may be incorporated (built-in) in a processing sheet explained later, and it can be incorporated in the light-sensitive material.


[0149] The total amount of the developing agent and reducing agent to be added is generally 0.01 to 20 mol, and particularly preferably 0.01 to 10 mol, per mol of silver, in the present invention.


[0150] In the present invention, a four-equivalent coupler and a two-equivalent coupler may be used suitably, depending upon the type of developing agent. First, a four-equivalent coupler is used for the developing agents represented by the formulas IV and V. Because the developing agents represented by the formulas IV and V each has the coupling site that is substituted with a sulfonyl group, and the sulfonyl group split-off as a sulfinic acid during coupling, a split-off group (releasing group) on the coupler side must split-off as a cation. Therefore, this developing agent reacts with the four-equivalent coupler, which can release a proton as the split-off group during coupling, but does not react with the two-equivalent coupler, whose split-off group is an anion. On the contrary, a two-equivalent coupler is used for the developing agents represented by the formulae VI and VII. Because the developing agents represented by the formulae VI and VII each have the coupling site that is substituted with a carbamoyl group, and a hydrogen atom on the nitrogen atom of the carbamoyl group split-off as a proton during coupling, a split-off group on the coupler side must split-off as an anion. Therefore, these developing agent react with the two-equivalent coupler, which can release an anion as the split-off group, but does not react with the four-equivalent coupler, whose split-off group is a proton. The use of such combinations can prevent color impurity derived from the layer-to-layer transportation of an oxidized product of a developing agent. Specific examples of the coupler including both the four-equivalent couplers and the two-eqivalent couplers are described in detail, in Theory of The Photographic Process (4th Ed. Edited by T. H. James, Macmillan, 1977), pp.291-334, and pp.354-361, JP-A-58-12353, JP-A-58-149046, JP-A-58-149047, JP-A-59-11114, JP-A-59-124399, JP-A-59-174835, JP-A-59-231539, JP-A-59-231540, JP-A-60-2951, JP-A-60-14242, JP-A-60-23474, JP-A-60-66249, and the foregoing literatures and patents.


[0151] Hydrophobic additives, such as a coupler, a developing agent a nondiffusion reducing agent, and the like, can be introduced into the light-sensitive material, by using a known method described in U.S. Pat. No. 2,322,027, and the like. In this case, a high-boiling organic solvent, as described in U.S. Pat. No. 4,555,470, No. 4,536,466, No. 4,536,467, No. 4,587,206, No. 4,555,476 and No. 4,599,296, JP-B-3-62,256, and the like, may be used in combination with a low-boiling organic solvent having a boiling point of 50 to 160° C., according to the need. Also, these dye-providing compounds, nondiffusion reducing agents, and high-boiling organic solvents may be respectively used in combination of two or more.


[0152] The amount of the high-boiling organic solvent is generally 10 g or less, preferably 5 g or less, and more preferably 1 g to 0.1 g, per 1 g of the hydrophobic additives to be used. Also, it is proper to use the high-boiling organic solvent in an amount of generally 1 ml or less, preferably 0.5 ml or less, and particularly preferably 0.3 ml or less, per 1 g of the binder.


[0153] A dispersing method that uses a polymer as described in JP-B-51-39,853 and JP-A-51-59,943, and a method wherein the addition is made with them in the form of a dispersion, as described in JP-A-62-30,242, and the like, may be used.


[0154] In the case of a compound, which is substantially insoluble in water, besides the above methods, a method can be used wherein the compound is dispersed and contained in the form of a fine particle in a binder.


[0155] When the hydrophobic compound is dispersed in a hydrophilic colloid, various surfactants may be used. For example, those listed, as examples of the surfactant, in JP-A-59-157,636, page (37) to page (38), and in the aforementioned Research Disclosure, may be used. Phosphate-type surfactants described in JP-A-7-56267, JP-A-7-228589, and West Germany Patent Application Laid-open No. 1,932,299A, may also be used.


[0156] In the present invention, a compound, which serves to activate developing and concurrently serves to stabilize an image, may be used in the light-sensitive material. Specific compounds, which can be preferably used, are described in U.S. Pat. No. 4,500,626, columns 51 to 52.


[0157] The light-sensitive material may be provided with various non-light-sensitive layers, such as a protective layer, an undercoat layer, an intermediate layer, a yellow filter layer, and an anti-halation layer, between the aforementioned silver halide emulsions, or as the uppermost layer or the lowermost layer. Also, various auxiliary layers, such as a backing layer, may be provided on the opposite side of the support. Specifically, a layer structure as described in the above patents, an undercoat layer as described in U.S. Pat. No. 5,051,335, an intermediate layer having a solid pigment as described in JP-A-1-167,838 and JP-A-61-20,943, an intermediate layer having a reducing agent or a DIR compound as described in JP-A-1-120,553, JP-A-5-34,884 and JP-A-2-64,634, an intermediate layer having an electron transfer agent as described in U.S. Pat. No. 5,017,454 and No. 5,139,919 and JP-A-2-235,044, a protective layer having a reducing agent as described in JP-A-4-249,245, or layers obtained by combining these layers may be provided.


[0158] As a dye that can be used in a yellow filter layer and an anti-halation layer, a dye that loses its color or dissolves out when developed and thus does not contribute to the density after processing is preferable.


[0159] The expression “a dye in the yellow filter layer and anti-halation layer loses its color or removed when developed” means that the amount of the dye remaining after processing becomes ⅓ or less, and preferably {fraction (1/10)} or less, of the amount of the dye immediately before coating. The components of the dye may be dissolved out from the light-sensitive material, or transferred to a processing material when the material is processed, or may be converted to be a colorless compound by a reaction at the time of processing.


[0160] As the dye, which can be used in the light-sensitive material of the present invention, a known dye may be used. For example, a dye dissolved in an alkali of a developing solution, or a dye of a type that losts its color by reacting with a component of a developing solution, such as a sulfite ion, a developing agent, or an alkali may be used. Concretely, dyes described in European Patent Application EP 549,489A, and dyes ExF2 to 6 in JP-A-7-152129, may be mentioned. A solid-dispersed dye as described in JP-A-8-101487 may also be used. Although this dye may be used when the light-sensitive material is developed with a processing solution, this dye is particularly preferably used when the light-sensitive material is thermally developed using a processing sheet described later.


[0161] Also, the dye may be mordanted with a mordant and a binder. In this case, as the mordant and the dye, those known in the field of photography may be used. Examples of the mordant may include mordants described in U.S. Pat. No. 4,500,626, columns 58-59, JP-A-61-88256, pp.32-41, JP-A-62-244043, JP-A-62-244036, and the like.


[0162] Also, such method can be conducted where using a reducing agent and a compound that reacts with a reducing agent to release a diffusible dye, allowing a movable dye to be released by an alkali at the development, and then allowing the dye to be dissolved out in a processing solution or transferred to a processing sheet, to thereby be removed. There are specific descriptions in U.S. Pat. No. 4,559,290 and No. 4,783,369, European Patent No. 220,746A2, Published Technical Report (Kokai-Giho) No. 87-6119, and besides, in JP-A-8-101487, Paragraphs 0080-0081.


[0163] A leuco or the like that loses its color may also be used. Specifically, a silver halide light-sensitive material containing a leuco dye, which is color-developed in advance by using a developer of an organic acid metal salt, is disclosed in JP-A-1-150,132. Because a leuco dye and a developer complex react with an alkali agent or under heating to decolorize, a combination of such leuco dye and such developer is preferable if the light-sensitive material is thermally developed, in the present invention.


[0164] As the leuco dye, known leuco dyes may be utilized. There are descriptions concerning the leuco dyes in Moriga & Yoshida “Senryo to Yakuhin (Dyes and Chemicals)” 9, page 84 (Kaseihin Kogyo-Kyokai), “Shinban Senryo Binran (Dye Handbook new edition)” page 242 (Maruzen, 1970), R. Garner “Reports on the Progress of Appl. Chem” 56, page 199 (1971), “Senryo to Yakuhin (Dyes and Chemicals)” 19, page 230 (Kaseihin Kogyo-Kyokai, 1974), “Shikizai (Colorant)” 62, page 288 (1989), “Shenshoku Kogyo (Dye Industry)” 32, 208, and the like.


[0165] As the developer, acid clay type developers, phenolformaldehyde resins or metal salts of organic acids are preferably used. As the metal salts of organic acids, metal salts of salicylic acids, metal salts of phenol/salicylic acid/formaldehyde resins, rhodanates, and metal salts of xanthogenates, are advantageous. As the metals, zinc is particularly preferable. As oil-soluble zinc salicylates, among the aforementioned developer, those described in the specification of each of U.S. Pat. No. 3,864,146 and No. 4,046,941, and the publication of JP-B-52-1327 may be used.


[0166] It is preferable that the light-sensitive material of the present invention is hardened with a hardener.


