The embodiments disclosed herein relate to various medical devices and related components, including robotic and/or in vivo medical devices and related components. Certain embodiments include various robotic medical devices, including robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Further embodiment relate to methods of operating the above devices.
Invasive surgical procedures are essential for addressing various medical conditions. When possible, minimally invasive procedures such as laparoscopy are preferred.
However, known minimally invasive technologies such as laparoscopy are limited in scope and complexity due in part to 1) mobility restrictions resulting from using rigid tools inserted through access ports, and 2) limited visual feedback. Known robotic systems such as the da Vinci® Surgical System (available from Intuitive Surgical, Inc., located in Sunnyvale, CA) are also restricted by the access ports, as well as having the additional disadvantages of being very large, very expensive, unavailable in most hospitals, and having limited sensory and mobility capabilities.
There is a need in the art for improved surgical methods, systems, and devices.
The various embodiments disclosed or contemplated herein relate to surgical robotic devices, systems, and methods. More specifically, various embodiments relate to various medical devices, including robotic devices and related methods and systems. Certain implementations relate to such devices for use in laparo-endoscopic single-site (LESS) surgical procedures.
It is understood that the various embodiments of robotic devices and related methods and systems disclosed herein can be incorporated into or used with any other known medical devices, systems, and methods. For example, the various embodiments disclosed herein may be incorporated into or used with any of the medical devices and systems disclosed in copending U.S. application Ser. No. 11/766,683 (filed on Jun. 21, 2007 and entitled “Magnetically Coupleable Robotic Devices and Related Methods”), Ser. No. 11/766,720 (filed on Jun. 21, 2007 and entitled “Magnetically Coupleable Surgical Robotic Devices and Related Methods”), Ser. No. 11/966,741 (filed on Dec. 28, 2007 and entitled “Methods, Systems, and Devices for Surgical Visualization and Device Manipulation”), 61/030,588 (filed on Feb. 22, 2008), Ser. No. 12/171,413 (filed on Jul. 11, 2008 and entitled “Methods and Systems of Actuation in Robotic Devices”), Ser. No. 12/192,663 (filed Aug. 15, 2008 and entitled Medical Inflation, Attachment, and Delivery Devices and Related Methods”), Ser. No. 12/192,779 (filed on Aug. 15, 2008 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), Ser. No. 12/324,364 (filed Nov. 26, 2008 and entitled “Multifunctional Operational Component for Robotic Devices”), 61/640,879 (filed on May 1, 2012), Ser. No. 13/493,725 (filed Jun. 11, 2012 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors”), Ser. No. 13/546,831 (filed Jul. 11, 2012 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 61/680,809 (filed Aug. 8, 2012), Ser. No. 13/573,849 (filed Oct. 9, 2012 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), and Ser. No. 13/738,706 (filed Jan. 10, 2013 and entitled “Methods, Systems, and Devices for Surgical Access and Insertion”), and U.S. Pat. No. 7,492,116 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), U.S. Pat. No. 7,772,796 (filed on Apr. 3, 2007 and entitled “Robot for Surgical Applications”), and U.S. Pat. No. 8,179,073 (issued May 15, 2011, and entitled “Robotic Devices with Agent Delivery Components and Related Methods”), all of which are hereby incorporated herein by reference in their entireties.
Certain device and system implementations disclosed in the applications listed above can be positioned within a body cavity of a patient in combination with a support component similar to those disclosed herein. An “in vivo device” as used herein means any device that can be positioned, operated, or controlled at least in part by a user while being positioned within a body cavity of a patient, including any device that is coupled to a support component such as a rod or other such component that is disposed through an opening or orifice of the body cavity, also including any device positioned substantially against or adjacent to a wall of a body cavity of a patient, further including any such device that is internally actuated (having no external source of motive force), and additionally including any device that may be used laparoscopically or endoscopically during a surgical procedure. As used herein, the terms “robot,” and “robotic device” shall refer to any device that can perform a task either automatically or in response to a command.
Certain embodiments provide for insertion of the present invention into the cavity while maintaining sufficient insufflation of the cavity. Further embodiments minimize the physical contact of the surgeon or surgical users with the present invention during the insertion process. Other implementations enhance the safety of the insertion process for the patient and the present invention. For example, some embodiments provide visualization of the present invention as it is being inserted into the patient's cavity to ensure that no damaging contact occurs between the system/device and the patient. In addition, certain embodiments allow for minimization of the incision size/length. Further implementations reduce the complexity of the access/insertion procedure and/or the steps required for the procedure. Other embodiments relate to devices that have minimal profiles, minimal size, or are generally minimal in function and appearance to enhance ease of handling and use.
Certain implementations disclosed herein relate to “combination” or “modular” medical devices that can be assembled in a variety of configurations. For purposes of this application, both “combination device” and “modular device” shall mean any medical device having modular or interchangeable components that can be arranged in a variety of different configurations. The modular components and combination devices disclosed herein also include segmented triangular or quadrangular-shaped combination devices. These devices, which are made up of modular components (also referred to herein as “segments”) that are connected to create the triangular or quadrangular configuration, can provide leverage and/or stability during use while also providing for substantial payload space within the device that can be used for larger components or more operational components. As with the various combination devices disclosed and discussed above, according to one embodiment these triangular or quadrangular devices can be positioned inside the body cavity of a patient in the same fashion as those devices discussed and disclosed above.
An exemplary embodiment of a robotic device is depicted in
The body 100 contains four motors which control shoulder yaw (θ1) and shoulder pitch (θ2) for the right and left arms A, B. More specifically, as best shown in
As best shown in
In one embodiment, the four motors 109A, 109B, 122A, 122B, along with the motors in the arms as described elsewhere herein, are brushed direct current (DC) motors with integrated magnetic encoders and planetary gearheads. According to various embodiments, the motors used in the device can vary in size depending on the particular device embodiment and the location and/or use of the motor, with the size ranging in diameter from about 6 mm to about 10 mm. Alternatively, any known motors or other devices for converting electrical energy into rotational motion can be used.
As best shown in
As best shown in
In one implementation, the plurality of segments 101, 102, 103, 104, 105, 106 are made of a combination of machined aluminum and rapid prototyped plastic. One example of a process using such materials is described in “Rapid Prototyping Primer” by William Palm, May 1998 (revised Jul. 30, 2002), which is hereby incorporated herein by reference in its entirety. Alternatively, it is understood by those skilled in the art that many other known materials for medical devices can be used, including, but not limited to, stainless steel and/or injection molded plastics.
Thus, in certain implementations, each of the proximal right 108A, and proximal left spur gears 108B is used to transmit the rotational motion from the corresponding proximal motor 109A, 109B which further comprises a proximal motor drive component 109A.2, 109B.2 which acts through a planetary gearhead 109A.1, 109B.1). Each proximal spur gear 108A, 108B is rotationally constrained with a “D” shaped geometric feature 108.1A, 108.1B and, in some embodiments, a bonding material such as JB-Weld.
As shown in
In accordance with one implementation, the first segment top portion 101.1 of the first segment 101 is configured or shaped to receive an external clamp (such as, for example, a commercially available external clamp available from Automated Medical Products Corp. The clamp can be attached to the first segment top portion 101.1 to easily and securely attach the clamp to the body 100.
