The present invention relates to a nasal cannula for delivering breathing gas to a single nare of a patient for inhalation of the breathing gas.
A standard nasal cannula is equipped with two prongs that extend into a patient's nares. Gas flow is delivered by connecting the nasal cannula to a source of breathing gas. However, because both of the patient's nostrils can be at least partially obstructed by its two prongs, a standard nasal cannula can inhibit the patient's ability to exhale waste gases.
Briefly, the present invention provides a device for delivering breathing gas to a patient. The device comprises a single nasal prong insertable into a nare of the patient. The single nasal prong is sized to allow gas passage between the single nasal prong and the nare. A lumen is in fluid flow communication with the single nasal prong.
Additionally, the present invention provides a system for delivering breathing gas to a single nare of a patient. The system comprises a source of breathing gas and a device for delivering breathing gas to a patient. The device comprises a single nasal prong insertable into a nare of the patient. The single nasal prong is sized to allow gas passage between the single nasal prong and the nare. A lumen is in fluid flow communication with the single nasal prong.
Further, the present invention provides a method of administering breathing gas to a single nare of a patient. The method comprises fitting the single nare with a single nasal prong nasal cannula coupled to a source of the breathing gas such that a space exists between the single nasal prong nasal cannula and the single nare; and delivering the breathing gas to a selected nare of the patient.
Also, the present invention provides a device for delivering breathing is gas to a patient. The device includes a nasal element having a single nasal prong insertable into a nare. The single nasal prong is sized to fit loosely within the nare. The device also includes a lumen in fluid communication with the nasal element and a tubing portion in fluid communication with the lumen. A connector is adapted to receive a breathing gas delivery line. The connector is in fluid communication with the tubing portion.
The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings, which are incorporated herein and constitute part of this specification. For the purposes of illustrating the invention, there are shown in the drawings exemplary embodiments of the invention. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings, the same reference numerals are employed for designating the same elements throughout the several figures. In the drawings:
The following describes an exemplary embodiment of the invention. It should be understood based on this disclosure, however, that the invention is not limited by the exemplary embodiment of the invention.
Referring to
A breathing system 60 is also provided for delivering breathing gas to a patient. Breathing system 60 includes a source 170 of breathing gas as well as a breathing gas delivery apparatus such as single nasal prong cannula 100.
In use, breathing gas is administered to a patient by fitting one nare 12 of patient 10 with a single nasal prong 120 of nasal cannula 100 such that a space exists between single nasal prong 120 of nasal cannula 100 and nare 12 of patient 10. The breathing gas is delivered to nare 12 of patient 10 through single nasal prong 120 while evacuating a portion of expired gas through the space between single nasal prong 120 of nasal cannula 100 and nare 12 of patient 10. In between breaths, the breathing gas flushes carbon dioxide from a dead space in the upper respiratory tract via open nare 14.
Open nare 14 may also act as a pressure relief in the event that the flow rate of breathing gas delivered to the patient exceeds the flow rate of breathing gas required by the patient. Excess breathing gas enters the patient's respiratory tract and exits open nare 14, thereby reducing the potential of overpressurizing the patient's lungs.
During exhalation and if the other nare 14 is not obstructed, flow from single nasal prong 120 flows to the user's pharynx, reverses around the end of the septum and flows out through nare 14. During inhalation with the single prong flow rate set higher than maximum inspiration flow rate, excess breathing gas flows out through other nare. An advantage of this approach is that upper airway dead space can be completely flushed of carbon dioxide. This means an increase in PO2, without supplemental oxygen.
In an exemplary embodiment, depending upon the respiratory therapy being applied, the breathing gas is delivered through single nasal prong 120 of nasal cannula 100 at a rate of between about 1 and 40 liters per minute. In an exemplary embodiment for lower flow applications, the breathing gas is delivered at a rate of between about 1 and 8 liters per minute.
Additionally, the breathing gas is optionally delivered in a humidified condition of up to 100% humidity and at an elevated temperature of between about 33.0° C. to about 43.0° C.
