Single action tissue sealer

Information

  • Patent Grant
  • 10188452
  • Patent Number
    10,188,452
  • Date Filed
    Tuesday, May 3, 2016
    8 years ago
  • Date Issued
    Tuesday, January 29, 2019
    5 years ago
Abstract
An endoscopic bipolar forceps includes a housing and a shaft, the shaft having an end effector assembly at its distal end. The end effector assembly includes two jaw members for grasping tissue therebetween. The jaw members are adapted to connect to an electrosurgical energy source which enable them to conduct energy through the tissue to create a tissue seal. A drive assembly is disposed within the housing which moves the jaw members. A switch is disposed within the housing which activates the electrosurgical energy. A knife assembly is included which is advanceable to cut tissue held between the jaw members. A movable handle is connected to the housing. Continual actuation of the movable handle engages the drive assembly to move the jaw members, engages the switch to activate the electrosurgical energy source to seal the tissue, and advances the knife assembly the cut the tissue disposed between the jaw members.
Description
BACKGROUND

The present disclosure relates to an electrosurgical forceps and more particularly, the present disclosure relates to an endoscopic bipolar electrosurgical forceps for manipulating, clamping, sealing and cutting tissue in a single action.


TECHNICAL FIELD

Electrosurgical forceps utilize both mechanical clamping action and electrical energy to affect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.


Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from about three millimeters to about 12 millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who look for ways to make endoscopic instruments that fit through the smaller cannulas.


Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.


It is thought that the process of coagulating vessels is fundamentally different from electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.


In order to effectively seal larger vessels (or tissue) two predominant mechanical parameters should be accurately controlled—the pressure applied to the vessel (tissue) and the gap distance between the electrodes—both of which are affected by the thickness of the sealed vessel. More particularly, accurate application of pressure is important to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a typical fused vessel wall is optimum between about 0.001 and about 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.


With respect to smaller vessels, the pressure applied to the tissue tends to become less relevant whereas the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as vessels become smaller.


As mentioned above, in order to properly and effectively seal larger vessels or tissue, a greater closure force between opposing jaw members is required. It is known that a large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a design challenge because the jaw members are typically affixed with pins which are positioned to have small moment arms with respect to the pivot of each jaw member. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the pins. As a result, designers compensate for these large closure forces by either designing instruments with metal pins and/or by designing instruments which at least partially offload these closure forces to reduce the chances of mechanical failure. As can be appreciated, if metal pivot pins are employed, the metal pins should be insulated to avoid the pin acting as an alternate current path between the jaw members which may prove detrimental to effective sealing.


Increasing the closure forces between electrodes may have other undesirable effects, e.g., it may cause the opposing electrodes to come into close contact with one another which may result in a short circuit and a small closure force may cause pre-mature movement of the tissue during compression and prior to activation. As a result thereof, providing an instrument which consistently provides the appropriate closure force between opposing electrodes within a preferred pressure range will enhance the chances of a successful seal. As can be appreciated, relying on a surgeon to manually provide the appropriate closure force within the appropriate range on a consistent basis would be difficult and the resultant effectiveness and quality of the seal may vary. Moreover, the overall success of creating an effective tissue seal is greatly reliant upon the user's expertise, vision, dexterity, and experience in judging the appropriate closure force to uniformly, consistently and effectively seal the vessel. In other words, the success of the seal would greatly depend upon the ultimate skill of the surgeon rather than the efficiency of the instrument.


It has been found that the pressure range for assuring a consistent and effective seal is between about 3 kg/cm2 to about 16 kg/cm2 and, desirably, within a working range of about 7 kg/cm2 to about 13 kg/cm2. Manufacturing an instrument which is capable of providing a closure pressure within this working range has been shown to be effective for sealing arteries, tissues and other vascular bundles.


Various force-actuating assemblies have been developed in the past for providing the appropriate closure forces to affect vessel sealing. For example, one such actuating assembly has been developed by Valleylab, Inc., of Boulder Colo., a division of Tyco Healthcare LP, for use with Valleylab's vessel sealing and dividing instrument commonly sold under the trademark LIGASURE ATLAS®. This assembly includes a four-bar mechanical linkage, a spring and a drive assembly which cooperate to consistently provide and maintain tissue pressures within the above working ranges. The LIGASURE ATLAS® is presently designed to fit through a 10 mm cannula and includes a bi-lateral jaw closure mechanism which is activated by a foot switch. A trigger assembly extends a knife distally to separate the tissue along the tissue seal. A rotating mechanism is associated with distal end of the handle to allow a surgeon to selectively rotate the jaw members to facilitate grasping tissue. Co-pending U.S. application Ser. Nos. 10/179,863 and 10/116,944 and PCT Application Serial Nos. PCT/US01/01890 and PCT/7201/11340 describe in detail the operating features of the LIGASURE ATLAS® and various methods relating thereto. The contents of all of these applications are hereby incorporated by reference herein.


It would be desirous to develop an instrument that reduces the number of steps it takes to perform the tissue seal and cut. Preferably, the instrument would be able to manipulate, clamp, seal and cut tissue in a single action (e.g., by squeezing a handle).


SUMMARY

The present disclosure relates to an endoscopic bipolar forceps which includes a housing and a shaft affixed to the distal end of the housing. Preferably, the shaft includes a diameter such that the shaft is freely insertable through a trocar. The shaft also includes a longitudinal axis defined therethrough and a pair of first and second jaw members attached to a distal end thereof. The forceps includes a drive assembly for moving the first jaw member relative to the second member from a first position wherein the jaw members are disposed in spaced relation relative to each other to a second position wherein the jaw members cooperate to grasp tissue therebetween. A movable handle is included which is rotatable about a pivot located above the longitudinal axis of the shaft. Movement of the movable handle mechanically cooperates with internal components to move the jaw members from the open and closed positions, to clamp tissue, to seal tissue and to cut tissue. Advantageously, the pivot is located a fixed distance above the longitudinal axis to provide lever-like mechanical advantage to a drive flange of the drive assembly. The drive flange is located generally along the longitudinal axis. The forceps is connected to a source of electrosurgical energy which carries electrical potentials to each respective jaw member such that the jaw members are capable of conducting bipolar energy through tissue held therebetween to affect a tissue seal.


The forceps includes a switch disposed within the housing which is electromechanically connected to the energy source. Advantageously, the switch allows a user to supply bipolar energy to the jaw members to affect a tissue seal. The switch is activated by contact from a cutter lever or the movable handle itself when a user continues to compress the movable handle after the tissue has been clamped.


The forceps includes an advanceable knife assembly for cutting tissue in a forward direction along the tissue seal. The knife assembly is advanced when a user continues to compress the movable handle after the tissue has been sealed, forcing the cutter lever forward. A rotating assembly may also be included for rotating the jaw members about the longitudinal axis defined through the shaft.


In one embodiment, the movable jaw member includes a first electrical potential and the fixed jaw member includes a second electrical potential. A lead connects the movable jaw member to the first potential and a conductive tube (which is disposed through the shaft) conducts a second electrical potential to the fixed jaw member. Advantageously, the conductive tube is connected to the rotating assembly to permit selective rotation of the jaw members.


In one embodiment, the drive assembly includes a reciprocating sleeve which upon activation of the movable handle, translates atop the rotating conductive tube to move the movable jaw member relative to the fixed jaw member. In one embodiment, the movable jaw member includes a detent which extends beyond the fixed jaw member which is designed for engagement with the reciprocating sleeve such that, upon translation thereof, the movable jaw member moves relative to the fixed jaw member. Advantageously, a spring is included with the drive assembly to facilitate actuation of the movable handle and to ensure the closure force is maintained within the working range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, about 7 kg/cm2 to about 13 kg/cm2


In one embodiment, at least one of the jaw members includes a series of stop members disposed thereon for regulating the distance between the jaw members (i.e., creating a gap between the two opposing jaw members) during the sealing process. As can be appreciated, regulating the gap distance between opposing jaw members along with maintaining the closing pressure to within the above-described ranges will produce a reliable and consistent tissue seal.


The present disclosure also relates to an endoscopic bipolar forceps which includes a shaft having a movable jaw member and a fixed jaw member at a distal end thereof. The forceps also includes a drive assembly for moving the movable jaw member relative to the fixed jaw member from a first position wherein the movable jaw member is disposed in spaced relation relative to the fixed jaw member to a second position wherein the movable jaw member is closer to the fixed jaw member for manipulating tissue. A movable handle is included which actuates the drive assembly to move the movable jaw member.


The forceps connects to a source of electrosurgical energy which is conducted to each jaw member such that the jaw members are capable of conducting bipolar energy through tissue held therebetween to affect a tissue seal. Advantageously, the forceps also includes a selectively advanceable knife assembly for cutting tissue in a distal direction along the tissue seal and a stop member disposed on at least one of the jaw members for regulating the distance between jaw members during sealing.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1 is a partial schematic view of one embodiment of an endoscopic bipolar forceps having a movable thumb handle in an unactuated position according to one aspect of the present disclosure;



FIG. 2 is a partial schematic view of the forceps of FIG. 1 illustrated in a partially actuated position;



FIG. 3 is a partial schematic view of another embodiment of an endoscopic bipolar forceps having a movable finger handle illustrated in a partially actuated position;



FIG. 4 is an enlarged, perspective view of an end effector assembly with jaw members shown in an open configuration;



FIG. 5 is an enlarged, side view of the end effector assembly of FIG. 4;



FIG. 6 is an enlarged, perspective view of the tissue contacting side of an upper jaw member of the end effector assembly;



FIG. 7 is an enlarged, broken perspective view showing the end effector assembly and highlighting a cam-like closing mechanism which cooperates with a reciprocating pull sleeve to move the jaw members relative to one another;



FIG. 8 is a full perspective view of the end effector assembly of FIG. 7;



FIG. 9 is a left, perspective view of a rotating assembly, drive assembly, knife assembly and lower jaw member according to the present disclosure;



FIG. 10 is a rear, perspective view of the rotating assembly, drive assembly and knife assembly;



FIG. 11 is an enlarged, top, perspective view of the end effector assembly with parts separated;



FIG. 12 is an enlarged, perspective view of the knife assembly;



FIG. 13 is an enlarged, perspective view of the rotating assembly;



FIG. 14 is an enlarged, perspective view of the drive assembly;



FIG. 15 is an enlarged, perspective view of the knife assembly with parts separated;



FIG. 16 is an enlarged view of the indicated area of detail of FIG. 15;



FIG. 17 is a greatly-enlarged, perspective view of a distal end of the knife assembly;



FIG. 18 is a greatly-enlarged, perspective view of a knife drive of the knife assembly;



FIG. 19 is an enlarged, perspective view of the rotating assembly and lower jaw member with parts separated;



FIG. 20 is a cross section along line 20-20 of FIG. 19;



FIG. 21 is a greatly-enlarged, perspective view of the lower jaw member;



FIG. 22 is an enlarged, perspective view of the drive assembly;



FIG. 23 is an enlarged perspective view of the drive assembly of FIG. 22 with parts separated;



FIG. 24 is a greatly-enlarged, cross section of the shaft taken along line 24-24 of FIG. 25;



FIG. 25 is a side, cross section of the shaft and end effector assembly;



FIG. 26 is a greatly-enlarged, perspective view of a handle assembly and latch mechanism for use with the forceps;



FIG. 27 is a greatly-enlarged view of an end effector;



FIG. 28 is a greatly-enlarged view of the drive assembly;



FIG. 29 is an enlarged, rear, perspective view of the end effector shown grasping tissue;



FIG. 30 is an enlarged view of a tissue seal;



FIG. 31 is a side, cross section of a tissue seal taken along line 31-31 of FIG. 30;



FIG. 32 is an enlarged view of the end effector showing distal translation of the knife; and



FIG. 33 is a side, cross section of a tissue seal after separation by the knife assembly.





DETAILED DESCRIPTION

Turning now to FIGS. 1-3, one embodiment of an endoscopic bipolar forceps 10 is shown for use with various surgical procedures and generally includes a housing 20, a handle assembly 30, a rotating assembly 80, an end effector assembly 100, a knife assembly 140 (see FIGS. 10, 12, 15-18), a drive assembly 150, a switch 500 and a latch assembly 600 which all mutually cooperate to grasp, seal and divide tubular vessels and vascular tissue 420 (FIG. 29). Although the majority of the figure drawings depict a bipolar forceps 10 for use in connection with endoscopic surgical procedures, the present disclosure may be used for more traditional open surgical procedures. For the purposes herein, the forceps 10 is described in terms of an endoscopic instrument, however, it is contemplated that an open version of the forceps may also include the same or similar operating components and features as described below.


Forceps 10 includes a shaft 12 which has a distal end 16 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 14 which mechanically engages the housing 20. In the drawings and in the descriptions which follow, the term “proximal,” as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end which is farther from the user.


