Silver nanoplate compositions and methods

Information

  • Patent Grant
  • 10688126
  • Patent Number
    10,688,126
  • Date Filed
    Friday, December 9, 2016
    7 years ago
  • Date Issued
    Tuesday, June 23, 2020
    3 years ago
Abstract
Embodiments of the present invention relate to methods for preparing high optical density solutions of nanoparticle, such as nanoplates, silver nanoplates or silver platelet nanoparticles, and to the solutions and substrates prepared by the methods. The process can include the addition of stabilizing agents (e.g., chemical or biological agents bound or otherwise linked to the nanoparticle surface) that stabilize the nanoparticle before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. The process can also include increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density.
Description
PARTIES TO JOINT RESEARCH AGREEMENT

The invention described herein was created subject to a Joint Research Agreement between Sienna Labs, Inc. and nanoComposix, Inc.


BACKGROUND
Field of the Invention

The invention relates to a method for preparing high optical density solutions of silver platelet nanoparticles (e.g., nanoplates) and to nanoparticles, solutions and substrates prepared by said methods.


Description of the Related Art

Nanoparticles, including nanospheres, nanorods, nanowires, nanocubes, nanoplates, as well as other shapes can be synthesized from a range of materials. In one embodiment, a platelet nanoparticle is a nanoplate. Nanoparticles made from metals including gold and silver have unique optical properties which can be tuned to interact with light throughout the electromagnetic spectrum due to the localized surface plasmon resonance supported by these nanomaterials. Technologies that take advantage of the unique optical properties of silver nanoparticles include, but are not limited to, diagnostic, photonic, medical, and obscurant technologies. A subset of these technologies including photothermal tumor ablation, hair removal, acne treatment, wound healing, and antimicrobial applications among others, may use solutions of nanoparticles with high optical densities. Silver nanoplates, which are also known as silver platelet nanoparticles or nanoprisms, are of particular interest for technologies that utilize nanoparticle optical properties due to their tunable spectral peaks and extremely high optical efficiencies. While methods of fabricating silver nanoplates via photoconversion (Jin et al. 2001; Jin et al. 2003), pH-controlled photoconversion (Xue 2007), thermal growth (Hao et al. 2004; Hao 2002; He 2008; Metraux 2005), templated growth (Hao et al. 2004; Hao 2002), and seed mediated growth (Aherne 2008; Chen; Carroll 2003; Chen; Carroll 2002, 2004; Chen et al. 2002; He 2008; Le Guevel 2009; Xiong et al. 2007) have been developed, these methods generate relatively dilute solutions with correspondingly low visible and near-infrared optical density.


SUMMARY

For many silver nanoplate applications, a more concentrated solution of the silver nanoplates is of utility and can be particularly advantageous. In some instances, when as-fabricated solutions of silver nanoplates are concentrated to yield a higher particle density under previously developed methods, the shape of the nanoparticle can undergo a change resulting in a shift in optical properties, such as optical density. In many cases, these changes result in an undesirable degradation of the nanoparticle's optical properties. Accordingly, several embodiments of the present invention provide methods of preparing silver nanoplates solutions in higher concentrations with increased optical density while reducing degradation of the silver nanoplates' optical properties. In various embodiments, methods of the present invention provide for preparing high optical density solutions of silver nanoplates from dilute silver nanoplate solutions that partially, substantially, or fully preserve the shape and optical properties of the fabricated silver nanoplates when the particle concentration is increased.


Various embodiments of the invention provide methods for preparing high optical density solutions of silver nanoplates, as well as the nanoparticles and solutions prepared by those methods. In one embodiment, the process comprises the replacement of one or more original components (e.g., chemical or biological agents) bound to, or otherwise coupled to, the nanoparticle surface with a stabilizing agent. In another embodiment, the stabilizing agent does not replace the original component but rather supplements or alters the original component. The stabilizing agent can be a biological or chemical agent that stabilizes the nanoplates before, during, and/or after concentration, thereby allowing for the production of a stable, high optical density solution of silver nanoplates. In one embodiment, the process also comprises a method of increasing the concentration of silver nanoplates within the solution, and thus increasing the solution optical density. In several embodiments, the stability (e.g., the characteristics of the nanoparticles in the solution, such as shape, size, optical properties, peak response, plasmonic properties, etc.) of the high optical density solution is unaffected or substantially unaffected during the process. Several embodiments of the invention comprise a high optical density solution of silver nanoplates that have been stabilized with stabilizing agents (e.g., surface bound molecules, chemical agents, and/or biological agents). In one embodiment, the invention comprises a solution of silver nanoplates that have been surface functionalized with chemical or biological agents that are physisorbed to the surface, molecularly bound to the surface through specific interactions, or encapsulate each nanoparticle.


In one embodiment, a high optical density solution of silver nanoplates is associated with a substrate. In one embodiment, a portion of the nanoplates in solution bind to the substrate to create a nanoplate-substrate composite. The high optical density solutions of silver nanoplates can be exposed to substrates to generate nanoplate composites where a substantial portion of the surface area of a substrate is coated with nanoplates. In some embodiments the substrate comprises fibers, cloth, mesh, bandages, socks, wraps, other articles of clothing, sponges, high porosity substrates, particles with edge lengths greater than 1 micron, beads, hair, skin, paper, absorbent polymers, foam, wood, cork, slides, roughened surfaces, biocompatible substrates, filters, and/or medical implants.


In several embodiments, a process for increasing the optical density of a stable, silver nanoplate solution, comprises (i) providing a solution comprising a plurality of silver nanoplates having a plate shape and having a peak optical density between 0.1-10 cm−1; (ii) adding a stabilizing agent to the solution; (iii) adding a buffer to the solution; and (iv) concentrating the buffer-containing solution to form a concentrated solution, wherein the concentrated solution comprises a plurality of silver nanoplates having the plate shape, and wherein the concentrated solution has a peak optical density greater than 10 cm−1.


In several embodiments, a method for producing a stable, high optical density solution of silver nanoplates comprises the following: (i) adding a stabilizing agent to a solution of silver nanoplates, (ii) adding a buffer (e.g., such as a buffer containing a water soluble salt) to the solution of silver nanoplates, (iii) mixing the stabilizing agent with the buffer and the silver nanoplates over a period of time sufficient for the stabilizing agent to interact with the water soluble salt in the buffer on the surface of the silver nanoplates, and (iv) concentrating the solution to a peak optical density greater than 10 cm−1 (e.g., 50-1500 cm−1).


The stabilizing agents can include one or more of sodium citrate, a water soluble polymer, (such as polystyrene sodium sulfonate and/or a hydrocarbon polymer derivatized with sulfonate), a poly vinyl based polymer (such as polyvinyl alcohol (PVA) and/or polyvinylpyrrolidone (PVP)), polyethylene glycol, polyacrylic acid, or dextran. The water soluble salt can include one or more of the sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates. In various embodiments, the combination of the stabilizing agent and a buffer containing one or more water soluble salts provides stabilization to the nanoplate formulation, wherein one of the components of the salt can interact with the stabilizing agent to crosslink the stabilizing agent and increase the stability of a coating on the silver nanoplate. In one embodiment an initial solution of silver nanoplates can be produced from a solution comprising one or more stabilizing agents and a silver source (e.g., such as a silver salt, silver seeds), and in which chemical agents, biological agents, mixing, electromagnetic radiation, and/or heat are used to reduce the silver source (e.g., photoconversion, pH controlled photoconversion, thermal growth, templated growth, and/or seed mediated growth).


In various embodiments, a process for concentrating a solution of silver nanoplates includes the steps of providing a solution comprising a plurality of silver nanoplates having a peak optical density below 10 cm−1 (e.g., 0.1-9.9 cm−1, 1-9 cm−1, 3-7 cm−1, 1-5 cm−1, and/or 5-10 cm−1), adding a stabilizing agent to the solution, adding a buffer containing a water soluble salt to the solution, and concentrating the solution to a peak optical density greater than 10 cm−1 (e.g., 80-150 cm−1, 900-1100 cm−1, 100 cm−1, 1000 cm−1 or more). In various embodiments, the peak optical density in increased by 10%, 50%, 100%, 200%, 500%, 1,000%, 10,000% or more, and/or increased by a ratio of 1:1.5, 1:2, 1:5, 1:10 or more, and/or increased by a factor of 1, 1.5, 2, 5, 10, 25, 50, 100, 1000 or more.


In various embodiments, the silver nanoplates have an aspect ratio of between 1.5 and 50 (e.g., 1.5-10, 25-50). In one embodiment, the silver nanoplates comprise an edge length between 10 nm and 300 nm (e.g., 50-250, 65-100 nm). In various embodiments, the stabilizing agent comprises sodium citrate, or at least one water soluble polymer selected from the group consisting of polystyrene sodium sulfonate and a hydrocarbon polymer derivatized with sulfonate. In some embodiments, the water soluble salt comprises one or more of sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates. In one embodiment, the stabilizing agent comprises at least one of the group consisting of polyvinyl pyrollidone, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, and dextran. In one embodiment, the stabilizing agent comprises a thiol-containing molecule. The thiol-containing molecule can comprise a dihydrolipoic acid or a derivative thereof. The process optionally includes the steps of isolating the concentrated nanoplates and encapsulating the isolated concentrated nanoplates (e.g., with silica or another material). In one embodiment, the process includes the step of concentrating the encapsulated nanoplates to an optical density greater than 10 cm−1 (e.g., 100 cm−1, 1000 cm−1 or more). The stabilizing agent is added prior to the formation of the silver nanoplates. In one embodiment, the nanoplates are concentrated by tangential flow filtration. In one embodiment, the silver concentration is greater than 1.0 mg/mL (e.g., 1-1000, 10-300 mg/mL).


In various embodiments, a process for generating metal oxide coated silver nanoplates is provided. The method can include the steps of providing a solution of silver nanoplates having a peak absorption spectrum between 500 and 1500 nm (e.g., 600-1400, 800-1200 nm) and an optical density greater than 10 cm−1 (e.g., 100 cm−1, 1000 cm−1 or more) and contacting this solution with a solution of metal oxide or metal oxide precursor in an amount sufficient to form a metal oxide coating on an exterior surface of the silver nanoplates. In certain embodiments the silver nanoplates are associated with a stabilizing polymer (e.g., polyvinyl pyrollidone, polyvinyl alcohol, or a combination thereof) prior to contact with the metal oxide precursor, such as by disposing the stabilizing polymer on an exterior surface of the silver nanoplates. In various embodiments, the metal oxide is silica or includes silica.


In various embodiments, a process for generating a solution of silver nanoplates includes the steps of providing a solution comprising a reducing agent, a stabilizing agent, a water soluble polymer, and a silver salt, forming a plurality of silver seeds from the solution, growing the plurality of silver seeds into a plurality of silver nanoplates in the solution to form a silver nanoplate solution, adding a stabilizing agent to the silver nanoplate solution, adding a buffer containing a water soluble salt to the silver nanoplate solution, and concentrating the silver nanoplate solution to a peak optical density greater than 10 cm−1 (e.g., 100 cm−1, 1000 cm−1 or more).


In various embodiments, a composition comprises or consists essentially of a solution of silver nanoplates, wherein the silver nanoplates comprise a poly vinyl polymer. In some embodiments, the poly vinyl polymer comprises polyvinyl pyrollidone or polyvinyl alcohol. In several embodiments, the composition (e.g., solution) comprises one or more salts, such as water soluble salts (e.g., sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates).


In various embodiments, the poly vinyl polymer is associated with the salt, the poly vinyl polymer coats at least a portion of the silver nanoplates, and/or the poly vinyl polymer is disposed on an exterior surface of the silver nanoplates. In one embodiment, the solution comprises silver nanoplates in a concentration effective to adhere to a non-metal coating material present in the solution. The solution may be formulated to be concentrated. In some embodiments, the optical density of the solution or of the silver nanoplates is greater than 10 cm−1 (e.g., 100 cm−1, 1000 cm−1 or more). The solution may contain a salt (sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates) at a concentration greater than 0.1 mM (e.g., 0.1 mM to 10 mM). In one embodiment, the solution has a pH greater than 7 (e.g., 8-13). In some embodiments, an absorption spectrum of the silver nanoplates comprises a peak wavelength of between 500 and 1500 nm (e.g., 600-1400, 550-1100, 810-830, 1000-1100 nm). In one embodiment, the solution comprises bicarbonate. The silver nanoplates may be silica-coated. The silver nanoplates can have edge lengths between 10 nm and 500 nm (e.g., 50-300, 100-150 nm).


In various embodiments, a composition comprises or consists essentially of a solution of silver nanoplates bonded to a shell material comprising a poly vinyl polymer. In one embodiment, the silver nanoplates are substantially coated with the poly vinyl polymer. In various embodiments, the composition includes a metal oxide, the metal oxide comprises silica, the poly vinyl polymer comprises polyvinyl alcohol or polyvinylpyrrolidone, the silver nanoplates are bonded to polyvinyl alcohol and silica, and/or the silver nanoplates are bonded to polyvinylpyrrolidone and silica, or any combination thereof. In one embodiment, the composition includes a moiety selected from an amine moiety and a mercapto moiety. In one embodiment, the moiety is bound to the silica. In one embodiment, the composition includes aluminum. In one embodiment, the optical density of the solution is greater than 10 cm−1 (e.g., 100-1100 cm−1, or more). In one embodiment, the optical density of the silver nanoplates is greater than 10 cm−1 (e.g., 100 cm−1, 1000 cm−1, 11-5000 cm−1, or more). In some embodiments, the solution comprises a water soluble salt (such as sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates) at a concentration greater than 0.1 mM (e.g., 0.5 mM to 2 mM, 0.1 mM to 10 mM). In one embodiment, the pH is greater than 7 (e.g., 8, 9, 10, 11, 12, 13). In one embodiment, the silver nanoplates comprise a peak wavelength of between 500 and 1500 nm (e.g., 700-1300, 810-830, 1000-1100 nm).


In various embodiments, a composition includes silver nanoplates at least partially coated by a shell material that includes a poly vinyl polymer, wherein the mean thickness of the shell material is between 1 nm and 50 nm (e.g., 5, 15, 40 nm). In one embodiment, the silver nanoplates have at least one edge length of between 10 nm and 500 nm. (e.g., 25, 100, 250, 300 nm).


In various embodiments, a kit comprises or consists essentially of one or more containers comprising nanoplates with an optical density greater than 10 cm−1 (e.g., 100 cm−1, 1000 cm−1 or more), a solution suitable for coating nanoplates with a shell of metal oxide, and instructions for use thereof. In one embodiment, the nanoplates comprise a poly vinyl polymer. In one embodiment, the poly vinyl polymer interacts (e.g., cross links or otherwise couples) with the water soluble salt (e.g., sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates).