Referring to
Cannula 100 also includes a first lumen 130 that extends from first element end 112 of nasal element 110, over the right ear 16 of patient 10, and to the front of patient 10. Cannula 100 also includes a second lumen 140 that extends from second element end 114 of nasal element 110, over the left ear 18 of patient 10, and to the front of patient 10, where second lumen 140 is joined next to first lumen 130 at a collar 150, which is slidable up and down first and second lumens 130 and 140.
Referring to
Source of breathing gas 170, delivery tube 160, first and second lumens 130 and 140, and nasal element 110 are all in fluid communication, respectively, with each other to form breathing system 60 such that gas from source of breathing gas 170 flows through tubing connector 168, through delivery tube 160, through hub 162, through first and second lumens 130, 140, and to nasal element 110 for breathing by patient 10.
Referring now to
Single nasal prong 120 is sized to allow for ease of insertion into nare 12, yet also to provide space between single nasal prong 120 and nare 12 to allow exhaust gas from patient 10 to flow between single nasal prong 120 and nare 12 in order to facilitate exhaust breathing by patient 10. In an exemplary embodiment, single nasal prong 120 fits loosely within nare 12. In this embodiment, single nasal prong 120 is not “wedged” into nare 12 in order to permit flow of exhaust gases past single nasal prong 120 and also to reduce the possibility of inflammation of nare 12 due to excess pressure exerted against nare 12 by single nasal prong 120.
A grasping member 124 extends from nasal element 110 between single nasal prong 120 and second element end 114. Grasping member 124 is spaced approximately ninety degrees around nasal element 110 from single nasal prong 120 to facilitate gripping of grasping member 124 by patient 10 to insert single nasal prong 120 into nare 12 and to remove single nasal prong 120 from nare 12.
In an exemplary embodiment, nasal element 110 and first and second lumens 130 and 140 are constructed from silicone or some other flexible, suitable biocompatible material, as will be understood by those skilled in the art. In an exemplary embodiment, collar 150 is constructed from polyethylene, polypropylene or polyvinyl chloride, or some other suitable polymer.
To insert single nasal prong nasal cannula 100, patient 10 places first lumen 130 over right ear 16 and places second lumen 140 over left ear 18. Patient 10 then places nasal element 110 under nose 11 such that single nasal prong 120 is located just below selected nare 12, 14 for insertion of single nasal prong 120. Patient 10 may use grasping member 124 to manipulate nasal element 110 into position.
Patient 10 inserts single nasal prong 120 into selected nare 12, 14 and releases nasal element 110. As seen in
By adjusting collar 150 under the chin, first and second lumens 130, 140 are drawn relatively tightly against the skin of patient 10, allowing the patient's body heat to help maintain temperature when delivering heated humidified gas. This feature reduces the ambient temperature gradient between the heated and humidified breathing gas and atmosphere, and further leads to reduced condensation in first and second lumens 130, 140, preventing rain-out and liquid droplets delivered into patient's nose 11.
In an exemplary embodiment, a single nasal prong 120 does not totally occlude the nostril passageway in order to allow exhaust gases to pass through the nostril, and between single nasal prong 120 and nare 12. Additionally, excess pressure by single nasal prong 120 against the nasal walls may stimulate the nasal mucosa in that nostril which could increase secretions to rid itself of single nasal prong 120, leading to single nasal prong 120 to possibly “pop out” of the nostril. Further, extreme pressure may collapse the capillaries within the nostril, leading to tissue necrosis.
In operation, since single nasal prong 120 is inserted only into one nare 12, as described above, nasal cannula 100 permits remaining nare 14 to remain open to facilitate further exhalation of waste gases (e.g. carbon dioxide). Single nasal prong 120 can be alternated between nare 12 and nare 14 to reduce skin and nasal mucosal irritation. Alternatively, remaining nare 14 may be used to facilitate insertion of an additional device into patient's nose 11, such as a nasogastric tube, a suction tube, or monitoring equipment (not shown).
