Singulated keyboard assemblies and methods for assembling a keyboard

Information

  • Patent Grant
  • 10115544
  • Patent Number
    10,115,544
  • Date Filed
    Monday, August 8, 2016
    8 years ago
  • Date Issued
    Tuesday, October 30, 2018
    6 years ago
Abstract
Methods for assembling low-profile, singulated keyboards by prefabricating key assemblies onto a chassis strip that is divided into individual key assemblies only after the substrate is affixed to a feature plate of keyboard. For example, a row of key assemblies is fabricated onto a chassis strip. The row corresponds to a partial or complete row of keys of the keyboard. The chassis strip is thereafter affixed to a feature plate in a specific location, thereby aligning each prefabricated key assembly to a precise location on the feature plate. While connected, each prefabricated key assembly is independently affixed to the feature plate. Thereafter, interconnecting portions of the chassis strip between the prefabricated key assemblies are removed, thereby singulating each key assembly.
Description
FIELD

Embodiments described herein are directed to input devices and, more particularly, to systems and methods for assembling keyboards by installing a row of interconnected key assemblies and then singulating the key assemblies.


BACKGROUND

Electronic devices can receive user input from a keyboard. In some cases, it may be desirable to manufacture a keyboard by fabricating components of the keyboard directly onto a common substrate, generally referred to as a feature plate. A component of a keyboard may be a key assembly including multiple discrete and interconnected parts positioned below a keycap.


Reliably and quickly fabricating components of a keyboard may be challenging, especially for keyboards incorporating components made from small or intricate parts. As such, it may be time-consuming and/or resource intensive to manufacture a keyboard incorporating certain components, such as intricate key assemblies.


SUMMARY

Embodiments described herein relate to, include, or take the form of a method of manufacturing a keyboard including at least the operations of: forming a first key assembly on a first chassis of a chassis strip; forming a second key assembly on a second chassis of the chassis strip; positioning the chassis strip on a feature plate; affixing the first and second chassis to the feature plate; and removing interconnecting portions of the chassis strip that separate the first and second chassis.


In some embodiments, forming the first key assembly includes operations such as, but not necessarily limited to, molding a switch housing onto the first chassis, positioning a key mechanism over the switch housing, engaging a key mechanism with the chassis strip, positioning a buckling dome within the switch housing, and engaging the buckling dome with the chassis strip.


In many embodiments, the first and/or second key assembly can be aligned with an aperture defined by a housing of an electronic device. In these examples, the key assemblies may extend at least partially through the apertures. In many examples, the apertures may be associated with a grid or row of apertures, but this may not be required.


In certain cases, the operation of forming a key assembly includes the operation of forming retaining features onto a respective chassis. For example, a retaining feature may be bent to form a spring armature configured to engage with one or more parts of the key assembly, such as a keycap or a key mechanism. In other cases, a retaining feature can be configured to engage with the buckling dome.


Some embodiments may include a configuration in which affixing the first chassis to the feature plate includes electrically connecting the first key assembly to an electrical circuit accommodated on the feature plate.


Further embodiments described herein reference or take the form of a method of manufacturing a keyboard including at least the operations of: selecting a chassis strip including a number of prefabricated key assemblies; positioning the chassis strip on a feature plate; affixing the chassis strip to the feature plate; and independently affixing each prefabricated key assembly to the feature plate. Further operations can include removing interconnecting portions of the chassis strip.


Additional embodiments described herein reference a method of manufacturing a keyboard including the operations of: selecting a panelized substrate populated with a row of prefabricated key assemblies; affixing the panelized substrate on a feature plate of a keyboard; aligning each prefabricated key assembly of the row of prefabricated key assemblies with a respective one electrical circuit on the feature plate; affixing each key assembly of the row of key assemblies to the feature plate; and depanelizing the panelized substrate to singulate each key assembly on the feature plate.


Some embodiments may include an implementation in which depanelizing the substrate includes removing interconnecting portions of the panelized substrate between each key assembly of the row of key assemblies.


