The present invention relates to an array antenna having a waveguide, and more particularly to a new single polarized array waveguide antenna.
Antennas are an important device in wireless communication equipment. Antennas allow signals to be converted into electromagnetic energy released into free space, and are also capable of receiving electromagnetic waves from free space.
In current mobile communication technologies, demands for transmission rates and bandwidths are constantly increasing, such that carrier wavelengths used by mobile communication technologies have entered short wavebands with sufficient bandwidths. For example, transmission techniques of the 5th Generation (5G) Mobile Networks use millimeter waves with a frequency exceeding 6 GHz, and may even proceed to use of millimeter waves of 26.5 GHz to 300 GHz.
However, as the wavelength of a carrier gets shorter, the attenuation level of electromagnetic wave energy becomes faster as the transmission distance in air increases. Thus, a deployment that uses an antenna array is adopted for configuring an antenna device so as to centralize the energy of electromagnetic waves. In an antenna array, the distance between individual antenna units needs to be less than or equal to the length of half wavelength of carriers used, in a way that these antenna are necessarily closely arranged, leading extreme difficulties in further enhancing signal transmission quality.
It is an object of the present invention to enhance signal transmission quality.
It is another object of the present invention to provide an array waveguide antenna with low transmission loss with respect to transmission of short-wavelength carriers.
It is another object of the present invention to provide an array waveguide antenna with better impedance matching and improved bandwidths.
It is yet another object of the present invention to provide an array waveguide antenna with a better heat dissipation capability.
To achieve the above and other objects, a new single polarized array waveguide antenna is provided according to an embodiment of the present invention. The new single polarized array waveguide antenna is adapted to be configured above a signal processing substrate, and includes an antenna array substrate and a waveguide body. The antenna array substrate includes a plurality of antenna units, each of which having a coupling portion and an impedance matching portion. The waveguide body is configured above the antenna array substrate, and includes a plurality of waveguide channels passing through the waveguide body. Each of the waveguide channels has a first ridge and a second ridge projecting from wall surfaces and arranged opposite to each other. The first ridge has a first lower withdrawn edge on a lower section of the waveguide channel, the second ridge has a second lower withdrawn edge on the lower section of the waveguide channel. The first lower withdrawn section is distanced from the antenna array substrate by a first matching height, and the second lower withdrawn edge is distanced from the antenna array substrate by a second matching height, wherein the first matching height is different from the second matching height.
According to an embodiment of the present invention, the first ridge is closer to the coupling portion than the second ridge, and the first matching height may be more than the second matching height.
According to an embodiment of the present invention, the impedance matching portion is closer to a middle part of the antenna unit than the coupling portion.
According to an embodiment of the present invention, each of the antenna units is a conductive sheet, and the impedance matching portion may be a matching hole passing through the antenna units and be located at the center of the conductive sheet.
According to an embodiment of the present invention, the coupling portion may be coupled to a signal feed portion of the signal processing substrate.
According to an embodiment of the present invention, the projecting direction of the first ridge and the second ridge may be a polarization direction of electromagnetic signals transmitted, and the position of the electromagnetic signal at a signal feed point on the antenna unit is closer to the first ridge than the second ridge.
According to an embodiment of the present invention, two neighboring ridges between two neighboring waveguide channels may be the same first ridge or the same second ridge.
According to an embodiment of the present invention, each of the waveguide channels may be a rectangle in shape, and each first ridge and each second ridge project from wall surfaces of opposite sides of the rectangle.
According to an embodiment of the present invention, the first ridge may has a first upper withdrawn edge on an upper section of the waveguide channel, and the second ridge may has a second withdrawn edge on the upper section of the waveguide channel.
According to an embodiment of the present invention, the antenna array substrate may further comprise a heat dissipation lattice layer, the heat dissipation lattice layer is coupled to a plurality of heat conducting units passing through the antenna array substrates, and each of the heat conducting units is coupled to a grounding layer of the signal processing substrate.
According to an embodiment of the present invention, each of the antenna units may be surrounded by the heat dissipation lattice layer.
According to an embodiment of the present invention, the waveguide body, the heat dissipation lattice layer and the heat conducting units may be formed of metal materials.
Thus, the new single polarized array waveguide antenna according to the embodiments of the present invention provides, based on the structural arrangement of the waveguide body, better waveguide matching, reduces transmission loss, and facilitates electromagnetic wave energy to be fed from the antenna substrate into the waveguide body and be emitted from the waveguide body, further helping to increase the bandwidth and providing better beamforming effects. Moreover, by using a heat dissipation lattice layer and a plurality of heat conducting units, the antenna array in a dense arrangement is provided with a better heat dissipation solution.
