The present invention relates generally to systems and methods for removing nitrogen from a natural gas or liquid natural gas stream and, more particularly, to a system and method for removing nitrogen from a natural gas or liquid natural gas stream that uses a heat pump system to provide additional refrigeration.
During, prior to or after natural gas liquefaction processes, it is often necessary to remove nitrogen from a feed stream of natural gas or liquid natural gas. This may be done due to purification or nitrogen recovery requirements. The nitrogen removed from the feed stream may be used as fuel or in other applications or vented to atmosphere. Use of a nitrogen rejection unit (NRU) for such processing of natural gas or liquid natural gas feed streams is known in the art, but increases in efficiency and reduced power requirements are desirable.
There are several aspects of the present subject matter which may be embodied separately or together in the devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto
In one aspect, a system for removing nitrogen from a natural gas fluid feed stream includes a main heat exchanger including a main feed cooling passage, a withdrawn vapor warming passage, main reflux stream cooling passage, a reflux vapor cooling passage and a nitrogen vapor return passage with the main feed cooling passage including an inlet and an outlet, where the inlet of the main feed cooling passage is configured to receive the natural gas fluid feed stream. A distillation column includes a feed inlet, a return vapor outlet, a side vapor outlet port, first and second reflux inlet ports and a bottoms liquid outlet, wherein the side vapor outlet port and the first and second reflux inlet ports are positioned between the feed inlet and the return vapor outlet. The feed inlet of the distillation column is configured to receive a fluid stream from the outlet of the main feed cooling passage of the main heat exchanger. The side vapor outlet port of the distillation column is configured to provide vapor to the withdrawn vapor warming passage of the main heat exchanger. The return vapor outlet of the distillation column is configured to provide nitrogen vapor to said nitrogen vapor return passage of the main heat exchanger. The first reflux inlet port of the distillation column is in fluid communication with the reflux vapor cooling passage of the main heat exchanger. A reflux compressor configured to receive and compress fluid from the withdrawn vapor warming passage of the main heat exchanger. A reflux aftercooler is configured to receive and cool fluid from the reflux compressor and direct cooled fluid to the main reflux stream cooling passage of the main heat exchanger. A reflux separation device is configured to receive fluid from the main reflux stream cooling passage of the main heat exchanger, with the reflux separation device having a vapor outlet and a liquid outlet, wherein the vapor outlet of the reflux separation device is configured to direct fluid to the reflux vapor cooling passage of the main heat exchanger and the liquid outlet of the reflux separation device is configured to direct fluid to the second reflux inlet port of the distillation column.
In another aspect, a system for removing nitrogen from a natural gas fluid feed stream includes a main heat exchanger including a main feed cooling passage, a withdrawn vapor warming passage, main reflux stream cooling passage, a reflux vapor cooling passage and a vapor return stream passage with the main feed cooling passage including an inlet and an outlet, where the inlet of the main feed cooling passage is configured to receive the natural gas fluid feed stream. A distillation column includes a feed inlet, a return vapor outlet, a side vapor outlet port, first and second reflux inlet ports and a bottoms liquid outlet, wherein the side vapor outlet port and the first and second reflux inlet ports are positioned between the feed inlet and the return vapor outlet. The feed inlet of the distillation column is configured to receive a fluid stream from the outlet of the main feed cooling passage of the main heat exchanger. The side vapor outlet port of the distillation column is configured to provide vapor to the withdrawn vapor warming passage of the main heat exchanger. The return vapor outlet of the distillation column is configured to provide nitrogen vapor to said nitrogen vapor return passage of the main heat exchanger. The first reflux inlet port of the distillation column is in fluid communication with the reflux vapor cooling passage of the main heat exchanger. A reflux compressor configured to receive and compress fluid from the withdrawn vapor warming passage of the main heat exchanger. A reflux aftercooler is configured to receive and cool fluid from the reflux compressor and direct cooled fluid to the main reflux stream cooling passage of the main heat exchanger. A reflux separation device is configured to receive fluid from the main reflux stream cooling passage of the main heat exchanger, with the reflux separation device having a vapor outlet and a liquid outlet, wherein the vapor outlet of the reflux separation device is configured to direct fluid to the reflux vapor cooling passage of the main heat exchanger and the liquid outlet of the reflux separation device is configured to direct fluid to the second reflux inlet port of the distillation column. The nitrogen vapor return passage and the withdrawn vapor warming passage of the main heat exchanger are configured to cool the main feed cooling passage, the main reflux stream cooling passage and the reflux vapor cooling passage of the main heat exchanger.