Forceps 10 also includes an electrosurgical cable 310 which connects the forceps 10 to a source of electrosurgical energy, e.g., a generator (not shown). Generators such as those sold by Valleylab—a division of Tyco Healthcare LP, located in Boulder, Colo. are contemplated for use as a source of electrosurgical energy, e.g., FORCE EZ™ Electrosurgical Generator, FORCE FX™ Electrosurgical Generator, FORCE 1C™, FORCE 2™ Generator, SurgiStat™ II. One such system is described in commonly-owned U.S. Pat. No. 6,033,399 entitled “ELECTROSURGICAL GENERATOR WITH ADAPTIVE POWER CONTROL,” the entire contents of which are hereby incorporated by reference herein. Other systems have been described in commonly-owned U.S. Pat. No. 6,187,003 entitled “BIPOLAR ELECTROSURGICAL INSTRUMENT FOR SEALING VESSELS,” the entire contents of which are also incorporated by reference herein.


In one embodiment, the generator includes various safety and performance features including isolated output, independent activation of accessories. In one embodiment, the electrosurgical generator includes Valleylab's Instant Response™ technology features which provide an advanced feedback system to sense changes in tissue 200 times per second and adjust voltage and current to maintain appropriate power. The Instant Response™ technology is believed to provide one or more of the following benefits to surgical procedure:


Consistent clinical effect through all tissue types;


Reduced thermal spread and risk of collateral tissue damage;


Less need to “turn up the generator”; and


Designed for the minimally invasive environment.


Cable 310 is internally divided into cable leads (not shown) which each transmit electrosurgical energy through their respective feed paths through the forceps 10 to the end effector assembly 100. A detailed discussion of the cable leads and their connections through the forceps 10 is described in commonly-assigned, co-pending U.S. application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS” by Dycus et al., which is hereby incorporated by reference in its entirety herein.


Handle assembly 30 includes a fixed handle 50, a movable handle 40, a cutter lever 700 and a handle detent 710. Fixed handle 50 is integrally associated with housing 20 and movable handle 40 is movable relative to fixed handle 50 as explained in more detail below with respect to the operation of the forceps 10.


In one embodiment, rotating assembly 80 is integrally associated with the housing 20 and is rotatable approximately 180 degrees in either direction about a longitudinal axis “A” (FIGS. 1 and 3). Details of the rotating assembly 80 are described in more detail with respect to FIGS. 9 and 10.


Housing 20 may be formed from two housing halves (not shown) which each include a plurality of interfaces which are dimensioned to mechanically align and engage one another to form housing 20 and enclose the internal working components of forceps 10. A detailed discussion of the housing halves and how they mechanically engage with one another is described in commonly-assigned, co-pending U.S. application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS” by Dycus et al., which is hereby incorporated by reference in its entirety herein.


It is envisioned that a plurality of additional interfaces (not shown) may be disposed at various points around the periphery of housing halves for ultrasonic welding purposes, e.g., energy direction/deflection points. It is also contemplated that housing halves (as well as the other components described below) may be assembled together in any fashion known in the art. For example, alignment pins, snap-like interfaces, tongue and groove interfaces, locking tabs, adhesive ports, etc. may all be utilized either alone or in combination for assembly purposes.


Rotating assembly 80 includes two halves 82a and 82b (see FIGS. 13 and 19) which, when assembled, form the rotating assembly 80 which, in turn, houses the drive assembly 150 and the knife assembly 140. Half 82b includes a series of detents/flanges 375a, 375b, 375c and 375d which are dimensioned to engage a pair of corresponding sockets or other mechanical interfaces (not shown) disposed within rotating half 82a. In one embodiment, movable handle 40 is of unitary construction and is operatively connected to the housing 20 and the fixed handle 50 during the assembly process.


As mentioned above, end effector assembly 100 is attached at the distal end 14 of shaft 12 and includes a pair of opposing jaw members 110 and 120. Movable handle 40 of handle assembly 30 is in mechanical cooperation with drive assembly 150 which, together, mechanically cooperate to impart movement of the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue 420 (FIG. 29) therebetween.


It is envisioned that jaw members 110 and 120 of end effector assembly 100 may be curved (as illustrated in FIG. 3) in order to reach specific anatomical structures and promote more consistent seals for certain procedures. For example, it is contemplated that dimensioning the jaw members 110 and 120 at an angle of about 45 degrees to about 70 degrees is preferred for accessing and sealing specific anatomical structures relevant to prostatectomies and cystectomies, e.g., the dorsal vein complex and the lateral pedicles. Other angles may be preferred for different surgical procedures. Such an end effector assembly with curved jaw members is described in commonly-assigned, co-pending U.S. application Ser. No. 10/834,764 entitled “ELECTROSURGICAL INSTRUMENT WHICH REDUCES DAMAGE TO ADJACENT TISSUE,” by Dycus et al., which is hereby incorporated by reference in its entirety herein.


It is envisioned that the forceps 10 may be designed such that it is fully or partially disposable depending upon a particular purpose or to achieve a particular result. For example, end effector assembly 100 may be selectively and releasably engageable with the distal end 16 of the shaft 12 and/or the proximal end 14 of shaft 12 may be selectively and releasably engageable with the housing 20 and the handle assembly 30. In either of these two instances, the forceps 10 would be considered “partially disposable” or “reposable,” i.e., a new or different end effector assembly 100 (or end effector assembly 100 and shaft 12) selectively replaces the old end effector assembly 100 as needed. As can be appreciated, the presently disclosed electrical connections would have to be altered to modify the instrument to a reposable forceps.


Turning now to the more detailed features of the present disclosure, movable handle 40 includes a finger loop 41 which has an aperture 42 defined therethrough which enables a user to grasp and move the movable handle 40 relative to the fixed handle 50. FIGS. 1 and 2 illustrate a movable handle 40 with finger loop 41 designed to be grasped and moved by a thumb, while FIG. 3 illustrates a movable handle 40 with finger loop 41 designed to be grasped and moved by one or more fingers. Further, the movable handle 40 of FIGS. 1 and 2 is on the proximal side of fixed handle 50, while the movable handle 40 of FIG. 3 is on the distal side of fixed handle 50. Movable handle 40 may also include one ore more ergonomically-enhanced gripping elements (not shown) disposed along the inner peripheral edge of aperture 42 or on fixed handle 50 which is designed to facilitate gripping of the handles 40 and 50 during activation. It is envisioned that the gripping element may include one or more protuberances, scallops and/or ribs to enhance gripping.


As best seen in FIGS. 1 and 2, movable handle 40 is selectively moveable about a pivot point 29 from a first position (FIG. 1) relative to fixed handle 50 to a second position (FIG. 2) in closer proximity to the fixed handle 50 which, as explained below, imparts movement of the jaw members 110 and 120 relative to one another. It is contemplated that there may be intermediate positions between those shown in FIGS. 1 and 2, e.g., discrete closure points which correspond to ratchet positions as discussed in more detail below. Additionally, continued movement of the moveable handle 40 towards the fixed handle 50 first engages switch 500, which causes the tissue to be sealed, and then engages knife assembly 140, which cuts the tissue. Operation of the forceps is discussed further below.


As best seen in FIGS. 1-3 and 26, the lower end of the movable handle 40 includes a flange 90. Flange 90 also includes an end 95 which rides within a predefined channel 52 (see FIG. 26) and mechanically engages with ramps 57 disposed within fixed handle 50. Additional features with respect to the end 95 are explained below in the detailed discussion of the operational features of the forceps 10.


Movable handle 40 is designed to provide a distinct mechanical advantage over conventional handle assemblies due to the position of the pivot point 29 relative to the longitudinal axis “A” of the shaft 12 and the disposition of the drive assembly 150 along longitudinal axis “A.” In other words, it is envisioned that by positioning the pivot point 29 above the drive assembly 150, the user gains lever-like mechanical advantage to actuate the jaw members 110 and 120 enabling the user to close the jaw members 110 and 120 with lesser force while still generating the required forces necessary to affect a proper and effective tissue seal and to cut the tissue 420. It is also envisioned that the unilateral design of the end effector assembly 100 will also increase mechanical advantage as explained in more detail below.


As shown best in FIGS. 4-8, the end effector assembly 100 includes opposing jaw members 110 and 120 which cooperate to effectively grasp tissue 420 for sealing purposes. The end effector assembly 100 is designed as a unilateral assembly in this particular embodiment, i.e., jaw member 120 is fixed relative to the shaft 12 and jaw member 110 pivots about a pivot pin 103 to grasp tissue 420. A bilateral jaw assembly is also envisioned wherein both jaw members are movable.


More particularly, the unilateral end effector assembly 100 includes one stationary or fixed jaw member 120 mounted in fixed relation to the shaft 12 and pivoting jaw member 110 mounted about a pivot pin 103 attached to the stationary jaw member 120. A reciprocating sleeve 60 is slidingly disposed within the shaft 12 and is remotely operable by the drive assembly 150. The pivoting jaw member 110 includes a detent or protrusion 117 which extends from jaw member 110 through an aperture 62 disposed within the reciprocating sleeve 60 (FIG. 8). The pivoting jaw member 110 is actuated by sliding the sleeve 60 axially within the shaft 12 such that a distal end 63 of the aperture 62 abuts against the detent 117 on the pivoting jaw member 110 (see FIGS. 7 and 8). Pulling the sleeve 60 proximally closes the jaw members 110 and 120 about tissue 420 grasped therebetween and pushing the sleeve 60 distally opens the jaw members 110 and 120 for grasping purposes.


As best illustrated in FIGS. 4 and 6, a knife channel 115a and 115b runs through the center of the jaw members 110 and 120, respectively, such that a knife blade 185 from the knife assembly 140 can cut the tissue 420 grasped between the jaw members 110 and 120 when the jaw members 110 and 120 are in a closed position. More particularly, the knife blade 185 can only be advanced through the tissue 420 when the jaw members 110 and 120 are closed thus preventing accidental or premature activation of the knife blade 185 through the tissue 420. Put simply, the knife channel 115 (made up of half channels 115a and 115b) is blocked when the jaws members 110 and 120 are opened and the knife channel 115 is aligned for distal activation when the jaw members 110 and 120 are closed (see FIGS. 25 and 27). It is also envisioned that the unilateral end effector assembly 100 may be structured such that electrical energy can be routed through the sleeve 60 at the protrusion 117 contact point with the sleeve 60 or using a “brush” or lever (not shown) to contact the back of the moving jaw member 110 when the jaw member 110 closes. In this instance, the electrical energy would be routed through the protrusion 117 to the stationary jaw member 120. Alternatively, a cable lead 311 may be routed to energize the stationary jaw member 120 and the other electrical potential may be conducted through the sleeve 60 and transferred to the pivoting jaw member 110 which establishes electrical continuity upon retraction of the sleeve 60. It is envisioned that this particular envisioned embodiment will provide at least two important safety features: 1) the knife blade 185 cannot extend while the jaw members 110 and 120 are opened; and 2) electrical continuity to the jaw members 110 and 120 is made only when the jaw members are closed. The illustrated forceps 10 only includes the knife channel 115.


As best shown in FIG. 4, jaw member 110 also includes a jaw housing 116 which has an insulative substrate or insulator 114 and an electrically conducive surface 112. In one embodiment, insulator 114 is dimensioned to securely engage the electrically conductive sealing surface 112. This may be accomplished by stamping, by overmolding, by overmolding a stamped electrically conductive sealing plate and/or by overmolding a metal injection molded seal plate. For example and as shown in FIG. 11, the electrically conductive sealing plate 112 includes a series of upwardly extending flanges 111a and 111b which are designed to matingly engage the insulator 114. The insulator 114 includes a shoe-like interface 107 disposed at a distal end thereof which is dimensioned to engage the jaw housing 116 in a slip-fit manner. The shoe-like interface 107 may also be overmolded about the outer periphery of the jaw 110 during a manufacturing step. It is envisioned that cable lead 311 terminates within the shoe-like interface 107 at the point where cable lead 311 electrically connects to the seal plate 112 (not shown). The movable jaw member 110 also includes a wire channel 113 which is designed to guide cable lead 311 into electrical continuity with sealing plate 112.


All of these manufacturing techniques produce jaw member 110 having an electrically conductive surface 112 which is substantially surrounded by an insulating substrate 114. In one embodiment, the insulator 114, electrically conductive sealing surface 112 and the outer, non-conductive jaw housing 116 are dimensioned to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation. Alternatively, it is also envisioned that the jaw members 110 and 120 may be manufactured from a ceramic-like material and the electrically conductive surface(s) 112 may be coated onto the ceramic-like jaw members 110 and 120.