[0167] Examples of the hardener include hardeners described in U.S. Pat. No. 4,678,739, column 41, No. 4,791,042, JP-A-59-116,655, JP-A-62-245,261, JP-A-61-18,942, JP-A-4-218,044, and the like. More specific examples of the hardener include aldehyde-series hardeners (e.g., formaldehyde), aziridine-series hardeners, epoxy-series hardeners, vinylsulfone-series hardeners (e.g., N,N′-ethylene-bis(vinylsulfonylacetamide)ethane), N-methylol-series hardeners (e.g., dimethylolurea), boric acid, metaboric acid, and polymer hardeners (e.g., compounds described in JP-A-62-234,157 and the like).


[0168] These hardeners are used in an amount of generally 0.001 to 1 g, and preferably 0.005 to 0.5 g per 1 g of the hydrophilic binder.


[0169] In the light-sensitive material, various antifoggants or photographic stabilizers or their precursors may be used. Specific examples of these compounds include compounds described in the aforementioned Research Disclosure, U.S. Pat. No. 5,089,378, No. 4,500,627, and No. 4,614,702, JP-A-64-13,564, pp.(7) to (9), (57) to (71) and (81) to (97), U.S. Pat. No. 4,775,610, No. 4,626,500 and No. 4,983,494, JP-A-62-174,747, JP-A-62-239,148, JP-A-1-150,135, JP-A-2-110,557, JP-A-2-178,650, RD17,643 (1978) pp.(24)-(25), and the like.


[0170] These compounds is used in an amount of preferably 5× 10−6 to 1×10−1 mol, and more preferably 1×10−5 to 1× 10−2 mol per 1 mol of silver.


[0171] The present invention may be applied to a variety of color light-sensitive materials, such as color negative films for general use or movies, color reversal films for slides or televisions, color papers, color positive films, and color reversal papers. The present invention is suitable to film units with a lens as described in JP-B-2-32615 and JU-B-3-39784 (the term “JU-B” used herein means an “examined Japanese utility model publication”).


[0172] Appropriate supports that may be used in the present invention are described in, for example, the aforementioned RD. No. 17643, page 28, RD. No. 18716, page 647, right column to page 648, left column, and RD. No. 307105, page 879.


[0173] The present invention is particularly suitable for light-sensitive materials for photographing. As the support for this type of light-sensitive material, those known as the supports of light-sensitive materials for photographing may be used. Typical examples of such support include cellulose acetate films, polyethylene terephthalate films, and polyethylene naphthalate films or their derivative films.


[0174] The light-sensitive material of the present invention is developed by, after subjecting to exposure to light, putting the light-sensitive material together with a processing material that contains a base and/or a base precursor after supplying water in an amount corresponding to {fraction (1/10)} to 1 times the amount of water required for maximum swelling of whole coating films constituting the light-sensitive material and processing material, followed by heating.


[0175] The present invention has been conducted with the intention to attain excellent graininess and an exposure latitude in heat development as aforementioned, and to reduce environmental loads caused by development using solutions. However, it is also possible to form an image by processing the light-sensitive material of the present invention, with a conventional development that uses a developing solution, with an activator method that employs an alkali processing solution, or with a processing solution that contains a developing agent/a base.


[0176] Heat processings of light-sensitive materials are known in the technical fields concerned, and there are descriptions concerning heat-developable light-sensitive materials and their processes in, for example, “Shashin Kogaku no Kiso (Fundamental of Photographic Engineering)” (1970, published by Corona), pp.553-555, “Eizo Joho (Picture Information)” published on April, 1978, page 40, “Nabletts Handbook of Photography and Reprography”, 7th Ed. (Vna Norstrand and Reinhold Company), pp.32-33, U.S. Pat. No. 3,152,904, No. 3,301,678, No. 3,392,020 and No. 3,457,075, U.K. Patents No. 1,131,108 and No. 1,167,777, and Journal of Research Disclosure, the June issue (1978), pp.9-15 (RD-17029).


[0177] The activator treatment indicates a treating method, in which a light-sensitive material is made to incorporate a color developing agent, and development processing is performed using a processing solution free from a color developing agent. The feature of the processing solution in this case is that it does not contain a color developing agent, which is normally contained as a composition of a processing solution, but the processing solution may comprise other components (e.g., an alkali and an auxiliary developing agent). Examples of the activator treatment are shown in known literature such as EP No. 545,491A1 and EP No. 565,165A1.


[0178] The method, wherein development is carried out using a processing solution containing a developing agent/a base is described in RD. No. 17643, pp.28-29, RD. No. 18716, page 651, left column to right column, and RD. No. 307105, pp.880-881.


[0179] Next, processing materials and processing methods that are used in the case of heat-development, in the present invention, are explained in detail.


[0180] Given as examples of the base or base precursor are various known compounds. Preferable examples of the base include a hydroxide, carbonate, bicarbonate, borate, phosphate, and the like of an alkali metal such as sodium, potassium, and the like; a hydroxide, carbonate, bicarbonate, borate, phosphate, carboxylate, and the like of a quaternary alkylammonium, such as tetramethylammonium and tetraethylammonium; an organic base such as amidines, cyclic amidines, guanidines, cyclic guanidines, aliphatic amines, aromatic amines, heterocyclic amines, and the like and a carbonate, bicarbonate, borate, phosphate, carboxylate, and the like of these organic bases. It is desirable to use these bases by making them contained in an amount 0.05 to 10 g/m2 in a processing material, or in an amount of 1 to 100 g/l in a processing solution.


[0181] Also, as the base precursor, compounds that decompose or react under heating or in an alkaline condition to generate a base (e.g., compounds described in JP-A-62-65038 and U.S. Pat. No. 4,511,493) may be used. A combination of a basic metal compound, which is sparingly soluble in water, and a compound, which can undergo a complex forming reaction with a metal ion constituting the sparingly soluble metal compound (complex-forming compounds or complexing agents), is particularly preferable.


[0182] Preferable examples of the sparingly soluble metal compound are oxides of, hydroxides of and basic carbonates of zinc or aluminum, and particularly preferable examples are zinc oxide, zinc hydroxide, and basic zinc carbonate.


[0183] It is preferable to use the sparingly soluble metal compound by dispersing in the form of fine particles in a hydrophilic binder, and then including in the light-sensitive material. The average particle diameter of the fine particles is generally 0.001 to 5 μm, and preferably 0.01 to 2 μm. The content in the light-sensitive material is generally 0.01 to 10 g/m2, and preferably 1 to 5 g/m2.


[0184] The complex-forming compound, which reacts with a metal ion of the compound that is sparingly soluble in water, is preferably contained in a processing sheet. The complex-forming compound is a known compound as a chelating agent used in analytical chemistry, and as a hard-water softener in photographic chemistry. The details of the complex-forming compound are also described in, besides the aforementioned patent specifications, A Ringbom “Saku Keisei Hanno (Complex Forming Reaction)”, translated by Nobuyuki Tanaka and Haruko Sugi (Sangyo Tosho). Complex-forming compounds preferably used in the present invention are water-soluble compounds. Examples of the complex-forming compounds include


[0185] aminopolycarboxylic acids (including salts), such as ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, and the like;


[0186] aminophosphonic acids (salts), such as aminotris(methylenephosphonic acid), ethylenediaminetetramethylenephosphonic acid and the like;


[0187] and pyridinecarboxylic acids (salts), such as 2-picolinic acid, pyridine-2,6-dicarboxylic acid, 5-ethyl-2-picolinic acid, and the like. Among these compounds, pyridinecarboxylic acids (salts) are particularly preferable.


[0188] In the present invention, the complex-forming compound is preferably used as a salt neutralized with a base. Particularly, salts of the complex-forming compounds with an organic base, such as guanidines, amidines, or tetraalkylammonium hydroxide, and salts of the complex-forming compounds with an alkali metal, such as sodium, potassium, or lithium, are preferable. Specific examples of the preferable complex-forming compound are described in the aforementioned JP-A-62-129848, European Patent Application Laid-open No. 210,660A2, and the like. The content of the complex-forming compound in the processing material is generally 0.01 to 10 g/m2, and preferably 0.05 to 5 g/m2.


[0189] A heat solvent may be added to the light-sensitive material of the present invention, for the purpose of promoting heat development. Examples of the heat solvent include organic compounds having a polarity as described in U.S. Pat. No. 3,347,675 and No. 3,667,959. Given as specific examples of the heat solvent are amide derivatives (e.g., a benzamide), urea derivatives (e.g., methylurea and ethyleneurea), sulfonamide derivatives (e.g., compounds described in JP-B-1-40974 and JP-B-4-13701), polyol compounds (e.g., sorbitols) and polyethylene glycols.


[0190] When the heat solvent is insoluble in water, it is preferably used in the form of a solid dispersion. A layer to which the heat solvent is added is any of the light-sensitive layers and the non-light-sensitive layers.


[0191] The amount of the heat solvent to be added is generally 10 wt % to 500 wt %, and preferably 20 wt % to 300 wt %, based on the binder in the layer to which the heat solvent is added.