In still another aspect, a method of removing nitrogen from a natural gas fluid teed stream includes the steps of cooling the natural gas fluid feed stream in a main heat exchanger; directing the cooled natural gas fluid teed stream to a distillation column; withdrawing vapor from a side of the distillation column; warming the withdrawn vapor using the main heat exchanger so that refrigeration is provided in the main heat exchanger; compressing the warmed withdrawn vapor; cooling and partially condensing the compressed withdrawn vapor to form a first mixed phase reflux stream; separating the first mixed phase reflux stream into a first liquid reflux stream and a first vapor reflux stream; directing the first liquid reflux stream to the distillation column; cooling the first vapor reflux stream so that a second reflux stream is formed; directing the second reflux stream to the distillation column; directing a nitrogen vapor return stream from the distillation column to the main heat exchanger; warming the nitrogen vapor return stream using the main heat exchanger so that refrigeration is provided in the main heat exchanger; and withdrawing liquid from a bottom of the distillation column.
Disclosed herein is a nitrogen rejection unit (NRU) system and method for the removal of nitrogen from a natural gas stream with a heat pump system and method to provide additional refrigeration. Embodiments of the system and method of the disclosure are illustrated in
It should be noted herein that the passages and streams are sometimes both referred to by the same element number set out in the figures. Also, as used herein, and as known in the art, a heat exchanger is that device or an area in the device wherein indirect heat exchange occurs between two or more streams at different temperatures, or between a stream and the environment. As used herein, the terms “communication”, “communicating”, and the like generally refer to fluid communication unless otherwise specified. Furthermore, although two fluids in communication may exchange heat upon mixing, such an exchange would not be considered to be the same as heat exchange in a heat exchanger, although such an exchange can take place in a heat exchanger. As used herein, the term “reducing the pressure of” (or variations thereof) does not involve a phase change, while the term “flashing” (or variations thereof) involves a phase change, including even a partial phase change. As used herein, the terms, “high”, “middle”, “mid”, “warm” and the like are relative to comparable streams, as is customary in the art.
A first embodiment of the system and method of the disclosure, illustrated in
The vapor stream 24 exiting the separation vessel 22 is cooled in feed vapor portion cooling passage 25 in the heat exchanger 12 with the resulting cooled stream 26 being directed to a first feed inlet of a nitrogen rejection unit (NRU) distillation column 30. The liquid stream 32 exiting the separation vessel 22 also travels so the NRU column 30 where it enters at a second feed inlet located below the first feed inlet of stream 26.
In alternative embodiments, the cooled feed stream 14 feed may enter the NRU column 30 through a single feed inlet, or it may be pre-separated in more than one separation device (as opposed to the single separation device illustrated in
Because the embodiment of
At some point in the NRU column 30 above the column inlets for main feeds (streams 26 and 32 in
Warmed stream 48 exits passage 46 of the heat exchanger and is recompressed within reflux compressor 52. The resulting compressed stream travels to reflux aftercooler cooling device 54 where it is cooled against air or by using some other utility cooling system (cooling water, propane, etc.). The cooled stream 56 is sent to the main reflux stream cooling passage 58 of heat exchanger 12 where it is cooled and partially condensed. Stream 62 then travels to a warm reflux separation device, such as vessel 64. The resulting vapor stream 66 travels to warm reflux vapor cooling passage 68 in heat exchanger 12, where it is cooled and partially condensed. The resulting stream 72 then travels to a cold reflux separation device, such as vessel 74. Vapor stream 73 from the cold reflux separation device 74 travels through the cold reflux vapor cooling passage 75 where it is cooled and condensed. The resulting liquid stream 77 travels to a reflux inlet port of the NRU column 30 as reflux, Liquid streams 76 and 78, from warm and cold reflux separation devices 64 and 74, respectively, are directed to reflux inlet ports of the NRU column 30 as reflux. As illustrated in
A nitrogen return vapor stream 82 exits a return vapor outlet in the top portion of the NRU column 30 and is sent to the nitrogen vapor return passage 84 in heat exchanger 12 to provide refrigeration to the heat exchanger passages described above wherein streams are cooled. The resulting warmed nitrogen stream 86 is vented to atmosphere or used for other purposes (such as fuel).