As shown in
Further, a second right ball bearing 113.1A is positioned on or around the hub of the first right bevel gear 112A so that its inner race is the only contact with the hub of the first right bevel gear 112A. A third ball bearing 113.2A is positioned on or around the right proximal spur shaft 115A in a similar manner and further is positioned in a right bore hole 113.3A in the right lumen 115.1A, as best shown in
While the drive train that includes the first left distal spur shaft 119.3B will be discussed in detail in this paragraph, it is understood that the drive train that includes the first right distal spur shaft 119.3A has the same components that are coupled and function in the same manner. The first left distal spur shaft 119.3B is configured to be disposed through the left fifth segment lumen 119.1B. It has a left distal driven gear 119.2B at one end and is coupled to a left distal bevel gear 117B at the other. In addition, a fourth ball bearing 116B is positioned within an opening or recess in the left distal bevel gear 117B and is contacted only on its outer race by the inner wall of the opening in the left distal bevel gear 117B. Further, the fifth ball bearing 118.1B is positioned over/on the bore of left distal bevel gear 117B and within the left fifth segment lumen 119.1B, while the fifth ball bearing 118.2B is positioned on/over spur the left distal gear shaft 119B and within the left fifth segment lumen 119.1B at the opposite end of the fifth segment lumen 119.1B from fifth ball bearing 118.1B. According to one embodiment, the left distal bevel gear 117B is coupled to the first left distal spur shaft 119.3B via a threaded coupling (not shown). That is, the left distal bevel gear 117B has a left distal bevel gear lumen 117.1B as best shown in
When the fourth, fifth and sixth segments 104, 105, 106 are coupled together to form the second housing 100.2, in one embodiment, a fifth segment projection 105A on the back of the fifth segment 105 is positioned in and mates with a fourth segment notch 104A in the back of the fourth segment 104, as best shown in
In one implementation best shown in
The shoulder subassemblies 127A, 127B of the right shoulder 300.1A and left shoulder 300.1B respectively, have output bevel gears 130A, 130B (which couples with the right bevel gears 112A, 117A and left bevel gears 112B, 117B) having a right lumen 130A and left lumen (not pictured) configured to receive the right output shaft 128A and left output shaft. The right output shaft 128A is positioned in the lumen 130A and also has two projections (a first 128A.1, and second 128A.2) that are configured to be positioned in the lumens of the first and second right bevel gears 112A, 117A. In addition, a plurality of ball bearings 111, 116 are positioned over the projections 128A.1, 128A.2 such that the inner race of the bearings 111, 116 contact the projections 128A.1, 128A.2.
A further ball bearing 129A is positioned on/over the right output shaft 128A such that the ball bearing 129 is positioned within the lumen 130A of the right output bevel gear 130A. Yet a further ball bearing 131 is positioned in the opposing side of the right output bevel gear lumen 130A and on/over a threaded member 132. The threaded member 132 is configured to be threaded into the end of the right output shaft 128A after the shaft 128A has been positioned through the lumen 130A of the right output bevel gear 130A, thereby helping to retain the right output bevel gear 130A in position over the right output shaft 128A and coupled with the first and second right bevels gears 112A, 117A. Once the threaded member 132 is positioned in the right output shaft 128A and fully threaded therein, the full right shoulder subassembly 127A is fully secured such that the right output bevel gear 130A is securely coupled to the first and second right bevel gears 112A, 117A.
In operation, as best shown in
As best shown in
It is understood that any known forearm component can be coupled to either upper arm 300A, 300B. According to one embodiment, the forearm coupled to the upper arm 300A, 300B is the exemplary right forearm 410, which could apply equally to a right 410A or left 410B forearm, depicted in
In this embodiment, the end effector 414 is a grasper, but it is understood that any known end effector can be coupled to and used with this forearm 410. The depicted embodiment can also have a circular valley 474 defined in the distal end of the forearm housing 412. This valley 474 can be used to retain an elastic band or other similar attachment mechanism for use in attaching a protective plastic bag or other protective container intended to be positioned around the forearm 410 and/or the entire device arm and/or the entire device to maintain a cleaner robot.
As best shown in
As best shown in
In the depicted embodiment, the attachment component 424 is an attachment nut 424. However, it is understood that the specific geometry or configuration of the attachment component 424 can vary depending on the specific robotic device and the specific elbow joint configuration.
In use, the actuation of the rotation motor 416 actuates rotation of the attachment component 424, which results in rotation of the forearm 410, thereby rotating the end effector 414. As such, in one embodiment, the rotation of the end effector 414 is accomplished by rotating the entire forearm 410, rather than just the end effector 414. In the depicted embodiment, the forearm 410 rotates around the same axis as the axis of the end effector 414, such that rotation of the forearm 410 results in the end effector 414 rotating around its axis. Alternatively, the two axes can be offset.
Any known end effector can be coupled to the forearm 410. In this particular embodiment as shown in
As best shown in
The coupler gear 452 has a center hole (not shown) that is internally threaded (not shown) such that the proximal end of the center drive rod 454 is positioned in the center hole. Because the center drive rod 454 has external threads (not shown) that mate with the internal threads of the center hole defined in the coupler gear 452, the rotation of the coupler gear 452 causes the internal threads of the center hole to engage the external threads of the drive rod 454 such that the drive rod 454 is moved translationally. This translational movement of the drive rod 454 actuates the grasper arms to move between the closed and open positions. The coupler gear 452 is supported by two bearings 464, 466, which are secured within the housing 412 by appropriate features defined in the inner walls of the housing 412. In addition, the end effector motor 418 is secured in a fashion similar to the motor 416.
In an alternative embodiment, the grasper or other end effector can be actuated by any known configuration of actuation and/or drive train components.
In one implementation, when the forearm 410 and the end effector 414 are assembled, the forearm 410 can have a gap 470 between the two motors 416, 418. In accordance with one embodiment, the gap 470 can be a wiring gap 470 configured to provide space for the necessary wires and/or cables and any other connection components needed or desired to be positioned in the forearm 410.
As discussed above, any end effector can be used with the robotic device embodiments disclosed and contemplated herein. One exemplary implementation of a grasper 500 that can be used with those embodiments is depicted in
In one embodiment, the portion of the jaws 502, 502.2 having the smaller teeth 508.1, 508.2 is narrower in comparison to the portion having the larger teeth 506.1, 506.2, thereby providing a thinner point that can provide more precise control of the grasper 500.
In accordance with one implementation, a robotic device according to any of the embodiments disclosed herein can also have at least one forearm 550 with a camera 552 as shown in
In use, the camera 552 provides a secondary viewpoint of the surgical site (in addition to the main camera on the robotic device (such as, for example, the camera 99 described above) and could potentially prevent trauma by showing a close-up view of the site. In one embodiment, the camera 552 is positioned such that the field of view contains the tip of the cautery (or any other end effector) 562 and as much of the surgical site as possible. One embodiment of the field of view 564 provided by the camera 552 is depicted in
In use, the various embodiments of the robotic device disclosed and contemplated herein can be positioned in or inserted into a cavity of a patient. In certain implementations, the insertion method is the method depicted in
In contrast, the device embodiments disclosed herein allow for inserting the entire device without any post-insertion assembly, thereby eliminating the problems described above. More specifically, the shoulder joint configuration and the reduced profile created by that configuration allows the entire device to be inserted as a single unit with both arms intact.
Once the device is in the configuration of
The alternative embodiment depicted in
According to another embodiment, any of the robotic devices disclosed or contemplated above can also incorporate sensors to assist in determining the absolute position of the device components. As depicted in
In this embodiment, various position sensors 658, 660A, 660B, 662A, 662B are positioned on the device 650 as shown in
More specifically, the sensor 658 positioned on the device body 652 is used as the known reference point, and each of the other sensors 660A, 660B, 662A, 662B can be used in conjunction with the sensor 658 to determine the position and orientation of both arms relative to the reference point. In one implementation, each 3-axis sensor measures the spatial effect of the at least one environmental characteristic being measured and also determine the orientation of that sensor in all three spatial dimensions. Each sensor 660A, 660B, 662A, 662B on a link 654A, 654B, 656A, 656B measures the environmental characteristic at that position on the link. For each link 654A, 654B, 656A, 656B, the measured value and orientation of the sensor 660A, 660B, 662A, 662B on that link can then be used to determine the spatial orientation of each link 654A, 654B, 656A, 656B. When sensors are mounted on every link as in
While the sensors 660A, 660B, 662A, 662B in
In addition, it is understood that while the embodiment in
In one embodiment, the 3-axis sensors 658, 660A, 660B, 662A, 662B are 3-axis accelerometers that measure the acceleration due to gravity. It is understood that a 3-axis accelerometer operates in the following fashion: the acceleration due to gravity is measured and depending on the orientation of the arm link (or other device component), magnitudes of acceleration in proportion to the orientation angles of the accelerometer are sensed on the different axes 702, 704, 706 of the 3-axis accelerometer as best shown in
Aside from being able to measure the acceleration of gravity, one additional characteristic of accelerometer sensors is that they can also measure the acceleration of the link(s) they are attached to on the robotic device. As such, in certain embodiments, given a starting position for the robotic device and its links, this acceleration data can be integrated over time to provide a position for the links of the robot. The positions determined from this integration can be more accurate if the system model of the robot is known to help account for the effects of inertia and other internal forces.
Alternatively, sensors other than accelerometers can be used. Possible sensors include, but are not limited to, magnetometers (measuring magnetic field from earth's magnetic field, induced magnetic field, or other magnetic field), tilt sensors, radio frequency signal strength meters, capacitance meter, or any combination or extensions of these. Further, while 3-axis sensors are used in the embodiment discussed above, single or dual or other multi-axis sensors could be used.