Jaw member 110 includes a pivot flange 118 (FIG. 6) which includes a protrusion 117. Protrusion 117 extends from pivot flange 118 and includes an arcuately-shaped inner surface 111 dimensioned to matingly engage the aperture 62 of sleeve 60 upon retraction thereof. Pivot flange 118 also includes a pin slot 119 which is dimensioned to engage pivot pin 103 to allow jaw member 110 to rotate relative to jaw member 120 upon retraction of the reciprocating sleeve 60. As explained in more detail below, pivot pin 103 also mounts to the stationary jaw member 120 through a pair of apertures 101a and 101b disposed within a proximal portion of the jaw member 120.


It is envisioned that the electrically conductive sealing surface 112 may also include an outer peripheral edge which has a pre-defined radius and the insulator 114 meets the electrically conductive sealing surface 112 along an adjoining edge of the sealing surface 112 in a generally tangential position. In one embodiment, at the interface, the electrically conductive surface 112 is raised relative to the insulator 114. These and other envisioned embodiments are discussed in co-pending, commonly assigned Application Serial No. PCT/US01/11412 entitled “ELECTROSURGICAL INSTRUMENT WHICH REDUCES COLLATERAL DAMAGE TO ADJACENT TISSUE” by Johnson et al. and co-pending, commonly assigned Application Serial No. PCT/US01/11411 entitled “ELECTROSURGICAL INSTRUMENT WHICH IS DESIGNED TO REDUCE THE INCIDENCE OF FLASHOVER” by Johnson et al., both of which are hereby incorporated by reference in their entirety herein.


The electrosurgical seal and/or cut can be made utilizing various electrode assemblies on the jaw members, such that energy is applied to the tissue through sealing plates. This and other envisioned electrosurgical sealing and cutting techniques are discussed in co-pending, commonly assigned application Ser. No. 10/932,612 entitled “VESSEL SEALING INSTRUMENT WITH ELECTRICAL CUTTING MECHANISM” by Johnson et al., which is hereby incorporated by reference in its entirety herein.


In one embodiment, the electrically conductive surface 112 and the insulator 114, when assembled, form a longitudinally-oriented slot 115a defined therethrough for reciprocation of the knife blade 185. It is envisioned that the knife channel 115a cooperates with a corresponding knife channel 115b defined in stationary jaw member 120 to facilitate longitudinal extension of the knife blade 185 along a preferred cutting plane to effectively and accurately separate the tissue 420 along the formed tissue seal 450 (see FIGS. 30 and 33).


Jaw member 120 includes similar elements to jaw member 110 such as jaw housing 126 having an insulator 124 and an electrically conductive sealing surface 122 which is dimensioned to securely engage the insulator 124. Likewise, the electrically conductive surface 122 and the insulator 124, when assembled, include a longitudinally-oriented channel 115a defined therethrough for reciprocation of the knife blade 185. As mentioned above, when the jaw members 110 and 120 are closed about tissue 420, knife channels 115a and 115b form a complete knife channel 115 to allow longitudinal extension of the knife blade 185 in a distal fashion to sever tissue 420 along the tissue seal 450. It is also envisioned that the knife channel 115 may be completely disposed in one of the two jaw members, e.g., jaw member 120, depending upon a particular purpose. It is envisioned that the fixed jaw member 120 may be assembled in a similar manner as described above with respect to jaw member 110.


As best seen in FIG. 4, jaw member 120 includes a series of stop members 750 disposed on the inner facing surfaces of the electrically conductive sealing surface 122 to facilitate gripping and manipulation of tissue and to define a gap “G” (FIG. 29) between opposing jaw members 110 and 120 during sealing and cutting of tissue. It is envisioned that the series of stop members 750 may be employed on one or both jaw members 110 and 120 depending upon a particular purpose or to achieve a desired result. A detailed discussion of these and other envisioned stop members 750 as well as various manufacturing and assembling processes for attaching and/or affixing the stop members 750 to the electrically conductive sealing surfaces 112, 122 are described in commonly-assigned, co-pending U.S. Application Serial No. PCT/US01/11413 entitled “VESSEL SEALER AND DIVIDER WITH NON-CONDUCTIVE STOP MEMBERS” by Dycus et al. which is hereby incorporated by reference in its entirety herein.


Jaw member 120 is designed to be fixed to the end of a rotating tube 160 which is part of the rotating assembly 80 such that rotation of the tube 160 will impart rotation to the end effector assembly 100 (see FIGS. 13 and 19). Jaw member 120 includes a rear C-shaped cuff 170 having a slot 177 defined therein which is dimensioned to receive a slide pin 171. More particularly, slide pin 171 includes a slide rail 176 which extends substantially the length thereof which is dimensioned to slide into friction-fit engagement within slot 177. A pair of chamfered plates 172a and 172b extend generally radially from the slide rail 176 and include a radius which is substantially the same radius as the outer periphery of the rotating tube 160 such that the shaft 12 can encompass each of the same upon assembly.


As best shown in FIGS. 19 and 20, the rotating tube 160 includes an elongated guide slot 167 disposed in an upper portion thereof which is dimensioned to carry cable lead 311 therealong. The chamfered plates 172a and 172b also form a wire channel 175 which is dimensioned to guide the cable lead 311 from the tube 160 and into the movable jaw member 110 (see FIG. 4). Cable lead 311 carries a first electrical potential to movable jaw 110.


As shown in FIG. 19, the distal end of the tube 160 is generally C-shaped to include two upwardly extending flanges 162a and 162b which define a cavity 165 for receiving the proximal end of the fixed jaw member 120 inclusive of C-shaped cuff 170 and slide pin 171 (see FIG. 21). In one embodiment, the tube cavity 165 retains and secures the jaw member 120 in a friction-fit manner, however, the jaw member 120 may be welded to the tube 160 depending upon a particular purpose. Tube 160 also includes an inner cavity 169 defined therethrough which reciprocates the knife assembly 140 upon distal activation thereof and an elongated guide rail 163 which guides the knife assembly 140 during distal activation (see FIG. 20). The details with respect to the knife assembly are explained in more detail with respect to FIGS. 15-18. The proximal end of tube 160 includes a laterally oriented slot 168 which is designed to interface with the rotating assembly 80 as described below.



FIG. 19 also shows the rotating assembly 80 which includes C-shaped rotating halves 82a and 82b which, when assembled about tube 160, form a generally circular rotating member 82. More particularly, each rotating half, e.g., 82b, includes a series of mechanical interfaces 375a, 375b, 375c and 375d which matingly engage a corresponding series of mechanical interfaces in the other half, e.g., 82a, to form rotating member 82. Half 82b also includes a tab 89b which, together with a corresponding tab 89a disposed on half 82a (phantomly illustrated), cooperate to matingly engage slot 168 disposed on tube 160. As can be appreciated, this permits selective rotation of the tube 160 about axis “A” by manipulating the rotating member 82 in the direction of the arrow “B” (see FIG. 2).


As best shown in the exploded view of FIG. 11, jaw members 110 and 120 are pivotably mounted with respect to one another such that jaw member 110 pivots in a unilateral fashion from a first open position to a second closed position for grasping and manipulating tissue 420. More particularly, fixed jaw member 120 includes a pair of proximal, upwardly extending flanges 125a and 125b which define a cavity 121 dimensioned to receive flange 118 of movable jaw member 110 therein. As explained in detail below with respect to the operation of the jaw members 110 and 120, proximal movement of the tube 60 engages detent 117 to pivot the jaw member 110 to a closed position.



FIGS. 1-3 show the housing 20 and the component features thereof, namely, the handle assembly 30, the rotating assembly 80, the knife assembly 140, the drive assembly 150, the switch 500, the latch assembly 600 and a cutter lever 700.


The housing includes two halves (constructed similarly to the halves of rotating assembly 80, as discussed above with reference to FIG. 19) which, when mated, form housing 20. As can be appreciated, housing 20, once formed, houses the various assemblies identified above which will enable a user to selectively manipulate, grasp, seal and sever tissue 420 in a single action. In one embodiment, each half of the housing includes a series of mechanical interfacing components (not shown) which align and/or mate with a corresponding series of mechanical interfaces to align the two housing halves about the inner components and assemblies. The housing halves can then be sonic welded to secure the housing halves once assembled.


The movable handle 40 includes clevis 45 which pivots about pivot point 29 to pull the reciprocating sleeve 60 along longitudinal axis “A” and force a drive flange 47 against the drive assembly 150 which, in turn, closes the jaw members 110 and 120, as explained above. As mentioned above, the lower end of the movable handle 40 includes a flange 90 which has an end 95 which rides within a predefined channel 52 disposed within fixed handle 50 (see FIG. 26). The arrangement of the clevis 45 and the pivot point 29 of the movable handle 40 provides a distinct mechanical advantage over conventional handle assemblies due to the position of the pivot point 29 relative to the longitudinal axis “A” of the drive flange 47. In other words, by positioning the pivot point 29 above the drive flange 47, the user gains lever-like mechanical advantage to actuate the jaw members 110 and 120. This reduces the overall amount of mechanical force necessary to close the jaw members 110 and 120 to affect a tissue seal.


Movable handle 40 also includes a finger loop 41 which defines opening 42 which is dimensioned to facilitate grasping the movable handle 40. In one embodiment, finger loop 41 includes rubber insert which enhances the overall ergonomic “feel” of the movable handle 40.


Handle assembly 30 further includes a cutter lever 700 positioned within housing 20. When movable handle 40 is actuated (squeezed) past a certain threshold, a switch lever 502 is depressed by movable handle 40 to initiate a tissue seal cycle. A flexible detent 602 provides tactile feedback that the movable handle 40 is nearing an exit of the latch sealing zone and an end of the ramps 57. When the movable handle 40 is pushed past the flexible detent 602, end 95 of flange 90 drops down from ramps 57 and the user is able to return the movable handle 40 proximally to open the jaw members 110, 120 without cutting the seal. The user may also close the movable handle 40 to cut the sealed tissue 420 via actuation of the lever 700. When closing movable handle 40 farther to cut tissue, end 95 contacts a latch spring 704, which provides resistance on the movable handle 40. This provides an indication to the user that tissue cutting is about to begin.


The movable handle 40 or a handle detent 710 contacts the cutter lever 700, which activates knife assembly 140, which severs the tissue 420. As can be appreciated, this prevents accidental or premature severing of tissue 420 prior to completion of the tissue seal 450. The generator may provide an audible signal or other type of feedback when the seal cycle is complete. The surgeon can then safely cut the seal or return the movable handle 40 without cutting. In an alternative method, an electromechanical, mechanical or electrical feature could prevent cutting without initially sealing or without the surgeon activating a special over-ride feature.


Fixed handle 50 includes a channel 52 (FIG. 26) defined therein which is dimensioned to receive end 95 of flange 90 when movable handle 40 is actuated. The end 95 of flange 90 is dimensioned for facile reception with ramps 57 within channel 52 of fixed handle 50. It is envisioned that flange 90 may be dimensioned to allow a user to selectively, progressively and/or incrementally move jaw members 110 and 120 relative to one another from the open to closed positions. For example, it is contemplated that end 95 and ramps 57 may include a ratchet-like interface (FIGS. 1-3) which lockingly engages the movable handle 40 and, therefore, jaw members 110 and 120 at selective, incremental positions relative to one another depending upon a particular purpose. Such a ratchet-like interface can also prevent the movable handle 40 from becoming unactuated prior to the severing of tissue 420.


It is also contemplated that the ratchet-like interface between the end 95 and ramps 57 are configured such that a catch basin is disposed between each step of the ratchet. A catch basin is described in commonly-assigned, co-pending U.S. application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS” by Dycus et al., which is hereby incorporated by reference in its entirety herein, and can be utilized to be a stopping point between each of the functions that the movable handle 40 can control (i.e., manipulation, clamping, sealing and cutting). Employing such a catch basin will enable the user to selectively advance the movable handle 40, while ensuring the functions are carried out in the proper order.


Other mechanisms may also be employed to control and/or limit the movement of movable handle 40 relative to fixed handle 50 (and jaw members 110 and 120) such as, e.g., hydraulic, semi-hydraulic, linear actuator(s), gas-assisted mechanisms and/or gearing systems.


In one embodiment, forceps 10 includes at least one tactile element which provides tactile feedback to the user to signify when tissue is being grasped, when the tissue has been sealed and/or when the tissue has been cut. Such a tactile element may include the turning on/off of lights (not shown) on housing 20 or mechanical vibrations being created in the fixed handle 50 or movable handle 40. It is further envisioned for a sensor to be disposed on or within forceps 10 to alert to the user when one or more completion stages has occurred, i.e., at the completion of tissue grasping, tissue sealing and/or tissue cutting.


As best illustrated in FIG. 26, housing halves form an internal cavity which predefines the channel 52 within fixed handle 50 such that an entrance pathway 51 and an exit pathway 58 are formed for reciprocation of the end 95 of flange 90 therein. When assembled, two ramps 57 are positioned to define a rail or track 192, such that the flange 90 can fit between the ramps 57 and end 95 moves along the track 192. During movement of end 95 of flange 90 along the entrance and exit pathways 51 and 58, respectively, the end 95 rides along track 192 according to the particular dimensions of the ramps 57, which, as can be appreciated, predetermines part of the overall pivoting motion of movable handle 40 relative to fixed handle 50.