The technical characteristics, contents, advantages and effects of the present invention will become apparent from the following detailed description taken with the accompanying drawing.
For energy of electromagnetic waves emitted from an array antenna, the beamforming effect of the electromagnetic waves can be further achieved using a waveguide structure. However, the waveguide structure needs to be correspondingly reduced when the wavelength of the transmitted electromagnetic waves gets shorter, such that the shape of a feed point between the waveguide structure and the array antenna becomes extremely critical.
The waveguide structure described in the following embodiments achieves waveguide matching between array antennas by means of an arrangement of ridges, so that waveguide energy can be smoothly emitted. Further, the arrangement of ridges also allows a distance used between waveguide channels to be further shortened (e.g., shorter than 5 mm), while achieving better beamforming effects and increased bandwidths.
The antenna array substrate 200 of the new single polarized array waveguide antenna is capable of feeding via the antenna units 210 signals transmitted by the signal processing substrate 100 to waveguide channels 310 of the waveguide body 300, further emitting the electromagnetic wave energy into the air via the waveguide channels 310. An example of a 4×4 antenna array is shown in
Each antenna unit 210 has a coupling portion 211 and an impedance matching portion 212. The coupling portion 211 may be coupled to a connection point in the signal processing substrate 100. For example, both the antenna array substrate 200 and the signal processing substrate 100 may be printed circuit boards (PCB); in these substrates, coupling requirements of various circuit signals and grounding points may be achieved by means of layered structures, thus forming various transmission paths in the layered structures. Below the signal processing substrate 100, an integrated circuit (IC) may be configured to perform tasks including packet processing and conversion, and to establish the transmission paths using the layered structures and conduction paths so as to further transmit signals to the corresponding coupling portion 211.
The antenna array substrate 200 is frequently used as a transmission interface for emitting electromagnetic wave energy into the air. However, in the embodiment of the present invention, using the arrangement of the special structural design in the waveguide body 300, waveguide matching is enhanced while transmission loss is reduced, further increasing bandwidths and providing better beamforming effects under the use of the waveguide body 300. The waveguide body 300 is formed of a metal material, and is fixed above the antenna array substrate 200 and the signal processing substrate 100 by means of a fixing portion 320 in collaboration with a fixing element (not shown). The waveguide body 300 may further provide a heat dissipation ability, and effectively achieves a heat dissipation effect for the integrated circuit below the signal processing substrate 100 through the heat conductivity of the metal material.
Referring to
As shown in
Referring to
Referring to
Therefore, with the configuration of the first matching height h1 different from the second matching height h2, an impedance matching capability is provided when the electromagnetic waves are fed into the waveguide channel 310. Further, when the first ridge 321 is closer to the coupling portion 211 than the second ridge 322, the first matching height h1 is more than the second matching height h2, which offers even better impedance matching effects.
In the example shown in
Referring to
For example, when the wavelength of electromagnetic waves to be transmitted enters a millimeter range, a gap of 0.5λ is usually needed between individual antenna units in an antenna array to prevent grating lobes from occurring, and correspondingly, neighboring waveguide channels need to be configured more closely, further leading to higher difficulties in the antenna design. However, with the coordination of the ridges and matching heights in the embodiments of the present invention, the configuration requirement of such close gaps is fulfilled, and signal transmission quality is enhanced at the same time.
Referring to
The antenna array substrate 200 may be configured therein with a plurality of heat conducting units 221 passing through the antenna array substrate 200. These heat conducting units 221 may be coupled to a grounding layer of the signal processing substrate 100. Because conductive grounding paths included are established by a metal material and the metal material is also heat conductive, the heat conducting units 221 may accordingly achieve heat conduction effects, so as to provide the antenna array in a dense arrangement with a better heat dissipation solution. The heat conducting units 221 may also be formed of a metal material, such that manufacturing of the heat conducting units 221 may be completed in pre-processed through holes while forming the antenna units 210 during the printed circuit board manufacturing process. The grounding layer in the signal processing substrate 100 is located on a top layer as the example given in
In conclusion, the novel single polarized array waveguide antenna according to the embodiments of the present invention provides, based on the structural arrangement of the ridges of the waveguide body, better waveguide matching, reduces transmission loss, and facilitates electromagnetic wave energy to be fed from the antenna substrate into the waveguide body and be emitted from the waveguide body, further helping to increase the bandwidth and providing better beamforming effects. Moreover, by using a heat dissipation lattice layer and a plurality of heat conducting units, the antenna array in a dense arrangement is provided with a better heat dissipation solution.
While the invention has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
20150188238 | Oppenlaender | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
WO-2020187983 | Sep 2020 | WO |
Number | Date | Country | |
---|---|---|---|
20220209419 A1 | Jun 2022 | US |