Another type of sensor that can be used with a robotic device is a gyroscope. The gyroscope measures the rate of rotation in space. The gyroscope can be combined with an accelerometer and magnetometer to form an inertial measurement unit, or IMU, that can be used to measure the static position of the robotic device or to calculate the position of the device while it is moving through integration of the measured data over time.
In use, the sensors described above help to determine or provide information about the absolute position of a device component, such as an arm. This contrasts with many known robotic devices that use embedded encoders, which can only measure a relative change in a joint angle of an arm such that there is no way to determine what position the arm is in when the device is first powered up (or “turned on”). The sensor system embodiments described herein help to determine the absolute position of one or more links on a robotic device. In fact, in accordance with some implementations, the position tracking systems disclosed herein allow a robotic device or a user to autonomously determine what position the device and device arms are in at any time. Such a system according to the embodiments disclosed herein can be used alone (as a primary position tracking system) or in combination with the embedded encoders (as a redundant position tracking system). Although as previously described only one position sensor is used per link, other embodiments have multiple sensors per link. The additional position sensors provide additional positional redundancy, and in some implementations the data collected from the multiple position sensors can be used with various filtering techniques, such as Kalman Filtering, to provide a more robust calculation of the position of the robot.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This patent application is a continuation of U.S. patent application Ser. No. 18/058,904, filed on Nov. 28, 2022 and entitled “Single Site Robotic Device and Related Systems and Methods,” which is a continuation of U.S. patent application Ser. No. 16/293,135, filed on Mar. 5, 2019, now issued as U.S. Pat. No. 11,529,201 and entitled “Single Site Robotic Device and Related Systems and Methods,” which is a continuation of U.S. patent application Ser. No. 15/357,663, filed on Nov. 21, 2016, now issued as U.S. Pat. No. 10,219,870 and entitled “Single Site Robotic Devices and Related Systems and Methods,” which was a continuation of U.S. patent application Ser. No. 13/839,422, filed on Mar. 15, 2013, now issued as U.S. Pat. No. 9,498,292 and entitled “Single Site Robotic Devices and Related Systems and Methods,” which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application 61/640,879, filed May 1, 2012 and entitled “Single Site Robotic Device and Related Systems and Methods,” all of which are hereby incorporated herein by reference in their entireties.
These inventions were made with government support under at least one of the following grants: Grant Nos. NNX10AJ26G and NNX09AO71A, awarded by the National Aeronautics and Space Administration; Grant Nos. W81XWH-08-2-0043 and W81XWH-09-2-0185, awarded by U.S. Army Medical Research and Material Command; Grant No. DGE-1041000, awarded by the National Science Foundation; and Grant No. 2009-147-SC1, awarded by the Experimental Program to Stimulate Competitive Research at the National Aeronautics and Space Administration. Accordingly, the government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2858947 | Chapman, Jr. | Nov 1958 | A |
3817403 | Glachet et al. | Jun 1974 | A |
3870264 | Robinson | Mar 1975 | A |
3922930 | Fletcher et al. | Dec 1975 | A |
3971266 | Inakura et al. | Jul 1976 | A |
3989952 | Hohmann | Nov 1976 | A |
4246661 | Pinson | Jan 1981 | A |
4258716 | Sutherland | Mar 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4353677 | Susnjara et al. | Oct 1982 | A |
4538594 | Boebel et al. | Sep 1985 | A |
4568311 | Miyake | Feb 1986 | A |
4576545 | Maeda | Mar 1986 | A |
4623183 | Aomori | Nov 1986 | A |
4636138 | Gorman | Jan 1987 | A |
4645409 | Gorman | Feb 1987 | A |
4684313 | Minematsu et al. | Aug 1987 | A |
4736645 | Zimmer | Apr 1988 | A |
4762455 | Coughlan et al. | Aug 1988 | A |
4771652 | Zimmer | Sep 1988 | A |
4852391 | Ruch et al. | Aug 1989 | A |
4854808 | Bisiach | Aug 1989 | A |
4896015 | Taboada et al. | Jan 1990 | A |
4897014 | Tietze | Jan 1990 | A |
4922755 | Oshiro et al. | May 1990 | A |
4922782 | Kawai | May 1990 | A |
4984959 | Kato | Jan 1991 | A |
4990050 | Tsuge et al. | Feb 1991 | A |
5019968 | Wang et al. | May 1991 | A |
5036724 | Rosheim | Aug 1991 | A |
5108140 | Bartholet | Apr 1992 | A |
5172639 | Wiesman et al. | Dec 1992 | A |
5176649 | Wakabayashi | Jan 1993 | A |
5178032 | Zona et al. | Jan 1993 | A |
5187032 | Sasaki et al. | Feb 1993 | A |
5187796 | Wang et al. | Feb 1993 | A |
5195388 | Zona et al. | Mar 1993 | A |
5201325 | Mcewen et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5263382 | Brooks et al. | Nov 1993 | A |
5271384 | Mcewen et al. | Dec 1993 | A |
5284096 | Pelrine et al. | Feb 1994 | A |
5297443 | Wentz | Mar 1994 | A |
5297536 | Wilk | Mar 1994 | A |
5304899 | Sasaki et al. | Apr 1994 | A |
5305653 | Ohtani et al. | Apr 1994 | A |
5307447 | Asano et al. | Apr 1994 | A |
5353807 | Demarco | Oct 1994 | A |
5363935 | Schempf et al. | Nov 1994 | A |
5372147 | Lathrop, Jr. et al. | Dec 1994 | A |
5382885 | Salcudean et al. | Jan 1995 | A |
5388528 | Pelrine et al. | Feb 1995 | A |
5397323 | Taylor et al. | Mar 1995 | A |
5436542 | Petelin et al. | Jul 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5458131 | Wilk | Oct 1995 | A |
5458583 | Mcneely et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5515478 | Wang | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5553198 | Wang et al. | Sep 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5588442 | Scovil et al. | Dec 1996 | A |
5620417 | Jang et al. | Apr 1997 | A |
5623582 | Rosenberg | Apr 1997 | A |
5624380 | Kaneko et al. | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5632761 | Smith et al. | May 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5657584 | Hamlin | Aug 1997 | A |
5667354 | Nakazawa | Sep 1997 | A |
5672168 | De La Torre et al. | Sep 1997 | A |
5674030 | Sigel | Oct 1997 | A |
5728599 | Rostoker et al. | Mar 1998 | A |
5736821 | Suyama | Apr 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5833656 | Smith et al. | Nov 1998 | A |
5841950 | Wang et al. | Nov 1998 | A |
5845646 | Lemelson | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878783 | Smart | Mar 1999 | A |
5895377 | Smith et al. | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5906591 | Dario et al. | May 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5954692 | Smith et al. | Sep 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5993467 | Yoon | Nov 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6030365 | Laufer | Feb 2000 | A |
6031371 | Smart | Feb 2000 | A |
6058323 | Lemelson | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6066090 | Yoon | May 2000 | A |
6086529 | Arndt | Jul 2000 | A |
6102850 | Wang et al. | Aug 2000 | A |
6106521 | Blewett et al. | Aug 2000 | A |
6107795 | Smart | Aug 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132441 | Grace | Oct 2000 | A |
6139563 | Cosgrove et al. | Oct 2000 | A |
6156006 | Brosens et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6162171 | Ng et al. | Dec 2000 | A |
D438617 | Cooper et al. | Mar 2001 | S |
6206903 | Ramans | Mar 2001 | B1 |
D441076 | Cooper et al. | Apr 2001 | S |
6223100 | Green | Apr 2001 | B1 |
D441862 | Cooper et al. | May 2001 | S |
6238415 | Sepetka et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6244809 | Wang et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
D444555 | Cooper et al. | Jul 2001 | S |