As best illustrated in FIGS. 1 and 2, once actuated, movable handle 40 moves in a generally arcuate fashion towards fixed handle 50 about pivot point 29. End 95 of flange 90 moves along ramps 57 (shown as a single ramp in FIGS. 1-3 for clarity) which forces drive flange 47 against the drive assembly 150 which, in turn, pulls reciprocating sleeve 60 in a generally proximal direction to close jaw member 110 relative to jaw member 120. Continued actuation of movable handle 40 forces end 95 of flange 90 farther along ramps 57 and forces the movable handle 40 or cutter lever 700 into a contact 502 of switch 500, which causes the sealing of tissue 420 to occur. Continued actuation of movable handle 40 then forces movable handle detent 710 into cutter lever 700 to initiate engagement thereof. A detailed discussion of how the sealing occurs, including by electro-mechanical means, is described in commonly-assigned, co-pending U.S. application Ser. No. 10/932,612 entitled “VESSEL SEALING INSTRUMENT WITH ELECTRICAL CUTTING MECHANISM” by Johnson et al., which is hereby incorporated herein.


Continued actuation of movable handle 40 forces end 95 of flange 90 farther along the ramps 57 and into a flexible latch detent 602. The user feels a resistance when the end 95 contacts the flexible latch detent 602, which signifies that the device is about to exit the sealing position and either cut or return to its original position without cutting. To cut the tissue seal 450, the user continues to actuate the movable handle 40, such that the cutter lever 700 activates knife assembly 140, which in turn severs the tissue seal 450. At this cutting stage, the end 95 contacts a detent rib 704 which provides increased resistance to the user indicating that cutting of the tissue is about to begin. The end 95 slides distally along detent rib 704 (in the embodiment shown in FIG. 3, the detent rib 704 is contacted proximally) When the cut is complete, the detent rib 704 may stop the motion of the end 95 and allow flange 90 to follow its return path 58 (FIG. 26), as discussed above. Therefore, a full actuation of movable handle 40 grasps and clamps tissue 420, seals the tissue 420, and cuts the tissue seal 450, before returning the movable handle 40 to its original, unactuated position.



FIG. 3 illustrates the forceps 10 with the movable handle 40 located on the distal side of fixed handle 50. As can be appreciated, the internal dynamics of this embodiment are similar to those of the forceps illustrated in FIGS. 1 and 2, thus causing the forceps 10 to function in a comparable way.


It is envisioned that the flexible latch detent 602 may include one or more electro-mechanical switches, similar to those of switch 500, to seal the tissue 420. In this embodiment, handswitch 500 and contact 502 are not necessary. Details relating to the handswitch are discussed below.


It is also envisioned that latch spring 704 may include one or more mechanical or electro-mechanical switches or activations to drive the knife assembly 140 to cut the tissue seal 450, such that when end 95 contacts the latch spring 704, the tissue seal 450 is automatically severed.


The operating features and relative movements of the internal working components of the forceps 10 are shown as phantom lines in the various figures.


As the movable handle 40 is actuated and flange 90 is incorporated into channel 52 of fixed handle 50, the drive flange 47, through the mechanical advantage of the above-the-center pivot points, biases a ring flange 154 of drive ring 159 which, in turn, compresses a drive spring 67 against a rear ring 156 of the drive assembly 150 (FIG. 28). As a result thereof, the rear ring 156 reciprocates sleeve 60 proximally which, in turn, closes jaw member 110 onto jaw member 120. It is envisioned that the utilization of an over-the-center pivoting mechanism will enable the user to selectively compress the drive spring 67 a specific distance which, in turn, imparts a specific pulling load on the reciprocating sleeve 60 which is converted to a rotational torque about the jaw pivot pin 103. As a result, a specific closure force can be transmitted to the opposing jaw members 110 and 120.



FIG. 26 shows the initial actuation of movable handle 40 towards fixed handle 50 which causes the end 95 of flange 90 to move generally proximally and upwardly along entrance pathway 51 (this illustration is the embodiment of the forceps shown in FIG. 3; the internal environment of the forceps of FIGS. 1 and 2 is similarly situated). During movement of the flange 90 along the entrance and exit pathways 51 and 58, respectively, the end 95 rides along track 192 along the ramps 57. Once the tissue 420 is clamped, sealed and cut, end 95 clears edge 193 and movable handle 40 and flange 90 are redirected to exit pathway 58, where the movable handle 40 returns to its unactuated position.


As mentioned above, the jaw members 110 and 120 may be opened, closed and rotated to manipulate tissue 420 until sealing is desired. This enables the user to position and re-position the forceps 10 prior to activation and sealing. The end effector assembly 100 is rotatable about longitudinal axis “A” through rotation of the rotating assembly 80. It is envisioned that the feed path of the cable lead 311 through the rotating assembly 80, along shaft 12 and, ultimately, to the jaw member 110 enables the user to rotate the end effector assembly 100 approximately 180 degrees in both the clockwise and counterclockwise directions without tangling or causing undue strain on cable lead 311. As can be appreciated, this facilitates the grasping and manipulation of tissue 420.


Again as best shown in FIGS. 1 and 2, cutter lever 700 mounts adjacent movable handle 40 and cooperates with the knife assembly 140 to selectively translate knife blade 185 through a tissue seal 450.


Distal activation of the movable handle 40 (in the embodiment shown in FIGS. 1 and 2) forces the cutter lever 700 distally, which, as explained in more detail below, ultimately extends the knife blade 185 through the tissue 420. A knife spring 350 biases the knife assembly 70 in a retracted position such that after severing tissue 420 the knife blade 185 and the knife assembly 70 are automatically returned to a pre-firing position.


Drive assembly 150 includes reciprocating sleeve 60, drive housing 158, drive spring 67, drive ring 159, drive stop 155 and guide sleeve 157 which all cooperate to form the drive assembly 150. More particularly and as best shown in FIGS. 22 and 23, the reciprocating sleeve 60 includes a distal end 65 which as mentioned above has an aperture 62 formed therein for actuating the detent 117 of jaw member 110. In one embodiment, the distal end 65 includes a scoop-like support member 69 for supporting a proximal end 61 of the fixed jaw member 120 therein. The proximal end 61 of the reciprocating sleeve 60 includes a slot 68 defined therein which is dimensioned to slidingly support the knife assembly 70 for longitudinal reciprocation thereof to sever tissue 420. The slot 68 also permits retraction of the reciprocating sleeve 60 over the knife assembly 140 during the closing of jaw member 110 relative to jaw member 120.


The proximal end 61 of the reciprocating sleeve 60 is positioned within an aperture 151 in drive housing 158 to permit selective reciprocation thereof upon actuation of the movable handle 40. The drive spring 67 is assembled atop the drive housing 158 between a rear stop 156 of the drive housing 158 and a forward stop 154 of the drive ring 159 such that movement of the forward stop 154 compresses the drive spring 67 against the rear stop 156 which, in turn, reciprocates the drive sleeve 60. As a result thereof, the jaw members 110 and 120 and the movable handle 40 are biased by drive spring 67 in an open configuration. The drive stop 155 is fixedly positioned atop the drive housing 158 and biases the movable handle 40 when actuated such that the drive flange 47 forces the stop 154 of the drive ring 159 proximally against the force of the drive spring 67. The drive spring 67, in turn, forces the rear stop 156 proximally to reciprocate the sleeve 60. In one embodiment, the rotating assembly 80 is located proximal to the drive flange 47 to facilitate rotation of the end effector assembly 100. The guide sleeve 157 mates with the proximal end 61 of the reciprocating sleeve 60 and affixes to the drive housing 158. The assembled drive assembly 150 is shown best in FIG. 14.


As best shown in FIGS. 12 and 15-18, the knife assembly 140 includes an elongated rod 182 having a bifurcated distal end comprising prongs 182a and 182b which cooperate to receive a knife bar 184 therein. The knife assembly 180 also includes a proximal end 183 which is keyed to facilitate insertion into tube 160 of the rotating assembly 80. A knife wheel 148 is secured to the knife bar 182 by a pin 143. More particularly, the elongated knife rod 182 includes apertures 181a and 181b which are dimensioned to receive and secure the knife wheel 148 to the knife rod 182 such that longitudinal reciprocation of the knife wheel 148, in turn, moves the elongated knife rod 182 to sever tissue 420.


In one embodiment, the knife wheel 148 is donut-like and includes rings 141a and 141b which define a drive slot 147 designed to receive a drive bar (not shown) such that actuation of the movable handle 40 forces the drive bar and the knife wheel 148 distally. It is envisioned that apertures 181a and 181b may be used for different configurations. As such, pin 143 is designed for attachment through either aperture 181a or 181b to mount the knife wheel 148 (see FIG. 18). Knife wheel 148 also includes a series of radial flanges 142a and 142b which are dimensioned to slide along both channel 163 of tube 160 and slot 68 of the reciprocating sleeve 60 (see FIG. 9).


As mentioned above, the knife rod 182 is dimensioned to mount the knife bar 184 between prongs 182a and 182b, which can be in a friction-fit engagement. The knife bar 184 includes a series of steps 186a, 186b and 186c which reduce the profile of the knife bar 184 towards the distal end thereof. The distal end of the knife bar 184 includes a knife support 188 which is dimensioned to retain knife blade 185. The end of the knife support 188 can include a chamfered edge 188a. It is envisioned that the knife blade 185 may be welded to the knife support 188 or secured in any manner known in the trade.


As best shown in FIGS. 1 and 2, as the tissue is securely grasped and the cutter lever 700 advances distally due to actuation of movable handle 40, switch 500 activates, by virtue of movable handle 40 engaging contact 502. At this point, electrosurgical energy is transferred through cable leads to jaw members 110 and 120, as described in commonly-assigned, co-pending U.S. application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS” by Dycus et al., which is hereby incorporated by reference in its entirety herein. As can be appreciated from the mechanics of the forceps 10, the switch 500 cannot fire unless the jaw members 110 and 120 are closed. A sensor (not shown) may be included in the generator or the housing which prevents activation unless the jaw members 110 and 120 have tissue 420 held therebetween. In addition, other sensor mechanisms may be employed which determine pre-surgical, concurrent surgical (i.e., during surgery) and/or post surgical conditions. The sensor mechanisms may also be utilized with a closed-loop feedback system coupled to the electrosurgical generator to regulate the electrosurgical energy based upon one or more pre-surgical, concurrent surgical or post surgical conditions. Various sensor mechanisms and feedback systems are described in commonly-owned, co-pending U.S. patent application Ser. No. 10/427,832 entitled “METHOD AND SYSTEM FOR CONTROLLING OUTPUT OF RF MEDICAL GENERATOR” filed on May 1, 2003 the entire contents of which are hereby incorporated by reference herein.


In one embodiment, the jaw members 110 and 120 are electrically isolated from one another such that electrosurgical energy can be effectively transferred through the tissue 420 to form seal 450. For example and as best illustrated in FIGS. 24 and 25, each jaw member, e.g., 110, includes a uniquely-designed electrosurgical cable path disposed therethrough which transmits electrosurgical energy to the electrically conductive sealing surface 112. It is envisioned that jaw member 110 may include one or more cable guides or crimp-like electrical connectors to direct cable lead 311 towards electrically conductive sealing surface 112. In one embodiment, cable lead 311 is held loosely but securely along the cable path to permit rotation of the jaw member 110 about pivot 103. As can be appreciated, this isolates electrically conductive sealing surface 112 from the remaining operative components of the end effector assembly 100, jaw member 120 and shaft 12. The second electrical potential is conducted to jaw member 120 through tube 160. The two potentials are isolated from one another by virtue of the insulative sheathing surrounding cable lead 311.


It is contemplated that utilizing a cable feed path for cable lead 311 and by utilizing a conductive tube 160 to carry the first and second electrical potentials not only electrically isolates each jaw member 110 and 120 but also allows the jaw members 110 and 120 to pivot about pivot pin 103 without unduly straining or possibly tangling cable lead 311. Moreover, it is envisioned that the simplicity of the electrical connections greatly facilitates the manufacturing and assembly process and assures a consistent and tight electrical connection for the transfer of energy through the tissue 420.


As discussed in commonly-assigned, co-pending U.S. application Ser. No. 10/460,926 entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS” by Dycus et al., which is hereby incorporated by reference in its entirety herein, it is envisioned that select cable leads are fed through halves 82a and 82b of the rotating assembly 80 in such a manner to allow rotation of the shaft 12 (via rotation of the rotating assembly 80) in the clockwise or counter-clockwise direction without unduly tangling or twisting the cable leads. More particularly, select cable leads are fed through a series of conjoining slots 84a, 84b, 84c and 84d located in the two halves 82a and 82b of the rotating assembly 80. In one embodiment, each conjoining pair of slots, e.g., 84a, 84b and 84c, 84d, is large enough to permit rotation of the rotating assembly 80 without unduly straining or tangling the cable leads. The presently disclosed cable lead feed path is envisioned to allow rotation of the rotation assembly approximately 180 degrees in either direction.