In view of the above, the side vapor outlet port for stream 44 and the reflux inlet ports for streams 76, 77 and 78 of the NRU column 30 are positioned between the feed inlets for streams 26 and 32 and the return vapor outlet for stream 82.
An optional column reboiler system provides refrigeration to other streams, and consists of one or more individual reboiler services. It may be of forced recirculation type (with circulation provided by pumps), thermosiphon type (with circulation provided hydraulically, with the NRU column installed above the portion of the BAHX assembly containing the reboiler service(s)), or by some other method. In the embodiment illustrated in
The bottoms liquid stream 98 from the NRU column may be pumped via pump 99, or otherwise directed, to other systems or pumped back to the heat exchanger 12 and used to provide condensing duty for the main LNG feed.
In alternative embodiments of the system, the liquids from any of the pre-sep vessels (such as 22, 64 and/or 74 of
In an alternative embodiment of the system and method of the disclosure, illustrated in
The remaining components of the embodiment of
In embodiments where product LNG is pumped and reboiled to provide refrigeration for the main feed, a set of pumps with high discharge pressure can send a portion to a higher pressure passage in the main heat exchanger and a valve may be used to send another portion of the flow to a lower pressure passage in the main heat exchanger. In other words, a single pump can be used to supply two pressure levels of refrigeration to reduce the natural gas recompression requirements.
In an alternative embodiment of the system and method of the disclosure, illustrated in
At some point in the column above the column inlet for main feed stream 218, a portion of the vapor flow 244 is withdrawn from a side outlet port of the NRU column 230. This stream is a mixture of components in the column, principally consisting of nitrogen, methane, and any trace low-boiling components (helium, argon, hydrogen, etc.). Stream 244 is directed to a withdrawn vapor warming passage 246 of heat exchanger 212 where it is warmed while providing refrigeration to main feed cooling passage 211 of the heat exchanger 212, as well as to additional heat exchanger passages wherein streams are cooled presented below.
Warmed stream 248 exits passage 246 of the heat exchanger and is recompressed within reflux compressor 252. The resulting compressed stream travels to reflux aftercooler cooling device 254 where it is cooled against air or by using some other utility cooling system (cooling water, propane, etc.). The cooled stream 256 is sent to the main reflux stream cooling passage 258 of heat exchanger 212 where it is cooled and partially condensed. Stream 262 then travels to a reflux separation device, such as vessel 264. The resulting vapor stream 266 travels to reflux vapor cooling passage 268 in heat exchanger 212, where it is cooled and condensed. The resulting liquid stream 272 travels to NRU column 230 as reflux. Liquid stream 276 from separation device 264 is directed to a reflux liquid cooling passage 278 of heat exchanger 212 where it is subcooled. The resulting stream 280 is directed to the NRU column 230 as reflux. As illustrated in
A nitrogen vapor stream 282 exits the top of the NRU column 230 and is sent to the nitrogen vapor return passage 284 in heat exchanger 212 to provide refrigeration to the heat exchanger passages described above wherein streams are cooled. The resulting warmed nitrogen stream 286 is vented to atmosphere or used for other purposes (such as fuel).
The bottoms liquid stream 292 from column 230 is pumped via pump 293 as liquid stream 295 to the heat exchanger 212 where it enters bottoms liquid warming passage 294 for use in providing refrigeration or condensing duty for the main natural gas feed 208. A resulting natural gas stream 296 exits passage 294. A portion of liquid stream 295 may be directed as stream 297 to reboiler passage 299 of the main heat exchanger 212 with the resulting at least partially vaporized stream returned to the column 230 as a reboiler service to provide extra refrigeration within the heat exchanger.