A nasal cannula according to aspects of this invention is well suited for delivering breathing gas to a patient under a variety of conditions. For example, nasal cannula 100 is well suited for delivering heated and humidified breathing gas to a patient for respiratory therapy. Such breathing gas can be delivered, for example, via nasal cannula 100 using an apparatus capable of operating in a controlled air output temperature range of from about 33° C. to about 43° C. and an operating flow range of about 1 to about 40 l/min. An example of such an apparatus is described in application Ser. No. 10/149,356, filed Jan. 29, 2003, which is incorporated herein by reference. Also, gas is optionally delivered through nasal cannula 100 is at to a flow rate in a range of about 1 liter per minute to about 8 liters per minute as disclosed in application Ser. No. 10/810,768, filed Mar. 26, 2004, also incorporated herein by reference.
Adhesive strips 318, 320 extend from nasal prong 310. A first adhesive strip 318 extends away from lumen 312 and a second adhesive strip 320 extends along lumen 312. Adhesive strips 318, 320 are used to releasably secure cannula 300 to a user during use. Cannula 310 may be applicable for pediatric and/or neo-natal use, where it may be impractical to attempt to configure lumen 312 over the user's ear.
A second end 312b of lumen 312 includes a hub 322 that is releasably connectable to a breathing gas supply, such as delivery tube 160 shown in
Unlike cannula 100 that is draped over the user's ears during use, lo cannula 300 is adhered to the user by adhering adhesive strips 318, 320 to an area between the user's top lip and nose.
An alternative embodiment of a nasal cannula 400 according to an embodiment of the present invention is shown in
Nasal prong 410 is split into two paths, which include a single nasal lumen 414 and a second path 416, which is not in fluid communication with the user. Single nasal lumen 414 curves about 90 degrees relative to first end 410a of nasal prong 410.
The structures of nasal prongs 210, 310, 410, with their smooth curves, provide for a smooth flow of breathing gas to the user, which minimizes noise of the breathing gas as it flows though the respective nasal prongs 210, 310, 410. Also, the taper of the inner lumens in nasal prongs 210, 310, 410 also eliminates any breathing gas expansion area that may induce rainout. The taper may be a gradual taper as shown in nasal prongs 210, 310, 410, or alternatively, the taper may be in a stepped fashion. The taper is designed to reduce or eliminate flow disruptions that could cause rainout when delivering heated and humidified gas.
The ability to deliver CPAP flow via a single prong at higher flows has enhanced the standard of care for establishing a bridge from endo-tracheal mechanical ventilation. The single prong nasal cannula according to the present invention frees one nare for feeding tubes and nasogastric tubes for a gastric vent. This is extremely helpful with the left sided obstruction, Coarctation of the aorta (COA) who will have a thoracotomy and lung deflation and retraction for surgical access. Post extubation support with proactive use of CPAP via the inventive single prong nasal cannula has decreased reintubation for post-operative failure. This patient population has the possibility of gastric reperfusion injury and the nasal-gastric tube is necessary. Using CPAP with the inventive nasal cannula may also play a role in decreasing reintubation for the post-operative diaphragm lethargy due to phernic nerve inflammation from manipulation.
Also, a nasal cannula according to the present invention, in conjunction with CPAP, may be used with a patient that may present as a difficult challenge from discontinuing from endo-tracheal mechanical ventilation for pure respiratory concerns or hemodynamically driven respiratory failure.
Further, long term use of the inventive nasal cannula may reduce breakdown issues for the face or the nares. Additionally, patient nutritional issues can be effectively addressed by placement of a naso-jejunal gastric tube for continuous feeds while on CPAP using the inventive nasal cannula. Starting flow rate of breathing gas with the inventive nasal cannula for a 2-4 Kg patient is between about 8 and about 10 liters per minute. This flow rate is titrated up or down based on auscultated CPAP sounds, work of breathing (WOB), hemodynamics, and SpO2 of the patient. Flows of twenty liters per minute have been used on 4-6 Kg patients.
A nasal cannula according to the present invention was used for delivering CPAP to a patient with a complete cleft palate. Effective CPAP was delivered to the patient with flows at 8 LPM, using blended oxygen. This patient remained on CPAP with the single cannula for two months with FiO2 ranging from 0.30 to 0.16.
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
The present application claims priority from U.S. Provisional Patent Application Ser. No. 60/859,220, filed on Nov. 15, 2006, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60859220 | Nov 2006 | US |