[0192] The heating temperature in the heat development step is generally about 50° C. to 250° C., and especially 60° C. to 150° C. is useful, and 60° C. or more and 100° C. or less is particularly preferable.


[0193] The time required to thermally develop at such a temperature is preferably about 3 sec to 80 sec, more preferably 5 sec or more and within 60 sec, and particularly preferably 5 sec or more and within 30 sec.


[0194] In order to supply the base required in the heat development step, a processing material that has a processing layer containing a base or a base precursor is used. The processing material may be imparted with functions, in addition to the above; a function to shield air at the time of thermal development, a function to prevent the volatilization of materials from the light-sensitive material, a function to supply processing materials to the light-sensitive material other than the base, and a function to remove materials (e.g., a YF dye and AH dye) in the light-sensitive material that become needless after the development, or useless components generated at the time of development. The support and binder of the processing material used in this case may be the same to those used in the light-sensitive material.


[0195] A mordant may be added to the processing material, with the intention to remove the aforementioned dyes, and for other purposes. As the mordant, those known in the field of photography may be used. Examples of the mordant may include mordants described in U.S. Pat. No. 4,500,626, columns 58-59, JP-A-61-88256, pp.32-41, JP-A-62-244043, JP-A-62-244036, and the like. Also, a dye-accepting polymer compound described in U.S. Pat. No. 4,463,079 may be used. Also, the aforementioned heat solvent may be contained.


[0196] The processing layer of the processing material is made to contain a base or a base precursor. As the base, either an organic base or an inorganic base may be used, and as the base precursor, the aforementioned one may be used. The amount of the base or base precursor to be used is generally 0.1 to 20 g/m2, and preferably 1 to 10 g/m2.


[0197] As a heating method in the development step, there are a method wherein the photographic material is brought into contact with a heated block or plate, a method wherein the photographic material is brought in contact with a hot plate, a hot presser, a heat roller, a heat drum, a halogen lamp heater, or an infrared- or far infrared-lamp heater, and a method wherein the photographic material is made to pass through a high-temperature atmosphere.


[0198] As a method wherein the light-sensitive material and the processing material are overlapped with facing each other, methods described in JP-A-62-253,159 and JP-A-61-147,244, page (27) may be applied.


[0199] For the processing of the photographic element of the present invention, any one of various heat development apparatuses may be used. For example, apparatuses described in JP-A-59-75,247, JP-A-59-177,547, JP-A-59-181,353, JP-A-60-18,951, JU-A-62-25,944 (“JU-A” means unexamined published Japanese utility model application), JP-A-6-130,509, JP-A-6-95,338, JP-A-6-95,267, JP-A-8-29,955, JP-A-8-29,954, and the like can be preferably used.


[0200] Also, as a commercially available apparatus, for instance, Pictrostat 100, Pictrostat 200, Pictrostat 300, Pictrostat 330 and Pictrostat 50, and Pictrography 3000, and Pictrography 2000 (all these are trade names), manufactured by Fuji Photo Film Co., Ltd. may be used.


[0201] The light-sensitive material and/or the processing sheet in the present invention may be in the form that has an electroconductive heat-generating material layer as a heating means for thermal development. As this heat-generating element, those described in JP-A-61-145,544, or the like, may be utilized.


[0202] In the present invention, although image information can be read out without removing developed silver generated by development and undeveloped silver halide, an image can be also read out after the removal of these silvers. In the latter case, a means wherein these developed and undeveloped silvers concurrently with or after the development, may be adopted.


[0203] In order to remove developed silver in the light-sensitive material, or in order to complex or solubilize a silver halide, simultaneously with development, the processing material may contain a silver oxidizing or re-halogenating agent, which acts as a bleaching agent, or a silver halide solvent, which acts as a fixing agent, in advance, so that these reactions may occur at the time of heat development.


[0204] Also, after the development for image formation, a second material that contains a silver oxidizing agent, a re-halogenating agent, or a silver halide solvent may be put together with the light-sensitive material, whereby attaining the removal of developed silver or attaining the complexing or solubilization of the silver halide.


[0205] In the present invention, it is preferable to carry out these treatments to the extent that these treatments do not provide a hindrance to the reading out of image information after photographing and image-forming development in succession thereto. Because, particularly, undeveloped silver halide causes a significant haze in a gelatin film to raise the density of the background of an image, it is preferable to decrease the haze by using such a complexing agent as aforementioned, or to solubilize the silver halide so that all or part thereof is removed from the layer. It is also preferable to use a tabular grain having a high aspect ratio, or a tabular grain having a high silver chloride content, for the purpose of decreasing the haze of the silver halide itself.


[0206] The conventionally used silver bleaching agents may be arbitrarily used as the bleaching agent which can be used in the processing material for use in the present invention. Such a bleaching agent is described in U.S. Pat. No. 1,315,464 and No. 1,946,640, and Photographic Chemistry Vol. 12, chapter 30, Foundation Press London England. These bleaching agents effectively oxidize and solubilize a photographic silver image. Examples of useful silver bleaching agent include alkali metal bichromates and alkali metal ferricyanide.


[0207] Preferable bleaching agents are those soluble in water, and they include ninhydrine, indandione, hexaketocyclohexane, 2,4-dinitrobenzoic acid, benzoquinone, benzenesulfonic acid, and 2,5-dinitrobenzoic acid. Also, examples of the bleaching agent include metal organic complexes, such as ferric salts of cyclohexyldialkylaminotetraacetic acid, ferric salts of ethylenediaminetetraacetic acid, and ferric salts of citric acid. As the fixing agent, a silver halide solvent, which can be contained in the processing material (first processing material) that develops the aforementioned light-sensitive material, may be used. For the binder, support and other additives that can be used in the second processing material, those used in the first processing material may be used.


[0208] Although the coating amount of the bleaching agent must be changed according to the silver content of the light-sensitive material to be put together, the bleaching agent is generally used in an amount ranging from 0.01 mol to 10 mol per mol of coated amount of silver of the light-sensitive material in unit area. The amount of the bleaching agent is preferably 0.1 to 3 mol/mol of coated silver in the light-sensitive material, and more preferably 0.1 to 2 mol/mol of coated silver in the light-sensitive material.


[0209] As the silver halide solvent, known compounds may be used. Examples of the silver halide solvent which may be used include thiosulfates, such as sodium thiosulfate and ammonium thiosulfate, sulfites, such as sodium sulfite and sodium hydrogen sulfite; thiocyanate, such as potassium thiocyanates and ammonium thiocyanate; thioether compounds such as 1,8-di-3,6-dithiaoctane, 2,2′-thiodiethanol, and 6,9-dioxa-3,12-dithiatetradecane-1,14-diol as described in JP-B-47-11386; compounds having five- or six-membered imide ring, such as uracil and hydantoin, as described in JP-A-8-179458; and compounds represented by the following formula (I) as described in JP-A-53-144319. A mesoionic thiolate compound of trimethyltriazolium thiolate as described in “Analytica Chemica Acta”, Vol. 248, pp.604 to 614 (1991) is also preferable. Compounds that is capable of fixing a silver halide to stabilize, as described in JP-A-8-69097, may also be used as the silver halide solvent.


N(R1)(R2)—C(═S)—X—R3   Formula (1)


[0210] In the formula (1), X represents a sulfur atom or an oxygen atom, R1 and R2, which may be the same or different, each represent an aliphatic group, an aryl group, a heterocyclic residue, or an amino group, and R3 represents an aliphatic group, or an aryl group. Each of R1 and R2, or R2 and R3 may be combined with each other to form a five- or six-membered hetero ring. The aforementioned silver halide solvent may be used together.


[0211] Among the aforementioned compounds, sulfites and the compounds having a five- or six-membered imide ring, such as uracil and hydantoin, are particularly preferable. Particularly, uracil and hydantoin are preferable, in the point that a reduction in glossiness at the storage of the processing material, can be prevented if they are added as a potassium salt.


[0212] The total content of the silver halide solvents in the processing layer is generally 0.01 to 100 mmol/m2, preferably 0.1 to 50 mmol/m2, and more preferably 10 to 50 mmol/m2. The total amount of the silver halide solvents is generally {fraction (1/20)} to 20 times, preferably {fraction (1/10)} to 10 times, and more preferably ⅓ to 3 times the molar amount of coated silver in the light-sensitive material. The silver halide solvent may be added to a solvent such as water, methanol, ethanol, acetone, dimethylformamide, or methylpropyl glycol, or to an alkaline or acidic aqueous solution, or may be added to the coating solution after being dispersed as a solid fine particle.


[0213] Also, the processing material may contain a physical development nuclei and a silver halide solvent, so that silver halide in the light-sensitive material is solubilized and fixed to the processing layer simultaneously with development.