In various embodiments, a solution includes silver nanoplates at least partially coated by a silica coating, wherein the silver nanoplates comprise a peak optical density of greater than 10 cm−1 (e.g., 11-5000 cm−1, 90-1100 cm−1, or more). In one embodiment, the silica coating has a shell thickness between 2 and 100 nm (e.g., 10-70, 30-90, 40-60 nm). In one embodiment, the solution comprises a water soluble salt (e.g., sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates) at a concentration greater than 0.1 mM (e.g., 0.1 mM to 10 mM). In one embodiment, the solution has a pH greater than 7 (e.g., 9, 12, 13). In one embodiment, the silver nanoplates have a peak absorption spectrum comprising a peak wavelength between 500 nm and 1500 nm (e.g., 800-1400 nm). In one embodiment, the silica coating is disposed on an exterior surface of the silver nanoplates. In one embodiment, the coating includes an amine moiety or a mercapto moiety. In one embodiment, the coating further includes aluminum. In one embodiment, the coating includes bicarbonate. In one embodiment, the coating includes polyvinylpyrrolidone. In one embodiment, the silver nanoplates comprise a thickness between 1 nm and 50 nm (e.g., 10-40, 15-25, 5-30). In one embodiment, the silver nanoplates comprise at least one edge length between 10 nm and 500 nm (e.g., 20-400, 50-250, 300-450).


In some embodiments, a process for generating a solution of silver nanoplates with extremely high optical density includes the steps of (i) adding a concentration stabilizing chemical agent to a solution of silver nanoplates or precursor reagents and (ii) increasing the concentration of silver nanoplates to increase the optical density of the solution.


In various embodiments, the silver nanoplates have an aspect ratio of between 1.5 and 25 (e.g., 1.5-10, 1.5-5, 10-30, 25-50); and/or the nanoplate has an edge length between about 10 nm and 250 nm (e.g., 25-180, 50-150 nm); and/or the nanoplate is triangular in cross section; and/or the nanoplate is circular in cross section. In one embodiment, the perimeter of the nanoplate cross section has between 4 and 8 edges (e.g., 5, 6, 7). In various embodiments, the solution of silver nanoplates is formed using one or more of a photoconversion method, a pH-controlled photoconversion method, a thermal growth method, a seed mediated growth method, and/or a solution comprising a shape stabilizing agent or agents and a silver source. In various embodiments, chemical or biological agents, and/or electromagnetic radiation, and/or heat, or a combination thereof are used to reduce the silver source. In one embodiment, the solution of silver nanoplates is formed from some combination of a reducing agent, a shape stabilizing agent, a light source, a heat source, and a silver source.


In one embodiment, an acid, base, or buffer (also termed a “buffering agent”) is added to change the solution pH. In various embodiments, the concentration stabilizing chemical agent is added prior to, during, and/or after the formation of the silver nanoplates. In one embodiment, the concentration stabilizing chemical agent acts as a shape stabilizing agent. In one embodiment, the concentration stabilizing chemical agent acts as a reducing agent. In one embodiment, the concentration stabilizing chemical agent acts as an agent to change the solution pH.


In one embodiment, the concentration stabilizing chemical agent is a water soluble polymer. In various embodiments, the polymer is any one or more of a derivative of polysulfonate, sodium polystyrene sulfonate, a derivative of a vinyl polymer, and a polyvinyl alcohol (PVA). In various embodiments, the PVA has a molecular weight of less than about 80,000 Dalton, between about 80,000 Dalton and 120,000 Dalton, and/or more than about 120,000 Dalton. In one embodiment, the polymer is polyvinylpyrrolidone (PVP). In various embodiments, the PVP has a molecular weight of less than about 20,000 Dalton, more than about 20,000 Dalton, between about 20,000 Dalton and 60,000 Dalton, and/or more than about 60,000 Dalton. In one embodiment, the polymer is an ethylene oxide derivative.


In one embodiment, the polymer is a polyethylene glycol (PEG). In various embodiments, the PEG has a molecular weight of less than about 5,000 Dalton, between about 5,000 Dalton and 10000 Dalton, and/or more than about 10000 Dalton. In one embodiment, the PEG contains a single functional group. In one embodiment, the PEG contains two functional groups. According to some embodiments, the functional group or groups consist of one or more of the following: an amine, thiol, acrylate, alkyne, maleimide, silane, azide, hydroxyl, lipid, disulfide, fluorescent molecule, and/or biotin, or combinations thereof. In one embodiment, the functional group or groups can be any one or more of an amine, thiol, acrylate, alkyne, maleimide, silane, azide, hydroxyl, lipid, disulfide, fluorescent molecule, and/or biotin. In one embodiment, the concentration stabilizing agent is a carbohydrate derivative. In various embodiments, the polymer is a monosaccharide, a disaccharide, an oligosaccharide, a polysaccharide, and/or dextran. In various embodiments, the dextran has a molecular weight that is less than about 2000 Dalton (e.g., 500, 1000, 1500 Dalton), between about 2000 Dalton and 5000 Dalton (e.g., 3000, 4000 Dalton), and/or more than about 5000 Dalton (e.g., 6000, 8000, 10000 Dalton or more).


In various embodiments, the concentration stabilizing chemical agent is any one or more of a phenol, a monomeric phenol, a dimeric phenol, a trimeric phenol, a polyphenol, a tannic acid, is gum Arabic, a biological molecule, a protein, a bovine serum albumin, streptavidin, biotin, a peptide, an oligonucleotide, a naturally occurring oligonucleotide, a synthetic oligonucleotide, a metal or metalloid oxide, and/or a silicon dioxide shell. In one embodiment, a silicon dioxide shell has ranges in thickness from about less than 1 nm to about 100 nm (e.g., 2-90, 5-25, 30-70). In one embodiment, a combination of stabilizing agents is used.


In various embodiments, the solvent can be one or more of water, an alcohol, ethanol, isopropyl alcohol, t-butanol, a mixture of a water and an alcohol.


In one embodiment, the concentration of silver nanoplates is increased using tangential flow filtration. In one embodiment, the tangential flow filtration is performed using a tangential flow filter membrane. In one embodiment, the tangential flow membrane is made from a cellulose ester or mix of cellulose esters.


In various embodiments, the tangential flow membrane is made from one or more of polyetheresulfone and/or polysulfone. In various embodiments, the tangential flow membrane has a molecular weight cut off of less than about 10 kD (e.g., 1, 5, 8 kD), of between about 10 kD and 500 kD (e.g., 50, 250, 400 kD), of more than about 500 kD (e.g., 750, 1000, 5000 kD or more), of less than about 0.05 μm (e.g., 0.01, 0.03 μm), of between about 0.05 μm and 0.5 μm (e.g., 0.1, 0.25, 0.4 μm), and/or of more than about 0.5 μm (e.g., 1.0, 2, 5, 10, 100 μm).


In various embodiments, the silver nanoplate solution is concentrated to produce a solution with an optical density of greater than about 10 cm−1, greater than about 50 cm−1, greater than about 75 cm−1, greater than about 100 cm−1, and/or greater than about 500 cm−1 (e.g., 100-1000, 100-2000 cm−1).


In one embodiment, the solvent of the concentrated solution is exchanged using tangential flow filtration. In one embodiment, the concentrated solution is processed to remove residual chemicals using tangential flow filtration.


In various embodiments, a solution of nanoparticles comprising silver nanoparticles is coated with a polymer with an optical density greater than 100 cm−1 (e.g., 200, 500, 700, 1500 cm−1, or more) In one embodiment, the solution of silver nanoplates is incubated with a substrate. In one embodiment, the substrate is removed from the solution of silver nanoplates and dried.


One embodiment of the present invention provides processes for making solutions of plasmonic nanoparticles, such as e.g., silver nanoplates, that are suitable for performing thermomodulation of a target tissue region. Thermomodulation of a target tissue can be achieved when a composition comprising a plurality of plasmonic nanoparticles is administered to a subject under conditions such that an effective amount of the plasmonic nanoparticles localize to a domain of the target tissue region, and exposing the target tissue region to energy delivered from a excitation surface plasmon resonance source in an amount effective to induce thermomodulation of the domain of the target tissue region. In various embodiments, materials described herein are useful for performing targeted ablative or non-ablative heating of tissue. For example, in one embodiment, provided is a method for performing targeted ablative or non-ablative heating of a tissue to treat a mammalian subject in need thereof, comprising the steps of (i) topically administering to a skin surface of the subject the composition of plasmonic nanoparticles including silver nanoplates; (ii) providing penetration means to redistribute the plasmonic particles from the skin surface to a component of dermal tissue; and (iii) causing irradiation of the skin surface by light.


In several embodiments, the invention comprises compositions that, when used with appropriate methods of administration and excitation with a light-based energy source, can achieve noninvasive or minimally-invasive treatment of skin and underlying tissues, or other accessible tissue spaces with the use of nanoparticles. Use of optical density solutions of plasmonic nanoparticles, such as e.g., silver nanoplates, with short pulse width laser excitation (e.g. pulse widths from 0.1 ms to 1 s) can create steep transient heat gradients that selectively target ablative or non-ablative heat to structures within several cell layers of where particles are localized, e.g. pilosebaceous unit for acne treatment and pore size reduction, targeted epidermal and dermal layers for skin resurfacing and small profile scar remodeling, and hair follicle for permanent hair removal. The treatment can include, but is not limited to, hair removal, hair growth and regrowth, and skin rejuvenation or resurfacing, acne removal or reduction, wrinkle reduction, pore reduction, ablation of cellulite and other dermal lipid depositions, wart and fungus removal, thinning or removal of scars including hypertrophic scars, atrophic scars, and keloids, abnormal pigmentation (such as port wine stains), tattoo removal, and/or skin inconsistencies (e.g. in texture, color, tone, elasticity, hydration). Other therapeutic or preventative methods include, but are not limited to, treatment of hyperhidrosis, anhidrosis, Frey's Syndrome (gustatory sweating), Homer's Syndrome, and Ross Syndrome, actinici keratosis, keratosis follicularis, dermatitis, vitiligo, pityriasis, psoriasis, lichen planus, eczema, alopecia, psoriasis, malignant or non-malignant skin tumors.





BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the invention(s) will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which the following is a description of the drawings. The drawings are examples, and should not be used to limit the embodiments. Moreover, recitation of embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features. Further, features in one embodiment (such as in one figure) may be combined with descriptions (and figures) of other embodiments.



FIG. 1 illustrates the optical spectrum of a silver nanoplate solution fabricated using a photoconversion method according to one embodiment of the present invention. As fabricated, these silver nanoplates, in one embodiment, have a peak optical density of less than 1 cm−1 (e.g., approximately 0.8 cm−1)



FIG. 2 illustrates the optical spectrum of a silver nanoplate solution fabricated using a seeded growth method according to one embodiment of the present invention. As fabricated, these silver nanoplates have a peak optical density of less than 3 cm−1.



FIG. 3A is a transmission electron microscope image of a silver nanoplate solution fabricated using a photoconversion method according to one embodiment of the present invention.



FIG. 3B is a transmission electron microscope image of a silver nanoplate solution fabricated using a seeded growth method according to one embodiment of the present invention.



FIG. 4 is the optical spectra of silver nanoplates without the addition of a stabilizing agent and water soluble salt according to one embodiment of the invention before tangential flow concentration and after tangential flow concentration.



FIG. 5 is the normalized optical spectra of silver nanoplates without the addition of a stabilizing agent and water soluble salt according to one embodiment of the invention before tangential flow concentration and after concentration.



FIG. 6 is the optical spectra according to one embodiment of silver nanoplates combined with polyvinyl alcohol and a water soluble salt before concentration and after concentration.



FIG. 7 is the normalized optical spectra according to one embodiment of silver nanoplates combined with polyvinyl alcohol and a water soluble salt before concentration and after concentration.



FIG. 8 illustrates an optical extinction spectra of high optical density nanoplate solutions processed using the methods described in various embodiments of the invention.



FIG. 9 illustrates steps for producing one embodiment of silver nanoplates by fabricating the silver nanoplates, adding stabilizing agents, concentrating the nanoplates and optionally coating the nanoplates with silica.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Several embodiments of the present invention comprise processes for making solutions of plasmonic nanoparticle including silver nanoplates that are suitable for performing thermomodulation of a target tissue region. In one embodiment, thermomodulation of a target tissue can be achieved when a composition comprising a plurality of plasmonic nanoparticles is administered to a subject under conditions such that an effective amount of the plasmonic nanoparticles localize to a domain of the target tissue region. The target tissue region is exposed to energy delivered from a excitation surface plasmon resonance source. The energy is delivered in an amount effective to induce thermomodulation of the domain of the target tissue region.


Optical Density (O.D.), which is used herein as a synonym for absorbance, is defined to be the logarithmic ratio of the radiation incident on a material to the radiation transmitted through the material (O.D.=−log10(I1/I0) where I1 is the intensity of transmitted light and I0 is the intensity of the incident light). For solutions, the optical density is a function of the path length through the liquid sample and is expressed in units of cm−1. In some instances, optical density is expressed without the unit cm−1—such as in instances in which a standard path length of 1 cm is used. In some traditional methods of manufacturing silver nanoplates, the maximum optical density of silver nanoplates in as-synthesized solutions without any additional processing is typically less than 10 cm−1 (e.g., 0.1-9.9 cm−1, 1-9 cm−1, 3-7 cm−1, 1-5 cm−1, and/or 5-10 cm−1). However, according to some embodiments of the present invention, silver nanoplates can be produced with increased optical densities. Generally, optical densities of solutions containing plasmonic particles including silver nanoplates are most effective with an optical density that is higher than 10 cm−1 (e.g., 11-5000 cm−1, 15-2000 cm−1, 20-1000 cm−1, 80-150 cm−1, 90-110 cm−1, 900-1100 cm−1, 100 cm−1, 1000 cm−1 or more) and formulated into a pharmaceutical or cosmetic carrier and stable for days, months, weeks, or years without alterations in particle shape and/or properties. In one embodiment, optical densities of solutions containing plasmonic particles including silver nanoplates are higher than 10 cm−1 (e.g., 11-5000 cm−1, 15-2000 cm−1, 20-1000 cm−1, 80-150 cm−1, 90-110 cm−1, 900-1100 cm−1, 100 cm−1, 1000 cm−1 or more) and formulated into a pharmaceutical or cosmetic carrier and stable for days, months, weeks, or years without alterations in particle shape and/or properties. In one embodiment, the carrier and composition are suitable for topical administration to the skin of a mammalian subject, such that the plasmonic nanoparticles are present in an effective amount for selective thermomodulation of a component of the skin.