6286514 | Lemelson | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293282 | Lemelson | Sep 2001 | B1 |
6296635 | Smith et al. | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6309403 | Minor et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6321106 | Lemelson | Nov 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6400980 | Lemelson | Jun 2002 | B1 |
6408224 | Okamoto et al. | Jun 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6436107 | Wang et al. | Aug 2002 | B1 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
6450104 | Grant et al. | Sep 2002 | B1 |
6450992 | Cassidy | Sep 2002 | B1 |
6451027 | Cooper et al. | Sep 2002 | B1 |
6454758 | Thompson et al. | Sep 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6463361 | Wang et al. | Oct 2002 | B1 |
6468203 | Belson | Oct 2002 | B2 |
6468265 | Evans et al. | Oct 2002 | B1 |
6470236 | Ohtsuki | Oct 2002 | B2 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6493608 | Niemeyer | Dec 2002 | B1 |
6496099 | Wang et al. | Dec 2002 | B2 |
6497651 | Kan et al. | Dec 2002 | B1 |
6508413 | Bauer et al. | Jan 2003 | B2 |
6512345 | Borenstein et al. | Jan 2003 | B2 |
6522906 | Salisbury et al. | Feb 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6548982 | Papanikolopoulos et al. | Apr 2003 | B1 |
6554790 | Moll | Apr 2003 | B1 |
6565554 | Niemeyer | May 2003 | B1 |
6574355 | Green | Jun 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6591239 | Mccall et al. | Jul 2003 | B1 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6610007 | Belson et al. | Aug 2003 | B2 |
6620173 | Gerbi et al. | Sep 2003 | B2 |
6642836 | Wang et al. | Nov 2003 | B1 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6646541 | Wang et al. | Nov 2003 | B1 |
6648814 | Kim et al. | Nov 2003 | B2 |
6659939 | Moll et al. | Dec 2003 | B2 |
6661571 | Shioda et al. | Dec 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676684 | Morley et al. | Jan 2004 | B1 |
6684129 | Salisbury et al. | Jan 2004 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6687571 | Byrne et al. | Feb 2004 | B1 |
6692485 | Brock et al. | Feb 2004 | B1 |
6699177 | Wang et al. | Mar 2004 | B1 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6702734 | Kim et al. | Mar 2004 | B2 |
6702805 | Stuart | Mar 2004 | B1 |
6714839 | Salisbury et al. | Mar 2004 | B2 |
6714841 | Wright et al. | Mar 2004 | B1 |
6719684 | Kim et al. | Apr 2004 | B2 |
6720988 | Gere et al. | Apr 2004 | B1 |
6726699 | Wright et al. | Apr 2004 | B1 |
6728599 | Wang et al. | Apr 2004 | B2 |
6730021 | Vassiliades et al. | May 2004 | B2 |
6731988 | Green | May 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6764441 | Chiel et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6766204 | Niemeyer et al. | Jul 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6774597 | Borenstein | Aug 2004 | B1 |
6776165 | Jin | Aug 2004 | B2 |
6780184 | Tanrisever | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6785593 | Wang et al. | Aug 2004 | B2 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6792663 | Krzyzanowski | Sep 2004 | B2 |
6793653 | Sanchez et al. | Sep 2004 | B2 |
6799065 | Niemeyer | Sep 2004 | B1 |
6799088 | Wang et al. | Sep 2004 | B2 |
6801325 | Farr et al. | Oct 2004 | B2 |
6804581 | Wang et al. | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6817972 | Snow | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6817975 | Farr et al. | Nov 2004 | B1 |
6820653 | Schempf et al. | Nov 2004 | B1 |
6824508 | Kim et al. | Nov 2004 | B2 |
6824510 | Kim et al. | Nov 2004 | B2 |
6826977 | Grover et al. | Dec 2004 | B2 |
6832988 | Sproul | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6836703 | Wang et al. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6843793 | Brock et al. | Jan 2005 | B2 |
6852107 | Wang et al. | Feb 2005 | B2 |
6853879 | Sunaoshi | Feb 2005 | B2 |
6858003 | Evans et al. | Feb 2005 | B2 |
6860346 | Burt et al. | Mar 2005 | B2 |
6860877 | Sanchez et al. | Mar 2005 | B1 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6870343 | Borenstein et al. | Mar 2005 | B2 |
6871117 | Wang et al. | Mar 2005 | B2 |
6871563 | Choset et al. | Mar 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6892112 | Wang et al. | May 2005 | B2 |
6899705 | Niemeyer | May 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6905460 | Wang et al. | Jun 2005 | B2 |
6905491 | Wang et al. | Jun 2005 | B1 |
6911916 | Wang et al. | Jun 2005 | B1 |
6917176 | Schempf et al. | Jul 2005 | B2 |
6933695 | Blumenkranz | Aug 2005 | B2 |
6936001 | Snow | Aug 2005 | B1 |
6936003 | Iddan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6943663 | Wang et al. | Sep 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6963792 | Green | Nov 2005 | B1 |
6965812 | Wang et al. | Nov 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6974449 | Niemeyer | Dec 2005 | B2 |
6979423 | Moll | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6993413 | Sunaoshi | Jan 2006 | B2 |
6994703 | Wang et al. | Feb 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6997908 | Carrillo, Jr. et al. | Feb 2006 | B2 |
6999852 | Green | Feb 2006 | B2 |
7025064 | Wang et al. | Apr 2006 | B2 |
7027892 | Wang et al. | Apr 2006 | B2 |
7033344 | Imran | Apr 2006 | B2 |
7039453 | Mullick et al. | May 2006 | B2 |
7042184 | Oleynikov et al. | May 2006 | B2 |
7048745 | Tierney et al. | May 2006 | B2 |
7053752 | Wang et al. | May 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066926 | Wallace et al. | Jun 2006 | B2 |
7074179 | Wang et al. | Jul 2006 | B2 |
7077446 | Kameda et al. | Jul 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7105000 | Mcbrayer | Sep 2006 | B2 |
7107090 | Salisbury, Jr. et al. | Sep 2006 | B2 |
7109678 | Kraus et al. | Sep 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7121781 | Sanchez | Oct 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7163525 | Franer | Jan 2007 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7182025 | Ghorbel et al. | Feb 2007 | B2 |
7182089 | Ries | Feb 2007 | B2 |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7206626 | Quaid, III | Apr 2007 | B2 |
7206627 | Abovitz et al. | Apr 2007 | B2 |
7210364 | Ghorbel et al. | May 2007 | B2 |
7214230 | Brock et al. | May 2007 | B2 |
7217240 | Snow | May 2007 | B2 |
7239940 | Wang et al. | Jul 2007 | B2 |
7250028 | Julian et al. | Jul 2007 | B2 |
7259652 | Wang et al. | Aug 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
7311107 | Harel et al. | Dec 2007 | B2 |
7339341 | Oleynikov et al. | Mar 2008 | B2 |
7372229 | Farritor et al. | May 2008 | B2 |
7403836 | Aoyama | Jul 2008 | B2 |
7438702 | Hart et al. | Oct 2008 | B2 |
7447537 | Funda et al. | Nov 2008 | B1 |
7492116 | Oleynikov et al. | Feb 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7574250 | Niemeyer | Aug 2009 | B2 |
7637905 | Saadat et al. | Dec 2009 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7670329 | Flaherty et al. | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7731727 | Sauer | Jun 2010 | B2 |
7734375 | Buehler et al. | Jun 2010 | B2 |
7762825 | Burbank et al. | Jul 2010 | B2 |
7772796 | Farritor et al. | Aug 2010 | B2 |
7785251 | Wilk | Aug 2010 | B2 |
7785294 | Hueil et al. | Aug 2010 | B2 |
7785333 | Miyamoto et al. | Aug 2010 | B2 |
7789825 | Nobis et al. | Sep 2010 | B2 |
7789861 | Franer | Sep 2010 | B2 |
7794494 | Sahatjian et al. | Sep 2010 | B2 |
7865266 | Moll et al. | Jan 2011 | B2 |
7960935 | Farritor et al. | Jun 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
8021358 | Doyle et al. | Sep 2011 | B2 |
8179073 | Farritor et al. | May 2012 | B2 |
8231610 | Jo et al. | Jul 2012 | B2 |
8343171 | Farritor et al. | Jan 2013 | B2 |
8353897 | Doyle et al. | Jan 2013 | B2 |
8377045 | Schena | Feb 2013 | B2 |
8604742 | Farritor et al. | Dec 2013 | B2 |
8636686 | Minnelli et al. | Jan 2014 | B2 |
8679096 | Farritor et al. | Mar 2014 | B2 |
8827337 | Murata et al. | Sep 2014 | B2 |