[0214] The physical development nuclei reduces a soluble silver salt diffused from the light-sensitive material to convert it into physically developed silver, thereby fixing the developed silver to the processing layer. As the physical development nuclei, all compounds known as physical development nuclei can be used. Examples are colloidal particles of heavy metals (such as zinc, mercury, lead, cadmium, iron, chromium, nickel, tin, cobalt, copper, and ruthenium), noble metals (such as, palladium, platinum, silver, and gold), or compounds of any of these metals with chalcogen such as sulfur, selenium or tellurium. These physical development nucleus substances may be obtained by reducing a corresponding metal ion with a reducing agent, such as ascorbic acid, sodium boron hydride, or hydroquinone, to produce a metal colloid dispersion, or by mixing a soluble sulfide, selenide, or telluride solution with a corresponding metal ion, to produce a colloid dispersion of a water-insoluble metal sulfide, metal selenide, or metal telluride. These dispersions are preferably formed in a hydrophilic binder such as a gelatin. The preparation method of colloidal silver particles are described in U.S. Pat. No. 2,688,601, and the like. The desalting method of removing excess salts, which method is known in the preparation method of silver halide emulsions, may be conducted according to need.


[0215] The physical development nuclei that have a particle diameter of 2 to 200 nm are preferably used.


[0216] These physical development nuclei are contained in an amount of usually 10−3 to 100 mg/m2, and preferably 10−2 to 10 mg/m2 in the processing layer.


[0217] Although the physical development nuclei may be prepared separately, and added to a coating solution, and it may be produced by, for example, reacting silver nitrate with sodium sulfide, or reacting gold chloride with a reducing agent, in a coating solution that contains a hydrophilic binder.


[0218] As the physical development nucleus, silver, silver sulfide, palladium sulfide, or the like, is preferably used. If physically developed silver, which is transferred to a sheet containing a complexing agent, is used as an image, palladium sulfide, silver sulfide, or the like is preferably used, in the point that the Dmin becomes under a prescribed value and Dmax becomes high.


[0219] Each of the first processing material and the second processing material may have at least one polymerizable timing layer. This polymerizable timing layer can temporarily delay a bleaching and fixing reaction until the reaction of a desired silver halide with a dye-donating compound or a developing agent, is substantially completed. The timing layer may comprise a gelatin, polyvinyl alcohol, or polyvinyl alcohol/polyvinyl acetate. This layer can be also a barrier timing layer as described in, for instance, U.S. Pat. No. 4,056,394, No. 4,061,496, and No. 4,229,516.


[0220] When this timing layer is applied, it is applied in a thickness of generally 5 to 50 μm, and preferably 10 to 30 μm.


[0221] In a method of bleaching and fixing the light-sensitive material after development by using the second processing material, in the present invention, water amounting to 0.1 to 1 time the amount required for the maximum swelling of all coating films (layers), except for the backing layers, of both the light-sensitive material and the second processing material is supplied to either of the light-sensitive material or the second processing material, and thereafter the light-sensitive layer is overlapped with the second processing material such that the light-sensitive layer faces the processing layer, followed by heating at a temperature of 40° C. to 100° C. for 5 seconds to 60 seconds.


[0222] As to the amount of water, the type of water, a water supplying method, and the method for overlapping the light-sensitive material and the processing material, those described for the first processing material and usual known ones can be employed. Further, as to the type of water, the water supplying method, the apparatus for supplying water, the amount of water, temperature of water at supplying, and the like, those described in paragraph No. 0157 in JP-A-10-161263 can also be applied. In addition to this, as to the water supplying method, coating methods described in JP-A-11-352648 can also be used.


[0223] More specifically, a bleaching and fixing sheet as described in JP-A-59-136733, U.S. Pat. No. 4,124,398, and JP-A-55-28098 may be used.


[0224] The silver halide color photographic light-sensitive material of the present invention has significantly high sensitivity, and forms a color image having excellent graininess, and it is particularly suitable as a recording material for photographing.







[0225] The present invention will be explained in more detail by way of examples, which are not intended to be limiting of the present invention.


EXAMPLES


Example 1


(1) Preparation of Emulsions


Tabular Silver Iodobromide Emulsion A

[0226] (Preparation of Seed Crystals)


[0227] 1600 ml of an aqueous solution containing 8.3 g of a low-molecular weight gelatin (molecular weight: 15,000) and 4.3 g of KBr was stirred while being kept at 40° C. To this solution, 41 ml of a 1.2 M AgNO3 aqueous solution and 41 ml of a 1.26 M KBr aqueous solution containing 4.3 mol % of KI were simultaneously added in 40 seconds by a double jet method. Then, 36 g of gelatin (lime-treated gelatin) was added and the temperature of the reaction mixture was raised to 58° C. in 20 minutes. After the pAg of the reaction mixture was adjusted to 8.44, the reaction mixture was ripened for 15 minutes by the addition of ammonia, and thereafter neutralized. Next, 647 ml of a 1.9 M AgNO3 aqueous solution and a 1.9 M KBr aqueous solution were simultaneously added in 55 minutes by accelerating the flow rate (final flow rate was 5 times the initial flow rate) while keeping pAg at 8.10. After that, the emulsion was cooled to 35° C., and washed with water according to a usual flocculation method. Thereafter, 49 g of gelatin was added to disperse, then the resulted emulsion was adjusted to pH=6.2 and pAg=8.9, and stored.


[0228] (Grain Growth)


[0229] To 48 g of the above-described seed crystals that contained silver iodobromide in an amount corresponding to 9.3 g of AgNO3, 1145 ml of water and 36 g of gelatin (lime-treated gelatin) were added. Then, the reaction mixture was adjusted to pH=5.5 and pAg=8.44, and stirred while being kept at 75° C. After that, 479 ml of a 1.9 M AgNO3 aqueous solution and a 1.7 M KBr aqueous solution containing 2.7 mol % of KI were added simultaneously in 48 minutes by accelerating the flow rate (final flow rate was 2.4 times the initial flow rate) while keeping pAg at 8.29. Further, 50 ml of a 1.9 M AgNO3 aqueous solution and 1.9 M KBr aqueous solution were added simultaneously for 5 minutes at a constant flow rate while keeping pAg at 8.44. The temperature of the reaction mixture was then lowered to 40° C. over 25 minutes, and an aqueous solution containing 10.5 g of sodium p-iodoacetamidobenzene sulfonate (monohydrate), serving as an iodide-ion-releasing agent, was added. Then, 40 ml of a 0.8 M sodium sulfite was added for 1 minute at a constant flow rate, while controlling the pH to 9.0 to produce iodide ions. Two minutes later, the temperature of the reaction mixture was raised to 55° C. over 15 minutes and the pH was returned to 5.5. Next, sodium benzenethiosulfonate and K2IrCl6 were added as a solution in amounts of 3.8×10−6 mol/mol silver and 1×10−8 mol/mol silver, respectively, based on the total amount of silver of the grains. After that, 269 ml of a 1.9 M AgNO3 aqueous solution and 1.9 M KBr aqueous solution were added simultaneously in 30 minutes at a constant flow rate while keeping pAg at 8.59.


[0230] (Washing, Dispersing)


[0231] Then, the resulted emulsion was cooled to 35° C., and the emulsion was washed with water by a usual flocculation method. Then the pH was raised, 75 g of gelatin (lime-processed gelatin) was added to disperse the emulsion, and then, pH and pAg were adjusted respectively to 5.8 and 8.9, and the resultant emulsion was collected for storage.


[0232] Photographs of the grains of the emulsion were taken under a transmission electron microscope using a replica method, and measurements of shapes were conducted with 1000 grains (the same method was used for the following emulsions B to H).


[0233] In the emulsion obtained, the percentage of tabular grains occupied 98% (in number) or more of the all grains, and the percentage of the projected area taken up by the tabular grains in the total projected area of all the grains was more than 99% (the same results were obtained in the following emulsions B to H).


[0234] The average equivalent-sphere diameter of the all grains was 1.20 μm (the same results were obtained in the following emulsions B to H), the average equivalent-circle diameter of the all tabular grains was 1.90 μm, the average grain thickness of the all tabular grains was 0.317 μm, and the average aspect ratio of the all tabular grains was 6.0.


[0235] Further, the dislocation line was observed (introduced position, density, and distribution) by a high-voltage transmission electron microscope (accelerated voltage: 400 kV), with respect to 200 grains in the emulsion, in the manner as described in this specification (the observation was conducted at specimen inclination angles of −10°, −5°, 0°, +5° and +10° (5-pattern) for each grain; and the same method was used for the following emulsions B to H, too).


[0236] In the emulsion obtained, the percentage (in number %) of the tabular grains, each of which contained 10 or more dislocation lines per grain at substantially only in grain fringe portions, was 80% or more of the all grains.



Tabular Silver Iodobromide Emulsion B

[0237] The emulsion B was prepared in the same manner as in the preparation of the emulsion A, except for the following changes.


[0238] In the (preparation of the seed crystals) of the emulsion A, 647 ml of a 1.9M AgNO3 aqueous solution and a 1.9M KBr aqueous solution were added while the pAg was kept not at 8.10 but at 8.58 with accelerating the flow rate.