In some embodiments, the nanoparticle formulations are formulated for application by a sponge applicator, cloth applicator, direct contact via a hand or gloved hand, spray, aerosol, vacuum suction, high pressure air flow, or high pressure liquid flow, roller, brush, planar surface, semi-planar surface, wax, ultrasound and other sonic forces, mechanical vibrations, hair shaft manipulation (including pulling, massaging), physical force, thermal manipulation, and/or other treatments. In some embodiments, nanoparticle formulation treatments are performed alone, in combination, sequentially or repeated 1-24 times, or more. In other embodiments, the plasmonic nanoparticles are capable of selectively localizing to a first component of the skin, where physical massage or pressure, ultrasound, or heat increase the selective localization of the nanoparticles to this first component. Additionally, the nanoparticles are selectively removable from components of the skin other than the first component, such removal can be accomplished with acetone, alcohol, water, air, peeling of the skin, chemical peeling, waxing, or reduction of the plasmonic compound. Further, in some embodiments the nanoparticles have a coat layer to increase solubility of the nanoparticles in the carrier and/or reduce “stickiness” and accumulation in non-target areas. In one embodiment, at least a portion of an exterior surface of the nanoparticle is modified, such as to include a layer of a polymer, polar monomer, non-polar monomer, biologic compound, a metal (e.g., metallic thin film, metallic composite, metal oxide, or metallic salt), a dielectric, or a semiconductor. In one embodiment, the exterior surface modification is polar, non-polar, charged, ionic, basic, acidic, reactive, hydrophobic, hydrophilic, agonistic, and/or antagonistic. In one embodiment, at least one dimension of at least one nanoparticle within a solution of plasmonic nanoparticles is below 50-100 nm (e.g., 1, 5, 10, 25, 40, 60, 75, 90 nm), and the nanoparticle surface can be coated with a matrix (e.g. silica) of 10-100 nm thickness or more (e.g., 20, 50, 75, 150, 200, 500 nm) in order to increase that dimension or particle to 50-100 nm or more (e.g., 75, 80, 110, 140, 200, 800 nm). This increased dimension size can increase the delivery of all nanoparticles to a target region (e.g., hair follicle, pore, skin, etc.) and limit delivery to non-target region (e.g. dermis).


In various embodiments, materials described herein are useful for performing targeted ablative or non-ablative heating of tissue. For example, in one embodiment, provided is a method for performing targeted ablative or non-ablative heating of a tissue to treat a mammalian subject in need thereof, comprising the steps of (i) topically administering to a skin surface of the subject the composition of plasmonic nanoparticles including silver nanoplates; (ii) providing penetration means to redistribute the plasmonic particles from the skin surface to a component of dermal tissue; and (iii) causing irradiation of the skin surface by light. In further or additional embodiments, provided is a method wherein the light source comprises excitation of mercury, xenon, deuterium, or a metal-halide, phosphorescence, incandescence, luminescence, light emitting diode, or sunlight. In still further or additional embodiments, provided is a method wherein the penetration means comprises high frequency ultrasound, low frequency ultrasound, massage, iontophoresis, high pressure air flow, high pressure liquid flow, vacuum, pre-treatment with fractionated photothermolysis or dermabrasion, or a combination thereof. In still further embodiments, provided is a method wherein the irradiation comprises light having a wavelength of light between about 200 nm and about 10,000 nm (e.g., 300-9000, 700-1300, 800-1200, 800-1300, 900-1100, 550-1100, 810-830, 1000-1100 nm), a fluence of about 1 to about 100 joules/cm2 (e.g., 5-20, 40-70, 10-90), a pulse width of about 1 femptosecond to about 1 second, and a repetition frequency of about 1 Hz to about 1 THz (e.g., 1-10, 10-100, 100-1000, 1000-10000, 10000-100000 Hz or more).


An object of one embodiment of the subject matter described herein is to provide compositions, that when used with appropriate methods of administration and excitation with a light-based energy source can achieve noninvasive and minimally-invasive treatment of skin and underlying tissues, or other accessible tissue spaces with the use of nanoparticles. Use of optical density solutions of plasmonic nanoparticles, such as e.g., silver nanoplates, with short pulse width laser excitation (e.g. pulse widths from 0.1 ms to 1 s) can create steep transient heat gradients that selectively target ablative or non-ablative heat to structures within several cell layers of where particles are localized, e.g. pilosebaceous unit for acne treatment and pore size reduction, targeted epidermal and dermal layers for skin resurfacing and small profile scar remodeling, and hair follicle for permanent hair removal. The treatment can include, but is not limited to, hair removal, hair growth and regrowth, and skin rejuvenation or resurfacing, acne removal or reduction, wrinkle reduction, pore reduction, ablation of cellulite and other dermal lipid depositions, wart and fungus removal, thinning or removal of scars including hypertrophic scars, atrophic scars, and keloids, abnormal pigmentation (such as port wine stains), tattoo removal, and/or skin inconsistencies (e.g. in texture, color, tone, elasticity, hydration). Other therapeutic or preventative methods include, but are not limited to, treatment of hyperhidrosis, anhidrosis, Frey's Syndrome (gustatory sweating), Homer's Syndrome, and Ross Syndrome, actinici keratosis, keratosis follicularis, dermatitis, vitiligo, pityriasis, psoriasis, lichen planus, eczema, alopecia, psoriasis, malignant or non-malignant skin tumors.


Silver Nanoplate Physical Description


In one embodiment, nanoplates, such as silver nanoplates, are characterized by lengths along the three principle axes wherein: the axial length of two of the principle axes is at least two times greater than the axial length of the shortest principle axis, and the shortest principal axial length is less than about 500 nm (e.g., 450. 400, 350, 300, 250, 100, 150, 50, 30, 20, 10 nm). The “edge length” of the nanoplate is defined to be the average of the length of the two longer principle axes. The “thickness” of the nanoplate is defined to be the shortest principal axis.


The ratio of the edge length to the thickness is referred to as the “aspect ratio”. In various embodiments the average aspect ratio of the silver nanoplates is greater than 1.5, 2, 3, 4, 5, 7, 10, 20, 30, or 50 and any range therein. In one embodiment the average aspect ratio of the silver nanoplates is between 1.5 and 25, 2 and 25, 1.5 and 50, 2 and 50, 3 and 25, and/or 3 and 50.


In various embodiments a nanoplate has edge lengths less than 500 nm, 250 nm, 200 nm, 150 nm, 100 nm, 80 nm, 60 nm or 50 nm. In one embodiment the nanoplate has edge lengths greater than 5 nm, 10 nm, 20 nm, 30 nm, 50 nm or 100 nm. In various embodiments the edge length is from 30 nm to 100 nm, 20 nm to 150 nm, 10 nm to 200 nm, 10 nm to 300 nm. In various embodiments, the nanoplate has a thickness that is less than 500 nm, 300 nm, 200 nm, 100 nm, 80 nm, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm, and/or 10 nm and any range therein. In various embodiments the nanoplate thickness is from 5 nm to 20 nm, 5 nm to 30 nm, 10 nm to 30 nm, 10 nm to 50 nm, 10 nm to 100 nm.


Various embodiments of silver nanoplates have a variety of different cross sectional shapes including (but not limited to) circular, triangular, or shapes that have any number of discrete edges. In non-limiting embodiments, the nanoplates can be shaped as circular, ovals, squares, rectangles, rods, stars, tubes, pyramids, prisms, triangles, branches, or comprised of a planar surface. In various embodiments the nanoplates have less than 20, 15, 10, 8, 6, 5, or 4 edges, and/or any number between 20 and 1. In various embodiments, the nanoplates can have between 1 and 20, 15, 10, 8, 6, 5, 4, or 3 edges. In one embodiment the nanoplates have more than 2, 3, 4, or 5 edges. In some embodiments the silver nanoplates have sharp corners and in other embodiments the corners are rounded. In some embodiments of silver nanoplates, there are a variety of different cross sectional shapes within the same sample. In other embodiments of silver nanoplate solutions greater than 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the number of particles in solution are silver nanoplates with the other particles having different shapes including but not limited to spherical, cubic, and irregular. In various embodiments, a silver nanoplate solution has a percentage of silver nanoplates, with other particles in the solution having different shapes, including but not limited to spherical, cubic, and/or irregular. In various embodiments, a silver nanoplate solution has 5% to 100%, 10% to 50%, 50% to 100%, 30% to 60%, 60% to 100%, 40% to 70%, 70% to 100%, 50% to 80%, 80% to 100%, 60% to 90%, and/or 90% to 100% of the number of particles in solution are silver nanoplates with the other particles having different shapes including but not limited to spherical, cubic, and/or irregular. In some embodiments, methods can enhance the stability of silver nanoplates to facilitate increased optical density while retaining at least 50%, 60%, 70%, 80%, 90%, 95%, 98% or more of the silver nanoplate shape while undergoing a concentrating process. In some embodiments, methods can enhance the stability of silver nanoplates to facilitate increased optical density while changing shape from the nanoplate to another shape (e.g., spherical, cubic, and/or irregular) in less than 50%, 40%, 30%, 25%, 20%, 10%, 5%, 3,%, 2%, 1% of the silver nanoplates while undergoing a concentrating process. In various embodiments the nanoplates can have one, two, or more flat sides. In another embodiment the nanoplates are pyramidal.


Silver nanoplates have distinct advantages over other plasmonic nanoparticle shapes and compositions. For example, silver nanoplates have advantages over plasmonic nanoparticle shapes and compositions including gold nanoshells and gold nanorods due to potential for lower production costs (less reaction waste and lower material costs). Furthermore, optical density (O.D.) per weight of metal is greater for sliver nanoplates relative to gold nanorods when randomly oriented in solution and irradiated with non-polarized light because the planar surface of a nanoplate resonates with both polarizations of incident light. Additionally, absorbance of silver nanoplates is higher than that of gold nanoshells for the same weight of metal as a greater fraction of light is absorbed versus scattered with a nanoplate architecture relative to a nanoshell. For many applications, these benefits in cost and absorbance can only be realized if nanoplates are stabilized at high concentration and for long periods of time, which is the subject of one embodiment of the present invention.


Silver Nanoplate Fabrication


Modern nanoparticle synthesis techniques have enabled the development of materials with unique optical properties for a wide range of applications including diagnostic, obscurant, and therapeutic applications. Silver nanoplates, as fabricated by current traditional methods including photoconversion, pH controlled photoconversion, thermal growth, and/or seed mediated growth methods typically have optical densities ranging from 0.1 to 10 cm−1 (e.g., e.g., 0.1-9.9 cm−1, 1-9 cm−1, 3-7 cm−1, 1-5 cm−1, and/or 5-10 cm−1). A number of technologies seek higher optical density solutions of silver nanoplates. Several embodiments of the present invention describe a novel and non-obvious method for concentrating silver nanoplates and generating higher optical density silver nanoplate solutions. For example, in various embodiments, methods can increase the optical density of silver nanoplate solutions to greater than 10 cm−1, 20 cm−1, 30 cm−1, 50 cm−1, 80 cm−1, 100 cm−1, 150 cm−1, 200 cm−1, 300 cm−1, 400 cm−1, 500 cm−1, 600 cm−1, 700 cm−1, 800 cm−1, 900 cm−1, and/or 1000 cm−1, or more.


Silver nanoplates may be fabricated using photoconversion (Jin et al. 2001; Jin et al. 2003), pH controlled photoconversion (Xue 2007), thermal growth (Hao et al. 2004; Hao 2002; He 2008; Metraux 2005), templated growth (Hao et al. 2004; Hao 2002), seed mediated growth (Aherne 2008; Chen; Carroll 2003; Chen; Carroll 2002, 2004; Chen et al. 2002; He 2008; Le Guevel 2009; Xiong et al. 2007), all herein incorporated by reference, or alternative methods. Alternative methods according to various embodiments of the present invention include methods in which the silver nanoplates are formed from a solution comprising one or more stabilizing agents and a silver source, and in which chemical agents, biological agents, mixing, electromagnetic radiation, and/or heat are used to reduce the silver source.


An optical spectrum of silver nanoplates fabricated using one embodiment of a photoconversion method is shown in FIG. 1. The peak wavelength of the optical spectra (100) is at a wavelength of 775 nm with an optical density of 0.74 cm−1. The optical spectra of silver nanoplates fabricated using one embodiment of a seed mediated growth method is shown in FIG. 2. The peak wavelength of the optical spectra (200) is at a wavelength of 930 nm with an optical density of 2.58 cm−1. A transmission electron microscope image of silver nanoplates made using a photoconversion method is shown in FIG. 3A. A transmission electron microscope image of silver nanoplates made using a seed mediated growth method is shown in FIG. 3B.


In one embodiment, when as-fabricated nanoplates are concentrated using tangential flow filtration, the shape of many of the nanoplates can shift to nanospheres, reducing the formulation efficacy, as evidenced by an increased peak height at ˜400 nm which is the peak optical resonance of spherical silver nanoparticles. FIG. 4 shows the optical density of one embodiment of a solution of the nanoplates in the absence of a concentration stabilization agent before (400) and after (410) concentration. The optical resonance peak that corresponds to the plasmon resonance of the nanoplates shifts from 815 nm (420) to 745 nm (430) demonstrating that the average edge length of the nanoplates is reduced.



FIG. 5 shows a normalized plot of the nanoplate spectra shown in FIG. 4. For this solution of nanoplates, the intensity of the peak in the 700 nm-850 nm range is correlated to the number of nanoplates in solution. The intensity of the peak in the 400 nm range is correlated to the number of spheroidal particles in solution. Before concentration the ratio of the longer wavelength peak (520) to the shorter wavelength peak (540) is 3. After concentration the ratio of the longer wavelength peak (530) to the shorter wavelength peak (550) is 0.8. This changing ratio demonstrates that the silver nanoplates are changing shape and that the number of nanoplates in solution is reduced.


In one embodiment, a solution of nanoplates can be stabilized. FIG. 6 shows the optical density of one embodiment of a solution of nanoplates that have been stabilized by polyvinyl alcohol in a solution of borate (e.g., sodium borate, potassium tetraborate, etc.). The peak wavelength of the nanoplate peak is the same for both the unconcentrated (620) and concentrated (630) solutions indicating that the edge length of the nanoplates is the same before concentration (600) and after concentration (610). FIG. 7 shows the normalized spectrum which demonstrates that the spectral shape of the peak does not change before concentration (700) and after concentration (710), thereby indicating that in one embodiment, a surface coating is sufficient to prevent the shape of the nanoparticles from shifting. In various embodiments, greater than 10%, greater than 20%, greater than 30% or greater than 50% of the silver nanoplates change shape without a surface protection. In other embodiments less than 20%, less than 10% or less than 5% of the silver nanoplates undergo a shape change if the nanoplates are coated with a protective surface coating. In one embodiment, a spectrum of a nanoplate solution concentrated to have a peak optical density of ˜900 cm−1 is shown in FIG. 8.


In one embodiment, the silver nanoplates are formed in a multi-step process. In one embodiment, the steps to concentrating nanoplates are shown in FIG. 9 and comprise of fabricating the silver nanoplates (900), adding stabilizing agents (910), concentrating the nanoplates (920) and optionally coating the nanoplates with silica (930). In various embodiments, the steps can be taken in any order. In one embodiment, a first step forms silver seeds from an aqueous solution comprising a reducing agent, a stabilizing agent, a water soluble polymer and a silver salt. The reducing agent, stabilizing agent and water soluble polymer may be mixed prior to the addition of a silver source. In various embodiments, the reducing agent used in the silver seed formation step can be formaldehyde, sodium borohydride, another borohydride, hydrogen gas, carbon monoxide gas, hydrazine, or reducing sugars, or combinations of these. In various embodiments, the reducing agent may be present at a concentration of at least 0.1 mM, 1 mM, or 3 mM. In various embodiments the reducing agent may be present at a concentration from 0.1 mM to 1 mM, 0.3 mM to 3 mM, 0.5 mM to 2 mM, 0.1 mM to 2 mM, 0.1 mM to 10 mM.