8828024 | Farritor et al. | Sep 2014 | B2 |
8834488 | Farritor et al. | Sep 2014 | B2 |
8864652 | Diolaiti et al. | Oct 2014 | B2 |
8888687 | Ostrovsky et al. | Nov 2014 | B2 |
8968332 | Farritor et al. | Mar 2015 | B2 |
8974440 | Farritor et al. | Mar 2015 | B2 |
8986196 | Larkin et al. | Mar 2015 | B2 |
9010214 | Markvicka et al. | Apr 2015 | B2 |
9060781 | Farritor et al. | Jun 2015 | B2 |
9089256 | Tognaccini et al. | Jul 2015 | B2 |
9089353 | Farritor et al. | Jul 2015 | B2 |
9138129 | Diolaiti | Sep 2015 | B2 |
9198728 | Wang et al. | Dec 2015 | B2 |
9516996 | Diolaiti et al. | Dec 2016 | B2 |
9579088 | Farritor et al. | Feb 2017 | B2 |
9649020 | Finlay | May 2017 | B2 |
9717563 | Tognaccini et al. | Aug 2017 | B2 |
9743987 | Farritor et al. | Aug 2017 | B2 |
9757187 | Farritor et al. | Sep 2017 | B2 |
9770305 | Farritor et al. | Sep 2017 | B2 |
9789608 | Itkowitz et al. | Oct 2017 | B2 |
9814640 | Khaligh | Nov 2017 | B1 |
9816641 | Bock-Aronson | Nov 2017 | B2 |
9849586 | Rosheim | Dec 2017 | B2 |
9857786 | Cristiano | Jan 2018 | B2 |
9888966 | Farritor et al. | Feb 2018 | B2 |
9956043 | Farritor et al. | May 2018 | B2 |
10008017 | Itkowitz et al. | Jun 2018 | B2 |
10111711 | Farritor et al. | Oct 2018 | B2 |
10137575 | Itkowitz et al. | Nov 2018 | B2 |
10159533 | Moll et al. | Dec 2018 | B2 |
10220522 | Rockrohr | Mar 2019 | B2 |
10258425 | Mustufa et al. | Apr 2019 | B2 |
10307199 | Farritor et al. | Jun 2019 | B2 |
10342561 | Farritor et al. | Jul 2019 | B2 |
10368952 | Tognaccini et al. | Aug 2019 | B2 |
10398516 | Jackson et al. | Sep 2019 | B2 |
10470828 | Markvicka et al. | Nov 2019 | B2 |
10507066 | Dimaio et al. | Dec 2019 | B2 |
10555775 | Hoffman et al. | Feb 2020 | B2 |
10582973 | Wilson et al. | Mar 2020 | B2 |
10695137 | Farritor et al. | Jun 2020 | B2 |
10729503 | Cameron | Aug 2020 | B2 |
10737394 | Itkowitz et al. | Aug 2020 | B2 |
10751136 | Farritor et al. | Aug 2020 | B2 |
10751883 | Nahum | Aug 2020 | B2 |
10806538 | Farritor et al. | Oct 2020 | B2 |
10966700 | Farritor et al. | Apr 2021 | B2 |
11032125 | Farritor et al. | Jun 2021 | B2 |
11298195 | Ye et al. | Apr 2022 | B2 |
11382702 | Tognaccini et al. | Jul 2022 | B2 |
11819299 | Mondry | Nov 2023 | B2 |
20010018591 | Brock et al. | Aug 2001 | A1 |
20010049497 | Kalloo et al. | Dec 2001 | A1 |
20020003173 | Bauer et al. | Jan 2002 | A1 |
20020013601 | Nobles et al. | Jan 2002 | A1 |
20020026186 | Woloszko et al. | Feb 2002 | A1 |
20020038077 | De La Torre et al. | Mar 2002 | A1 |
20020065507 | Zadno-Azizi | May 2002 | A1 |
20020091374 | Cooper | Jul 2002 | A1 |
20020103417 | Gazdzinski | Aug 2002 | A1 |
20020111535 | Kim et al. | Aug 2002 | A1 |
20020120254 | Julian et al. | Aug 2002 | A1 |
20020128552 | Nowlin et al. | Sep 2002 | A1 |
20020140392 | Borenstein et al. | Oct 2002 | A1 |
20020147487 | Sundquist et al. | Oct 2002 | A1 |
20020151906 | Demarais et al. | Oct 2002 | A1 |
20020156347 | Kim et al. | Oct 2002 | A1 |
20020171385 | Kim et al. | Nov 2002 | A1 |
20020173700 | Kim et al. | Nov 2002 | A1 |
20020190682 | Schempf et al. | Dec 2002 | A1 |
20030020810 | Takizawa et al. | Jan 2003 | A1 |
20030045888 | Brock et al. | Mar 2003 | A1 |
20030065250 | Chiel et al. | Apr 2003 | A1 |
20030089267 | Ghorbel et al. | May 2003 | A1 |
20030092964 | Kim et al. | May 2003 | A1 |
20030097129 | Davison et al. | May 2003 | A1 |
20030100817 | Wang et al. | May 2003 | A1 |
20030109780 | Coste-Maniere et al. | Jun 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030135203 | Wang et al. | Jul 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030144656 | Ocel et al. | Jul 2003 | A1 |
20030159535 | Grover et al. | Aug 2003 | A1 |
20030167000 | Mullick et al. | Sep 2003 | A1 |
20030172871 | Scherer | Sep 2003 | A1 |
20030179308 | Zamorano et al. | Sep 2003 | A1 |
20030181788 | Yokoi et al. | Sep 2003 | A1 |
20030225479 | Waled | Dec 2003 | A1 |
20030229268 | Uchiyama et al. | Dec 2003 | A1 |
20030229338 | Irion et al. | Dec 2003 | A1 |
20030230372 | Schmidt | Dec 2003 | A1 |
20040024311 | Quaid | Feb 2004 | A1 |
20040034282 | Quaid | Feb 2004 | A1 |
20040034283 | Quaid | Feb 2004 | A1 |
20040034302 | Abovitz et al. | Feb 2004 | A1 |
20040050394 | Jin | Mar 2004 | A1 |
20040070822 | Takayama et al. | Apr 2004 | A1 |
20040099175 | Perrot et al. | May 2004 | A1 |
20040102772 | Baxter et al. | May 2004 | A1 |
20040106916 | Quaid et al. | Jun 2004 | A1 |
20040111113 | Nakamura et al. | Jun 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138552 | Harel et al. | Jul 2004 | A1 |
20040140786 | Borenstein | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040173116 | Ghorbel et al. | Sep 2004 | A1 |
20040176664 | Iddan | Sep 2004 | A1 |
20040215331 | Chew et al. | Oct 2004 | A1 |
20040225229 | Viola | Nov 2004 | A1 |
20040254680 | Sunaoshi | Dec 2004 | A1 |
20040267326 | Ocel et al. | Dec 2004 | A1 |
20050014994 | Fowler et al. | Jan 2005 | A1 |
20050021069 | Feuer et al. | Jan 2005 | A1 |
20050029978 | Oleynikov et al. | Feb 2005 | A1 |
20050043583 | Killmann et al. | Feb 2005 | A1 |
20050049462 | Kanazawa | Mar 2005 | A1 |
20050054901 | Yoshino | Mar 2005 | A1 |
20050054902 | Konno | Mar 2005 | A1 |
20050064378 | Toly | Mar 2005 | A1 |
20050065400 | Banik et al. | Mar 2005 | A1 |
20050083460 | Hattori et al. | Apr 2005 | A1 |
20050095650 | Julius et al. | May 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050143644 | Gilad et al. | Jun 2005 | A1 |
20050154376 | Riviere et al. | Jul 2005 | A1 |
20050165449 | Cadeddu et al. | Jul 2005 | A1 |
20050177026 | Hoeg et al. | Aug 2005 | A1 |
20050234294 | Saadat et al. | Oct 2005 | A1 |
20050234435 | Layer | Oct 2005 | A1 |
20050272977 | Saadat et al. | Dec 2005 | A1 |
20050283137 | Doyle et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20050288665 | Woloszko | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060046226 | Bergler et al. | Mar 2006 | A1 |
20060079889 | Scott | Apr 2006 | A1 |
20060100501 | Berkelman et al. | May 2006 | A1 |
20060119304 | Farritor et al. | Jun 2006 | A1 |
20060149135 | Paz | Jul 2006 | A1 |
20060152591 | Lin | Jul 2006 | A1 |
20060155263 | Lipow | Jul 2006 | A1 |
20060189845 | Maahs et al. | Aug 2006 | A1 |
20060195015 | Mullick et al. | Aug 2006 | A1 |
20060196301 | Oleynikov et al. | Sep 2006 | A1 |
20060198619 | Oleynikov et al. | Sep 2006 | A1 |
20060241570 | Wilk | Oct 2006 | A1 |
20060241732 | Denker et al. | Oct 2006 | A1 |
20060253109 | Chu | Nov 2006 | A1 |
20060258938 | Hoffman et al. | Nov 2006 | A1 |
20060258954 | Timberlake et al. | Nov 2006 | A1 |
20060261770 | Kishi et al. | Nov 2006 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070043397 | Ocel et al. | Feb 2007 | A1 |
20070055342 | Wu et al. | Mar 2007 | A1 |
20070080658 | Farritor et al. | Apr 2007 | A1 |
20070088340 | Brock et al. | Apr 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070142725 | Hardin et al. | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070156211 | Wood et al. | Jul 2007 | A1 |
20070167955 | Arnault De La Menardiere et al. | Jul 2007 | A1 |
20070225633 | Wood et al. | Sep 2007 | A1 |
20070225634 | Wood et al. | Sep 2007 | A1 |
20070241714 | Okeynikov et al. | Oct 2007 | A1 |
20070244520 | Ferren et al. | Oct 2007 | A1 |
20070250064 | Darois et al. | Oct 2007 | A1 |
20070255273 | Fernandez et al. | Nov 2007 | A1 |
20070287884 | Schena | Dec 2007 | A1 |
20080004634 | Farritor et al. | Jan 2008 | A1 |
20080015565 | Davison | Jan 2008 | A1 |
20080015566 | Livneh | Jan 2008 | A1 |
20080021440 | Solomon | Jan 2008 | A1 |
20080033569 | Ferren et al. | Feb 2008 | A1 |
20080045803 | Williams et al. | Feb 2008 | A1 |
20080058835 | Farritor et al. | Mar 2008 | A1 |
20080058989 | Oleynikov et al. | Mar 2008 | A1 |
20080071289 | Cooper et al. | Mar 2008 | A1 |
20080071290 | Larkin et al. | Mar 2008 | A1 |
20080103440 | Ferren et al. | May 2008 | A1 |
20080109014 | De La Pena | May 2008 | A1 |