[0239] Also, in the (grain growth) of the emulsion A, 479 ml of an aqueous 1.9M AgNO3 solution and an aqueous 1.7M KBr solution containing 2.7 mol % of KI were added while the pAg was kept not at 8.29 but at 8.58 with accelerating the flow rate.


[0240] As to the shape of the resulting grain, the average equivalent-circle diameter of all tabular grains was 2.10 μm, the average grain thickness of all tabular grains was 0.260 μm, and the average aspect ratio of all tabular grains was 8.0.


[0241] In the resulting emulsions, the proportion (% by number) of tabular grains, which had 10 or more dislocation lines per one grain in substantially only a grain fringe portion, in all grains was 80% or more.



Tabular Silver Iodobromide Emulsion C

[0242] (Nucleation and Grain Growth)


[0243] 1200 ml of an aqueous solution containing 6.2 g of a low-molecular-weight gelatin (molecular weight: 15,000) and 6.4 g of KBr was stirred while being kept at 35° C. To this solution, 43 ml of a 0.1 M AgNO3 aqueous solution and 43 ml of a 0.1 M KBr aqueous solution were simultaneously added for 5 seconds by a double jet method. After that, 38 g of gelatin (lime-treated gelatin) was added, the temperature was raised to 75° C. over 35 minutes, and the mixture was ripened for 15 minutes at that temperature. Next, 608 ml of a 1.9 M AgNO3 aqueous solution and a 1.9 M KBr aqueous solution containing 1 mol % of KI were simultaneously added for 100 minutes by accelerating the flow rate (final flow rate was 11 times the initial flow rate) while keeping pAg at 8.07.


[0244] Thereafter, the temperature of the reaction mixture was then lowered to 40° C. over 25 minutes, and an aqueous solution containing 12.7 g of sodium p-iodoacetamidobenzene sulfonate (monohydrate), serving as an iodide-ion-releasing agent, was added. Then, 50 ml of a 0.8 M sodium sulfite aqueous solution was added over 1 minute at a constant flow rate, thereby allowing iodide ions to generate, with controlling the pH to 9.0. Two minutes later, the temperature of the reaction mixture was raised to 55° C. over 15 minutes, then the pH was returned to 5.5. Next, sodium benzenethiosulfonate and K2IrCl6 were added as a solution in amounts of 3.8×10−6 mol/mol silver and 1×10−8 mol/mol silver, respectively, relative to the total amount of silver in the grains. After that, 100 ml of an aqueous solution containing 12 g of gelatin (lime-processed gelatin) was added thereto, and then 269 ml of a 1.9 M AgNO3 aqueous solution and a 1.9 M KBr aqueous solution were added simultaneously over 30 minutes at a constant flow rate while keeping pAg at 8.59.


[0245] (Washing, Dispersing)


[0246] The resulting emulsion was washed and dispersed in the same manner as in the preparation of the aforementioned emulsion A.


[0247] Details of the grains obtained are described below.


[0248] In the emulsion obtained, 98% or more of the projected area of the all grains was made up of tabular grains each having an aspect ratio of 8 or more.


[0249] The percentage of the projected area of hexagonal tabular grains having a ratio between neighboring sides (i.e., the ratio of the length of the longest side to the length of the shortest side) of 1.2 to 1 was 80% or more of the projected area of all grains in the emulsion.


[0250] The average equivalent-circle diameter of the all tabular grains was 2.52 μm, the average grain thickness of the all tabular grains was 0.180 μm, and the average aspect ratio of the all tabular grains was 14.0.


[0251] The coefficient of variation in the distribution of equivalent-sphere diameters of the all grains was 11%, the coefficient of variation in the distribution of equivalent-circle diameters of the all tabular grains was 12%, and the coefficient of variation in the distribution of the grain thicknesses of the all tabular grains was 12%.


[0252] The coefficient of variation in the distribution of silver iodide contents between grains, measured with 200 grains by the method using EPMA, as described in European Patent No. 147,868 and so on, was 11%.


[0253] In the emulsion obtained, the percentage (in number %) of the tabular grains, which had 30 or more dislocation lines per grain at substantially only in grain fringes, was 80% or more of the total grains.


[0254] The intra-grain distribution of silver iodide contents was measured with 20 grains by the method using an analytical electron microscope, as described in JP-A-7-219102, at 50 nm intervals of electron beam spots. According to the results, the grain fringe region was about 0.15 μm on average, the average silver iodide content in grain central portion was 1.0 mol %, and the average silver iodide content in grain fringe portion was 5.5 mol %.


[0255] Proportions of planes in grain surface of the obtained emulsion were measured by the method described in T. Tani, J. Imaging Sci., 29, 165 (1985), and the proportion of the {100} plane to the {111} plane was found to be 4.4%. Further, the proportion of the {100} plane in the edge portion of tabular grains, measured by the method described in JP-A-8-334850, was 36%.



Tabular Silver Iodobromide Emulsion D

[0256] The emulsion D was prepared in the same manner as in the preparation of the emulsion C, except for the following changes.


[0257] In (Nucleation and grain growth) of the emulsion C, 45 g of a gelatin treated with trimellitic acid was added instead of 38 g of a gelatin (lime-processed gelatin).


[0258] Also, 608 cc of an aqueous 1.9M AgNO3 solution and an aqueous 1.9M KBr solution containing 1 mol % of KI were added at the same time for 100 minutes, while the pAg was kept not at 8.07 but at 8.50, with accelerating the flow rate.


[0259] As to the shape of the resulting grain, the average equivalent-circle diameter of all tabular grains was 3.02 μm, the average grain thickness of all tabular grains was 0.126 μm, and the average aspect ratio of all tabular grains was 24.0.


[0260] In the resulted emulsions, the proportion (% by number) of tabular grains, which had 10 or more dislocation lines per one grain in substantially only a grain fringe portion, in all grains was 60% or more.


[0261] The emulsions A and B, or C and D, had the same iodide contents, respectively. The iodide contents of emulsions A and C were almost same. The iodide contents in a whole grain in these emulsions were about 3 mol %.



(2) Chemical Sensitization

[0262] With regard to the emulsions A to D, the following red-sensitive spectral sensitizing dyes I, II and III were added as a spectral sensitizing dye to a red-sensitive emulsion, the following green-sensitive spectral sensitizing dyes IV, V and VI were added as a spectral sensitizing dye to a green-sensitive emulsion, and the following blue-sensitive spectral sensitizing dye VII was added as a spectral sensitizing dye to a blue-sensitive emulsion, in the following condition: temperature: 56° C., pH=5.8 and pAg=8.4. Then a mixed solution of potassium thiocyanate and chloroauric acid was added, and in succession, sodium thiosulfate, and the following selenium sensitizer and compound I were added to carry out spectral sensitization and chemical sensitization. The chemical sensitization was brought to a termination by using a mercapto compound described below. At this time, the amount of each of the spectral sensitizing dye and the chemical sensitizer was controlled such that the sensitivity of the emulsion subjected to {fraction (1/100)} sec exposure became a maximum. The sensitivity meant here is a logarithmic value of the reciprocal of an exposure amount providing a density higher than the fogging density by +0.15 on a characteristic curve obtained by subjecting a light-sensitive material to exposure and development as described later. These emulsions were expressed with each of the characters r, g and b annexed thereto corresponding to the used spectral sensitizing dye as shown in the table below.
6


[0263] Also, emulsions were prepared in the same manner as above, except that the selenium sensitizer was changed to the following tellurium sensitizer, as shown in Table 1. (Thus prepared emulsions were expressed with adding figures corresponding to the following sensitizers to the expressions used for the emulsions containing a selenium sensitizer.)
72TABLE 1Name of prepared emulsionHeat-development processingCN-16 processingForUsedBGRBGR11thFor 8thFor 4thchemicalSensiSensiSensiSensiSensiSensiName of samplelayerlayerlayersensitizertivityRMStivityRMStivityRMStivityRMStivityRMStivityRMS101ComparativeAbAgArSelenium1000.0161000.0151000.015800.020790.020850.020examplesensitizer102ComparativeBbBgBrSelenium960.019950.0161070.016770.021790.019750.021examplesensitizer103ComparativeCbCgCrSelenium960.0151060.015950.015890.018870.018760.018examplesensitizer104ComparativeDbDgDrSelenium980.0161100.016920.017820.022790.022820.022examplesensitizer105ComparativeAb-1Ag-1Ar-1Compound970.0141050.0131050.018720.019720.019730.019example(1)106ComparativeBb-1Bg-1Br-1Compound1020.017920.014960.014800.023790.020790.023example(1)107ThisCb-1Cg-1Cr-1Compound1410.0121380.0101410.0091000.0151020.0151020.015invention(1)108ThisDb-1Dg-1Dr-1Compound1250.0101300.0111240.011950.0151000.0141000.016invention(1)109ComparativeAb-2Ag-2Ar-2Compound1010.0141000.014940.014800.019790.018780.019example(2)110ComparativeBb-2Bg-2Br-2Compound1080.0151030.014940.014820.019820.020800.020example(2)111ThisCb-2Cg-2Cr-2Compound1300.0111180.0101350.0101030.0141000.0141000.017invention(2)112ThisDb-2Dg-2Dr-2Compound1200.0111220.0081190.0121030.0151030.0131030.016invention(2)113ComparativeAb-3Ag-3Ar-3Compound1050.013970.0181050.013710.019730.020730.019example(3)114ComparativeBb-3Bg-3Br-3Compound1050.0171020.0141060.017810.022820.022860.022example(3)115ThisCb-3Cg-3Cr-3Compound1260.0111190.0111260.011980.0131070.0131070.015invention(3)116ThisDb-3Dg-3Dr-3Compound1280.0091280.0101280.012950.0151050.0151050.015invention(3)



(3) Preparation of a Dispersion and a Coating Sample, and Evaluation of Them

[0264] Preparation Method of Zinc Hydroxide Dispersion (for 5th Layer and 12th Layer


[0265] A zinc hydroxide dispersion to be used as a base precursor was prepared.


