This invention relates to methods and systems for using guided waves to detect defects in conduits, such as pipes, and more particularly to simulating signals reflected from such defects.
Long-range guided-wave inspection is an effective method for rapidly surveying long structures for defects such as cracks and corrosion pits. Using this method, a short pulse of guided waves at a typical frequency of below 100 kHz is launched within a structure being tested. This incident pulse is reflected from a geometric irregularity in the structure. The reflected signals are detected in a pulse-echo mode.
This method of inspection is presently in practical use for inspection of piping networks in processing plants, and oil and gas transmission pipelines. When applied to piping, the guided wave technique can typically detect defects as small as 2-3% relative to the pipe wall cross sectional area, over a length of 30 meters on either side of a test probe position. In addition to detecting the presence or absence of defects, the defect signals resulting from long-range guided-wave inspection can be used to characterize defects. For example, defects can be characterized in terms of planar or volumetric, depth, axial extent, and circumferential extent.
In order to characterize defects from the defect signals, it is necessary to understand how defect signal waveforms relate to defect characteristics. When the waveform-defect characteristic relationship is established, algorithms relating these relationships may be developed. Modeling simulation of waveforms of defect signals from arbitrary-shaped defects is necessary for establishing relationships between the defect signal characteristics and the defect characteristics.
There are several known techniques for modeling guided-wave interaction with defects, such as finite element analysis, boundary element analysis, and related hybrid methods. Because these methods are tedious and computationally intensive, their use has been limited to two-dimensional modeling of guided wave interactions with simple geometry defects, such as a notch that is infinitely long in a plate or completely circumferential in a pipe. Presently, complex and expensive three-dimensional modeling is required to handle interactions with finite-sized and arbitrary-shaped defects and to simulate defect waveforms.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
The method and system described herein are directed to simulating waveforms reflected from a defect in a conduit, where the incident wave is a long range guided wave. These reflected signals are referred to herein as “defect signals”.
The conduit is typically piping, as in the examples used herein. However, the conduit need not be circular in diameter. For example, the conduit could be tubing having a rectangular cross section. The method is particularly useful for generating simulated defect signals in piping having arbitrarily shaped defects, such as loss of pipe wall material due to erosion, corrosion and gouging.
The method is easy and computationally fast. It may be implemented with programming for conventional computing devices, such as personal computers.
The incident pulse 130 and the defect signal 140 are representative of signals transmitted by the transmitter and detector elements of a guided wave inspection system, such as is known in the art. The transmitter delivers the incident pulse 130 into a conduit, and after a round trip excursion time, the defect signal 140 is received by the detector.
As explained below, the method described herein simulates a reflected defect signal, such as signal 140, from any arbitrarily shaped defect. The method is performed by treating guided wave interactions with defects as a one dimensional problem of plane wave reflections from a boundary of different acoustic impedances. A waveform representing a defect is simulated using an electrical transmission line model and a fast Fourier transform (FFT) techniques.
Specifically, the defective region of the pipe 200 is represented as having N layers 220. Each layer 220 has an associated acoustic impedance, Z1, Z2, . . . ZN. The impedance of the pipe 200 without defects is represented as Zp. As explained below, these impedances may be used to compute an overall effective input impedance of the defective region 210.
Step 320 is calculating a circumferential cross-sectional area, An, for each of the N layers. The acoustic impedance, Zn, of each layer is treated as being proportional to the respective cross-sectional area, An, of each layer.
Step 330 is calculating an overall effective input impedance, Zdeff, of the defective region, over the band of frequency spectrum of the incident pulse. This overall effective input impedance is equal to the input impedance of the overall layer, Zn+1I. It may be calculated using the recursion relation for the input impedance of two successive layers:
Zn+1I=Zn[ZnI+jZn tan(kζn)]/[Zn+jZnI tan(kζn)],
where ZN+1I is the complex input impedance of layers up to n; k is the wave number of the incident wave; ζn is the thickness of the nth layer, and Z1I =Zp is the acoustic impedance of the pipe without defects. Further, the acoustic impedance of each nth layer, Zn, is determined by the relation:
Zn=ρVAn,
where ρ is the density of the pipe material, V is the velocity of guided waves in the pipe material, and An is the cross-sectional area of the nth layer.