Further embodiments described herein reference a row of interconnected key assemblies. In these embodiments, each key assembly of the row of key assemblies includes a chassis. The chassis includes a first retaining feature and a second retaining feature. The chassis also includes a switch housing, a key mechanism surrounding the switch housing (and engaged with the first retaining feature), and a buckling dome within an aperture defined through the switch housing (and engaged with the second retaining feature). In these embodiments, each chassis associated with each key assembly of the row of key assemblies may be coupled to at least one other chassis via an interconnecting portion.


In these embodiments, at least one key assembly of the row of key assemblies further includes an optical film positioned over the switch housing.


Still further embodiments described herein generally reference a keyboard including at least a housing defining a grid of apertures and a feature plate disposed within the housing. The feature plate accommodates a plurality of light emitting diodes distributed relative to each aperture of the grid of apertures. The keyboard also includes a row of key assemblies. At least one key assembly of the row of key assemblies includes a chassis coupled to the feature plate over one light emitting diode. The key assembly also includes a switch housing formed on the chassis and optically coupled to the one light emitting diode. In addition, the key assembly includes an optical film placed over the switch housing and optically coupled to the switch housing. In this manner, an optical path is formed from the light emitting diode, through the switch housing, to the optical film.


Still further embodiments described herein reference a keyboard including at least a feature plate. In these examples, a row of key assemblies is coupled to the feature plate. The row of key assemblies includes a first key assembly positioned immediately adjacent to a second key assembly. The first key assembly and the second key assembly are separated by a distance defined by an interconnecting portion. In these examples, the interconnecting portion can be removable.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the disclosure to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.



FIG. 1A depicts an electronic device incorporating a keyboard.



FIG. 1B depicts the enclosed circle A-A of FIG. 1A, specifically showing a key positioned relative to an aperture defined through a housing of the electronic device.



FIG. 2A depicts an exploded view of one example of a key assembly that may be fabricated when manufacturing a keyboard, such as the keyboard depicted in FIGS. 1A-1B.



FIG. 2B depicts a detailed assembly view of a keycap and a key mechanism associated with the key assembly depicted in FIG. 2A.



FIG. 2C depicts a cross-section view through line B-B of the keycap and key mechanism of FIG. 2B.



FIG. 2D depicts the keycap and key mechanism of FIG. 2B, assembled.



FIG. 2E depicts the keycap and key mechanism of FIG. 2C compressed in response to a force exerted on an upper surface of the keycap.



FIG. 2F depicts a top view of the key mechanism depicted in FIGS. 2A-2D.



FIG. 2G depicts a cross-section view through line C-C of the key mechanism FIG. 2F, positioned over a chassis associated with the key assembly of FIG. 2A.



FIG. 2H depicts the key mechanism of FIG. 2G, assembled onto the chassis.



FIG. 2I depicts a cross-section view through line D-D of the key mechanism of FIG. 2F.



FIG. 2J depicts a detailed assembly view of a switch housing, a buckling dome, and an optical film associated with the key assembly depicted in FIG. 2A.



FIG. 2K depicts a top view of the switch housing, the buckling dome, and the optical film of FIG. 2J, assembled.



FIG. 2L depicts a cross-section view through line E-E of the switch housing, the buckling dome, and the optical film of FIG. 2K.



FIG. 2M depicts the switch housing, the buckling dome, and the optical film of FIG. 2H compressed in response to a force exerted on the optical film.



FIG. 3A depicts a top view of a chassis strip that can be used to fabricate multiple key assemblies such as the key assembly depicted in FIGS. 2A-2M.



FIG. 3B depicts the chassis strip of FIG. 3A, particularly showing portions of the chassis strip folded to form structural features configured to engage with and support parts of each fabricated key assembly.



FIG. 3C depicts the chassis strip of FIG. 3B, particularly showing multiple switch housings formed onto the chassis strip adjacent to the structural features formed as shown in FIG. 3B.