[0266] 31 g of a powder of zinc hydroxide, whose primary particles had a particle size of 0.2 μm, 1.6 g of carboxymethyl cellulose and 0.4 g of sodium polyacrylate as dispersants, 8.5 g of lime-processed ossein gelatin, and 158.5 ml of water were mixed. The mixture was dispersed for one hour by a mill using glass beads. After dispersion, the glass beads were separated by filtration to obtain a zinc hydroxide dispersion in an amount of 188 g.


[0267] Preparation Method of Emulsified Dispersion of Developing Agent and Coupler


[0268] (1) Emulsified dispersion of developing agent and yellow coupler


[0269]

10 g of the yellow coupler YC-
1, 8.2 g of the developing agent (1), 1.6 g of the developing agent (2), 21 g of a high-boiling organic solvent (1), and 50.0 ml of ethyl acetate were dissolved at 60° C. (solution II). The solution II was mixed with 170 g of an aqueous solution (solution I) in which 12 g of a lime-processed gelatin and 1 g of the surfactant (1) were dissolved. The mixture was emulsified and dispersed using a dissolver stirrer at 10000 rpm for 20 minutes. After dispersion, distilled water was added such that the total amount became 300 g, followed by mixing at 2000 rpm for 10 minutes.
8


[0270] (2) Emulsified dispersion of developing agent and magenta coupler


[0271] 7.5 g of each of the magenta couplers MC-1 and MC-2, 8.2 g of the developing agent (3), 1.05 g of the developing agent (2), 11 g of a high-boiling organic solvent (1), and 24.0 ml of ethyl acetate were dissolved at 60° C. (solution II). The solution II was mixed with 170 g of an aqueous solution (solution I) in which 12 g of a lime-processed gelatin and 1 g of the surfactant (1) were dissolved. The mixture was emulsified and dispersed using a dissolver stirrer at 10000 rpm for 20 minutes. After dispersion, distilled water was added such that the total amount became 300 g, followed by mixing at 2000 rpm for 10 minutes.
9


[0272] (3) Emulsified dispersion of developing agent and cyan coupler


[0273] 10.7 g of a cyan coupler CC-1, 8.2 g of the developing agent (3), 1.05 g of the developing agent (2), 11 g of a high-boiling organic solvent (1), and 24.0 ml of ethyl acetate were dissolved at 60° C. (solution II). The solution II was mixed with 170 g of an aqueous solution (solution I) in which 12 g of a lime-processed gelatin and 1 g of the surfactant (1) were dissolved. The mixture was emulsified and dispersed using a dissolver stirrer at 10000 rpm for 20 minutes. After dispersion, distilled water was added such that the total amount became 300 g, followed by mixing at 2000 rpm for 10 minutes.
10


[0274] Preparation method of dye dispersion for yellow filter layer, magenta filter layer and antihalation layer


[0275] (1) Dye dispersion for yellow filter layer


[0276] 14 g of YF-1 and 13 g of the high-boiling organic solvent (2) were weighed and mixed, to which was added ethyl acetate. The mixture was heated to about 60° C. to dissolve the mixture thereby forming a uniform solution. To 100 ml of the solution were added 1.0 g of the surfactant (1) and 190 ml of an aqueous solution containing 6.6% of a lime-processed gelatin, which solution was heated to about 60° C. The mixture was dispersed using a homogenizer for 10 minutes at 10000 rpm.


[0277] (2) Dye dispersion for magenta filter layer


[0278] 13 g of MF-1 and 13 g of the high-boiling organic solvent (2) were weighed and mixed, to which was added ethyl acetate. The mixture was heated to about 60° C. to dissolve the mixture thereby forming a uniform solution. To 100 ml of the solution were added 1.0 g of the surfactant (1) and 190 ml of an aqueous solution containing 6.6% of a lime-processed gelatin, which solution was heated to about 60° C. The mixture was dispersed using a homogenizer for 10 minutes at 10000 rpm.


[0279] (3) Dye dispersion for antihalation layer


[0280] 20 g of CF-1 and 15 g of the high-boiling organic solvent (1) were weighed and mixed, to which was added ethyl acetate. The mixture was heated to about 60° C. to dissolve the mixture thereby forming a uniform solution. To 100 ml of the solution were added 1.0 g of the surfactant (1) and 190 ml of an aqueous solution containing 6.6% of a gelatin treated with lime and heated to about 60° C. The mixture was dispersed using a homogenizer for 10 minutes at 10000 rpm.
11


[0281] Each of these dispersions and the silver halide emulsion prepared previously were combined to form coating solutions for each layer, which were then applied to a support to constitute the structure as shown in Table 2, thereby producing a photographic light-sensitive material having a color multilayer structure of sample 101. Emulsions E to H for color forming layers other than the above layers are shown in Table 3. These emulsions were prepared according to the tabular grain-forming method described in the text of the present specification, with adjusting the grain size and the aspect ratio. Spectral sensitization and chemical sensitization were provided in the same manner as in the working examples in the present specification.


[0282] The samples produced in this manner were cut out, after they were stored in the condition of a temperature of 25° C. and a relative humidity of 65% for 7 days.
3TABLE 2Light-sensitive material 101LayerAmount to be addedconfigurationAdded material(mg/m2)Protective layerLime-processed gelatin904Thirteenth layerMatting agent (Silica) 38Surfactant (5) 30Surfactant (3) 25Water-soluble polymer (1) 20Hardener (1)104InterlayerLime-processed gelatin760Twelfth layerSurfactant (3) 10Zinc hydroxide341Water-soluble polymer (1) 30Yellow color-Lime-processed gelatin560forming layer (high-Emulsion Ab (Sensitizing dye750sensitivity layer)was VII)(in terms of silver)Eleventh layerAntifoggant (1)*0.40(Emulsion Ab)Yellow coupler YC-(1)228Developing agent (1)185Developing agent (2) 38Surfactant (1) 26High-boiling organic solvent156(1)Water-soluble polymer (1) 15Yellow color-Lime-processed gelatin1725 forming layer (low-Emulsion G (Sensitizing dye370sensitivity layer)was VII)Tenth layerEmulsion H (Sensitizing dye230was VII)(in terms of silver)Antifoggant (1)3.92Yellow coupler YC-(1)357Developing agent (1)290Developing agent (2) 59Surfactant (1) 42High-boiling organic solvent476(1)Water-soluble polymer (1) 43InterlayerLime-processed gelatin1000 Yellow filterYellow dye YF-1140Ninth layerHigh-boiling organic solvent130(2)Surfactant (1) 15Water-soluble polymer (1) 17Magenta color-Lime-processed gelatin496forming layerEmulsion Ag (Sensitizing1082 (high-sensitivitydyes were IV, V, VI)(in terms of silver)layer)Antifoggant (1)*0.47Eighth layer(Emulsion Ag)Magenta coupler MC-(1) 62Magenta coupler MC-(2) 8Developing agent (3) 68Developing agent (2)8.7Surfactant (1)6.5High-boiling organic solvent 78(1)Water-soluble polymer (1) 28Magenta color-Lime-processed gelatin551forming layerEmulsion E (Sensitizing dyes346(medium-were IV, V, VI)(in terms of silver)sensitivity layer)Antifoggant (1)1.54Seventh layerMagenta coupler MC-(1)100Magenta coupler MC-(2) 15Developing agent (3)109Developing agent (2) 14Surfactant (1) 33High-boiling organic solvent101(1)Water-soluble polymer (1) 23Magenta color-Water-soluble polymer (1)665forming layer (lowEmulsion F (Sensitizing dyes300sensitivity layer)were IV, V, VI)(in terms of silver)Sixth layerAntifoggant (1) 1.27Magenta coupler MC-(1)274Magenta coupler MC-(2)36.5 Developing agent (3)300Developing agent (2)38.5 Surfactant (1) 33High-boiling organic solvent272(1)Water-soluble polymer (1) 26InterlayerLime-processed gelatin871Magenta filterMagenta dye MF-1150Fifth layerHigh-boiling organic solvent 25(2)Zinc hydroxide2030 Surfactant (1)115Water-soluble polymer (1) 44Cyan color-Lime-processed gelatin1000 forming layerEmulsion Ar (Sensitive dyes1490 (high-sensitivitywere I, II, III)(in terms of Ag)layer)Antifoggant (1)*0.22Fourth layer(Emulsion Ar)Cyan coupler CC-1189Developing agent (3)145Developing agent (2)18.5 Surfactant (1) 15High-boiling organic solvent 26(1)Water-soluble polymer (1) 16Cyan color-Lime-processed gelatin292forming layerEmulsion E (Sensitive dyes391(medium-were I, II, III)(in terms of Ag)sensitivityAntifoggant (1) 2.04layer)Cyan coupler CC-1 90Third layerDeveloping agent (3) 69Developing agent (2)8.8Surfactant (1) 7High-boiling organic solvent104(1)Water-soluble polymer (1) 18Cyan color-Lime-processed gelatin730forming layerEmulsion F (Sensitive dyes321(low-sensitivitywere I, II, III)(in terms of Ag)layer)Antifoggant (1) 3.34Second layerCyan coupler CC-1232Developing agent (1)178Developing agent (2) 23Surfactant (1) 17High-boiling organic solvent173(1)Water-soluble polymer (1) 32InterlayerLime-processed gelatin429AntihalationCyan dye CF-1132First layerHigh-boiling organic solvent212(2)Surfactant (1) 17Water-soluble polymer (1) 24Transparent PET base (120 μm), both sides of which were each coatedwith a gelatin subbingAntistatic layerLime-processed gelatin 60(M.W. 12000)Fine grains of a composite of180tin oxide-antimony oxidehaving an average graindiameter of 0.005 μm(secondary-aggregatedparticles' diameter of about0.08 μm at the specificresistance of 5 Ω · cm2)Polyethylene-p-nonylphenol 5polymerization degree: 10)Backing coatLime-processed gelatin2000 second layerSurfactant (3) 11PMMA latex (diameter; 6 μm) 9Hardener (2)455Backing coatMethyl methacrylate/styrene/1000 third layer2-ethlhexyl acrylate/methacrylic acid copolymerSurfactant (3)   1.5Surfactant (4) 20Surfactant (5)   2.5*The amount of antifogging agent (1) was changed proportionally to surface area of emulsion particle.