Turning back to FIGS. 1-3 which show a view of the housing 20, rotating assembly 80, movable handle 40, fixed handle 50, latch assembly 600, switch 500 and cutter lever 700, it is envisioned that all of these various component parts along with the shaft 12 and the end effector assembly 100 are assembled during the manufacturing process to form a partially and/or fully disposable forceps 10. For example and as mentioned above, the shaft 12 and/or end effector assembly 100 may be disposable and, therefore, selectively/releasably engagable with the housing 20 and rotating assembly 80 to form a partially disposable forceps 10 and/or the entire forceps 10 may be disposable after use.


Once assembled, drive spring 67 is poised for compression atop drive housing 158 upon actuation of the movable handle 40. More particularly, movement of the movable handle 40 about pivot point 29 reciprocates the flange 90 into fixed handle 50 and forces drive flange 47 against flange 154 of drive ring 159 to compress drive spring 67 against the rear stop 156 to reciprocate the sleeve 60 (see FIG. 28).


The switch 500 is prevented from firing before the tissue 420 is clamped by jaw members 110 and 120. For the sealing to take place, the movable handle 40 should be actuated far enough to contact (or, alternatively, for the cutter lever 700 to contact) the switch 500, contact 502 or a sensor (not shown). Before the switch 500 is contacted, the movable handle 40 should travel sufficiently far enough to cause jaw members 110 and 120 to be clamped. It is envisioned that the opposing jaw members 110 and 120 may be rotated and partially opened and closed before activation of switch 500 which, as can be appreciated, allows the user to grip and manipulate the tissue 420 before the tissue 420 is sealed.


It is envisioned that configuring the pivot 29 above or relative to a longitudinal axis defined through the shaft provides an increased mechanical advantage, thus facilitating and easing selective compression of the drive spring 67 a specific distance which, in turn, imparts a specific load on the reciprocating sleeve 60. As best seen in FIG. 2, the moveable handle 40 includes a drive cam surface 49′ which is designed in-line with the longitudinal axis “A,” which together with the position of the pivot 28 being disposed above axis “A,” increase the mechanical advantage of the movable handle 40 and reduce the amount of force necessary to actuate the jaw members 110, 120 with the preferred closure force. The load of the reciprocating sleeve 60 is converted to a torque about the jaw pivot 103. As a result, a specific closure force can be transmitted to the opposing jaw members 110 and 120 between the range of about 3 kg/cm2 to about 16 kg/cm2. As mentioned above, the jaw members 110 and 120 may be opened, closed and rotated to manipulate tissue 420 until sealing is desired. This enables the user to position and re-position the forceps 10 prior to activation and sealing.


Once the desired position for the sealing site is determined and the jaw members 110 and 120 are properly positioned, movable handle 40 may be actuated farther such that the switch 500 is engaged to seal the tissue 420 with electrosurgical energy. Continued actuation of movable handle 40 engages knife assembly 140 (as discussed above), which causes the tissue seal 450 to be severed.


It is envisioned that the end effector assembly 100 and/or the jaw members 110 and 120 may be dimensioned to off-load some of the excessive clamping forces to prevent mechanical failure of certain internal operating elements of the end effector 100.


As can be appreciated, the combination of the increased mechanical advantage provided by the above-the-axis pivot 29 along with the compressive force associated with the drive spring 67 facilitate and assure consistent, uniform and accurate closure pressure about the tissue 420 within the desired working pressure range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, about 7 kg/cm2 to about 13 kg/cm2. By controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue 420, the user can effectively seal tissue.


In one embodiment, the electrically conductive sealing surfaces 112 and 122 of the jaw members 110 and 120, respectively, are relatively flat to avoid current concentrations at sharp edges and to avoid arcing between high points. In addition and due to the reaction force of the tissue 420 when engaged, jaw members 110 and 120 can be manufactured to resist bending. For example, the jaw members 110 and 120 may be tapered along the width thereof which is advantageous for two reasons: 1) the taper will apply constant pressure for a constant tissue thickness at parallel; 2) the thicker proximal portion of the jaw members 110 and 120 will resist bending due to the reaction force of the tissue 420.


As mentioned above, at least one jaw member, e.g., 120, may include a stop member 750 which limits the movement of the two opposing jaw members 110 and 120 relative to one another. In one embodiment, the stop member 750 extends a predetermined distance from the sealing surface 122 (according to the specific material properties [e.g., compressive strength, thermal expansion, etc.]) to yield a consistent and accurate gap distance “G” during sealing (FIG. 29). The gap distance between opposing sealing surfaces 112 and 122 during sealing ranges from about 0.001 inches to about 0.006 inches and, desirably, between about 0.002 and about 0.003 inches. It is envisioned that the non-conductive stop members 750 may be molded onto the jaw members 110 and 120 (e.g., overmolding, injection molding, etc.), stamped onto the jaw members 110 and 120 or deposited (e.g., deposition) onto the jaw members 110 and 120. For example, one technique involves thermally spraying a ceramic material onto the surface of the jaw member 110 and 120 to form the stop members 750. Several thermal spraying techniques are contemplated which involve depositing a broad range of heat resistant and insulative materials on various surfaces to create stop members 750 for controlling the gap distance between electrically conductive surfaces 112 and 122.


As energy is being selectively transferred to the end effector assembly 100, across the jaw members 110 and 120 and through the tissue 420, a tissue seal 450 forms isolating two tissue halves 420a and 420b. With other known vessel sealing instruments, the user then removes and replaces the forceps 10 with a cutting instrument (not shown) or manually activates another switch to divide the tissue halves 420a and 420b along the tissue seal 450. As can be appreciated, this is both time consuming and tedious and may result in inaccurate tissue division across the tissue seal 450 due to misalignment or misplacement of the cutting instrument along the ideal tissue cutting plane.


As explained in detail above, the present disclosure incorporates a knife assembly 140 which, when activated via the handle assembly 30, progressively and selectively divides the tissue 420 along an ideal tissue plane in precise manner to effectively and reliably divide the tissue 420 into two sealed halves 420a and 420b with a tissue gap 475 therebetween (see FIG. 33). The knife assembly 140 in conjunction with the handle assembly 30 allows the user to quickly separate the tissue 420 immediately after sealing without substituting a cutting instrument through a cannula or trocar port and without having to perform a different action (e.g., manually activating a switch or pulling a trigger). As can be appreciated, accurate sealing and dividing of tissue 420 is accomplished with a single, continuous motion using the same forceps 10.


It is envisioned that knife blade 185 may also be coupled to the same or an alternative electrosurgical energy source to facilitate separation of the tissue 420 along the tissue seal 450 (not shown). Moreover, it is envisioned that the angle of the tip of the knife blade 185 may be dimensioned to provide more or less aggressive cutting angles depending upon a particular purpose. For example, the knife blade 185 may be positioned at an angle which reduces “tissue wisps” associated with cutting. Moreover, the knife blade 185 may be designed having different blade geometries such as serrated, notched, perforated, hollow, concave, convex etc. depending upon a particular purpose or to achieve a particular result.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, it may be preferable to add other features to the forceps 10, e.g., an articulating assembly to axially displace the end effector assembly 100 relative to the elongated shaft 12.


It is also contemplated that the forceps 10 (and/or the electrosurgical generator used in connection with the forceps 10) may include a sensor or feedback mechanism (not shown) which automatically selects the appropriate amount of electrosurgical energy to effectively seal the particularly-sized tissue grasped between the jaw members 110 and 120. The sensor or feedback mechanism may also measure the impedance across the tissue during sealing and provide an indicator (visual and/or audible) that an effective seal has been created between the jaw members 110 and 120. Examples of such sensor systems are described in commonly-owned U.S. patent application Ser. No. 10/427,832 entitled “METHOD AND SYSTEM FOR CONTROLLING OUTPUT OF RF MEDICAL GENERATOR,” filed on May 1, 2003 the entire contents of which are hereby incorporated by reference herein.


Although the figures depict the forceps 10 manipulating an isolated vessel 420, it is contemplated that the forceps 10 may be used with non-isolated vessels as well. Other cutting mechanisms are also contemplated to cut tissue 420 along the ideal tissue plane.


It is envisioned that the outer surface of the end effector assembly 100 may include a nickel-based material, coating, stamping, metal injection molding which is designed to reduce adhesion between the jaw members 110 and 120 with the surrounding tissue during activation and sealing. Moreover, it is also contemplated that the conductive surfaces 112 and 122 of the jaw members 110 and 120 may be manufactured from one (or a combination of one or more) of the following materials: nickel-chrome, chromium nitride, MedCoat 2000 manufactured by The Electrolizing Corporation of OHIO, inconel 600 and tin-nickel. The tissue conductive surfaces 112 and 122 may also be coated with one or more of the above materials to achieve the same result, i.e., a “non-stick surface.” As can be appreciated, reducing the amount that the tissue “sticks” during sealing improves the overall efficacy of the instrument.


One particular class of materials disclosed herein has demonstrated superior non-stick properties and, in some instances, superior seal quality. For example, nitride coatings which include, but not are not limited to: TiN, ZrN, TiAlN, and CrN are preferred materials used for non-stick purposes. CrN has been found to be particularly useful for non-stick purposes due to its overall surface properties and optimal performance Other classes of materials have also been found to reducing overall sticking. For example, high nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1 have been found to significantly reduce sticking in bipolar instrumentation. One particularly useful non-stick material in this class is Inconel 600. Bipolar instrumentation having sealing surfaces 112 and 122 made from or coated with Ni200, Ni201 (˜100% Ni) also showed improved non-stick performance over typical bipolar stainless steel electrodes.