FIG. 3D depicts a side view of the chassis strip of FIG. 3C, particularly showing the chassis strip as an insert within the switch housings that are formed using an insert molding process.



FIG. 3E depicts a side view of the chassis strip of FIG. 3C, particularly showing the switch housings heat staked to the chassis strip.



FIG. 3F depicts the chassis strip of FIG. 3C, particularly showing a buckling dome engaged with the structural features of the chassis strip formed as shown in FIG. 3B.



FIG. 3G depicts the chassis strip of FIG. 3F, particularly an optical film positioned over the switch housings shown in FIG. 3F.



FIG. 3H depicts the chassis strip of FIG. 3G, particularly showing a key mechanism engaged with the structural features of the chassis strip formed as shown in FIG. 3B.



FIG. 4A depicts a top view of a chassis strip that includes a number of prefabricated key assemblies, positioned over a feature plate of a keyboard.



FIG. 4B depicts the chassis strip and keyboard of FIG. 4A, showing the chassis strip attached to the feature plate of the keyboard, identifying interconnecting portions of the chassis strip between prefabricated key assemblies that may be ejected in a subsequent operation.



FIG. 4C depicts the chassis strip and keyboard of FIG. 4B, showing ejection of the interconnecting portions between prefabricated key assemblies.



FIG. 4D depicts the chassis strip and keyboard of FIG. 4C, showing singulated key assemblies independently mounted and/or affixed to the feature plate of the keyboard.



FIG. 5A depicts a side assembly view of a chassis strip that may be used to fabricate key assemblies.



FIG. 5B depicts the chassis strip of FIG. 5A including a number of prefabricated key assemblies, positioned above a feature plate of a keyboard.



FIG. 5C depicts the chassis strip and feature plate of FIG. 5B, particularly showing the prefabricated key assemblies coupled to the feature plate of the keyboard.



FIG. 5D depicts the feature plate of FIG. 5C, showing ejection of interconnecting portions of the chassis strip between prefabricated key assemblies, thereby singulating the prefabricated key assemblies.



FIG. 5E depicts a side assembly view of another chassis strip that may be used to fabricate key assemblies.



FIG. 5F depicts the chassis strip of FIG. 5E including a number of prefabricated key assemblies with heat stake features, positioned through corresponding holes in a feature plate of a keyboard.



FIG. 5G depicts the chassis strip and feature plate of FIG. 5F, particularly showing the heat stake features of the prefabricated key assemblies deformed against an underside of the feature plate.



FIG. 5H depicts the feature plate of FIG. 5G, showing ejection of interconnecting portions of the chassis strip between prefabricated key assemblies, thereby singulating the prefabricated key assemblies.



FIG. 6A depicts a side view of a chassis strip that may be used to fabricate a number of key assemblies such as described herein.



FIG. 6B depicts a side view of another substrate that may be used to fabricate a number of key assemblies such as described herein.



FIG. 6C depicts a side view of another substrate that may be used to fabricate a number of key assemblies such as described herein.



FIG. 7A depicts a top view of a feature plate of a keyboard including multiple prefabricated key assemblies independently coupled to the feature plate and particularly showing keycaps attached to each of the prefabricated key assemblies.



FIG. 7B is a side view of the feature plate and key assemblies depicted in FIG. 7A.



FIG. 7C depicts the feature plate of FIG. 7B disposed within a housing of an electronic device such that each key assembly and keycap is positioned relative to an aperture defined through the housing.



FIG. 7D depicts the enclosed circle F-F of FIG. 7C, specifically showing one key assembly positioned relative to an aperture defined through the housing.



FIG. 8 is a flow chart depicting example operations of a method of fabricating key assemblies on a chassis strip.



FIG. 9 is a flow chart depicting example operations of a method of assembling a keyboard by deferring depanelization of a panelized substrate of prefabricated key assemblies.