[0283]

4












TABLE 3















Ratio of silver








amounts [core/




Average


intermediate/shell]




grain


(the values in



Average
diameter
Deviation

parenthesis are AgI



AgI
(sphere-
coefficient
Ratio of
content in the



content
equivalent)
of grain
diameter/
correspinding



(mol %)
(μm)
diameter (%)
thickness
portion)
Grain structure/shape






















Emulsion E
5.4
0.65
20
5.4
14/65/31 (0/2/13)
Triple structure tabular








grains


Emulsions F
3.7
0.49
15
3.2
 7/32/61 (5/0/5)
Triple structure tabular








grains


Emulsion G
7.2
0.50
22
4.3
17/37/46 (1/7/10)
Triple structure tabular








grains


Emulsion H
3.7
0.43
16
4.6
 5/54/41 (0/0/9)
Triple structure tabular








grains










[0284]

12






[0285] Also, samples 102 to 116 were produced in the same manner as in the preparation of the sample 101, except that the emulsions Ab, Ag and Ar were changed to those in Table 1.


[0286] Next, treating materials P-1 and P-2 shown in Tables 4 and 5 were produced.
5TABLE 4Processing Material P-1LayerAmount to beconfigurationAdded materialadded (mg/m2)Fourth layerLime-processed gelatin220Protective layerWater-soluble polymer (2) 60Water-soluble polymer (3)200Potassium nitrate 12PMMA latex (diameter: 6 μm) 10Surfactant (3) 7Surfactant (4) 7Surfactant (5) 10Third layerLime-processed gelatin240InterlayerWater-soluble polymer (2) 24Hardener (2)180Surfactant (3) 9Second layerLime-processed gelatin2400 Base-producingWater-soluble polymer (3)360layerWater-soluble polymer (4)700Water-soluble polymer (5)1000 Guanidine picolinate2910 Potassium quinolinate225Sodium quinolinate180Surfactant (3) 24First layerLime-processed gelatin280InterlayerWater-soluble polymer (2) 12Subbing layerSurfactant (3) 14Hardener (2)185Transparent base A (43 μm)Constitution of Base AAmount to beName of layerCompositionadded (mg/m2)Subbing layer of surfaceLime-processed gelatin100Polymer layerPolyethylene terephthalate62500 Subbing layer of backPolymer (Methyl1000 surfacemethacrylate/styrene/2-ethylhexyl acrylate/methacrylic acid copolymer)PMMA latex120


[0287]

6





TABLE 5










Processing Material P-2









Layer

Amount to be


configuration
Added material
added (mg/m2)












Fourth layer
Lime-processed gelatin
220


Protective
Water-soluble polymer (2)
60


layer
Water-soluble polymer (3)
200



Potassium nitrate
12



PMMA latex (diameter: 6 μm)
10



Surfactant (3)
7



Surfactant (4)
7



Surfactant (5)
10


Third layer
Lime-processed gelatin
240


Interlayer
Water-soluble polymer (2)
24



Hardner (2)
180



Surfactant (3)
9


Second layer
Lime-processed gelatin
2400


Fixing agent
Silver halide solvent (1)
5500


layer
Water-soluble polymer (5)
2000



Surfactant (3)
24


First layer
Lime-processed gelatin
280


Interlayer
Water-soluble polymer (2)
12


Subbing layer
Surfactant (3)
14



Hardener (2)
185










Transparent base A (43 μm) (the same base as to P-1)










[0288]

13






[0289] Evaluation


[0290] These light-sensitive materials were subjected to exposure to light at an intensity of 1000 lux for {fraction (1/100)} seconds through an optical wedge and a green filter.


[0291] 15 ml/m2 of 40° C. hot water was supplied to the surface of the exposed light-sensitive material. The film surfaces of each of the light-sensitive material and the processing material P-1 were overlapped on each other, and thereafter, heat developed at 83° C. for 15 seconds by using a heat drum. The amount of damping water at this time was within the range of the present invention, and it corresponded to about 30% of the sum of the saturated water swelling amount. The light-sensitive material was peeled off after it was treated, to obtain a magenta color developed wedge form image.


[0292] Treatment of a second step is performed on this sample by using the processing material P-2. In the treatment of the second step, 10 ml/m2 of water was applied to the processing material P-2, then the processing material was overlapped with the light-sensitive material after the first treatment, and heated at 60° C. for 30 seconds.


[0293] The transmission density of the resulted color-formed sample was measured to obtain the so-called characteristic curve. The reciprocal of an exposure amount giving a density higher than the fogging density by 0.15, was defined as a relative sensitivity, and the sensitivity determined was expressed as a relative value by assuming the sensitivity of sample 101 to be 100.


[0294] Next, to examine the granularity of each of these samples, these samples were exposed to light such that the magenta color-formed density became 1.0, and subjected to heat development in the same manner as above, to produce color-formed specimens. The RMS granularity of each of these specimens was measured using a diffuse light source with an aperture having a diameter of 48 μm.


[0295] With samples treated by the conventional liquid processing, the comparison was made in the same manner as above. Each sample after exposure was treated in the processing condition of a temperature of 38° C. and a processing time of 185 seconds, by using a processing solution CN-16 for a color negative film, which was manufactured by Fuji Photo Film Co., Ltd. Thus processed samples were then likewise subjected to tests for sensitivity and RMS granularity.


[0296] These results are shown in Table 1.


[0297] From the results shown in Table 1, it is found that the use of the emulsion according to the present invention achieved high sensitivity and excellent granularity.



Example 2

[0298] Samples were prepared in the same manner as in Example 1, except that the support was changed to a support prepared by the following preparation method. These samples were subjected to the same tests as in Example 1 and the similar excellent results were obtained, whereby the effects, of the present invention was confirmed.


[0299] 1) Support


[0300] The support used in this example was prepared by the following method.


[0301] 100 parts by weight of polyethylene-2,6-naphthalate polymer, and 2 parts by weight of Tinuvin P.326 (trade name, manufactured by Ciba-Geigy Co.) as a ultraviolet absorber, were dried and then melted at 300° C. The melted mixture was extruded from a T-die and stretched 3.3 times in a lengthwise direction at 140° C., and 3.3 times in a width direction at 130° C. The resulting product was thermally fixed at 250° C. for 6 seconds to obtain a PEN film with a thickness of 90 μm. To this PEN film were added a blue dye, a magenta dye, and a yellow dye (I-1, I-4, I-6, I-24, I-26, I-27 and II-5 described in Kokai Giho: Kogi No. 94-6023) in appropriate amounts. Moreover, the PEN film was wound around a stainless core (spool) having a diameter of 20 cm, and thermal history was imparted thereto at 110° C., to obtain a support having suppressed curl tendency.