20080111513 | Farritor et al. | May 2008 | A1 |
20080119870 | Williams | May 2008 | A1 |
20080132890 | Woloszko et al. | Jun 2008 | A1 |
20080161804 | Rioux et al. | Jul 2008 | A1 |
20080164079 | Jacobsen | Jul 2008 | A1 |
20080168639 | Otake et al. | Jul 2008 | A1 |
20080183033 | Bern et al. | Jul 2008 | A1 |
20080221591 | Farritor et al. | Sep 2008 | A1 |
20080269557 | Marescaux et al. | Oct 2008 | A1 |
20080269562 | Marescaux et al. | Oct 2008 | A1 |
20090002414 | Shibata et al. | Jan 2009 | A1 |
20090012532 | Blackwell et al. | Jan 2009 | A1 |
20090020724 | Paffrath | Jan 2009 | A1 |
20090024142 | Ruiz Morales | Jan 2009 | A1 |
20090048612 | Farritor et al. | Feb 2009 | A1 |
20090054909 | Farritor et al. | Feb 2009 | A1 |
20090069821 | Farritor et al. | Mar 2009 | A1 |
20090076536 | Rentschler et al. | Mar 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090143787 | De La Pena | Jun 2009 | A9 |
20090163929 | Yeung et al. | Jun 2009 | A1 |
20090171373 | Farritor et al. | Jul 2009 | A1 |
20090192524 | Itkowitz et al. | Jul 2009 | A1 |
20090234369 | Bax et al. | Sep 2009 | A1 |
20090236400 | Cole et al. | Sep 2009 | A1 |
20090240246 | Deville et al. | Sep 2009 | A1 |
20090247821 | Rogers | Oct 2009 | A1 |
20090248038 | Blumenkranz et al. | Oct 2009 | A1 |
20090281377 | Acosta et al. | Nov 2009 | A1 |
20090299143 | Conlon et al. | Dec 2009 | A1 |
20090305210 | Guru et al. | Dec 2009 | A1 |
20090326322 | Diolaiti | Dec 2009 | A1 |
20100010294 | Conlon et al. | Jan 2010 | A1 |
20100016659 | Weitzner | Jan 2010 | A1 |
20100016853 | Burbank | Jan 2010 | A1 |
20100042097 | Newton et al. | Feb 2010 | A1 |
20100056863 | Dejima et al. | Mar 2010 | A1 |
20100069710 | Yamatani et al. | Mar 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100081875 | Fowler et al. | Apr 2010 | A1 |
20100101346 | Johnson et al. | Apr 2010 | A1 |
20100130986 | Mailloux et al. | May 2010 | A1 |
20100139436 | Kawashima et al. | Jun 2010 | A1 |
20100185212 | Sholev | Jul 2010 | A1 |
20100198231 | Scott | Aug 2010 | A1 |
20100204713 | Ruiz Morales | Aug 2010 | A1 |
20100245549 | Allen et al. | Sep 2010 | A1 |
20100250000 | Blumenkranz et al. | Sep 2010 | A1 |
20100026347 | Bannasch et al. | Oct 2010 | A1 |
20100262162 | Omori | Oct 2010 | A1 |
20100263470 | Bannasch et al. | Oct 2010 | A1 |
20100274079 | Kim et al. | Oct 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20100301095 | Shelton, IV et al. | Dec 2010 | A1 |
20100318059 | Farritor et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20110015569 | Kirschenman et al. | Jan 2011 | A1 |
20110020779 | Hannaford et al. | Jan 2011 | A1 |
20110071347 | Rogers et al. | Mar 2011 | A1 |
20110071544 | Steger et al. | Mar 2011 | A1 |
20110075693 | Kuramochi et al. | Mar 2011 | A1 |
20110077478 | Freeman et al. | Mar 2011 | A1 |
20110082365 | Mcgrogan et al. | Apr 2011 | A1 |
20110098529 | Ostrovsky et al. | Apr 2011 | A1 |
20110107866 | Oka et al. | May 2011 | A1 |
20110152615 | Schostek et al. | Jun 2011 | A1 |
20110224605 | Farritor et al. | Sep 2011 | A1 |
20110230894 | Simaan et al. | Sep 2011 | A1 |
20110237890 | Farritor et al. | Sep 2011 | A1 |
20110238079 | Hannaford et al. | Sep 2011 | A1 |
20110238080 | Ranjit et al. | Sep 2011 | A1 |
20110264078 | Lipow et al. | Oct 2011 | A1 |
20110270443 | Kamiya et al. | Nov 2011 | A1 |
20110276046 | Heimbecher et al. | Nov 2011 | A1 |
20120016175 | Roberts et al. | Jan 2012 | A1 |
20120029727 | Malik | Feb 2012 | A1 |
20120035582 | Nelson et al. | Feb 2012 | A1 |
20120059392 | Diolaiti | Mar 2012 | A1 |
20120078053 | Phee et al. | Mar 2012 | A1 |
20120109150 | Blackwell et al. | May 2012 | A1 |
20120116362 | Kieturakis | May 2012 | A1 |
20120179168 | Farritor et al. | Jul 2012 | A1 |
20120221147 | Goldberg et al. | Aug 2012 | A1 |
20120253515 | Coste-Maniere et al. | Oct 2012 | A1 |
20130001970 | Suyama et al. | Jan 2013 | A1 |
20130041360 | Farritor et al. | Feb 2013 | A1 |
20130055560 | Nakasugi et al. | Mar 2013 | A1 |
20130125696 | Long | May 2013 | A1 |
20130131695 | Scarfogliero et al. | May 2013 | A1 |
20130178867 | Farritor et al. | Jul 2013 | A1 |
20130282023 | Burbank et al. | Oct 2013 | A1 |
20130304084 | Beira et al. | Nov 2013 | A1 |
20130325030 | Hourtash et al. | Dec 2013 | A1 |
20130345717 | Markvicka et al. | Dec 2013 | A1 |
20130345718 | Crawford et al. | Dec 2013 | A1 |
20140039515 | Mondry et al. | Feb 2014 | A1 |
20140046340 | Wilson et al. | Feb 2014 | A1 |
20140055489 | Itkowitz et al. | Feb 2014 | A1 |
20140058205 | Frederick et al. | Feb 2014 | A1 |
20140100587 | Farritor et al. | Apr 2014 | A1 |
20140137687 | Nogami et al. | May 2014 | A1 |
20140221749 | Grant et al. | Aug 2014 | A1 |
20140232824 | Dimaio et al. | Aug 2014 | A1 |
20140276944 | Farritor et al. | Sep 2014 | A1 |
20140303434 | Farritor et al. | Oct 2014 | A1 |
20140371762 | Farritor et al. | Dec 2014 | A1 |
20150051446 | Farritor et al. | Feb 2015 | A1 |
20150157191 | Phee et al. | Jun 2015 | A1 |
20150223896 | Farritor et al. | Aug 2015 | A1 |
20150297299 | Yeung et al. | Oct 2015 | A1 |
20160066999 | Forgione et al. | Mar 2016 | A1 |
20160135898 | Frederick et al. | May 2016 | A1 |
20160291571 | Cristiano | Oct 2016 | A1 |
20160303745 | Rockrohr | Oct 2016 | A1 |
20170014197 | McCrea et al. | Jan 2017 | A1 |
20170035526 | Farritor et al. | Feb 2017 | A1 |
20170078583 | Haggerty et al. | Mar 2017 | A1 |
20170252096 | Felder et al. | Sep 2017 | A1 |
20170354470 | Farritor et al. | Dec 2017 | A1 |
20180132956 | Cameron | May 2018 | A1 |
20180153578 | Cooper et al. | Jun 2018 | A1 |
20180338777 | Bonadio et al. | Nov 2018 | A1 |
20190090965 | Farritor et al. | Mar 2019 | A1 |
20190209262 | Mustufa et al. | Jul 2019 | A1 |
20190327394 | Ramirez Luna et al. | Oct 2019 | A1 |
20200214775 | Farritor et al. | Jul 2020 | A1 |
20200330175 | Cameron | Oct 2020 | A1 |
20200368915 | Itkowitz et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
101120888 | Feb 2008 | CN |
102499759 | Jun 2012 | CN |
102821918 | Dec 2012 | CN |
104523309 | Apr 2015 | CN |
104582600 | Apr 2015 | CN |
104622528 | May 2015 | CN |
204337044 | May 2015 | CN |
104786233 | Jul 2015 | CN |
105025826 | Nov 2015 | CN |
102010040405 | Mar 2012 | DE |
105656 | Apr 1984 | EP |
279591 | Aug 1988 | EP |
1354670 | Oct 2003 | EP |
2286756 | Feb 2011 | EP |
2329787 | Jun 2011 | EP |
2563261 | Mar 2013 | EP |
2684528 | Jan 2014 | EP |
2123225 | Dec 2014 | EP |
2815705 | Dec 2014 | EP |
2881046 | Jun 2015 | EP |
2937047 | Oct 2015 | EP |
S59059371 | Apr 1984 | JP |
60001456 | Jan 1985 | JP |
S61165061 | Jul 1986 | JP |
S62068293 | Mar 1987 | JP |
01109094 | Apr 1989 | JP |
H04144533 | May 1992 | JP |
H05115425 | May 1993 | JP |
H06507809 | Sep 1994 | JP |
H06508049 | Sep 1994 | JP |
H07016235 | Jan 1995 | JP |
H07136173 | May 1995 | JP |
H07306155 | Nov 1995 | JP |
H08224248 | Sep 1996 | JP |
2001505810 | May 2001 | JP |
2002000524 | Jan 2002 | JP |
2003220065 | Aug 2003 | JP |
2004180781 | Jul 2004 | JP |
2004283940 | Oct 2004 | JP |
2004322310 | Nov 2004 | JP |
2004329292 | Nov 2004 | JP |
2009106606 | May 2009 | JP |
2009297809 | Dec 2009 | JP |
2010533045 | Oct 2010 | JP |
2010536436 | Dec 2010 | JP |
2011504794 | Feb 2011 | JP |
2011045500 | Mar 2011 | JP |
2011115591 | Jun 2011 | JP |
2012504017 | Feb 2012 | JP |
2012176489 | Sep 2012 | JP |
5418704 | Feb 2014 | JP |
2015526171 | Sep 2015 | JP |
5959371 | Aug 2016 | JP |
2016213937 | Dec 2016 | JP |
2017113837 | Jun 2017 | JP |
9221291 | Dec 1992 | WO |
0189405 | Nov 2001 | WO |
02082979 | Oct 2002 | WO |
02100256 | Dec 2002 | WO |
2005009211 | Feb 2005 | WO |
2005044095 | May 2005 | WO |
2006005075 | Jan 2006 | WO |
2006052927 | May 2006 | WO |
2006079108 | Jul 2006 | WO |
2007011654 | Jan 2007 | WO |
2007111571 | Oct 2007 | WO |
2007149559 | Dec 2007 | WO |
2009014917 | Jan 2009 | WO |
2009023851 | Feb 2009 | WO |
2009144729 | Dec 2009 | WO |
2009158164 | Dec 2009 | WO |
2010039394 | Apr 2010 | WO |