While several embodiments of the disclosure have been shown in the figures, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A bipolar forceps, comprising: a housing;an elongated shaft extending from the housing;an end effector coupled to a distal end of the elongated shaft, the end effector including a first jaw member and a second jaw member, at least one of the first and second jaw members movable relative to the other jaw member between an open position and a closed position;a drive assembly disposed within the housing and selectively movable to actuate at least one of the first or second jaw members;a cutting assembly disposed within the housing and selectively actuatable to advance a knife blade through at least one of the first or second jaw members; anda handle assembly including: a fixed handle extending from the housing and having a flexible latch detent and a detent rib each disposed within the fixed handle;a movable handle pivotable relative to the fixed handle; anda flange having a first end connected to the movable handle and a second end disposed within the fixed handle and adjacent the flexible latch detent, wherein a first movement of the movable handle causes the second end of the flange to engage the flexible latch detent indicating an end of a tissue sealing stage, and wherein continued movement of the movable handle causes the second end of the flange to engage the detent rib indicating an actuation of the cutting assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. patent application Ser. No. 14/953,717 filed on Nov. 30, 2015, now abandoned which is a continuation of U.S. patent application Ser. No. 14/611,845 filed on Feb. 2, 2015, now U.S. Pat. No. 9,198,717, which is a continuation of U.S. patent application Ser. No. 14/162,192 filed Jan. 23, 2014, now U.S. Pat. No. 8,945,127, which is a continuation of U.S. patent application Ser. No. 14/091,505 filed Nov. 27, 2013, now abandoned, which is a continuation of U.S. patent application Ser. No. 13/633,554 filed Oct. 2, 2012, now abandoned, which is a continuation of U.S. application Ser. No. 12/621,056 filed Nov. 18, 2009, now U.S. Pat. No. 8,277,447, which is a continuation of U.S. application Ser. No. 11/207,956 filed Aug. 19, 2005, now U.S. Pat. No. 7,628,791, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (1095)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Wt Bovie Jul 1931 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2176479 Willis Oct 1939 A
2279753 Knopp Apr 1942 A
2305156 Grubel Dec 1942 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3720896 Beierlein Mar 1973 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4088134 Mazzariello May 1978 A
D249549 Pike Sep 1978 S
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4233734 Bies Nov 1980 A
4300564 Furihata Nov 1981 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4452246 Bader et al. Jun 1984 A
4492231 Auth Jan 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Koch et al. Aug 1987 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
D298353 Manno Nov 1988 S
D299413 DeCarolis Jan 1989 S
4827929 Hodge May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5084057 Green et al. Jan 1992 A
5099840 Goble et al. Mar 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
D343453 Noda Jan 1994 S
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5282799 Rydell Feb 1994 A
5290286 Parins Mar 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308357 Lichtman May 1994 A
5314445 Heidmueller nee Degwitz et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
D349341 Lichtman et al. Aug 1994 S
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Failla et al. Nov 1994 A
5376089 Smith Dec 1994 A
D354564 Medema Jan 1995 S
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5451224 Goble et al. Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562699 Heimberger et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5601601 Tal et al. Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5620453 Nallakrishnan Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
H1745 Paraschac Apr 1998 H
5735848 Yates et al. Apr 1998 A
5743906 Parins Apr 1998 A
5755717 Yates et al. May 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5792137 Carr et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820630 Lind Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
D402028 Grimm et al. Dec 1998 S
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
D408018 McNaughton Apr 1999 S
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5935126 Riza Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976132 Morris Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5997565 Inoue Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6074386 Goble et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6217602 Redmon Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Bootle et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6302424 Gisinger et al. Oct 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
D453923 Olson Feb 2002 S
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
D454951 Bon Mar 2002 S
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
6500176 Truckai et al. Dec 2002 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6527771 Weadock et al. Mar 2003 B1
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6669696 Bacher et al. Dec 2003 B2
6676660 Wampler et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6757977 Dambal et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
D502994 Blake, III Mar 2005 S
6887240 Lands et al. May 2005 B1
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mod et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6942662 Goble et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052496 Yamauchi May 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179258 Buysse et al. Feb 2007 B2
D538932 Malik Mar 2007 S
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541611 Aglassinger May 2007 S
D541938 Kerr et al. May 2007 S
7223265 Keppel May 2007 B2
D545432 Watanabe Jun 2007 S
7232440 Dumbauld et al. Jun 2007 B2
D547154 Lee Jul 2007 S
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jigamian Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7367976 Lawes et al. May 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
D582038 Swoyer et al. Dec 2008 S
7628791 Garrison et al. Dec 2009 B2
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
D621503 Otten et al. Aug 2010 S
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
D630324 Reschke Jan 2011 S
7887536 Johnson et al. Feb 2011 B2
8016827 Chojin Sep 2011 B2
D649249 Guerra Nov 2011 S
D649643 Allen, IV et al. Nov 2011 S
8112871 Brandt et al. Feb 2012 B2
8114122 Nau, Jr. Feb 2012 B2
8133254 Dumbauld et al. Mar 2012 B2
8142473 Cunningham Mar 2012 B2
8162965 Reschke et al. Apr 2012 B2
8162973 Cunningham Apr 2012 B2
D661394 Romero et al. Jun 2012 S
8197479 Olson et al. Jun 2012 B2
8226650 Kerr Jul 2012 B2
8251994 McKenna et al. Aug 2012 B2
8257387 Cunningham Sep 2012 B2
8266783 Brandt et al. Sep 2012 B2
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8282634 Cunningham et al. Oct 2012 B2
8287536 Mueller et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8303582 Cunningham Nov 2012 B2
8317787 Hanna Nov 2012 B2
8323310 Kingsley Dec 2012 B2
8328803 Regadas Dec 2012 B2
8333765 Johnson et al. Dec 2012 B2
8343150 Artale Jan 2013 B2
8343151 Siebrecht et al. Jan 2013 B2
8357159 Romero Jan 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8430876 Kappus et al. Apr 2013 B2
8439911 Mueller May 2013 B2
8454602 Kerr et al. Jun 2013 B2
8469956 McKenna et al. Jun 2013 B2
8469957 Roy Jun 2013 B2
8486107 Hinton Jul 2013 B2
8512371 Kerr et al. Aug 2013 B2
8523898 Bucciaglia et al. Sep 2013 B2
8529566 Kappus et al. Sep 2013 B2
8535312 Horner Sep 2013 B2
8568408 Townsend et al. Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8591510 Allen, IV et al. Nov 2013 B2
8623017 Moses et al. Jan 2014 B2
8628557 Collings et al. Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8632564 Cunningham Jan 2014 B2
8636761 Cunningham et al. Jan 2014 B2
8679098 Hart Mar 2014 B2
8679115 Reschke Mar 2014 B2
8679140 Butcher Mar 2014 B2
RE44834 Dumbauld et al. Apr 2014 E
8685009 Chernov et al. Apr 2014 B2
8685056 Evans et al. Apr 2014 B2
8696667 Guerra et al. Apr 2014 B2
8702737 Chojin et al. Apr 2014 B2
8702749 Twomey Apr 2014 B2
8745840 Hempstead et al. Jun 2014 B2
8747413 Dycus Jun 2014 B2
8747434 Larson et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8756785 Allen, IV et al. Jun 2014 B2
8784417 Hanna Jul 2014 B2
8795274 Hanna Aug 2014 B2
8845636 Allen, IV et al. Sep 2014 B2
8852185 Twomey Oct 2014 B2
8864753 Nau, Jr. et al. Oct 2014 B2
8864795 Kerr et al. Oct 2014 B2
8887373 Brandt et al. Nov 2014 B2
8888771 Twomey Nov 2014 B2
8900232 Ourada Dec 2014 B2
8920461 Unger et al. Dec 2014 B2
8939972 Twomey Jan 2015 B2
8939973 Garrison et al. Jan 2015 B2
8945126 Garrison et al. Feb 2015 B2
8945127 Garrison et al. Feb 2015 B2
8961513 Allen, IV et al. Feb 2015 B2
8961514 Garrison Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8968283 Kharin Mar 2015 B2
8968298 Twomey Mar 2015 B2
8968305 Dumbauld et al. Mar 2015 B2
8968306 Unger Mar 2015 B2
8968307 Evans et al. Mar 2015 B2
8968308 Horner et al. Mar 2015 B2
8968309 Roy et al. Mar 2015 B2
8968310 Twomey et al. Mar 2015 B2
8968311 Allen, IV et al. Mar 2015 B2
8968314 Allen, IV Mar 2015 B2
8968317 Evans et al. Mar 2015 B2
8968358 Reschke Mar 2015 B2
8968360 Garrison et al. Mar 2015 B2
9198717 Garrison et al. Dec 2015 B2
20020013583 Camran et al. Jan 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020049442 Roberts et al. Apr 2002 A1
20020099372 Schulze et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020165469 Murakami Nov 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030055424 Ciarrocca Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130653 Sixto et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030158549 Swanson Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030191396 Sanghvi et al. Oct 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040078035 Kanehira et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040116979 Truckai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040176762 Lawes et al. Sep 2004 A1
20040176779 Casutt et al. Sep 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040230189 Keppel Nov 2004 A1
20040236325 Tetzlaff et al. Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040250419 Sremcich et al. Dec 2004 A1
20040254573 Dycus et al. Dec 2004 A1
20040260281 Baxter et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004568 Lawes et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050004570 Chapman et al. Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050059858 Frith et al. Mar 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050090817 Phan Apr 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050107785 Dycus et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113827 Dumbauld et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050119655 Moses et al. Jun 2005 A1
20050149017 Dycus Jul 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050187547 Sugi Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050222560 Kimura et al. Oct 2005 A1
20050240179 Buysse et al. Oct 2005 A1
20050254081 Ryu et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050283148 Janssen et al. Dec 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060052779 Hammill Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060074417 Cunningham et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060111711 Goble May 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060161150 Keppel Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189980 Johnson et al. Aug 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060224053 Black et al. Oct 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaff et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060271038 Johnson et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070016187 Weinberg et al. Jan 2007 A1
20070027447 Theroux et al. Feb 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070055231 Dycus et al. Mar 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070198011 Sugita Aug 2007 A1
20070203485 Keppel Aug 2007 A1
20070213706 Dumbauld et al. Sep 2007 A1
20070213707 Dumbauld et al. Sep 2007 A1
20070213708 Dumbauld et al. Sep 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070225695 Mayer et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080021450 Couture Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
20080125797 Kelleher May 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080172051 Masuda et al. Jul 2008 A1
20080215050 Bakos Sep 2008 A1
20080234672 Bastian Sep 2008 A1
20080234701 Morales et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080243158 Morgan Oct 2008 A1
20080249523 McPherson et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080271360 Barfield Nov 2008 A1
20080281311 Dunning et al. Nov 2008 A1
20080319292 Say et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090012556 Boudreaux et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090036881 Artale et al. Feb 2009 A1
20090036899 Carlton et al. Feb 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090065565 Cao Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090105750 Price et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090112229 Omori et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090138003 Deville et al. May 2009 A1