Step 340 is computing a reflection coefficient, R(ω), from the defect at angular wave frequency, ω, over the band of frequency spectrum contained in the transmitted incident guided wave. The effective input impedance and the impedance of the pipe without defects are input parameters to this calculation. The following equation is used:
R(ω)=(Zdeff −Zp)/(Zdeff +Zp)
Step 350 is determining the spectral amplitude, E0(ω), of the incident signal at each frequency. This may be accomplished by performing a Fast Fourier Transform (FFT) on a representation of the incident signal in the time domain.
Step 360 is multiplying the computed reflection coefficient, R(ω), times the spectral amplitude of the incident wave signal, E0(ω).
Step 370 is performing an inverse Fast Fourier Transform on the product obtained in Step 360. The result is a simulated defect signal waveform in a time domain representation.
The incident wave (simulated and actual) was a 64 kHz pulse of an L(O,2) wave. The incident pulse has a waveform that is approximately the same as the upper simulated waveform 410 shown in
The defects used for simulating and measuring the waveforms of
The defect 640 of
The defect shown in
The invented method applies to defects whose extent in the lengthwise (axial) direction of the pipe is equal to or larger than one-fourth of the wavelength at the center frequency of the incident wave. For volumetric effects having an axial extent less than one-fourth of the wavelength and for planar defects such as cracks, the formula for wave reflection at boundaries of two different impedances may be used:
R(ω)=(Zd−Zp)/(Zd+Zp),
where Zd=ρVAd, and Ad is the minimum circumferential cross-sectional area of the pipe wall in the defect region.
An important advantage of the present invention over other methods is that it simulates defect signals quickly and easily without extensive computation and mesh preparation, as required by other methods.
Step 710 is storing a set of simulated defect signals. These signals are simulated, using a variety of simulated defects in conduits similar to a conduit to be inspected.
Step 720 is receiving a measured defect signal from the conduit under inspection. Known guided wave transducers and detectors may be used to acquire measured signals from actual defects. There are various approaches to long range guided wave testing, and various types of probes may be used for such testing. Examples of suitable probes are magnetostrictive sensor probes and piezoelectric transducer probes. The measured signal is digitized and input to a processing device.
Step 730 is matching the measured signal to a stored simulated signal. Various data processing techniques may be used to find a best match. For example, known techniques of pattern recognition may be used for such comparisons.
Step 740 is characterizing the actual defect, based on the result of the matching step. For example, if the best match of the measured defect signal is to a simulated signal from a defect having a certain size and shape, the actual defect may be assumed to have a similar size and shape.
The probe outputs are delivered to a processing system 813, which has memory and processing components suitable for implementing the method described herein. Processing system 813 is programmed with instructions for carrying out the method of
Although the present invention has been described in detail with reference to certain preferred embodiments, it should be apparent that modifications and adaptations to those embodiments might occur to persons skilled in the art without departing from the spirit and scope of the present invention.
This application claims the benefit of U.S. Provisional Application No. 60/520,410, filed Nov.13, 2003 and entitled “SYSTEM AND METHOD FOR SIMULATION OF GUIDED WAVE DEFECT SIGNALS”.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Government Contract No. F33615-97-D-5271 awarded by the United States Air Force.
Number | Name | Date | Kind |
---|---|---|---|
4213183 | Barron et al. | Jul 1980 | A |
5581037 | Kwun et al. | Dec 1996 | A |
6000288 | Kwun et al. | Dec 1999 | A |
6173074 | Russo | Jan 2001 | B1 |
6250160 | Koch et al. | Jun 2001 | B1 |
6282962 | Koch et al. | Sep 2001 | B1 |
6360609 | Wooh | Mar 2002 | B1 |
6561032 | Hunaidi | May 2003 | B1 |
6581014 | Sills et al. | Jun 2003 | B2 |
6766693 | Light et al. | Jul 2004 | B1 |
6925881 | Kwun et al. | Aug 2005 | B1 |
6968727 | Kwun et al. | Nov 2005 | B2 |
20020035437 | Tingley | Mar 2002 | A1 |
20020149488 | Kechter et al. | Oct 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050182613 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
60520410 | Nov 2003 | US |