2010042611 | Apr 2010 | WO |
2010046823 | Apr 2010 | WO |
2010050771 | May 2010 | WO |
2010083480 | Jul 2010 | WO |
2011075693 | Jun 2011 | WO |
2011118646 | Sep 2011 | WO |
2011135503 | Nov 2011 | WO |
2011163520 | Dec 2011 | WO |
2013009887 | Jan 2013 | WO |
2013052137 | Apr 2013 | WO |
2013106569 | Jul 2013 | WO |
2014011238 | Jan 2014 | WO |
2014025399 | Feb 2014 | WO |
2014144220 | Sep 2014 | WO |
2014146090 | Sep 2014 | WO |
2015009949 | Jan 2015 | WO |
2015031777 | Mar 2015 | WO |
2015088655 | Jun 2015 | WO |
2016077478 | May 2016 | WO |
2017024081 | Feb 2017 | WO |
2017064303 | Apr 2017 | WO |
2017201310 | Nov 2017 | WO |
2018045036 | Mar 2018 | WO |
Entry |
---|
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001; 165: 1964-1966. |
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007: 410-416. |
Albers et al., Design and development process of a humanoid robot upper body through experimentation, 2004, IEEE, p. 77-92 (Year: 2004). |
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy, 1997; 11: 427-430. |
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon University, May 2004, 150 pp. |
Atmel 80C5X2 Core, http://www.atmel.com, 2006, 186 pp. |
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995; 25 pp. |
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402. |
Bauer et al., “Case Report: Remote Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347. |
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330. |
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007; 1 pg. |
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001: 40(1): 84-91. |
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; 126: 1-5. |
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004. |
Calafiore et al., “Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,” Ann Thorac Surg, 1999; 67: 450-456. |
Camarillo et al., “Robotic Technology in Surgery: Past, Present, and Future,” The American Journal of Surgery, 2004; 188: 2S-15. |
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In Mclaughlin, M. L., Hespanha, J. P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001; 28 pp. |
Cavusoglu et al., “Robotics for Telesurgery: Second Generation BerkeleyIUCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29. |
Chanthasopeephan et al. (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimental Results,” Annals of Biomedical Engineering 31: 1372-1382. |
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005. |
Cleary et al., “State of the Art in Surgical Robotics: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6. |
Crystal Eyes, http://www.reald.com, 2007 (Stereo 3D visualization for CAVEs, theaters and immersive environments), 1 pg. |
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999; 319: 1-6. |
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579. |
Definition of Individually. Dictionary.com, retrieved on Aug. 9, 2016; Retrieved from the Internet: < http://www.dictionary.com/browse/individually>, 1 page. |
Dumpert et al., “Improving In Vivo Robot Vision Quality,” in the Proceedings of Medicine Meets Virtual Reality, Long Beach, CA, Jan. 26-29, 2005. |
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp. |
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003; 46(1): 37-43. |
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimally Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13 pp. |
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference on Robotics & Automation, Apr. 2000: 1509-1516. |
Fireman et al., “Diagnosing small bowel Crohn's disease with wireless capsule endoscopy,” Gut 2003; 52:390-392. |
Flynn et al., “Tomorrow's Surgery; Micro-motors and Microrobots for Minimally Invasive Procedures,” Minimally Invasive Surgery & Allied Technologies, 1998, 7(4): pp. 343-352. |
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46. |
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg. Clin. North Am, 2003; 83(6): 1317-1320. |
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002; 47 Suppl. 1, Pt. 1: 12-5. |
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994; 814-819. |
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994: 2290-2295. |
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committee,” U.S. Food and Drug Administration, available at http://www.fda.gov, Finalized: Nov. 7, 2003; Updated: Jun. 24, 2005, 11 pp. |
Glukhovsky et al., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assist. Surgery, 2004; 1(1): 114-123. |
Gong et al., “Wireless endoscopy,” Gastrointestinal Endoscopy 2000; 51 (6): 725-729. |
Gopura et al., Mechanical designs of active upper-limb exoskeleton robots: State-of-the-art and design difficulties, 2009, IEEE, p. 178-187 (Year: 2009). |
Gopura et al., A brief review on upper extremity robotic exoskeleton systems, 2011, IEEE, p. 346-351 (Year: 2011). |
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007; 3pp. |
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology. |
Guber et al., “Miniaturized Instrument Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinische Technic, 2002; Band 47, Erganmngsband 1: 198-201. |
Guo et al., “Micro Active Guide Wire Catheter System—Characteristic Evaluation, Electrical Model* and Operability Evaluation of Micro Active Catheter,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Apr. 1996; 2226-2231. |
Guo et al., “Fish-like Underwater Microrobot with 3 DOF,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002; 738-743. |
Hanly et al., “Robotic Abdominal Surgery,” The American Journal of Surgery, 2004; 188 (Suppl. to Oct. 1994); 19S-26S. |
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19(4): 477-483. |
Heikkinen et al., “Comparison of laparoscopic and open Nissen fundoplication two years after operation: A prospective randomized trial,” Surgical Endoscopy, 2000; 14:1019-1023. |
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN),” Nov. 1998, http://www.ipr.ira.ujka.de/-microbot/miniman. |
Way et al., editors, “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995; 14 pp. |
Wolfe et al. (1991), Endoscopic Cholecystectomy: An analysis of Complications, Arch. Surg. 1991; 126: 1192-1196. |
Xu et al., “System Design of an Insertable Robotic Effector Platform for Single Access (SPA) Surgery”, The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 11-15, 2009, St. Louis MO USA pp. 5546-5552. |
Yu, BSN, RN, “M2ATM Capsule Endoscopy A Breakthrough Diagnostic Tool for Small Intestine Imagining,”vol. 25, No. 1, 2001, Gastroenterology Nursing, pp. 24-27. |
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001: 620-625. |
Lou Cubrich, “A Four-DOF Laparo-Endoscopic Single Site Platform for Rapidly-Developing Next-Generation Surgical Robotics”, Journal of Medical Robotics Research, vol. 1, No. 4, 2016, 165006-1-165006-15. |
Hissink, “Olympus Medical develops capsule camera technology,” Dec. 2004, accessed Aug. 29, 2007, http://www.letsgodigital.org, 3 pp. |
Horgan et al., “Technical Report: Robots in Laparoscopic Surgery,” Journal of Laparoendoscopic & Advanced Surgical Techniques, 2001; 11(6): 415-419. |
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000; 65-69. |
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61 (3): 449-453. |
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117. |
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan.-Feb. 2001: 94-104. |
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525. |
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292. |
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5. |
Keller et al., Design of the pediatric arm rehabilitation robot ChARMin, 2014, IEEE, p. 530-535 (Year: 2014). |
Kim, “Early Experience with Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1): 33-40. |
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70. |
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136: 180-184. |