20090138006 Bales et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090157071 Wham et al. Jun 2009 A1
20090171354 Deville et al. Jul 2009 A1
20090177094 Brown et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
20090198233 Chojin Aug 2009 A1
20090204114 Odom Aug 2009 A1
20090204137 Maxwell Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090209957 Schmaltz et al. Aug 2009 A1
20090209960 Chojin Aug 2009 A1
20090234354 Johnson et al. Sep 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090248013 Falkenstein et al. Oct 2009 A1
20090248019 Falkenstein et al. Oct 2009 A1
20090248020 Falkenstein et al. Oct 2009 A1
20090248021 McKenna Oct 2009 A1
20090248022 Falkenstein et al. Oct 2009 A1
20090248050 Hirai Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090254081 Allison et al. Oct 2009 A1
20090261804 McKenna et al. Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090275865 Zhao et al. Nov 2009 A1
20090292282 Dycus Nov 2009 A9
20090299364 Batchelor et al. Dec 2009 A1
20090312273 De La Torre Dec 2009 A1
20090318912 Mayer et al. Dec 2009 A1
20100016857 McKenna et al. Jan 2010 A1
20100023009 Moses et al. Jan 2010 A1
20100036375 Regadas Feb 2010 A1
20100042143 Cunningham Feb 2010 A1
20100049187 Carlton et al. Feb 2010 A1
20100049194 Hart et al. Feb 2010 A1
20100057078 Arts et al. Mar 2010 A1
20100057081 Hanna Mar 2010 A1
20100057082 Hanna Mar 2010 A1
20100057083 Hanna Mar 2010 A1
20100057084 Hanna Mar 2010 A1
20100063500 Muszala Mar 2010 A1
20100069903 Allen, IV et al. Mar 2010 A1
20100069904 Cunningham Mar 2010 A1
20100069953 Cunningham et al. Mar 2010 A1
20100076427 Heard Mar 2010 A1
20100076430 Romero Mar 2010 A1
20100076431 Allen, IV Mar 2010 A1
20100076432 Horner Mar 2010 A1
20100087816 Roy Apr 2010 A1
20100094271 Ward et al. Apr 2010 A1
20100094287 Cunningham et al. Apr 2010 A1
20100094289 Taylor et al. Apr 2010 A1
20100100122 Hinton Apr 2010 A1
20100130971 Baily May 2010 A1
20100130977 Garrison et al. May 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100179543 Johnson et al. Jul 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20100179546 Cunningham Jul 2010 A1
20100179547 Cunningham et al. Jul 2010 A1
20100198218 Manzo Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100204697 Dumbauld et al. Aug 2010 A1
20100204698 Chapman et al. Aug 2010 A1
20100217258 Floume et al. Aug 2010 A1
20100217264 Odom et al. Aug 2010 A1
20100228249 Mohr et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100249769 Nau, Jr. et al. Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274244 Heard Oct 2010 A1
20100274265 Wingardner et al. Oct 2010 A1
20100280511 Rachlin et al. Nov 2010 A1
20100292691 Brogna Nov 2010 A1
20100305558 Kimura et al. Dec 2010 A1
20100307934 Chowaniec et al. Dec 2010 A1
20100312235 Bahney Dec 2010 A1
20100331742 Masuda Dec 2010 A1
20100331839 Schechter et al. Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110015632 Artale Jan 2011 A1
20110018164 Sartor et al. Jan 2011 A1
20110034918 Reschke Feb 2011 A1
20110046623 Reschke Feb 2011 A1
20110054467 Mueller et al. Mar 2011 A1
20110054468 Dycus Mar 2011 A1
20110054469 Kappus et al. Mar 2011 A1
20110054471 Gerhardt et al. Mar 2011 A1
20110054472 Romero Mar 2011 A1
20110060333 Mueller Mar 2011 A1
20110060334 Brandt et al. Mar 2011 A1
20110060335 Harper et al. Mar 2011 A1
20110071523 Dickhans Mar 2011 A1
20110071525 Dumbauld et al. Mar 2011 A1
20110072638 Brandt et al. Mar 2011 A1
20110073594 Bonn Mar 2011 A1
20110077637 Brannan Mar 2011 A1
20110077648 Lee et al. Mar 2011 A1
20110077649 Kingsley Mar 2011 A1
20110082457 Kerr et al. Apr 2011 A1
20110082494 Kerr et al. Apr 2011 A1
20110087221 Siebrecht et al. Apr 2011 A1
20110098689 Nau, Jr. et al. Apr 2011 A1
20110106079 Garrison et al. May 2011 A1
20110118736 Harper et al. May 2011 A1
20110178519 Couture et al. Jul 2011 A1
20110184405 Mueller Jul 2011 A1
20110190653 Harper et al. Aug 2011 A1
20110190765 Chojin Aug 2011 A1
20110193608 Krapohl Aug 2011 A1
20110218530 Reschke Sep 2011 A1
20110230880 Chojin et al. Sep 2011 A1
20110238066 Olson Sep 2011 A1
20110238067 Moses et al. Sep 2011 A1
20110251605 Hoarau et al. Oct 2011 A1
20110251606 Kerr Oct 2011 A1
20110251611 Horner et al. Oct 2011 A1
20110257680 Reschke et al. Oct 2011 A1
20110257681 Reschke et al. Oct 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110270250 Horner et al. Nov 2011 A1
20110270251 Horner et al. Nov 2011 A1
20110270252 Horner et al. Nov 2011 A1
20110276048 Kerr et al. Nov 2011 A1
20110276049 Gerhardt Nov 2011 A1
20110295251 Garrison Dec 2011 A1
20110295313 Kerr Dec 2011 A1
20110301592 Kerr et al. Dec 2011 A1
20110301599 Roy et al. Dec 2011 A1
20110301600 Garrison et al. Dec 2011 A1
20110301601 Garrison et al. Dec 2011 A1
20110301602 Roy et al. Dec 2011 A1
20110301603 Kerr et al. Dec 2011 A1
20110301604 Horner et al. Dec 2011 A1
20110301605 Horner Dec 2011 A1
20110301606 Kerr Dec 2011 A1
20110301637 Kerr et al. Dec 2011 A1
20110319886 Chojin et al. Dec 2011 A1
20110319888 Mueller et al. Dec 2011 A1
20120004658 Chojin Jan 2012 A1
20120010614 Couture Jan 2012 A1
20120022532 Garrison Jan 2012 A1
20120029515 Couture Feb 2012 A1
20120041438 Nau, Jr. et al. Feb 2012 A1
20120046659 Mueller Feb 2012 A1
20120046660 Nau, Jr. Feb 2012 A1
20120046662 Gilbert Feb 2012 A1
20120059371 Anderson et al. Mar 2012 A1
20120059372 Johnson Mar 2012 A1
20120059374 Johnson et al. Mar 2012 A1
20120059375 Couture et al. Mar 2012 A1
20120059408 Mueller Mar 2012 A1
20120059409 Reschke et al. Mar 2012 A1
20120078250 Orton et al. Mar 2012 A1
20120083785 Roy et al. Apr 2012 A1
20120083786 Artale et al. Apr 2012 A1
20120083827 Artale et al. Apr 2012 A1
20120095456 Schechter et al. Apr 2012 A1
20120095460 Rooks Apr 2012 A1
20120109187 Gerhardt, Jr. et al. May 2012 A1
20120118507 Brandt et al. May 2012 A1
20120123402 Chernov et al. May 2012 A1
20120123404 Craig May 2012 A1
20120123410 Craig May 2012 A1
20120123413 Chernov et al. May 2012 A1
20120130367 Garrison May 2012 A1
20120136353 Romero May 2012 A1
20120136354 Rupp May 2012 A1
20120143185 Nau, Jr. Jun 2012 A1
20120165797 Cunningham Jun 2012 A1
20120165818 Odom Jun 2012 A1
20120172868 Twomey et al. Jul 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120172925 Dumbauld et al. Jul 2012 A1
20120184989 Twomey Jul 2012 A1
20120184990 Twomey Jul 2012 A1
20120202179 Fedotov et al. Aug 2012 A1
20120209263 Sharp et al. Aug 2012 A1
20120215219 Roy et al. Aug 2012 A1
20120215242 Reschke et al. Aug 2012 A1
20120239034 Horner et al. Sep 2012 A1
20120259331 Garrison Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296205 Chernov et al. Nov 2012 A1
20120296238 Chernov et al. Nov 2012 A1
20120296239 Chernov et al. Nov 2012 A1
20120296317 Chernov et al. Nov 2012 A1
20120296323 Chernov et al. Nov 2012 A1
20120296324 Chernov et al. Nov 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20120303025 Garrison Nov 2012 A1
20120303026 Dyous et al. Nov 2012 A1
20120310240 Olson et al. Dec 2012 A1
20120323238 Tyrrell et al. Dec 2012 A1
20120330308 Joseph Dec 2012 A1
20120330309 Joseph Dec 2012 A1
20130018364 Chernov et al. Jan 2013 A1
20130018372 Sims et al. Jan 2013 A1
20130022495 Allen, IV et al. Jan 2013 A1
20130030432 Garrison et al. Jan 2013 A1
20130046295 Kerr et al. Feb 2013 A1
20130060250 Twomey et al. Mar 2013 A1
20130066318 Kerr Mar 2013 A1
20130071282 Fry Mar 2013 A1
20130072927 Allen, IV et al. Mar 2013 A1
20130079760 Twomey et al. Mar 2013 A1
20130079774 Whitney et al. Mar 2013 A1
20130085491 Twomey et al. Apr 2013 A1
20130085496 Unger et al. Apr 2013 A1
20130103030 Garrison Apr 2013 A1
20130103031 Garrison Apr 2013 A1
20130138101 Kerr May 2013 A1
20130138129 Garrison et al. May 2013 A1
20130144284 Behnke, II et al. Jun 2013 A1
20130178852 Allen, IV et al. Jul 2013 A1
20130185922 Twomey et al. Jul 2013 A1
20130197503 Orszulak Aug 2013 A1
20130226178 Brandt et al. Aug 2013 A1
20130253489 Nau, Jr. et al. Sep 2013 A1
20130255063 Hart et al. Oct 2013 A1
20130274736 Garrison Oct 2013 A1
20130289561 Waaler et al. Oct 2013 A1
20130296922 Allen, IV et al. Nov 2013 A1
20130296923 Twomey et al. Nov 2013 A1
20130304058 Kendrick Nov 2013 A1
20130304059 Allen, IV et al. Nov 2013 A1
20130304066 Kerr et al. Nov 2013 A1
20130325057 Larson et al. Dec 2013 A1
20140005663 Heard et al. Jan 2014 A1
20140005666 Moua et al. Jan 2014 A1
20140031821 Garrison Jan 2014 A1
20140031860 Stoddard Jan 2014 A1
20140046323 Payne et al. Feb 2014 A1
20140052128 Townsend et al. Feb 2014 A1
20140066910 Nau, Jr. Mar 2014 A1
20140066911 Nau, Jr. Mar 2014 A1
20140074085 Kerr Mar 2014 A1
20140074091 Arya et al. Mar 2014 A1
20140074092 Horner et al. Mar 2014 A1
20140081265 Allen, IV et al. Mar 2014 A1
20140094798 Garrison et al. Apr 2014 A1
20140094845 Garrison et al. Apr 2014 A1
20140100564 Garrison Apr 2014 A1
20140100568 Garrison Apr 2014 A1
20140100569 Lawes et al. Apr 2014 A1
20140100600 Kendrick Apr 2014 A1
20140104070 Plaven Apr 2014 A1
20140106626 Frushour et al. Apr 2014 A1
20140107443 Hoarau et al. Apr 2014 A1
20140107648 Harper et al. Apr 2014 A1
20140107684 Craig Apr 2014 A1
20140107685 O'Neill et al. Apr 2014 A1
20140114309 Payne et al. Apr 2014 A1
20140121507 Nau, Jr. May 2014 A1
20140121508 Latimer et al. May 2014 A1
20140121661 Schmaltz et al. May 2014 A1
20140128867 Collings et al. May 2014 A1
20140135758 Mueller May 2014 A1
20140135763 Kappus et al. May 2014 A1
20140148807 Kendrick May 2014 A1
20140180281 Rusin Jun 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140221994 Reschke Aug 2014 A1
20140221999 Cunningham et al. Aug 2014 A1
20140230243 Roy et al. Aug 2014 A1
20140243811 Reschke et al. Aug 2014 A1
20140257284 Artale Sep 2014 A1
20140257285 Moua Sep 2014 A1
20140276803 Hart Sep 2014 A1
20160074104 Garrison et al. Mar 2016 A1
Foreign Referenced Citations (141)
Number Date Country
2104423 Feb 1994 CA
2415263 Oct 1975 DE
02514501 Oct 1976 DE
2627679 Jan 1977 DE
03423356 Jun 1986 DE
036912646 Apr 1987 DE
8712328 Feb 1988 DE
04303882 Feb 1995 DE
04403252 Aug 1995 DE
19515914 Jul 1996 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
10045375 Oct 2002 DE
19738457 Jan 2009 DE
0541930 May 1993 EP
0572131 Dec 1993 EP
0584787 Mar 1994 EP
0589453 Apr 1994 EP
0624348 Jun 1995 EP
0364216 Jan 1996 EP
0518230 May 1996 EP
0878169 Nov 1998 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1159926 Mar 2003 EP
0717966 Apr 2003 EP
1301135 Apr 2003 EP
0887046 Jul 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
0853922 Feb 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1034746 Mar 2006 EP
1632192 Mar 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
0875209 May 2006 EP
1707143 Oct 2006 EP
2213416 Aug 1989 GB
2214430 Sep 1989 GB
61-501068 Sep 1984 JP
5-5106 Jan 1993 JP
05-40112 Feb 1993 JP
65502328 Mar 1994 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
11-070124 Mar 1999 JP
11244298 Sep 1999 JP
2000-102545 Apr 2000 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
401367 Oct 1973 SU
8900757 Jan 1989 WO
9204873 Apr 1992 WO
9206642 Apr 1992 WO
9408524 Apr 1994 WO
9420025 Sep 1994 WO
9502369 Jan 1995 WO
9507662 Mar 1995 WO
9515124 Jun 1995 WO
9605776 Feb 1996 WO
96-22056 Jul 1996 WO
9613218 Sep 1996 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9710764 Mar 1997 WO
9724073 Jul 1997 WO
9724993 Jul 1997 WO
9827880 Jul 1998 WO
9903407 Jan 1999 WO
9903408 Jan 1999 WO
9903409 Jan 1999 WO
9912488 Mar 1999 WO
9940857 Aug 1999 WO
9940861 Aug 1999 WO
9951158 Oct 1999 WO
9966850 Dec 1999 WO
0024330 May 2000 WO
0024331 May 2000 WO
0036986 Jun 2000 WO
0041638 Jul 2000 WO
0047124 Aug 2000 WO
0053112 Sep 2000 WO
0117448 Mar 2001 WO
0154604 Aug 2001 WO
0207627 Jan 2002 WO
02067798 Sep 2002 WO
02080783 Oct 2002 WO
02080784 Oct 2002 WO
02080785 Oct 2002 WO
02080786 Oct 2002 WO
02080793 Oct 2002 WO
02080794 Oct 2002 WO
02080795 Oct 2002 WO
02080797 Oct 2002 WO
02080798 Oct 2002 WO
02080799 Oct 2002 WO
02081170 Oct 2002 WO
02080796 Oct 2002 WO
03101311 Dec 2003 WO
03090630 Apr 2004 WO
2004032776 Apr 2004 WO
2004032777 Apr 2004 WO
2004052221 Jun 2004 WO
2004073488 Sep 2004 WO
2004073490 Sep 2004 WO
2004073753 Sep 2004 WO
2004082495 Sep 2004 WO
2004098383 Nov 2004 WO
2004103156 Dec 2004 WO
2005004734 Jan 2005 WO
2005004735 Jan 2005 WO
2005110264 Nov 2005 WO
080786 Jan 2008 WO
Non-Patent Literature Citations (302)
Entry
US. Appl. No. 12/176,679, filed Jul. 21, 2008.
U.S. Appl. No. 12/192,170, filed Aug. 15, 2008.
U.S. Appl. No. 12/192,189, filed Aug. 15, 2008.
U.S. Appl. No. 12/192,243, filed Aug. 15, 2008.
U.S. Appl. No. 12/195,624, filed Aug. 21, 2008.
U.S. Appl. No. 12/200,154, filed Aug. 28, 2008.
U.S. Appl. No. 12/200,246, filed Aug. 28, 2008.
U.S. Appl. No. 12/200,396, filed Aug. 28, 2008.
U.S. Appl. No. 12/200,526, filed Aug. 28, 2008.
U.S. Appl. No. 12/204,976, filed Sep. 5, 2008.
U.S. Appl. No. 12/210,598, filed Sep. 15, 2008.
U.S. Appl. No. 12/211,205, filed Sep. 16, 2008.
U.S. Appl. No. 12/233,157, filed Sep. 18, 2008.
U.S. Appl. No. 12/236,666, filed Sep. 24, 2008.
U.S. Appl. No. 12/237,515, filed Sep. 25, 2008.
U.S. Appl. No. 12/237,556, filed Sep. 25, 2008.
U.S. Appl. No. 12/237,582, filed Sep. 25, 2008.
U.S. Appl. No. 12/244,873, filed Oct. 3, 2008.
U.S. Appl. No. 12/246,553, filed Oct. 7, 2008.
U.S. Appl. No. 12/248,104, filed Oct. 9, 2008.
U.S. Appl. No. 12/248,115, filed Oct. 9, 2008.
U.S. Appl. No. 12/254,123, filed Oct. 20, 2008.