[0302] 2) Coating of an undercoat layer


[0303] The both surfaces of the above support were subjected to corona discharge treatment, UV discharge treatment, and glow discharge treatment. Thereafter, one surface of the support was coated with an undercoat solution having a composition of 0.1 g/m2 of gelatin, 0.01 g/m2 of sodium α-sulfo-di-2-ethylhexylsuccinate, 0.04 g/m2 of salicylic acid, 0.2 g/m2 of p-chlorophenol, 0.012 g/m2 of (CH2=CHSO2CH2CH2NHCO)2CH2, and 0.02 g/m2 of polyamide/epichlorohydrin polycondensation product (the weight of each component in the undercoat layer was in terms per unit area) (10 cc/m2, a bar coater was used). The undercoat layer was provided on the side that was heated at a higher temperature at the time of stretching. Drying was carried out at 115° C. for 6 minutes (the roller and the transportation apparatus in the drying zone all were set at 115° C.).


[0304] 3) Coating of a backing layer


[0305] An antistatic layer, a transparent magnetic recording layer, and a slipping (sliding) layer, each having the compositions mentioned below, were coated on one side of the above support coated with the undercoat layer, as a backing layer.


[0306] 3-1) Coating of an antistatic layer


[0307] 0.2 g/m2 of a dispersion of fine grain powder of a composite of tin oxide/antimony oxide having an average grain diameter of 0.005 μm and the specific resistance of 5 Ω·cm (secondary aggregation grain diameter of about 0.08 μm) was coated with 0.05 g/m2 of gelatin, 0.02 g/m2 of (CH2=CHSO2CH2CH2NHCO)2CH2, and 0.005 g/m2 of poly(polymerization degree: 10)oxyethylene-p-nonylphenol were coated (herein the weight of each component in the antistatic layer was in terms per unit area).


[0308] 3-2) Coating of a transparent magnetic recording layer


[0309] 3-Poly(polymerization degree: 15)oxyethylene-propyloxytrimethoxysilan (15 weight%)-coated Co-γ-iron oxide (specific surface area, 43 m2/g; major axis, 0.14 μm; minor axis, 0.03 μm; saturation magnetization, 89 emu/g, Fe2+/Fe3+=6/94; the surface was treated with 2 weight % respectively, based on iron oxide, of aluminum oxide and silicon oxide) (0.06 g/m2), diacetylcellulose (dispersion of the iron oxide was carried out by an open kneader and a sand mill) (1.2 g/m2), and C2H5C(CH2CONH— C6H3(CH3)NCO)3 (0.3 g/m2) as a hardner, were coated using acetone, methylethylketone, cyclohexanone, and dibutylphthalate, as solvents, by means of a bar coater, to obtain a magnetic recording layer having a thickness of 1.2 μm. The weight of each component in the magnetic recording layer was in terms per unit area. 50 mg/m2 of C6H13CH(OH)C10H20COOC40H81 as a slipping agent, 50 mg/m2 of silica grains (1.0 μm) as a matting agent, and 10 mg/m2 of 3-poly(polymerization degree: 15)oxyethylene-propyloxytrimethoxysilan (15 weight %)-coated aluminum oxides (0.20 μm and 1.0 μm), as an abrasive, were each added thereto. Drying was conducted at 115° C. for 6 min (the roller and the transportation apparatus in the drying zone all were set at 115° C.). The increment of the color density of DB of the magnetic recording layer was about 0.1 when X-light (blue filter) was used. The saturation magnetization moment of the magnetic recording layer was 4.2 emu/g, the coercive force was 7.3×104 A/m, and the squareness (ratio) was 65%.


[0310] 3-3) Formation of a sliding layer


[0311] The sliding layer was prepared by coating each of the following components in the following weight per unit area of the layer: hydroxyethyl cellulose (25 mg/m2), C6H13CH(OH)C10H20COOC40H81 (6 mg/m2), and a silicone oil BYK-310 (trade name, manufactured by BYK Chemie Japan Co., Ltd.) (1.5 mg/m2). Herein, the coating liquid was prepared by melting the components in xylene/propyleneglycolmonomethyl ether (1/1) at 105° C., adding the molten product to and dispersing in propyleneglycolmonomethyl ether (tenfold amount) at room temperature, and further dispersing the dispersion in acetone to prepare a dispersion (average particle size: 0.01 μm). Drying was performed at 115° C. for 6 minutes (all of the rollers and conveyors in the drying zone were maintained at 115° C.). The resultant sliding layer was found to have excellent characteristics. That is, the coefficient of kinetic friction was 0.10 (stainless steel hard ball having a diameter of 5 mm; load: 100 g; speed: 6 cm/minute) and the coefficient of static friction was 0.08 (clip method). The coefficient of kinetic friction between an emulsion surface and the sliding layer was 0.15.


[0312] Having described our invention as related to the present embodiments, it is our intention that the invention not be limited by any of the details of the description, unless otherwise specified, but rather be construed broadly within its spirit and scope as set out in the accompanying claims.


Claims
  • 1. A silver halide color photographic light-sensitive material comprising, coated on a support, a photographic structural layer that comprises at least one photographic light-sensitive layer containing a light-sensitive silver halide, a compound that forms a dye by a coupling reaction with an oxidized product of a developing agent, and a binder, wherein at least one photographic light-sensitive layer of the light-sensitive material contains a silver halide emulsion that comprises tabular silver halide grains having principal faces composed of (111) planes, an average equivalent circle diameter of at least 0.70 μm, and an average thickness of less than 0.20 μm, and the silver halide of the emulsion is chemically sensitized by a tellurium sensitizer.
  • 2. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the silver halide of the emulsion contains a bromide in an amount exceeding 70 mol % in terms of silver, and an iodide in an amount of at least 0.30 mol % in terms of silver.
  • 3. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the silver halide of the emulsion contains a bromide in an amount exceeding 70 mol % in terms of silver, and an iodide in an amount of at least 0.30 mol % in terms of silver and has a latent image-forming chemically sensitized site on the surface of the grain.
  • 4. The silver halide color photographic light-sensitive material as claimed in to claim 1, wherein a color developing agent is incorporated.
  • 5. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the photographic light-sensitive material is subjected to heat development.
  • 6. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the tellurium sensitizer is selected from compounds represented by formula (I), (II), or (III); formula (I) 14wherein, R11, R12 and R13 each represent an aliphatic group, an aromatic group, a heterocyclic group, OR14, NR15(R16), SR17, OSiR18(R19)(R20), X, or a hydrogen atom, R14 and R17 each represent an aliphatic group, an aromatic group, a heterocyclic group, a hydrogen atom, or a cation, R15 and R16 each represent an aliphatic group, an aromatic group, a heterocyclic group, or a hydrogen atom, R18, R19 and R20 each represent an aliphatic group, and X represents a halogen atom; 15wherein, R21 represents an aliphatic group, an aromatic group, a heterocyclic group, or —NR23(R24), R22 represents —NR25(R26), —N(R27)N(R28)R29 or —OR30; R23, R24, R25, R26, R27, R28, R29 and R30 each represent a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group or an acyl group; formula (III) 16wherein, R31 and R32 may be the same or different, and each represent an aliphatic group, an aromatic group, a heterocyclic group, or —(C═Y′)—R33; R33 represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, NR34(R35), OR36, or SR37; Y′ represents an oxygen atom, a sulfur atom, or NR38; R34, R35, R36, R37 and R38 each represent a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group; and n denotes 1 or 2.
  • 7. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the amount of tellurium sensitizer is 10−8×10−2 mol per mol of silver halide.
  • 8. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the tabular grains occupy 50 to 100% of a total projected area of all grains.
  • 9. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein an average aspect ratio of tabular silver halide grains is 3.5 or more.
  • 10. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein at least two types of silver halide emulsions, which have light-sensitivities in the same wavelength region but are different from each other in the average projected area of grains, are used, the difference in the average projected area of grains between the emulsions being at least 1.25 times.
  • 11. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein an average equivalent circle diameter of the tabular silver halide grains is 0.7 to 5 μm.
  • 12. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein an average aspect ratio of all tabular grains is 3.5 to 100.
  • 13. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the tabular grain is selected from the group consisting of silver bromide, silver chlorobromide, silver iodobromide, and silver chloroiodobromide.
  • 14. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the material is for photographing.
  • 15. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the light-sensitive material is developed by, after subjecting to exposure to light, putting the light-sensitive material together with a processing material that contains a base and/or a base precursor after supplying water, followed by heating.
Priority Claims (1)
Number Date Country Kind
11-368374 Dec 1999 JP