In various embodiments, the stabilizing agent may be a salt, a polymer, or a biomolecule. In one embodiment the stabilizing agent is trisodium citrate or another citrate derivative.


In one embodiment, the water soluble polymer is a polyanionic polymer including, but not limited to, polymers derivatized with sulfonate, derivatives of polystyrene sulfonate such as an inorganic salt of polystyrene sulfonate, or a monovalent salt of polystyrene sulfonate. In one embodiment the water soluble polymer is poly (sodium styrene sulfonate) (PSSS). In one embodiment the PSSS has a molecular weight between about 3 kDa and about 1,000 kDa. In various embodiments the PSSS has a molecular weight of from 3 kDa to 10 kDa, 5 kDa to 50 kDa, 10 kDa to 100 k Da, 30 kDa to 300 kDa, 50 kDa, to 500 kDa, 100 kDa to 1000 kDa, 300 kDa to 100 kDa, 500 kDa, to 1000 kDa.


In various embodiments, the silver salt may be any water soluble silver salt including but not limited to silver acetate, silver perchlorate, silver nitrate, silver trifluoroacetate, or silver triflate.


In one embodiment, a step for the formulation of silver nanoplates includes having the seeds grown into silver nanoplates in an aqueous solution comprising silver seeds, an acidic reducing agent and a silver salt. In one embodiment, the acidic reducing agent is citric acid or ascorbic acid. The silver salt for the step where seeds are grown into silver nanoplates may be any water soluble silver salt including silver acetate, silver perchlorate, silver nitrate, silver trifluoroacetate, silver triflate, or combinations thereof.


In one embodiment, the silver nanoplates are stirred at a shear flow rate between 1 s−1 and 100,000 s−1 (e.g., at least 10, 50, 100, 200, 300, 400, 500, 1000, 2000, 5000, 10000, 20000, 50000, 75000, 90000 s−1). In various embodiments the silver nanoplates are stirred at a shear flow rate from between 10 s−1 and 100 s−1, 50 s−1 and 500 s−1, 100 s−1 and 300 s−1, 200 s−1 and 500 s−1, 100 s−1 and 400 s−1, 500 s−1 and 1000 s−1, 1000 s−1 and 10000 s−1, 2000 s−1 and 5000 s−1, 1000 s−1 and 2000 s−1, 5000 s−1 and/or 10000 s−1.


Silver Nanoplate Coating


In one embodiment, silver nanoplates have molecules that are adsorbed or otherwise bound to the particle surface. The molecules on the surface are the reactants or reactant by-products of the synthesis. One object of this invention is to partially or fully exchange the molecules that are bound to the surface of the silver nanoplates with other molecules that more fully protect the particles from changing shape during concentration. Another object of the invention is to use a stabilizing agent during fabrication that generates plate shapes and also stabilizes the plates during subsequent concentration.


In various embodiments, stabilizing agents that may be utilized include chemical or biological agents that are physisorbed (e.g., absorbed by non-molecular binding forces) to the surface, molecularly bound to the surface through specific interactions (e.g. thiol or amine), or encapsulate the surface (e.g. a metal oxide or metalloid oxide shell). In one embodiment, specific chemical agents of interest include polymers. In one embodiment, specific chemical agents of interest include polymers such as polysulfonates. In one preferred embodiment the stabilizing polymer is derivatized with sulfonates. In some embodiments, vinyl polymers, carbohydrates, ethylene oxides, phenols, and carbohydrates may be employed. Specific examples of these polymers include polystyrene sodium sulfonate, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polysaccharides, phenol, tannic acid, dextran, and polyethylene glycol (PEG) including PEG molecules which contain one or more chemical groups (e.g. amine, thiol, acrylate, alkyne, maleimide, silane, azide, hydroxyl, lipid, disulfide, fluorescent molecule, or biomolecule moieties). Specific molecules of interest include proteins, peptides, oligonucleotides, biotin, alkane thiols, lipoic and dihydrolipoic acid and derivatives of these acids, bovine serum albumin, streptavidin, neutravidin, wheat germ agglutinin, naturally occurring and synthetic oligonucleotides and peptides, including synthetic oligonucleotides which have one or more chemical functionalities (e.g. amine, thiol, dithiol, acrylic phosphoramidite, azide, digoxigenin, alkynes, or biomolecule moieties). Specific encapsulating chemical agents of interest include metal oxide shells such as SiO2 and TiO2. Stabilizing agents may be added prior to the formation of silver nanoplates, during the formation of silver nanoplates, or after the formation of silver nanoplates. An additional chemical agent of interest is gum arabic. In some embodiments, the stabilizing agent also modifies the pH of the solution.


Carrier Solutions


In one embodiment of this invention, the silver nanoplates are fabricated in aqueous solutions. In other embodiments, the silver nanoplates are fabricated in other solutions that can include ethanol, isopropanol, or organic solvents such as heptane, toluene, or butanol.


In one embodiment an acid, base or buffering agent is added to change the solution pH either before, during, or after the addition of a stabilant. In one embodiment, a buffer, typically containing a water soluble salt, is added. In one embodiment, the water soluble salt comprises borate. In one embodiment, the water soluble salt comprises sodium borate. In one embodiment the nanoplates are suspended in a sodium bicarbonate buffer or a sodium borate buffer. In one embodiment the pH of the solution after addition of the pH modifying agent is greater than pH 6, pH 7, pH 8, pH 9, or pH 10. In various embodiments, the pH of the solution after addition of the pH modifying agent is from pH 6 to pH 8, pH 6.0 to pH 9, pH 7 to pH 10, pH 7 to pH 11, pH 8 to pH 10, pH 8 to pH 11, or pH 7 to pH 12.


In one embodiment, the combination of a nanoplate coating and a water soluble salt present in a buffer provides stabilization to the nanoplate formulation. In some embodiments, one of the components of the salt can interact with the nanoplate coating or stabilizing agent to crosslink the coating and increase the stability of the coating. In various embodiments, such crosslinking can include non-covalent bonds (e.g., ionic bonds, hydrophobic interactions, hydrogen bonds and van der Waals forces including dispersion attractions, dipole-dipole and dipole-induced dipole interactions) and/or covalent bonds between the nanoplate surface, water soluble salts, and/or coating materials/stabilizing agents. In some embodiments the presence of the water-soluble salt present in a buffer changes the binding affinity of a stabilizing agent or coating material to the nanoplate surface, e.g., by modifying the zeta potential and/or charges on the surface of the nanoplate. In other embodiments the water-soluble salt present in a buffer changes the binding affinity of a stabilizing agent or coating material to itself through covalent or non-covalent binding. In some embodiments the presence of the water-soluble salt intermediates binding of a stabilizing agent to the surface of a particle by becoming physisorbed to the particle surface in association with the stabilizing agent. In further embodiments the water-soluble salt intermediates binding of polymer to itself by associating with units of the stabilizing agent or coating materials and lowering the free energy necessary for the coating materials to order on or around a nanoplate surface. In one embodiment, the nanoplate coating is a polymer and the crosslinking produces a viscoelastic gel surrounding all or a portion of the nanoplate. In other embodiments the stabilizing agent is mixed with a buffer containing a water-soluble salt, and both the stabilizing agent and a component of the water soluble salt bind to the surface of the nanoplate. In one embodiment, a polyvinyl based polymer such as polyvinylalcohol or polyvinylpyrrolidone is mixed with a borate salt such as sodium borate. Polyvinylalcohol and borate are can be complexed to form gels via hydrogen bonding (Schultz 1969). In one embodiment, FIG. 6 and FIG. 7 show the effect of stabilizing silver nanoplates with polyvinyl alcohol and sodium borate before concentration to preserve the shape of the nanoparticles.


Surface Stabilization


In various embodiments, stabilizing agents can be solid or liquid formulations that are added to the silver nanoplate solution. The stabilizing agents have an affinity for the surface of the silver nanoplates and are able to associate with the plate surface at wide ranges of relative concentrations. In some embodiments, bound molecules on the silver nanoplates are displaced by a stabilizing agent. Alternatively, a stabilizing agent, such as a polymer, is covalently attached to a silver atom present on the surface of the nanoplate. The polymer coating may extend over all or a portion of the exterior surface of a silver nanoplate. For example, at least 5%, 10%, 15%, 20%, 25%, 50%, 75%, 80%, 90%, 95%, 99%, 99.9% or greater than 99.9% of the exterior surface of a silver nanoplate is coated with one type of polymer or a plurality of different polymer types. In one embodiment, the stabilizing agent is added before the formation of the silver nanoplates while in another embodiment, the stabilizing species is added after the synthesis of the silver nanoplates. Thus, provided are compositions containing polymer-coated silver nanoplates, and solutions containing these compositions may have an optical density less than or equal to 10 cm−1. Alternatively, such solutions have polymer-coated silver nanoplates and an optical density greater than 10 cm−1; these solutions can be achieved by concentrating or purifying polymer-coated silver nanoplates present in a more dilute solution. In some embodiments the stabilants are added to the as-fabricated silver nanoplate solution. In other embodiments, the solution of nanoplates is washed, or the residual reactants are otherwise removed. In some embodiments, the suspending solution is exchanged one or more times with one or more solution, e.g., to wash the nanoplates or to alter the pH of the solution, before the stabilizing agents are added. Also provided are kits containing, in one or more containers, nanoplates in a solution having an optical density greater than 10 cm−1 and a metal oxide-containing solution or a metal oxide precursor-containing suitable for coating the nanoplates with a shell (or coating) of the metal oxide. Preferably, the containers are provided with instructions for use thereof. In some embodiments the kits contain nanoplates having a coating containing a poly vinyl polymer. In other embodiments the poly vinyl polymer contains borate. Nanoplates having a stabilizer coating are characterized as provided herein or otherwise known in the art, such as by particle analyzers or emission detectors such as NMR, Fourier transform spectroscopy, mass spectrometry, or similar assays.


Once the stabilizing agent is added, the mixture of the stabilant and the silver nanoplates can undergo a number of different processes including heating, boiling, boiling under reflux, rotary evaporation, vacuum, stirring, stirring with magnetic stir bars, stirring with overhead mixers, stirring with homogenizers, shaking, microfluidization, refrigeration, and freezing.


Washing and Concentrating


In one embodiment, after the stabilization step is complete, the silver nanoplates can be washed to remove residual reactants or to exchange the solution with another solution. The exchange of solution can be accomplished using dialysis, centrifugation, filtration, or tangential flow filtration (also known as cross flow filtration). In various embodiments, the number of wash volumes exchanged within the sample is zero, 1, 2, 3, 4, 5, 1 and 5, 5 to 10, 10 to 20, or more than 20 wash volumes, inclusive.


Nanoparticle solutions with optical densities greater than 10 cm−1 (e.g., 11-5000 cm−1, 15-2000 cm−1, 20-1000 cm−1, 80-150 cm−1, 90-110 cm−1, 900-1100 cm−1, 100 cm−1, 1000 cm−1 or more) can be fabricated using centrifugation, evaporation, filtration, dialysis or tangential flow filtration. One embodiment of this invention utilizes tangential flow filtration as the process of concentrating the silver nanoplate solution. The filter membrane utilized may be formed from a variety of materials. In various embodiments, specific filter membrane materials of interest can include cellulose esters, polysulfone, and polyetheresulfone. In various embodiments, the filter membrane utilized may have pores with a molecular weight cutoff of less than about 10 kD, between 10 kD to 500 kD, or more than about 500 kD, and/or pore sizes of less than about 0.05 μm, between 0.05 μm and 0.5 μm, or larger than about 0.5 μm. In various embodiments, the filter membrane utilized may have pores with a molecular weight cutoff between 10 kD, to 100 kD, 10 kD to 500 kD, 20 kD to 500 kD, 20 kD to 250 kD and/or pore sizes between 0.02 μm and 0.1 μm, 0.05 μm and 0.2 μm, 0.05 μm and 0.5 μm, 0.10 μm and 0.2 μm, 0.1 μm and 0.5 μm. Tangential flow filtration can also be utilized to change the solvent in which the silver nanoplates are dispersed. In various embodiments, specific solvents of interest include water and alcohols (e.g. t-butanol, ethanol, and isopropyl alcohol), as well as other polar or non-polar solvents. Additionally, tangential flow filtration can be utilized to remove residual chemicals. FIG. 8 shows an embodiment of a solution of nanoplates that has been concentrated to a peak optical absorbance of 930 cm−1.


In various embodiments, the silver nanoplate solution concentration is increased to produce a final solution with optical densities of greater than about 5 cm−1, greater than about 10 cm−1, greater than about 50 cm−1, greater than about 75 cm−1, greater than about 100 cm−1, greater than about 500 cm−1, and/or greater than about 1000 cm−1. In various embodiments, the silver nanoplate solution concentration is increased to produce a final solution with optical densities from between 10 cm−1 to 100 cm−1, 30 cm−1 to 300 cm−1, 50 cm−1 to 500 cm−1, 100 cm−1 to 1000 cm−1, 300 cm−1 to 3000 cm−1, or 500 cm−1 to 5000 cm−1. One embodiment of the invention is where the silver nanoplate solution concentration is increased to above 106, 107, 108, 109, 1010, 1011, 1012, or, 1013 particles per milliliter. In various embodiments, the silver nanoplate solution concentration is increased to be between 106 and 1013, 107 and 1013, 108 and 1013, 109 and 1013, 1010 and 1013, 1011 and 1013, or 1012 and 1013 particles per milliliter. In various embodiments, the silver concentration is greater than 0.1, 1.0, 2, 4, 5, 7, 8, 9, and/or 10 mg/mL. In various embodiments, the silver concentration is between 0.1 to 1.0, 0.3 to 3.0, 0.5 to 5.0, 1.0 to 10.0, 3.0 to 30.0, 5.0 to 50.0, 10.0 to 200.0, 1.0 to 200.0, 1.0 to 500.0, or 10.0 to 500.0 mg/mL.