In another alternative embodiment of the system and method of the disclosure, illustrated in
More specifically, with reference to
The liquid stream 332 exiting the separation vessel 322 travels to the main feed inlet of the NRU column 330.
The vapor stream 324 exiting the separation vessel 322 is cooled in feed vapor portion cooling passage 325 in the heat exchanger 312 with the resulting cooled stream 326 being directed a helium separation device, such as helium separation vessel 327. The helium vapor stream 329 exiting the helium separation vessel 327 travels through helium refrigeration recovery passage 330 whereby refrigeration is provided in the heat exchanger 312. A warmed helium vapor sendout stream 331 exits passage 330 of the heat exchanger 312.
At some point in the column above the column inlet for main feed stream 332, a portion of the vapor flow 344 is withdrawn from a side outlet port of the NRU column 330. This stream is a mixture of components in the column, principally consisting of nitrogen, methane, and any trace low-boiling components (helium, argon, hydrogen, etc.). Stream 344 is directed to a withdrawn vapor warming passage 346 of heat exchanger 312 where it is warmed while providing refrigeration within the heat exchanger 312.
Warmed stream 348 exits passage 346 of the heat exchanger and is recompressed within reflux compressor 352. The resulting compressed stream travels to reflux aftercooler cooling device 354 where it is cooled against air or by using some other utility cooling system (cooling water, propane, etc.). The cooled stream 356 is sent to the main reflux stream cooling passage 358 of heat exchanger 312 where it is cooled and partially condensed. Stream 362 then travels to a reflux separation device, such as vessel 364. The resulting vapor stream 366 travels to reflux vapor cooling passage 368 in heat exchanger 312, where it is cooled and condensed. The resulting stream 372 travels to the NRU column 330 as reflux.
A recycle line 367 including a corresponding valve may be provided to control the composition of the stream entering the reflux compressor 352.
In order to increase operability, the reflux compressor suction may optionally be blended with feed gas via line 369 (illustrated in phantom in
A temperature control bypass line 357 features a valve 359 that may be used to adjust the portion of stream 356 that passes through the passage 358 so as to control the temperature within the reflux separation vessel 364.
Liquid stream 376 from reflux separation device 364 is directed to the reflux liquid passage 374 of the column where it is subcooled and then directed to the NRU column for reflux as stream 375.
The liquid stream 380 exiting the bottom of helium separation vessel 327 joins reflux stream 375 and is directed to column 330.
As illustrated in
A nitrogen vapor stream 382 exits the top of the NRU column 330 and is sent to the nitrogen vapor return stream passage 384 in heat exchanger 312 to provide refrigeration to the heat exchanger passages in the heat exchanger wherein streams are cooled. The resulting warmed nitrogen stream 386 is vented to atmosphere or used for other purposes (such as fuel).
In the embodiment illustrated in
The bottoms liquid stream 391 from column 330 is pumped via pump 393 as liquid stream 395 to the heat exchanger 312 where it enters bottoms liquid warming passage 397 for use in providing refrigeration or condensing duty for the main natural gas feed 310. The resulting methane vapor stream 398 may be directed to a sendout compressor.
In another alternative embodiment of the system and method of the disclosure, illustrated in
More specifically, with reference to
At some point in the column above the column inlet for main feed stream 418, a portion of the vapor flow 444 is withdrawn from a side outlet port of the NRU column 430. This stream is a mixture of components in the column, principally consisting of nitrogen, methane, and any trace low-boiling components (helium, argon, hydrogen, etc.). Stream 444 is directed to a withdrawn vapor warming passage 446 of heat exchanger 412 where it is warmed while providing refrigeration within the heat exchanger 412.
Warmed stream 448 exits passage 446 of the heat exchanger and is recompressed within reflux compressor 452. The resulting compressed stream travels to reflux aftercooler cooling device 454 where it is cooled against air or by using some other utility cooling system (cooling water, propane, etc.). The cooled stream 456 is sent to the main reflux stream cooling passage 458 of heat exchanger 412 where it is cooled and partially condensed. Stream 462 then travels to a reflux separation device, such as vessel 464. The resulting vapor stream 466 travels to reflux vapor cooling passage 468 in heat exchanger 412, where it is cooled and condensed. The resulting stream 472 travels to the NRU column 430 as reflux.