U.S. Appl. No. 12/331,643, filed Dec. 10, 2008.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008.
U.S. Appl. No. 12/352,942, filed Jan. 13, 2009.
U.S. Appl. No. 12/353,466, filed Jan. 14, 2009.
U.S. Appl. No. 12/353,470, filed Jan. 14, 2009.
U.S. Appl. No. 12/353,474, filed Jan. 14, 2009.
U.S. Appl. No. 12/363,086, filed Jan. 30, 2009.
U.S. Appl. No. 12/410,195, filed Mar. 24, 2009.
U.S. Appl. No. 12/411,542, filed Mar. 26, 2009.
U.S. Appl. No. 12/419,729, filed Apr. 7, 2009.
U.S. Appl. No. 12/429,533, filed Apr. 24, 2009.
U.S. Appl. No. 12/434,382, filed May 1, 2009.
U.S. Appl. No. 12/503,256, filed Jul. 15, 2009.
U.S. Appl. No. 12/508,052, filed Jul. 23, 2009.
U.S. Appl. No. 12/535,869, filed Aug. 5, 2009.
U.S. Appl. No. 12/543,831, filed Aug. 19, 2009.
U.S. Appl. No. 12/543,969, filed Aug. 19, 2009.
U.S. Appl. No. 12/548,031, filed Aug. 26, 2009.
U.S. Appl. No. 12/548,534, filed Aug. 27, 2009.
U.S. Appl. No. 12/548,566, filed Aug. 27, 2009.
U.S. Appl. No. 12/551,944, filed Sep. 1, 2009.
U.S. Appl. No. 12/553,509, filed Sep. 3, 2009.
U.S. Appl. No. 12/556,025, filed Sep. 9, 2009.
U.S. Appl. No. 12/556,407, filed Sep. 9, 2009.
U.S. Appl. No. 12/556,427, filed Sep. 9, 2009.
U.S. Appl. No. 12/556,796, filed Sep. 10, 2009.
U.S. Appl. No. 12/562,281, filed Sep. 18, 2009.
U.S. Appl. No. 12/565,281, filed Sep. 23, 2009.
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000.
Int'l Search Report EP 98957771 dated Aug. 9, 2001.
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002.
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005.
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005.
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005.
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005.
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007.
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008.
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009.
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005.
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005.
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006.
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005.
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005.
Int'l Search Report EP 05019429.9 dated May 6, 2008.
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006.
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006.
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006.
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006.
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006.
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006.
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006.
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006.
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006.
Int'l Search Report EP 06005185.1 dated May 10, 2006.
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006.
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009.
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006.
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006.
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007.
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007.
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007.
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007.
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007.
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007.
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007.
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007.
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007.
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007.
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007.
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007.
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007.
Int'l Search Report EP 07 014016 dated Jan. 28, 2008.
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008.
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008.
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008.
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008.
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008.
Int'l Search Report EP 07 021647.8 dated May 2, 2008.
Int'l Search Report PCT/US04/15311.
Int'l Search Report EP 98944778.
Int'l Search Report EP 98958575.
Int'l Search Report EP 04027314.
Int'l Search Report EP 04027479.
Int'l Search Report EP 04027705.
Int'l Search Report EP 04013772.
Int'l Search Report EP 05016399 dated Jan. 5, 2006.
Int'l Search Report EP 06005185.1 dated Apr. 18, 2006.
Int'l Search Report EP 06008779.8 dated Jun. 13, 2006.
Int'l Search Report EP 1683496 dated Jun. 13, 2006.
Int'l Search Report EP 04013772 dated Apr. 1, 2005.
Int'l Search Report EP 05013895 dated Oct. 14, 2005.
Int'l Search Report EP 05017281 dated Nov. 16, 2005.
Int'l Search Report EP 06006716 dated Aug. 4, 2006.
Int'l Search Report EP 06014461.5 dated Oct. 20, 2006.
Int'l Search Report EP 06020584.6 dated Jan. 12, 2007.
Int'l Search Report EP 06020583.8 dated Jan. 30, 2007.
Int'l Search Report EP 06020756.0 dated Feb. 5, 2007.
Int'l Search Report EP 06024123.9 dated Feb. 26, 2007.
Int'l Search Report EP 05013463.4 dated Sep. 28, 2005.
Int'l Search Report EP 05019130.3 dated Oct. 18, 2005.
Int'l Search Report EP 05020665.5 dated Feb. 16, 2006.
Int'l Search Report EP 050206663 dated Feb. 17, 2006.
Int'l Search Report EP 050217793 dated Jan. 18, 2006.
Int'l Search Report EP 05021197.8 dated Jan. 31, 2006.
Int'l Search Report EP 0502137.7 dated Jan. 13, 2006.
Int'l Search Report—extended—EP 05021937.7 dated Mar. 6, 2006.
Int'l Search Report EP 05023017.6 dated Feb. 16, 2006.
Int'l Search Report EP 05021780.1 dated Feb. 9, 2006.
Int'l Search Report EP 06002279.5 dated Mar. 22, 2006.
Int'l Search Report EP 06 024122.1 dated Mar. 19, 2007.
Int'l Search Report EP 07 001480.8 dated Apr. 12, 2007.
Int'l Search Report EP 07 001488.1 dated May 29, 2007.
Int'l Search Report—Extended EP 07 009029.5 dated Jul. 12, 2007.
Int'l Search Report EP 07 009321.6 dated Aug. 17, 2007.
Int'l Search Report EP 06 020574.7 dated Sep. 21, 2007.
Int'l Search Report EP 07 010672.9 dated Oct. 1, 2007.
Int'l Search Report EP 07 013779.9 dated Oct. 18, 2007.
Int'l Search Report EP 07 009026.1 dated Sep. 12, 2007.
Int'l Search Report EP 07 015601.3 dated Dec. 6, 2007.
Int'l Search Report EP 07 015191.5 dated Dec. 19, 2007.
Int'l Search Report EP 07 020283.3 dated Jan. 16, 2008.
Chung et al., “Clinical Experience of Sutureless Closed Hennorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Schmaltz et al.
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Ryan et al.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Sremcich et al.
U.S. Appl. No. 13/483,733, filed May 30, 2012, Dennis W. Butcher.
U.S. Appl. No. 12/568,199, filed Sep. 28, 2009.
U.S. Appl. No. 12/568,282, filed Sep. 28, 2009.
U.S. Appl. No. 12/569,395, filed Sep. 29, 2009.
U.S. Appl. No. 12/569,710, filed Sep. 29, 2009.
U.S. Appl. No. 12/574,001, filed Oct. 6, 2009.
U.S. Appl. No. 12/574,292, filed Oct. 6, 2009.
U.S. Appl. No. 12/576,380, filed Oct. 9, 2009.
U.S. Appl. No. 12/607,191, filed Oct. 28, 2009.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001.
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Strasberg et al. “A Phase | Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000; First Named Inventor: Ryan.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008; First Named Inventor: Sremcich.
U.S. Appl. No. 13/731,674, filed Dec. 31, 2012; First Named Inventor: Siebrecht.
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008.
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008.
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008.
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008.
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009.
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009.
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009.
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009.
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009.
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009.
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009.
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009.
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009.
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999.
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999.
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999.
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000.
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001.
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001.
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001.
Int'l Search Report PCT/US01/11420 dated Oct. 16, 200t.
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002.
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002.
Int'l Search Report PCT/US03/28534dated Dec. 19, 2003.
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005.
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004.
Int'l Search Report PCT/US04/15311dated Jan. 12, 2005.
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008.
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008.
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008.
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009.
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. cited byother.
Linehan et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectomy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
“Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery Sales/Product Literature; Jan. 2004.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC 2003.
Paul G. Horgan, “A Novel Technique for Parencymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Joseph Ortenberg “LigaSure Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Int'l Search Report PCT/US98/18640.
Int'l Search Report PCT/US98/23950.
Int'l Search Report PCT/US99/24869.
Int'l Search Report PCT/US01/11218.
Int'l Search Report PCT/US01/11340.
Int'l Search Report PCT/US01/11420.
Int'l Search Report PCT/US02/01890.
Int'l Search Report PCT/US02/11100.
Int'l Search Report PCT/US04/03436.
Int'l Search Report PCT/US04/13273.
U.S. Appl. No. 13/708,335, filed Dec. 7, 2012, Dumbauld.
U.S. Appl. No. 13/731,674, filed Dec. 31, 2012, Siebrecht.
U.S. Appl. No. 13/833,823, filed Mar. 15, 2013, Garrison.
U.S. Appl. No. 13/838,945, filed Mar. 15, 2013, Stoddard.
U.S. Appl. No. 13/903,091, filed May 28, 2013, Nau.
U.S. Appl. No. 13/903,116, filed May 28, 2013, Nau.
U.S. Appl. No. 13/903,223, filed May 28, 2013, Payne.
U.S. Appl. No. 14/017,572, filed Sep. 4, 2013, Arya.
U.S. Appl. No. 14/019,031, filed Sep. 5, 2013, Garrison.
U.S. Appl. No. 14/019,094, filed Sep. 5, 2013, Garrison.
U.S. Appl. No. 14/032,486, filed Sep. 20, 2013, Kendrick.
U.S. Appl. No. 14/035,423, filed Sep. 24, 2013, Garrison.
U.S. Appl. No. 14/037,772, filed Sep. 26, 2013, Frushour.
U.S. Appl. No. 14/041,995, filed Sep. 30, 2013, Kendrick.
U.S. Appl. No. 14/042,947, filed Oct. 1, 2013, Kendrick.
U.S. Appl. No. 14/043,039, filed Oct. 1, 2013, Rusin.
U.S. Appl. No. 14/043,322, filed Oct. 1, 2013, O'Neill.
U.S. Appl. No. 14/047,474, filed Oct. 7, 2013, Mueller.
U.S. Appl. No. 14/050,593, filed Oct. 10, 2013, Plaven.
U.S. Appl. No. 14/052,827, filed Oct. 14, 2013, Nau.
U.S. Appl. No. 14/052,856, filed Oct. 14, 2013, Latimer.
U.S. Appl. No. 14/052,871, filed Oct. 14, 2013, Kappus.
U.S. Appl. No. 14/054,173, filed Oct. 15, 2013, Payne.
U.S. Appl. No. 14/054,573, filed Oct. 15, 2013, Harper.
U.S. Appl. No. 14/064,310, filed Oct. 28, 2013, Reschke.
U.S. Appl. No. 14/064,702, filed Oct. 28, 2013, Townsend.
U.S. Appl. No. 14/065,644, filed Oct. 29, 2013, Reschke.
U.S. Appl. No. 14/080,564, filed Nov. 14, 2013, Lawes.
U.S. Appl. No. 14/080,581, filed Nov. 14, 2013, Kerr.
U.S. Appl. No. 14/083,696, filed Nov. 19, 2013, Homer.
U.S. Appl. No. 14/086,399, filed Nov. 21, 2013, Allen.
U.S. Appl. No. 14/091,505, filed Nov. 27, 2013, Garrison.
U.S. Appl. No. 14/091,521, filed Nov. 27, 2013, Garrison.
U.S. Appl. No. 14/091,532, filed Nov. 27, 2013, Garrison.
U.S. Appl. No. 14/098,953, filed Dec. 6, 2013, Cunningham.
U.S. Appl. No. 14/100,237, filed Dec. 9, 2013, Reschke.
U.S. Appl. No. 14/103,971, filed Dec. 12, 2013, Roy.
U.S. Appl. No. 14/105,374, filed Dec. 13, 2013, Moua.
U.S. Appl. No. 14/109,459, filed Dec. 17, 2013, Hoarau.
U.S. Appl. No. 14/149,343, filed Jan. 7, 2014, Schmaltz.
U.S. Appl. No. 14/152,618, filed Jan. 10, 2014, Artale.
U.S. Appl. No. 14/152,690, filed Jan. 10, 2014, Hart.
U.S. Appl. No. 14/153,346, filed Jan. 13, 2014, Collings.
U.S. Appl. No. 14/162,192, filed Jan. 23, 2014, Garrison.
U.S. Appl. No. 08/926,8669, filed Sep. 10, 1997, James G. Chandler.
Int'l Search Report PCT/USO4103436 dated Mar. 3, 2005.
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997; First Named Inventor: James G. Chandler.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998; First Named Inventor: Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999; First Named Inventor: Schmaltz.
Related Publications (1)
Number Date Country
20160242842 A1 Aug 2016 US
Continuations (7)
Number Date Country
Parent 14953717 Nov 2015 US
Child 15145126 US
Parent 14611845 Feb 2015 US
Child 14953717 US
Parent 14162192 Jan 2014 US
Child 14611845 US
Parent 14091505 Nov 2013 US
Child 14162192 US
Parent 13633554 Oct 2012 US
Child 14091505 US
Parent 12621056 Nov 2009 US
Child 13633554 US
Parent 11207956 Aug 2005 US
Child 12621056 US