Silica Coating and Shelling


In one embodiment, the concentrated silver nanoplates are encapsulated with a shell of silica. The coating may extend over all or a portion of the exterior surface of a silver nanoplate. For example, at least 5%, 10%, 15%, 20%, 25%, 50%, 75%, 80%, 90%, 95%, 99%, 99.9% or greater than 99.9% of the exterior surface of a silver nanoplate is coated with silica. The concentrated plates can be mixed with an alcohol (e.g. ethanol or isopropanol). In one embodiment an aminosilane or mercaptosilane is added to the solution to bind silane molecules to the surface of the nanoplates. The binding of silane molecules to the surface of nanoplates is specific to the surface coating on the nanoplates. Some nanoparticle coatings that stabilize the nanoplates during processing will not be compatible with the formation of a silica shell. In one embodiment, the surface of the nanoplates is coated with a molecule that has an affinity for silane molecules in solution. In one embodiment a polyvinyl based polymer such as polyvinylalcohol or polyvinylpyrrolidone is bound to the surface of the nanoplate before the addition of silane molecules. In other embodiments, a polyvinyl based polymer surface is complexed with water soluble salt present in a buffer (e.g., one or more of the sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates) before the addition of silane molecules. In other embodiments mercaptohexadecanoic acid, mercaptoundecanoic acid, or other thiol containing acids are bound to the surface of the nanoplates. Once there are initial silanes bound to the surface of the nanoplate, additional silane can be added to the solution in the presence of a base to form a silica shell. In one embodiment, the nanoplates coated with a silica shell can be transferred to water and concentrated using a concentration method such as tangential flow filtration. In another embodiment the silica shells are mixed with a solution of aluminum salt such as aluminum chloride, a stabilizing polymer such as polyvinylpyrrolidone, or a buffer such as bicarbonate.


It is an object of this invention to fabricate a solution that comprises a concentrated solution of silver nanoplates coated with a silica shell. In one embodiment, the peak optical density of the solution as measured in a 1 cm path length cuvette is above 10, 20, 50, 100, 500, or 1000. In various embodiments, the peak optical density of the solution as measured in a 1 cm path length cuvette is between 10-100, 20-200, 30-300, 50-500, 100-1000, 200-1000, 300-1000, 500-1000, and/or 200-2000, and any combinations therein. In another embodiment the silver concentration is above 0.1 mg/mL, 1 mg/mL or above 10 mg/mL. In several embodiments the silver concentration is between 0.1 to 1.0, 0.3 to 3.0, 0.5 to 5.0, 1.0 to 10.0, 3.0 to 30.0, 5.0 to 50.0, 10.0 to 200.0, 1.0 to 200.0, 1.0 to 500.0, and/or 10.0 to 500.0 mg/mL, and any combinations therein. In one embodiment, the silica shell thickness is between 2 and 100 nm, and in another embodiment between 5 and 50 nm. In various embodiments, the silica shell thickness is between 3 and 20 nm, 5 and 20 nm, 10 and 20 nm, 10 and 50 nm, 10 and 100 nm, 1 and 10 nm, 3 and 30 nm, 5 and 50 nm, and/or 5 and 200 nm, and any combinations therein. The silica shell can be fabricated from a mixture of silanes including but not limited to aminopropyl triethoxy silane, mercaptopropyl triethoxy silane and tetraethylorthosilicate. The silica shell can contain nitrogen or sulfur atoms. The silica shell can contain amine moieties or mercapto moieties. The silica shell can contain aluminum or sodium atoms.


In another embodiment the solution contains a buffer, that includes a water soluble salt (e.g., one or more of the sulfates, carbonates, chromates, borates, phosphates, and sulfites, acetates, and nitrates) at a concentration greater than 0.1 mM, 1.0 mM or 10.0 mM. In various embodiments the water soluble salt concentration may be from 0.1 mM to 1 mM, 0.3 mM to 3 mM, 0.5 mM to 5 mM, 1 mM to 10 mM, 1 mM to 30 mM, 1 mM to 50 mM, 1 mM to 1000 mM, and any combinations therein. The solution can have a peak absorption wavelength between 500 nm and 1500 nm, 500 nm to 1200 nm, 500 nm to 1000 nm, 600 nm to 1200 nm, 700 nm to 1200 nm, 700 nm to 1500 nm, 700 nm to 900 nm, and/or 900 to 1100 nm, and any combinations therein.


Storage


In various embodiments, the concentrated particles are stored at temperatures below −10, 0, 4, 6, 10, or 20 degrees C. In one embodiment, the particles are frozen and dried under vacuum. In one embodiment, the particles are freeze dried. In one embodiment, the particles are supercritically dried. In one embodiment, an additional stabilant or other cryoprotectant is added to the solution before the particles are heat dried or freeze dried.


Composites


In one embodiment of the invention, high optical density solutions of silver nanoplates are associated with a substrate. In various embodiments, examples of substrates include fibers, cloth, mesh, bandages, socks, wraps, other articles of clothing, sponges, high porosity substrates, particles with edge lengths greater than 1 micron, beads, hair, skin, paper, absorbent polymers, foam, wood, cork, slides, roughened surfaces, biocompatible substrates, filters, or medical implants. In various embodiments, solutions of silver nanoplates at a concentration of at least 1 mg/mL, 10 mg/mL, and/or 100 mg/mL are incubated with the substrate. In several embodiments the silver nanoplate concentration incubated with the substrate is between 0.1 to 1.0, 0.3 to 3.0, 0.5 to 5.0, 1.0 to 10.0, 3.0 to 30.0, 5.0 to 50.0, 10.0 to 20.0, 5.0 to 50.0, 3.0 to 50.0, 1.0 to 100.0 mg/mL, 10.0 to 100.0, 20.0 to 100.0, 30.0 to 100.0 mg/mL. In another embodiment, the solutions of silver nanoplates incubated with the substrate are between 106 and 1013, 107 and 1013, 108 and 1013, 109 and 1013, 1010 and 1013, 1011 and 1013, 1012 and 1013 or greater than 1013 particles per milliliter. In another embodiment the silver nanoplates are prepared at an optical density of at least 10, 20, 50, 100, 300, 500, 1000 and/or 2000 cm−1 before incubating with the substrate. In various embodiments the silver nanoplates are prepared at an optical density of between 10-100, 20-200, 30-300, 50-500, 100-1000, 200-1000, 300-1000, 500-1000, or 200-2000. In another embodiment the substrate is chemically treated to increase the binding of the nanoplates to the substrate. For example, the substrate could be functionalized with a molecule that yielded a positively or negatively charged surface. In another embodiment, the pH of the incubating solution is selected in order to optimize binding. In another embodiment, the silver nanoplates cover at least 5%, 10%, 20%, 30%, 50% or 75% of the substrate. In various embodiments, the silver nanoplates cover between 5% to 10%, 10% to 100%, 10% to 50%, 50% to 100%, 30% to 100%, 30% to 70%, 40% to 80%, 50% to 90%, 60% to 100%, 70% to 100%, 80% to 100%, 90% to 100%, 0% to 5%, o % to 10%, 0% to 20%, 0% to 30%, or 0% to 50% of the substrate. In another embodiment, other solvents or chemicals are added to the incubation solution. In another embodiment a biological linker (e.g. antibodies, peptides, DNA) is used to bind the high optical density silver nanoplates to the surface of the substrate. In one embodiment, the incubation is for less than 1 minute, 5 minutes, 20 minutes, 60 minutes, or 120 minutes. In various embodiments, the incubation is between 0 to 1 minute, 1 minute to 120 minutes, 5 minutes to 120 minutes, 20 minutes to 120 minutes, 60 minutes to 120 minutes, 5 minutes to 60 minutes, 10 minutes to 60 minutes, 20 minutes to 60 minutes, 0 minutes to 10 minutes, 0 minutes to 20 minutes, or 0 minutes to 5 minutes.


In one embodiment, the substrate is separated from the incubating solution and dried. The substrate can be dried using air drying, heat drying, freeze drying, or supercritical drying. In another embodiment the dried substrate can be further processed by soaking the substrate in another material, painting the substrate with another material, or exposing the substrate to another material that is in the vapor phase.


Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as disclosing certain embodiments of the invention only, with a true scope and spirit of the invention being indicated by the following claims.


The subject matter described herein may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting. While embodiments are susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited.


The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “identifying a target region of skin tissue” include “instructing the identification of a target region of skin tissue.”


The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” or “substantially” include the recited numbers. For example, “about 3 mm” includes “3 mm.” The terms “approximately”, “about” and/or “substantially” as used herein represent an amount or characteristic close to the stated amount or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount or characteristic.


EXAMPLES

The description of specific examples below are intended for purposes of illustration only and are not intended to limit the scope of the invention disclosed herein.


Example 1: Silver Nanoplates

Silver nanoplates were synthesized using silver seeds prepared through the reduction of silver nitrate with sodium borohydride in the presence of sodium citrate tribasic and poly sodium styrene sulfonate under aqueous conditions. Silver seed preparation: 21.3 mL of an aqueous 2.5 mM sodium citrate tribasic solution was allowed to mix under magnetic stirring. 1 mL of a 2 g/L poly styrene sodium sulfonate (PSSS) solution was then prepared in a separate beaker. 21.3 mL of a 0.5 mM silver nitrate solution was then prepared by dissolving the salt in water. Once the above solutions have been prepared, 1.33 mL of a 0.5 mM sodium borohydride solution was prepared in 4° C. water. The borohydride and PSSS solutions were then added to the beaker containing the citrate and allowed to mix. The silver nitrate solution was then pumped into the citrate solution using a peristaltic pump at a rate of 100 mL/min. This seed solution was then allowed to stir overnight at room temperature. Silver nanoplates were prepared by mixing 1530 mL Milli-Q water with 35 mL of a 10 mM ascorbic acid solution. Once the solution was sufficiently mixed, the prepared silver seed was added to the reactor. 353 mL of a 2 mM silver nitrate solution was pumped into the reactor at a rate of 100 mL/min. The reaction was mixed for two hours. TEM analysis showed that over 70% of the particles are nanoplates. The optical density of the solution was 2.8 cm−1.


Example 2: Concentrated Silver Nanoplates

15 L of silver nanoplates with a peak optical density of about 5 cm−1 were mixed with 3.5 g of polyvinylalcohol (PVA) and sodium borate, concentrated using tangential flow filtration using a 500 kD polysulfone tangential flow membrane with 3100 cm2 of surface area. The solution was concentrated for approximately 90 minutes, and the final solution volume was reduced from 15 L to 0.5 L. The silver nanoplate solution optical density was increase to about 150 cm−1. Thus, according to one embodiment, a method for increasing a silver nanoplate solution from 5 cm−1 to 150 cm−1 (e.g., an increase of roughly 30 times the optical density) comprises the steps of adding PVA and sodium borate to silver nanoplates, and concentrating the solution with tangential flow filtration.


Example 3: Concentrated Silver Nanoplates

In one example of concentrating silver nanoplates, 1.2 L of silver nanoplates with a peak optical density of about 4 cm−1 were mixed with 4 L of anhydrous ethanol and about 49 mL of ammonium hydroxide solution. 0.6 mL of a dilute aminopropyltriethoxysilane (APTES) was added to the solution. After 15 minutes of incubation, 6.5 mL of tetraethylorthosilicate (TEOS) solution was added. After 24 hours 1 L of the solution was concentrated using a 500 kD polysulfone tangential flow membrane with 1050 cm2 of surface area. The final solution volume was decreased to 150 mL, increasing the silver nanoparticle solution optical density to about 40 cm−1. Thus, according to one embodiment, a method for increasing a silver nanoplate solution from 4 cm−1 to 40 cm−1 (e.g., an increase of roughly 10 times the optical density) comprises the steps of adding anhydrous ethanol, ammonium hydroxide solution, aminopropyltriethoxysilane (APTES), and tetraethylorthosilicate (TEOS) to the silver nanoplates, and concentrating the solution with tangential flow filtration.


Example 4: Nanoplates with a Silica Shell

A silica shell was grown on the surface of 800 nm resonant (˜75 nm edge length) polyvinylpyrrolidone (PVP) capped silver nanoplates. 400 mL of a solution of 800 nm resonant PVP capped silver nanoplates at a concentration of 2 mg/mL (20 cm−1 O.D.) was added to 2.3 L of reagent grade ethanol and 190 mL Milli-Q water under constant stirring. 4.3 mL of dilute aminopropyl triethoxysilane (215 uL APTES in 4.085 mL isopropanol) was then added to the solution, followed immediately by the addition of 44 mL of 30% ammonium hydroxide. After 15 minutes of incubation, 31 mL of dilute tetraethylorthosilicate (1.55 mL TEOS in 29.45 mL isopropanol) was added to the solution. The solution was then left to stir overnight. The nanoplates were then centrifuged on an Ultra centrifuge at 17000 RCF for 15 minutes and reconstituted in Milli-Q water each time and repeated twice. The silica shell thickness was 15 nm. The optical density of the concentrated material was 2040 cm−1.


Example 5

A 40 mL solution of 40 O.D. solution of concentrated silver nanoplates stabilized with polyvinylalcohol and sodium borate was spun at 3000 RCF for 30 minutes. The supernatant was removed and the pellet was re-dispersed with bath sonication. The concentrated silver nanoplates had an optical density greater than 900 O.D. as is shown in FIG. 8.


Example 6: Concentrated Nanoplates on a Substrate

A 5 mL solution of 1000 O.D. silver nanoplates was added to a 3″×3″ section of absorbent cloth (Absorber Synthetic Drying Chamois, Clean Tools). After addition, the substrate was allowed to air dry. Once dried, the silver nanoplates were bound to the surface of the absorbent cloth and were not released when the cloth was subsequently wet and water removed by applying pressure.


REFERENCES



  • Aherne, D. L., D. M.; Gara, M.; Kelly, J. M., 2008: Optical Properties and Growth Aspects of Silver Nanoprisms Produced by Highly Reproducible and Rapid Synthesis at Room Temperature. Advanced Materials, 18, 2005-2016.

  • Chen, S., and D. L. Carroll, 2003: Controlling 2-dimensional growth of silver nanoplates. Self-Assembled Nanostructured Materials Symposium (Mater. Res. Soc. Symposium Proceedings Vol. 775), 343-348|xiii+394.

  • Chen, S. H., and D. L. Carroll, 2002: Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2, 1003-1007.

  • Chen, S., and D. L. Carroll, 2004: Silver nanoplates: Size control in two dimensions and formation mechanisms. Journal of Physical Chemistry B, 108, 5500-5506.

  • Chen, S. H., Z. Y. Fan, and D. L. Carroll, 2002: Silver nanodisks: Synthesis, characterization, and self-assembly. Journal of Physical Chemistry B, 106, 10777-10781.

  • Hao, E., G. C. Schatz, and J. T. Hupp, 2004: Synthesis and optical properties of anisotropic metal nanoparticles. Journal of Fluorescence, 14, 331-341.

  • Hao, E. K., K. L.; Hupp, J. T.; Schatz, G. C., 2002: Synthesis of Silver Nanodisks using Polystyrene Mesospheres as Templates. J Am Chem Soc, 124, 15182-15183.

  • He, X. Z., X.; Chen, Y.; Feng, J., 2008: The evidence for synthesis of truncated silver nanoplates in the presence of CTAB. Materials Characterization, 59, 380-384.

  • Jin, R., Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, 2001: Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science, 294, 1901-1903.

  • Jin, R., Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, and C. A. Mirkin, 2003: Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 425, 487.