Leggett et al. (2002), “Aortic injury during laparoscopic Fundoplication,” Surg. Endoscopy 16(2): 362. |
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg., 5: 326-332. |
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22):1541-1547. |
Macfarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285. |
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest,” Ann Thorac Surgery, 1992; 54: 403-409. |
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572. |
Mei et al., “Wireless Drive and Control of a Swimming Microrobot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136. |
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384. |
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16. |
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004. |
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005; 15: 2045-2055. |
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 817-819. |
Micron, http://www.micron.com, 2006, ¼ inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp. |
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery,”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN 4 pages. |
Miller, Ph.D., et al., “In-Vivo Stereoscopic Imaging System with 5 Degrees-of-Freedom for Minimal Access Surgery,” Dept. of Computer Science and Dept. of Surgery, Columbia University, New York, NY, 7 pp., 2004. |
Munro (2002), “Laparoscopic access: complications, technologies, and techniques,” Curro Opin. Obstet. Gynecol., 14 (4): 365-74. |
Nio et al., “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415. |
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23-26, 2004b. |
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005. |
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181. |
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007; 2 pp. |
Orlando et al. (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques, 13(3): 181-184. |
Palm. William. “Rapid Prototyping Primer” May 1998 (revised Jul. 30, 2002) (http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm), 12 pages. |
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61 (4): 601-606. |
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384. |
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16. |
Patronik et al., “Development of a Tethered Epicardial Crawler for Minimally Invasive Cardiac Therapies,” IEEE, pp. 239-240, 2004. |
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005. |
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349. |
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756. |
Phee et al., “Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract,” International Conference on Computational Intelligence, Robotics and Autonomous Systems (CI RAS 2001), Nov. 28-30, (2001), Singapore, 6 pages. |
Phee et al., “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transactions on Biomedical Engineering, vol. 49, No. 6, Jun. 2002: 613-616. |
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005; 1 pg. |
Qian Huan et al., “Multi-joint Single-wound Minimally Invasive Abdominal Surgery Robot Design,” Mechanical Design and Manufacturing, May 8, 2014, pp. 134-137. |
Rentschler et al., “In vivo Mobile Surgical Robotic Task Assistance,” 1 pg. |
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28-Oct. 2, 2004; pp. 1-9. |
Rentschler et al., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322. |
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403. |
Rentschler et al., “Mobile In Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, April 13-16, 2005b. |
Rentschler et al., “Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c. |
Rentschler et al., “Miniature in vivo robots for remote and harsh environments,” IEEE Transaction on Information Technology in Biomedicine, Jan. 2006; 12(1): pp. 66-75. |
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006a; pp. 1-11, Accepted. |
Rentschler et al., “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-1: 135-138, 2006b. |
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, April 2006d. |
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Infonnatics Medicine Meets Virtual Reality, vol. 119: 449-454, IOS Press, Long Beach, CA, 2006e. |
Rentschler et al., “Mobile In Vivo Biopsy Robot,” IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006; 4155-4160. |
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 2007; 1 pg. |
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007; vol. 1: 23-29. |
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800. |
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery-Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221. |
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002. |
Rosen et al., “The Blue Dragon—A System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002. |
Rosen et al., Objective Evaluation of Laparoscopic Skills Based on Haptic Information and Tool/Tissue Interactions, Computer Aided Surgery, vol. 7, Issue 1, pp. 49-61, Jul. 2002. |
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches,” Studies in Health Technology and Infonnatics-Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005. |
Ruurda et al., “Feasibility of Robot-Assisted Laparoscopic Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):41-45. |
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl. 2002; 84: 223-226. |
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8:63-6. |
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery 2000; 17:422-426. |
Satava, “Surgical Robotics: The Early Chronicles,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):6-16. |
Schippers et al. (1996), “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565. |
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14:375-381. |
Schwartz, “In the Lab: Robots that Slink and Squirm,” The New York Times, Mar. 27, 2007, 4 pp. |
Sharp LL-151-3D, http://www.sharp3d.com, 2006, 2 pp. |
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-171, 1995. |
Smart Pill “Fastastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg. |
Sodeyama et al., A shoulder structure of muscle-driven humanoid with shoulder blades, 2005, IEEE, p. 1-6 (Year: 2005). |
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078. |
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, Mav-Jun. 2006. |
Stiff et al., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370. |
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17. |
Strong et al., “Efficacy of Novel Robotic Camera vs. a Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318. |
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627. |
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-87. |
Tendick et al. (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2(1): 66-81. |
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/ASME Transactions on Mechatronics, 1998; 3(1): 34-42. |
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct. 2002: 1385-1390. |
U.S. Appl. No. 60/180,960, filed Feb. 2000. |
U.S. Appl. No. 60/956,032, filed Aug. 15, 2007. |
U.S. Appl. No. 60/983,445, filed Oct. 29, 2007. |
U.S. Appl. No. 60/990,062, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,076, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,086, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,106, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,470, filed Nov. 27, 2007. |
U.S. Appl. No. 61/025,346, filed Feb. 1, 2008. |
U.S. Appl. No. 61/030,588, filed Feb. 22, 2008. |
U.S. Appl. No. 61/030,617, filed Feb. 22, 2008. |
Number | Date | Country | |
---|---|---|---|
20240041546 A1 | Feb 2024 | US |
Number | Date | Country | |
---|---|---|---|
61640879 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18058904 | Nov 2022 | US |
Child | 18485601 | US | |
Parent | 16293135 | Mar 2019 | US |
Child | 18058904 | US | |
Parent | 15357663 | Nov 2016 | US |
Child | 16293135 | US | |
Parent | 13839422 | Mar 2013 | US |
Child | 15357663 | US |