Liquid stream 476 from reflux separation device 464 is directed to the reflux liquid passage 474 of the column where it is subcooled and then directed to the NRU column for reflux as stream 475. Streams 472 and 475 enter the NRU column 430 via multiple reflux inlet ports.
As illustrated in
A nitrogen vapor stream 482 exits the top of the NRU column 430 and is sent to the nitrogen vapor return passage 484 in heat exchanger 412 to provide refrigeration to the heat exchanger passages in the heat exchanger wherein streams are cooled. The resulting warmed nitrogen stream 486 is vented to atmosphere or used for other purposes (such as fuel).
The bottoms liquid stream 432 from NRU column 430 is pumped via pump 433 as liquid stream 434 to the heat exchanger 412 where it enters bottoms liquid warming passage 435 for use in providing refrigeration or condensing duty for the main natural gas feed 410. The resulting methane vapor stream 436 is directed to a compressor, such as methane compressor 437. The resulting stream is directed to aftercooler cooling device 438 where it is cooled against air or by using some other utility cooling system (cooling water, propane, etc.) so as to produce methane sendout stream 440.
In the embodiment illustrated in
There are several aspects of the present subject matter which may be embodied separately or together in the methods, devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto.
While the preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit of the invention, the scope of which is defined by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/837,439, filed Apr. 23, 2019, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3797261 | Juncker et al. | Mar 1974 | A |
3813890 | Bligh | Jun 1974 | A |
4203741 | Bellinger | May 1980 | A |
4225329 | Bailey et al. | Sep 1980 | A |
4230469 | Grimm et al. | Oct 1980 | A |
4411677 | Pervier et al. | Oct 1983 | A |
4415345 | Swallow | Nov 1983 | A |
4501600 | Pahade | Feb 1985 | A |
4504295 | Davis et al. | Mar 1985 | A |
4496382 | Geist et al. | Jun 1985 | A |
4592767 | Pahade et al. | Jun 1986 | A |
4662919 | Davis | May 1987 | A |
4732598 | Rowles et al. | Mar 1988 | A |
5325674 | Gatinne et al. | Jul 1994 | A |
6070430 | McNeil et al. | Jun 2000 | A |
6609393 | Oakey | Aug 2003 | B2 |
6837071 | Oakey | Jan 2005 | B2 |
6978638 | Brostow et al. | Dec 2005 | B2 |
7127915 | Clare et al. | Oct 2006 | B2 |
8435403 | Sapper et al. | May 2013 | B2 |
8715390 | Schmidt et al. | May 2014 | B2 |
8794031 | Bauer et al. | Aug 2014 | B2 |
9003829 | Bauer et al. | Apr 2015 | B2 |
9335091 | Qualls et al. | May 2016 | B2 |
20020095062 | Paradowski | Jul 2002 | A1 |
20080196584 | Ha | Aug 2008 | A1 |
20100175424 | Walther | Jul 2010 | A1 |
20110289963 | Price | Dec 2011 | A1 |
20150052938 | Bauer | Feb 2015 | A1 |
20150308738 | Ott et al. | Oct 2015 | A1 |
20160054054 | Johnson et al. | Feb 2016 | A1 |
20180051215 | Bauer et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2131341 | Dec 1972 | DE |
0725256 | Aug 1996 | EP |
1539604 | Jan 1979 | GB |
1539604 | Jan 1979 | GB |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2020/028093, dated Jul. 13, 2020. (16 pages total). |
Handley, James Richard and Webb C. Miller. “Process Requirements and Enhanced Economics of Helium Recovery From Natural Gas.” SPE Mid Continent Gas Symposium, No. SPE24292 Apr. 12, 1992. (11 pages total). |
Number | Date | Country | |
---|---|---|---|
20200340740 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62837439 | Apr 2019 | US |