  • Le Guevel, X. W., F. Y.; Stranik, O.; Nooney, R.; Gubala, V.; McDonagh, C.; MacCraith, B. D., 2009: Synthesis, Stabilization, and Functionalization of Silver Nanoplates for Biosensor Applications. J Phys Chem C, 113, 16380-16386.

  • Metraux, G. S. M., C. A; 2005: Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness. Advanced Materials, 17, 412-415.

  • Schultz, R. K.; Myers, R. R; 1969: The Chemorheology of Poly(vinyl alcohol)-Borate Gels. Macromolecules, 2, 281-285.

  • Xiong, Y. J., A. R. Siekkinen, J. G. Wang, Y. D. Yin, M. J. Kim, and Y. N. Xia, 2007: Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 17, 2600-2602.

  • Xue, C. M., C. A., 2007: pH-Switchable Silver Nanoprism Growth Pathways. Angew Chem Int Ed, 46, 2036-2038.



Each of the references listed above is incorporated by reference in its entirety.

Claims
  • 1. A process for making concentrated silver nanoplates that preserve shape post-concentration while increasing optical density, the process comprising: adding a stabilizing agent to a pre-concentrated solution, wherein the stabilizing agent comprises at least one of the group consisting of: an aminopropyltriethoxysilane (APTES), an amine moiety, a lipoic acid, a mercaptohexadecanoic acid, a mercaptoundecanoic acid, and a dihydrolipoic acid;wherein the pre-concentrated solution comprises silver nanoplates,wherein each of the silver nanoplates has a plate shape,wherein the pre-concentrated solution has a peak optical density at a first wavelength; andincreasing a concentration of the silver nanoplates in the pre-concentrated solution to generate a concentrated solution,wherein the concentrated solution has a peak optical density at a second wavelength,wherein the first wavelength is substantially the same as the second wavelength, wherein the peak optical density of the concentrated solution is greater than the peak optical density of the pre-concentrated solution, andwherein at least a portion of the silver nanoplates in the pre-concentrated solution retain the plate shape in the concentrated solution, wherein the peak optical density of the concentrated solution is at least ten times higher than the peak optical density of the pre-concentrated solution and wherein the peak optical density of the concentrated solution is at least 100 cm−1.
  • 2. The process of claim 1, wherein the second wavelength of the concentrated solution is in a range between 300 nm and 1500 nm, andwherein at least one optical property of the concentrated solution is substantially the same as the pre-concentrated solution in that the peak optical density of the pre-concentrated solution and the peak optical density of the concentrated solution occurs at substantially the same wavelength, andwherein the portion of the silver nanoplates that retain the plate shape is greater than 90% in the concentrated solution.
  • 3. The process of claim 1, wherein the silver nanoplates are prepared via a seed mediated growth mechanism,wherein the seed mediated growth mechanism comprises: combining citrate, polystyrene sodium sulfonate (PSSS), and sodium borohydride in a first solution,adding silver nitrate to the first solution to form a seed solution,adding a portion of the seed solution to a second solution, wherein the second solution comprises ascorbic acid, andadding silver nitrate to the second solution to form the pre-concentrated solution.
  • 4. The process of claim 1, wherein increasing the concentration is performed using a filter membrane with pores with a molecular weight cutoff in a range between 10 kDa and 0.05 micron.
  • 5. The process of claim 1, further comprising coating the silver nanoplates with silica, wherein coating the silver nanoplates with silica comprises: adding ethanol to the pre-concentrated solution,adding a base to the pre-concentrated solution, andadding a silane to the pre-concentrated solution.
  • 6. The process of claim 1, wherein the stabilizing agent comprises at least one of the group consisting of: an aminopropyltriethoxysilane (APTES) and an amine moiety.
  • 7. The process of claim 1, wherein the stabilizing agent comprises at least one of the group consisting of: a lipoic acid, a mercaptohexadecanoic acid, a mercaptoundecanoic acid, and a dihydrolipoic acid.
  • 8. The process of claim 1, further comprises adding a stabilizing agent containing a polymer, wherein the polymer is a polystyrene sodium sulfonate.
  • 9. The process of claim 1, further comprising forming a metal oxide shell on the surface of the silver nanoplate.
  • 10. The process of claim 9, wherein the metal oxide shell is any of the group consisting of: a silica shell and a titanium dioxide shell, wherein the metal oxide shell has a thickness in a range between 1 nm to 100 nm.
  • 11. The process of claim 1, wherein the portion of the concentrated silver nanoplates that retain the plate shape after increasing the concentration is greater than 80%.
  • 12. The process of claim 1, wherein the pre-concentrated solution is centrifuged.
  • 13. The process of claim 1, where the pre-concentrated solution is incubated with a substrate, wherein the substrate comprises a fiber.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/947,508, filed Nov. 20, 2015 and issued as U.S. Pat. No. 9,526,745, which is a continuation of U.S. application Ser. No. 14/681,379, filed Apr. 8, 2015 and issued as U.S. Pat. No. 9,212,294, which is a continuation of International Application No. PCT/US2013/063920, filed Oct. 8, 2013 and published in English as WO 2014/058904 on Apr. 17, 2014, which claims the benefit of priority from U.S. Provisional Application 61/795,149, filed on Oct. 11, 2012, each of which is incorporated by reference in its entirety, herein. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (359)
Number Name Date Kind
4526698 Kuroda et al. Jul 1985 A
5226907 Tankovich Jul 1993 A
5385729 Prencipe et al. Jan 1995 A
5409797 Hosoi et al. Apr 1995 A
5423337 Ahlert et al. Jun 1995 A
5423803 Tankovich et al. Jun 1995 A
5425728 Tankovich Jun 1995 A
5553630 Dupuis et al. Sep 1996 A
5562643 Johnson Oct 1996 A
5593680 Bara et al. Jan 1997 A
5647866 Zains et al. Jul 1997 A
5655547 Karni Aug 1997 A
5695747 Forestier et al. Dec 1997 A
5713845 Tankovich Feb 1998 A
5750120 Miguel-Colombel May 1998 A
5752949 Tankovich et al. May 1998 A
5756110 Allard et al. May 1998 A
5759767 Lakowicz Jun 1998 A
5776440 Forestier et al. Jul 1998 A
5810801 Anderson et al. Sep 1998 A
5814311 Le Bras-Roulier et al. Sep 1998 A
5817089 Tankovich et al. Oct 1998 A
5830177 Li et al. Nov 1998 A
5858381 Le Bras et al. Jan 1999 A
5863522 Forestier et al. Jan 1999 A
5925035 Tankovich Jul 1999 A
5955091 Hansenne Sep 1999 A
5958389 Le Bras-Roulier et al. Sep 1999 A
5985300 Crotty et al. Nov 1999 A
6004567 Marchi-Lemann et al. Dec 1999 A
6036684 Tankovich et al. Mar 2000 A
6050990 Tankovich et al. Apr 2000 A
6060041 Candau et al. May 2000 A
6063074 Tankovich May 2000 A
6080127 Li et al. Jun 2000 A
6132392 Stone Oct 2000 A
6132745 Marchi-Lemann et al. Oct 2000 A
6147982 Sourour et al. Nov 2000 A
6152917 Tankovich Nov 2000 A
6165440 Esenaliev Dec 2000 A
6168590 Neev Jan 2001 B1
6183728 Forestier et al. Feb 2001 B1
6183773 Anderson Feb 2001 B1
6235270 Ishii et al. May 2001 B1
6238650 Lapidot et al. May 2001 B1
6267771 Tankovich Jul 2001 B1
6283956 McDaniel Sep 2001 B1
6287549 Sumian et al. Sep 2001 B1
6333026 Lemann Dec 2001 B1
6344050 Chen Feb 2002 B1
6344272 Oldenburg et al. Feb 2002 B1
6355054 Neuberger Mar 2002 B1
6365145 Ben-Hur et al. Apr 2002 B1
6403653 Hobson et al. Jun 2002 B1
6410603 Hobson et al. Jun 2002 B1
6428811 West et al. Aug 2002 B1
6461595 Leo et al. Oct 2002 B1
6491929 Anderson Dec 2002 B1
6517820 Robert Feb 2003 B1
6521241 Minerath, III et al. Feb 2003 B1
6530944 West et al. Mar 2003 B2
6534044 Wada et al. Mar 2003 B1
6541017 Lemann et al. Apr 2003 B1
6589538 Lemann et al. Jul 2003 B1
6600951 Anderson Jul 2003 B1
6611707 Prausnitz et al. Aug 2003 B1
6620407 Gers-Barlag et al. Sep 2003 B1
6645517 West et al. Nov 2003 B2
6660381 Halas et al. Dec 2003 B2
6663658 Kollias et al. Dec 2003 B1
6676655 McDaniel Jan 2004 B2
6685730 West et al. Feb 2004 B2
6685927 Sumian et al. Feb 2004 B2
6685986 Oldenburg et al. Feb 2004 B2
6692755 Gers-Barlag et al. Feb 2004 B2
6699724 West et al. Mar 2004 B1
6706032 Weaver et al. Mar 2004 B2
6720006 Hanke et al. Apr 2004 B2
6767547 Gers-Barlag et al. Jul 2004 B2
6793913 Tournilhac et al. Sep 2004 B2
6800122 Anderson et al. Oct 2004 B2
6803049 Gers-Barlag et al. Oct 2004 B2
6811770 Ferrari et al. Nov 2004 B2
6814760 Anderson et al. Nov 2004 B2
6821509 Soane et al. Nov 2004 B2
6838088 Gers-Barlag et al. Jan 2005 B2
6852252 Halas et al. Feb 2005 B2
6881249 Anderson et al. Apr 2005 B2
6887260 McDaniel May 2005 B1
6897238 Anderson May 2005 B2
6942878 Ishii et al. Sep 2005 B2
6955639 Hainfeld et al. Oct 2005 B2
6989151 Gers-Barlag et al. Jan 2006 B2
7008647 Burrell et al. Mar 2006 B2
7018396 Sierra et al. Mar 2006 B2
7037513 Traynor et al. May 2006 B1
7081128 Hart Jul 2006 B2
7131446 Tang et al. Nov 2006 B2
7144627 Halas et al. Dec 2006 B2
7201765 McDaniel Apr 2007 B2
7270721 Hilfenhaus et al. Sep 2007 B2
7328708 Malak Feb 2008 B2
7367934 Hainfeld et al. May 2008 B2
7371457 Oldenburg et al. May 2008 B2
7435524 Anderson et al. Oct 2008 B2
7462496 Malak Dec 2008 B2
7492458 Malak Feb 2009 B2
7494503 McDaniel Feb 2009 B2
7530940 Hainfeld et al. May 2009 B2
7648595 Jin et al. Jan 2010 B2
7659301 Anderson Feb 2010 B2
7704754 Malak Apr 2010 B2
7758561 Eppstein Jul 2010 B2
7758888 Lapidot et al. Jul 2010 B2
7776130 Mirkin et al. Aug 2010 B2
7780955 Cassin Aug 2010 B2
7785623 Keller Aug 2010 B2
7790066 Wang et al. Sep 2010 B2
7829073 Martin et al. Nov 2010 B2
7959624 Riesinger Jun 2011 B2
8033977 Hainfeld et al. Oct 2011 B2
8057418 Korbling et al. Nov 2011 B2
8062701 McClure et al. Nov 2011 B2
8118032 Malak Feb 2012 B2
8178202 Halas et al. May 2012 B2
8182786 O'Brien et al. May 2012 B2
8197471 Tersigni Jun 2012 B1
8268332 Manstein Sep 2012 B2
8268638 Stein et al. Sep 2012 B2
8285391 Malak Oct 2012 B2
8377427 Giroud et al. Feb 2013 B2
8420062 Josso Apr 2013 B2
8518445 Alfano et al. Aug 2013 B2
8591924 Zheng Nov 2013 B2
8613913 Chang et al. Dec 2013 B2
8617580 Toledano et al. Dec 2013 B2
8652495 Porter et al. Feb 2014 B2
8802154 Harris et al. Aug 2014 B2
8821940 Harris et al. Sep 2014 B2
8821941 Harris et al. Sep 2014 B2
8834447 Chen et al. Sep 2014 B2
8834933 Harris et al. Sep 2014 B2
8871711 Cotsarelis et al. Oct 2014 B2
8895071 Harris et al. Nov 2014 B1
8906418 Harris et al. Dec 2014 B1
8961450 Anderson et al. Feb 2015 B2
9061056 Harris et al. Jun 2015 B2
9212294 Oldenburg et al. Dec 2015 B2
9249334 Oldenburg et al. Feb 2016 B2
9421259 Harris et al. Aug 2016 B2
9421260 Harris et al. Aug 2016 B2
9421261 Harris et al. Aug 2016 B2
9427467 Harris et al. Aug 2016 B2
9433676 Harris et al. Sep 2016 B2
9433677 Harris et al. Sep 2016 B2
9433678 Harris et al. Sep 2016 B2
9439964 Harris et al. Sep 2016 B2
9439965 Harris et al. Sep 2016 B2
9446126 Harris et al. Sep 2016 B2
9572880 Harris et al. Feb 2017 B2
20010002275 Oldenburg et al. May 2001 A1
20020009488 Francis et al. Jan 2002 A1
20020034480 Grimm et al. Mar 2002 A1
20020041854 Hadasch et al. Apr 2002 A1
20020061363 Halas et al. May 2002 A1
20020103517 West et al. Aug 2002 A1
20020132045 Halas et al. Sep 2002 A1
20020187172 Reb et al. Dec 2002 A1
20020192298 Burrell et al. Dec 2002 A1
20030060811 McDaniel Mar 2003 A1
20030072728 Soane et al. Apr 2003 A1
20030095941 Anderson May 2003 A1
20030099718 Burrell et al. May 2003 A1
20030118657 West et al. Jun 2003 A1
20030156991 Halas et al. Aug 2003 A1
20030167080 Hart et al. Sep 2003 A1
20030170189 Victor Sep 2003 A1
20030215638 Charnay et al. Nov 2003 A1
20040006328 Anderson Jan 2004 A1
20040151673 Josso Aug 2004 A1
20040157237 Malak et al. Aug 2004 A1
20040166508 Pawlak et al. Aug 2004 A1
20040170579 Mobius Sep 2004 A1
20040197286 Robert et al. Oct 2004 A1
20040219179 McDaniel Nov 2004 A1
20040253138 Malak Dec 2004 A1
20040253757 Gourlaouen et al. Dec 2004 A1
20050031655 Karpov Feb 2005 A1
20050031658 Girier Dufournier et al. Feb 2005 A1
20050037034 Rhoades Feb 2005 A1
20050044642 Butcher Mar 2005 A1
20050048546 Penn et al. Mar 2005 A1
20050049582 DeBenedictis et al. Mar 2005 A1
20050053629 Ueda et al. Mar 2005 A1
20050058672 Gupta Mar 2005 A1
20050058678 Ricard et al. Mar 2005 A1
20050059030 Bao et al. Mar 2005 A1
20050130324 West et al. Jun 2005 A1
20050137656 Malak Jun 2005 A1
20050142605 Malak Jun 2005 A1
20050146724 Malak Jul 2005 A1
20050164169 Malak Jul 2005 A1
20050169866 Hannich et al. Aug 2005 A1
20050175649 Disalvo et al. Aug 2005 A1
20050177093 Barry et al. Aug 2005 A1
20050186235 Martin et al. Aug 2005 A1
20050186565 Malak Aug 2005 A1
20050187128 Martin et al. Aug 2005 A1
20050203495 Malak Sep 2005 A1
20050220741 Dumousseaux Oct 2005 A1
20050229334 Huang et al. Oct 2005 A1
20050256554 Malak Nov 2005 A1
20050283145 Malak Dec 2005 A1
20060078578 Sandewicz et al. Apr 2006 A1
20060083762 Brun et al. Apr 2006 A1
20060257336 Ferrari et al. Nov 2006 A1
20070032781 Henry et al. Feb 2007 A1
20070065387 Beck et al. Mar 2007 A1
20070078290 Esenaliev Apr 2007 A1
20070092471 Cassier et al. Apr 2007 A1
20070104605 Hampden-Smith et al. May 2007 A1
20070125383 Ko Jun 2007 A1
20070154903 Marla et al. Jul 2007 A1
20070158611 Oldenburg Jul 2007 A1
20070160636 Kasai Jul 2007 A1
20070160896 Malak et al. Jul 2007 A1
20070166248 L'Alloret et al. Jul 2007 A1
20070183992 Dumousseaux et al. Aug 2007 A1
20070196305 Wang et al. Aug 2007 A1
20070208400 Nadkarni et al. Sep 2007 A1
20070217996 Levy et al. Sep 2007 A1
20070231940 Gourlaouen et al. Oct 2007 A1
20080045865 Kislev Feb 2008 A1
20080050448 Wilson et al. Feb 2008 A1
20080077203 Malak Mar 2008 A1
20080188558 Godal et al. Aug 2008 A1
20080204742 Halas et al. Aug 2008 A1
20080208179 Chan et al. Aug 2008 A1
20080214988 Altshuler et al. Sep 2008 A1
20080233060 Grune Sep 2008 A1
20080234535 Malak et al. Sep 2008 A1
20080241262 Lee et al. Oct 2008 A1
20080248001 Bourke Oct 2008 A1
20080288007 Malak Nov 2008 A1
20080294116 Wolter et al. Nov 2008 A1
20080305337 Berning et al. Dec 2008 A1
20090012445 Malak Jan 2009 A1
20090022765 Chung et al. Jan 2009 A1
20090022766 Geddes Jan 2009 A1
20090053268 DePablo et al. Feb 2009 A1
20090071168 Malak Mar 2009 A1
20090123509 Berkland et al. May 2009 A1
20090130445 Malak May 2009 A1
20090175915 Maitra et al. Jul 2009 A1
20090177122 Peterson Jul 2009 A1
20090217465 Cremer et al. Sep 2009 A1
20090226521 Smyth et al. Sep 2009 A1
20090246142 Bhatia et al. Oct 2009 A1
20090291107 Schehlmann et al. Nov 2009 A1
20090326358 Malak Dec 2009 A1
20090326614 El-Sayed et al. Dec 2009 A1
20100002282 Agrawal et al. Jan 2010 A1
20100016782 Oblong Jan 2010 A1
20100016783 Bourke, Jr. et al. Jan 2010 A1
20100040549 Halas et al. Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100055138 Margulies Mar 2010 A1
20100056485 Park Mar 2010 A1
20100057068 Lee Mar 2010 A1
20100104652 Biris et al. Apr 2010 A1
20100119610 Schoen et al. May 2010 A1
20100143431 Landau et al. Jun 2010 A1
20100172994 Sigmund et al. Jul 2010 A1
20100174223 Sakamoto et al. Jul 2010 A1
20100204686 Yarolslaysky et al. Aug 2010 A1
20100224026 Brennan Fournet et al. Sep 2010 A1
20100233222 Girier Dufournier et al. Sep 2010 A1
20100254920 L'Alloret et al. Oct 2010 A1
20100260700 Dop Oct 2010 A1
20100266647 Dingley et al. Oct 2010 A1
20100266649 Maitra et al. Oct 2010 A1
20100272789 Satoh et al. Oct 2010 A1
20100284924 Zink et al. Nov 2010 A1
20100291166 Guyot-Ferreol et al. Nov 2010 A1
20100291224 Tong et al. Nov 2010 A1
20100298758 Christansen et al. Nov 2010 A1
20100303716 Jin et al. Dec 2010 A1
20100305495 Anderson et al. Dec 2010 A1
20100323996 Ute et al. Dec 2010 A1
20110021970 Vo-Dinh et al. Jan 2011 A1
20110034855 Esenaliev Feb 2011 A1
20110052672 Krishnan et al. Mar 2011 A1
20110091572 Davidson Apr 2011 A1
20110097285 Malak Apr 2011 A1
20110111002 Pop May 2011 A1
20110117202 Bourke, Jr. et al. May 2011 A1
20110144030 Ramis Castelltort et al. Jun 2011 A1
20110159291 Sun et al. Jun 2011 A1
20110168200 Bourdin et al. Jul 2011 A1
20110223255 Thiesen et al. Sep 2011 A1
20110229559 Prestidge et al. Sep 2011 A1
20110240556 Hoek et al. Oct 2011 A1
20110288234 Pandey Nov 2011 A1
20110306955 Thorhauge et al. Dec 2011 A1
20120021030 Matsufuji et al. Jan 2012 A1
20120059307 Harris et al. Mar 2012 A1
20120101007 Ahern et al. Apr 2012 A1
20120141380 Margel et al. Jun 2012 A1
20120283328 Modi Nov 2012 A1
20120289955 Marc Nov 2012 A1
20130017238 Porter et al. Jan 2013 A1
20130022655 Sachweh et al. Jan 2013 A1
20130023714 Johnston et al. Jan 2013 A1
20130183244 Hanes et al. Jul 2013 A1
20130195979 Tersigni Aug 2013 A1
20130216596 Viladot Petit et al. Aug 2013 A1
20130225901 Krishnan et al. Aug 2013 A1
20130251825 Berry Sep 2013 A1
20130315650 Cassin et al. Nov 2013 A1
20130315999 Paithankar et al. Nov 2013 A1
20130323305 Paithankar et al. Dec 2013 A1
20130338545 Azhari et al. Dec 2013 A1
20140005593 Harris et al. Jan 2014 A1
20140012162 Harris et al. Jan 2014 A1
20140012163 Harris et al. Jan 2014 A1
20140012183 Harris et al. Jan 2014 A1
20140030300 Maitra et al. Jan 2014 A1
20140105982 Oldenburg et al. Apr 2014 A1
20140120041 Prencipe et al. May 2014 A1
20140120167 Lapotko et al. May 2014 A1
20140120168 Oldenburg et al. May 2014 A1
20140194900 Sedic Jul 2014 A1
20140205546 Macoviak Jul 2014 A1
20140206712 Gant et al. Jul 2014 A1
20140243934 Vo-Dinh et al. Aug 2014 A1
20140271889 Messersmith et al. Sep 2014 A1
20140303525 Sitharaman Oct 2014 A1
20140316387 Harris et al. Oct 2014 A1
20140316394 Quidant et al. Oct 2014 A1
20140371654 Harris et al. Dec 2014 A1
20140371655 Harris et al. Dec 2014 A1
20140371656 Harris et al. Dec 2014 A1
20140371658 Harris et al. Dec 2014 A1
20140371659 Harris et al. Dec 2014 A1
20140371661 Harris et al. Dec 2014 A1
20140371662 Harris et al. Dec 2014 A1
20140371663 Harris et al. Dec 2014 A1
20140371664 Harris et al. Dec 2014 A1
20150005691 Harris et al. Jan 2015 A1
20150045723 Paithankar et al. Feb 2015 A1
20150165180 Anderson et al. Jun 2015 A1
20150190341 Paithankar et al. Jul 2015 A1
20150196359 Paithankar et al. Jul 2015 A1
20150196452 Meyer et al. Jul 2015 A1
20150196639 Lando et al. Jul 2015 A1
20150225599 Oldenburg et al. Aug 2015 A1
20160287741 Harris et al. Oct 2016 A1
20160310527 Paithankar et al. Oct 2016 A1
20180325594 Paithankar Nov 2018 A1
Foreign Referenced Citations (123)
Number Date Country
3905167 Aug 1989 DE
4344141 Jul 1995 DE
10342258 Apr 2005 DE
10351611 Aug 2005 DE
102004002990 Aug 2005 DE
102005007482 Sep 2006 DE
102007020554 Oct 2008 DE
102008006844 Jan 2009 DE
102008052187 Apr 2010 DE
409690 Sep 1993 EP
518772 Nov 1994 EP
518773 Feb 1995 EP
555460 May 1995 EP
614656 Oct 1996 EP
586484 Jan 1998 EP
0601130 Aug 1998 EP
0712322 Apr 1999 EP
0925807 Jun 1999 EP
0860123 Jan 2002 EP
966954 Feb 2002 EP
1112325 May 2003 EP
1185242 Aug 2005 EP
1201219 Dec 2005 EP
1210600 Apr 2006 EP
1325730 Oct 2006 EP
1506764 Apr 2007 EP
1506763 Jul 2007 EP
1506765 Jul 2007 EP
1506766 Jul 2007 EP
1529513 Mar 2008 EP
1317245 May 2008 EP
1677843 Aug 2008 EP
1744789 Aug 2008 EP
1768749 Oct 2008 EP
1267801 Dec 2008 EP
1559393 May 2009 EP
1559394 Mar 2010 EP
1208005 Apr 2010 EP
1861465 Oct 2010 EP
1502574 Nov 2010 EP
1167462 Dec 2010 EP
2231283 Sep 2012 EP
988853 Oct 2012 EP
1263447 Jun 2013 EP
2396010 Aug 2013 EP
2416752 Sep 2013 EP
1267747 Jan 2014 EP
1959914 May 2014 EP
2343047 Jan 2016 EP
20100204 Oct 2010 IE
H09-501087 Feb 1997 JP
2005-503388 Feb 2005 JP
2005507887 Mar 2005 JP
2001505099 Apr 2007 JP
2007510466 Apr 2007 JP
200869097 Mar 2008 JP
2008519642 Jun 2008 JP
2010-524591 Jul 2010 JP
2012527967 Nov 2012 JP
20080004173 Jan 2008 KR
WO1991006894 May 1991 WO
WO1995033518 Dec 1995 WO
WO199620698 Jul 1996 WO
WO1996041579 Dec 1996 WO
WO1997000098 Jan 1997 WO
WO9822031 May 1998 WO
WO 199822031 May 1998 WO
WO199824507 Jun 1998 WO
WO199946351 Sep 1999 WO
WO200002590 Jan 2000 WO
WO2000040266 Jul 2000 WO
WO200105586 Jan 2001 WO
WO200106257 Jan 2001 WO
WO200158458 Aug 2001 WO
WO2002085385 Oct 2002 WO
WO2003026481 Apr 2003 WO
WO03026600 Apr 2003 WO
WO2004058352 Jul 2004 WO
WO2004086044 Oct 2004 WO
WO2005046793 May 2005 WO
WO2005077329 Aug 2005 WO
WO2005092286 Oct 2005 WO
WO2006051542 May 2006 WO
WO2006122222 Nov 2006 WO
WO2008079758 Jul 2008 WO
WO2008079760 Jul 2008 WO
WO2008079898 Jul 2008 WO
WO2008106966 Sep 2008 WO
WO2009061349 May 2009 WO
WO2009117124 Sep 2009 WO
WO2009130689 Oct 2009 WO
WO2009124189 Oct 2009 WO
WO2010073260 Jul 2010 WO
WO2010109545 Sep 2010 WO
WO2010116345 Oct 2010 WO
WO2010116346 Oct 2010 WO
WO2010137580 Dec 2010 WO
WO2010144257 Dec 2010 WO
WO 2011013101 Feb 2011 WO
WO2011031871 Mar 2011 WO
WO2011095970 Aug 2011 WO
WO2011116963 Sep 2011 WO
WO2012027728 Mar 2012 WO
WO2012035029 Mar 2012 WO
WO2012059944 May 2012 WO
WO2013106998 Jul 2013 WO
WO2013106999 Jul 2013 WO
WO2013107000 Jul 2013 WO
WO2013107001 Jul 2013 WO
WO2013107002 Jul 2013 WO
WO2013107349 Jul 2013 WO
WO2013107350 Jul 2013 WO
WO2013107351 Jul 2013 WO
WO2013107352 Jul 2013 WO
WO2013107353 Jul 2013 WO
WO2013107354 Jul 2013 WO
WO2013158278 Oct 2013 WO
WO2013160362 Oct 2013 WO
WO2013169955 Nov 2013 WO
WO2014026142 Feb 2014 WO
WO2014052973 Apr 2014 WO
WO2014145784 Sep 2014 WO
WO2017083819 May 2017 WO
Non-Patent Literature Citations (78)
Entry
Aherne, et al. “Optical Properties and Growth Aspects of Silver Nanoprisms Produced by Highly Reproducible and Rapid Synthesis at Room Temperature.” Advanced Materials, Adv. Funct. Mater. Jul. 9, 2008, v18, 2005-2016.
Amirthalingam et al. “Use of Silica-Gold Core Shell Structure Nanoparticles for Targeted Drug Delivery System” J. Nanomedic Nanotechnol 2:119, (2011) vol. 2, Issue 6.
Ammad et al. “An assessment of the efficacy of blue light phototherapy in the treatment of acne vulgaris.” J. Cosmet Dermatol, 2008, 7: 180-188.
Bukasov et al. “Nano Letters—Highly tunable infrared extinction properties of gold nanocrescents.” American Chemical Society, vol. 7, No. 5 May 2007, published on web Apr. 14, 2007.
Charles et al. “Versatile Solution Phase Triangular Silver Nanoplates for Highly Sensitive Plasmon Resonance Sensing” American Chemical Society NANO, v4, No. 1 p. 55-64, Dec. 23, 2009.
Chen et al. “Controlling 2-dimensional growth of silver nanoplates.” Self-Assembled Nanostructured Materials Symposium. Mat. Res. Soc. Symp. Proc. vol. 775, 343-348|xiii+394. (2003).
Chen et al. “Silver nanodisks: Synthesis, characterization, and self-assembly.” J. Phys. Chem. B, vol. 106, No. 42, 2002 10777-10781. (Published Sep. 21, 2002).
Chen, et al. “Silver nanoplates: Size control in two dimensions and formation mechanisms.” J. Phys. Chem. B 2004, 108, 5500-5506 Journal of Physical Chemistry B, 108, 5500-5506. (Published Apr. 14, 2004).
Chen, et al. “Synthesis and characterization of truncated triangular silver nanoplates.” Nano Letters, 2002, 2 (9), 1003-1007. (Published Jul. 26, 2002).
Choudhary and Elsaie, M.L. “Photodynamic therapy in dermatology: a review.” Lasers Med Sci., 2009, 24:971-980.
Dierickx, et al. “Photodynamic Therapy for Nevus Sebaceus With Topical d-Aminolevulinic Acid”, Arch Dermatol, vol. 135, Jun. 1993, pp. 637-640.
Divaris, et al. “Phototoxic Damage to Sebaceous Glands and Hair Follicles of Mice After Systemic Administration of 5-Aminolevulinic Acid Correlates with Localized Protoporphyrin IX Florescence”, American Journal of Pathology, vol. 136, No. 4, Apr. 1990, pp. 891-897.
Donnelly et al. “Photosensitiser delivery for photodynamic therapy. Part 1: Topical carrier platforms.” Expert Opin Drug Deliv. 2008, 5:757-766.
Ghaffarpour, Azizjalali M. et al., “CO2 Laser therapy versus cryotherapy in treatment of genital warts; a Randomized Controlled Trial (RCT)”, Iranian Journal of Microbiology, vol. 4, No. 4, Dec. 2012, 187-190.
Gollnick et al. “Can we define acne as a chronic disease? If so, how and when?” Am J Clin Dermatol, 2008, 9:279-284.
Grachtchouk et al. “Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations.” J Clin Invest, 2011, 121: 1768-1781.
Grams et al. “Permeant lipophilicity and vehicle composition influence accumulation of dyes in hair follicles of human skin,” Eur J Pharm Sci, 2003, 18:329-336.
Hao E. K., et al. “Synthesis of Silver Nanodisks using Polystyrene Mesospheres as Templates.” J Am Chem Soc, 124, 15182-15183. (Published Nov. 22, 2002).
Hao E., et al. “Synthesis and optical properties of anisotropic metal nanoparticles.” Journal of Fluorescence, vol. 14, No. 4, Jul. 2004, 331-341. (Published Jul. 2004).
He et al. “Surface Plasmon Resonances of Silver Triangle Nanoplates: Graphic Assignments of Resonance Modes and Linear Fittings of Resonance Peaks” J. Phys. Chem. B 2005, 109, 17503-17511 (Published Aug. 20, 2005).
He, et al. “The evidence for synthesis of truncated silver nanoplates in the presence of CTAB.” Materials Characterization, 59, 380-384. (Published 2008).
Hongcharu, et al. “Topical ALA-Photodynamic Therapy for the Treatment of Acne Vulgaris”, Journal of Invest. Dermatology, vol. 115, No. 2, Aug. 2000, pp. 183-192 (10 pages).
Huang et al. Microemulsification of triglyceride sebum and the role of interfacial structure on bicontinuous phase behavior.: Langmuir, 2004, 20:3559-3563.
Jiang et al. “A self-seeding coreduction method for shape control of silver nanoplates” Nanotechnology 17 (2006) 4929-4935 (Published Sep. 11, 2006).
Jin et al. “Photoinduced Conversion of Silver Nanospheres to Nanoprisms.” Science, v 294, 1901-1903. (Published Nov. 30, 2001).
Jin, et al. “Controlling anisotropic nanoparticle growth through plasmon excitation.” Nature, v. 425, 487-490 (Published Oct. 2, 2003).
Kjeldstad, et al. “Changes in Polyphosphate Composition and Localization in Propionibacterium Acnes After Near-Ultraviolet Irradiation”, Canadian Journal of Microbiology, vol. 37, No. 7, Jul. 1991, 562-567 (Abstract, 1 Page).
Knorr et al. “Follicular transport route-research progress and future perspectives.” Eur J Pharm Biopharm, 2009, 71:173-180.
Koenig, et al. “Photodynamic-Induced Inactivation of Propionibacterium Acnes”, SPIE Proceedings, SPIE-Int. Soc. Opt. Eng., 106-110, vol. 3247, Jan. 1998 (Abstract, 3 Pages).
Konig, et al. “Photodynamic Activity of Methylene Blue”, Aktuelle Dermatol, vol. 19, 1993, pp. 195-198.
Konig, et al. “Photodynamically Induced Inactivation of Propionibacterium Acnes Using the Photosensitizer Methylene Blue and Red Light”, Dermatologische Monatsschrift (Dermatol Monatsschr), vol. 178, Apr. 1992, pp. 297-300.
Kulkarni et al., “Effect of Experimental Temperature on the Permeation of Model Diffusants Across Porcine Buccal Mucosa” AAPS PharmSciTech. Jun. 2011; 12(2)579.
Lademann et al. “Nanoparticles-an efficient carrier for drug delivery into the hair follicles.” Eur J Pharm Biopharm, 2007, 66:159-164.
Lazare, M. What are Cold Sores (Herpetic Lesions)?, http://www.drmarclazare.com/laser-treatments-for-cold-soresherpetic-lesions/, dated Jul. 8, 2014.
Le Guevel, et al. “Synthesis, Stabilization, and Functionalization of Silver Nanoplates for Biosensor Applications.” J Phys Chem C, 113, 16380-16386. (Published Aug. 21, 2009).
Lewicka et al. “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials.” IOP Publishing, Nanotechnology 24: Feb. 28, 2013.
Lloyd, et al. “Selective Photothermolysis of the Sebaceous Glands for Acne Treatment”, Lasers in Surgery and Medicine, vol. 31, 2002, pp. 115-120.
Mallon et al. “The quality of life in acne: a comparison with general medical conditions using generic questionnaires.” Br J Dermatol, 1999, 140:672-676.
Maltzahn, Geoffrey von, et al., “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas” Cancer Res 2009; 69: (9) Published online Apr. 14, 2009 as 10.11158/008-5472.CAN-08-4242.
Meidan, V.M. “Methods for quantifying intrafollicular drug delivery: a critical appraisal.” Expert Opin Drug Deliv, 2010, 7:1095-1108.
Metraux, G. S. M. et al “Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness.” Advanced Materials, 2005, 17, No. 4, 412-415. (Published Feb. 23, 2005).
Mills, et al. “Ultraviolet Phototherapy and Photochemotherapy of Acne Vulgaris”, Arch Dermatol, vol. 114, No. 2, Feb. 1978 (Abstract, 2 pages).
Mitragotri et al. “Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport.” J Pharm Sci, 2000, 89:892-900.
Mortensen et al. “In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR.” Nano Lett, 2008, 8:2779-2787.
Mutzhas, et al. “A New Apparatus with High Radiation Energy Between 320-460 nm: Physical Description and Dermatological Applications”, The Journal of Investigative Dermatology, vol. 76, No. 1, Jan. 1981, pp. 42-47.
Nanni, C.A. and Alster, T.S. (1997). “Optimizing treatment parameters for hair removal using a topical carbon-based solution and 1064-nm Q-switched neodymium: YAG laser energy.” Arch Dermatol, 1997, 133:1546-1549.
Pento, et al. “Delta-Aminolevulinic Acid”, Drugs of the Future, vol. 22, No. 1, 1997, pp. 11-17.
Phillips, et al. “Medical Progress: Recent Advances in Dermatology”, New England Journal Of Medicine, vol. 326, No. 3, Jan. 1992, pp. 1-9 (167-176).
Polat et al. “Ultrasound-mediated transdermal drug delivery: Mechanisms, scope, and emerging trends.” J Control Release, 2011, 152:330-348.
Rallis, Tena M., “Low-Intensity Laser Therapy for Recurrent Herpes Labialis” The Journal of Investigative Dermatology, vol. 115, No. 1 Jul. 2000.
Rogers et al. “Hair removal using topical suspension-assisted Q-switched Nd: YAG and long-pulsed alexandrite lasers: A comparative study.” Dermatol Surg, 1999, 25:844-844; discussion 848-850.
Sakamoto et al. “Photodynamic therapy for acne vulgaris: A critical review from basics to clinical practice: Part 1, Acne Vulgaris: When and why consider photodynamic therapy?” Journal of the American Academy of Dermatology, 2010, 63:183-193.
Sakamoto et al. “Photodynamic therapy for acne vulgaris: A critical review from basics to clinical practice: Part II. Understanding parameters for acne treatment with photodynamic therapy.” Journal of the Academy of Dermatology, 2010, 63:195-211.
Schultz, et al. “The Chemorheology of Poly(vinyl alcohol)-Borate Gels.” Macromolecules, vol. 2, No. 3, 281-285. (Published May-Jun. 1969).
Sellheyer, K. “Basal cell carcinoma: cell of origin, cancer stem cell hypothesis and stem cell markers.” Br J Dermatol, 2011, 164:696-711.
Sellheyer, K. (2007). “Mechanisms of laser hair removal: could persistent photoepilation induce vitiligo or defects in wound repair?” Dermatol Surg, 2007, 33:055-1065.
Shershen et al. “Temperature-Sensitive Polymer—Nanoshell Composites For Photothermally Modulated Drug Delivery” Journal of Biomedical Materials Research; vol. 51, Issue 3, pp. 293-298 (Jun. 28, 2000).
Wainwright, Mark “Non-Porphyrin Photosensitizers in Biomedicine”, Chemical Society Reviews, 1996, pp. 351-359.
West et al. “Applications Of Nanotechnology To Biotechnology” Current Opinion in Biotechnology 2000, 11:215-217; Published Apr. 1, 2000.
Wong, S.Y., and Reiter, J.F. “Wounding mobilizes hair follicle stem cells to form tumors.” Proc Natl Acad Sci USA, 2011, 108:4093-4098.
Xiong, et al. “Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide.” Journal of Materials Chemistry, 17, 2600-2602. (Published May 17, 2007).
Xue, et al. “pH-Switchable Silver Nanoprism Growth Pathways.” Angew. Chem. Int. Ed., 46, 2036-2038. (Published Feb. 13, 2007).
Zhao, W., and Karp, J.M. “Tumour targeting: Nanoantennas heat up.” Nat Mater, 2009, 8:453-454.
Prosecution history of U.S. Appl. No. 13/789,575, including a 37 CFR 1.131 declaration over US Publication 2014/0005593 with U.S. Appl. No. 14/020,481, now U.S. Pat. No. 8,821,941. The 131 declaration is dated Dec. 31, 2014 (submission date to USPTO).
Prosecution history of U.S. Appl. No. 13/789,575, namely an Amendment and a Suggestion for Declaration of Interference (with Appendices) over US Publication 2014/0005593 with U.S. Appl. No. 14/020,481, now U.S. Pat. No. 8,821,941. The Amendment and Suggestion for Declaration of Interference (with Appendices) and related documentation is dated Jul. 28, 2015 (submission date to USPTO) (Part 1 of 5).
Prosecution history of U.S. Appl. No. 13/789,575, namely Exhibits from a Suggestion for Declaration of Interference over US Publication 2014/0005593 with U.S. Appl. No. 14/020,481, now U.S. Pat. No. 8,821,941. The Exhibits from a Suggestion for Declaration of Interference and related documentation is dated Jul. 28, 2015 (submission date to USPTO) (Part 2 of 5).
Prosecution history of U.S. Appl. No. 13/789,575, namely Exhibits from a Suggestion for Declaration of Interference over US Publication 2014/0005593 with U.S. Appl. No. 14/020,481, now U.S Pat. No. 8,821,941. The Exhibits from a Suggestion for Declaration of Interference and related documentation is dated Jul. 28, 2015 (submission date to USPTO) (Part 3 of 5).
Prosecution history of U.S. Appl. No. 13/789,575, namely Exhibits from a Suggestion for Declaration of Interference over US Publication 2014/0005593 with U.S. Appl. No. 14/020,481, now U.S. Pat. No. 8,821,941. The Exhibits from a Suggestion for Declaration of Interference and related documentation is dated Jul. 28, 2015 (submission date to USPTO) (Part 4 of 5).
Prosecution history of U.S. Appl. No. 13/789,575, namely Exhibits from a Suggestion for Declaration of Interference over US Publication 2014/0005593 with U.S. Appl. No. 14/020,481, now U.S. Pat. No. 8,821,941. The Exhibits from a Suggestion for Declaration of Interference and related documentation is dated Jul. 28, 2015 (submission date to USPTO) (Part 5 of 5).
Prosecution history of U.S. Appl. No. 13/789,575, namely an amendment in view of a Suggestion for Declaration of Interference over US Publication 2014/0005593 with U.S. Appl. No. 14/020,481, now U.S. Pat. No. 8,821,941. The amendment and related documentation is dated Aug. 19, 2015 (submission date to USPTO).
Prosecution history of U.S. Appl. No. 13/789,575, namely an Advisory Action further to a Suggestion for Declaration of Interference over US Publication 2014/0005593 with U.S. Appl. No. 14/020,481, now U.S. Pat. No. 8,821,941. The Advisory Action and related documentation is dated Aug. 21, 2015 (mailing date from USPTO).
Patent Interference document—Declaration of Interference between Senior Party U.S. Pat. No. 8,821,941 and Junior Party U.S. Appl. No. 13/789,575 (U.S. Patent and Trademark Office, Patent Interference No. 106,037 (DK) Paper 1, dated Oct. 8, 2015).
Alexandrite Laser Hair Removal; Journal of the Japan Society of Aesthetic Surgery, v. 36, No. 1, Jan. 1999.
American Society for Laser Medicine and Surgery Abstracts, 32nd ASLMS Annual Conference, Abstract #LB3 at p. 351, titled Selective Photothermolysis of the Sebaceous Follicle with Gold-Coated Nanoshells for the Treatment of Acne; Kauvar, Lloyd, Cheung, Zabinska, Owczarek, Majewski, Farinelli, Anderson, Sakamoto (Abstract #LB3 at p. 351: Wileyonlinelibrary.com, Wiley Periodicals, Inc. Published Apr. 10, 2012).
Contrasting Properties of Gold Nanoparticles for Optical Coherence Tomography: Phantom, in vivo studies and Monte Carlo simulation; Zagaynova et al; Phys. Med. Biol. 53 (2008) 499-5009; Published Aug. 18, 2008.
New Attempts for Treatment by Electrical Incineration; Skin Surgery V. 11, No. 2, Nov. 2002 (Japanese translation).
Rother K. “Diabetes Treatment—Bridging the Divide”, N Engl J Med. 356:15, published Apr. 12, 2007.
Vogt A. et al. “40 nm, but not 750 or 1,500 nm, Nanoparticles Enter Epidermal CD1a + Cells after Transcutaneous Application on Human Skin”, Journal of Investigative Dermatology (2006) 126, 1316-1322, published Apr. 13, 2006.
Related Publications (1)
Number Date Country
20170087183 A1 Mar 2017 US
Provisional Applications (1)
Number Date Country
61795149 Oct 2012 US
Continuations (3)
Number Date Country
Parent 14947508 Nov 2015 US
Child 15374942 US
Parent 14681379 Apr 2015 US
Child 14947508 US
Parent PCT/US2013/063920 Oct 2013 US
Child 14681379 US