FIG. 10 is a flow chart depicting example operations of manufacturing a chassis strip of prefabricated key assemblies.





The use of the same or similar reference numerals in different figures indicates similar, related, or identical items.


The use of cross-hatching or shading in the accompanying figures is generally provided to clarify the boundaries between adjacent elements and also to facilitate legibility of the figures. Accordingly, neither the presence nor the absence of cross-hatching or shading conveys or indicates any preference or requirement for particular materials, material properties, element proportions, element dimensions, commonalities of similarly illustrated elements, or any other characteristic, attribute, or property for any element illustrated in the accompanying figures.


Additionally, it should be understood that the proportions and dimensions (either relative or absolute) of the various features and elements (and collections and groupings thereof) and the boundaries, separations, and positional relationships presented therebetween, are provided in the accompanying figures merely to facilitate an understanding of the various embodiments described herein and, accordingly, may not necessarily be presented or illustrated to scale, and are not intended to indicate any preference or requirement for an illustrated embodiment to the exclusion of embodiments described with reference thereto.


DETAILED DESCRIPTION

Embodiments described herein reference systems and methods for manufacturing keyboards with depressible keys. More specifically, many embodiments relate to methods for reliably and quickly mounting and affixing depressible key assemblies to a feature plate of a keyboard with high positional accuracy.


A keyboard, such as described herein, includes a number of depressible keys (more generally, “keys”) arranged in a number of parallel and often offset rows on a substrate referred to as a “feature plate.” The feature plate is a generally flat substrate that includes structural features configured to retain and support each key of the keyboard. Structural features of a feature plate can include protrusions, bosses, indentations, clips, adhesives, and so on. In addition, a feature plate accommodates electrical connections or traces for each key and control circuitry, in addition to providing structural support and rigidity to the keyboard. In typical examples, a feature plate is formed from a rigid material such as plastic, printed circuit board materials, metal layered with a dielectric coating, and so on.


The feature plate can be a single-layer or multi-layer substrate made from any number of suitable materials including, but not limited to, metal or plastic. The feature plate is typically affixed within a housing that supports and encloses the keyboard. A single keyboard may have multiple feature plates although, in many embodiments, only a single feature plate is required. Generally, each key that is coupled to the feature plate is associated with a key assembly and an electrical switch. Certain keys, especially those of large size (e.g., a space bar), may be associated with more than one key assembly and/or more than one electrical switch.


A key assembly, such as described herein, can include a number of discrete parts including, but not limited to, a keycap, a key mechanism, and a buckling dome. In some embodiments, the key assembly can also include parts or subcomponents such as backlights, light guides, optical films, color filters, pivot bars, position sensors, force sensors, touch sensors, biometric sensors, and so on. The example constructions of a key assembly provided above are not exhaustive; a key assembly such as described herein can be formed in any implementation-specific manner from any number of suitable parts or subcomponents.


Keyboards including key assemblies such as described herein can be manufactured in a number of suitable ways. However, conventional methods of manufacturing may be time consuming and/or resource intensive, or may be unsuitable for low-profile or thin keyboards.


For example, one conventional method of manufacturing a keyboard groups common parts of key assemblies into layers (e.g., a dome layer, circuit layer, membrane layer, backlight layer, support layer, and so on) that are progressively disposed onto a feature plate. Such keyboards are generally referred to herein as “layered keyboards.” The use of layers may, in some cases, decrease manufacturing time or may provide for desirable relative alignment of key assemblies. However, the user of layers may increase the total thickness and weight of the keyboard. Additional thickness and weight may be undesirable for certain keyboards, especially for low-profile or portable keyboards. Furthermore, manufacturing errors or variations may accumulate with each successive layer; it may be difficult to manufacture layered keyboards with high tolerances.


For embodiments described herein, key assemblies can be attached separately onto a feature plate during manufacturing of a keyboard. These keyboards are referred to herein as “singulated keyboards.” Singulated keyboards can have a total thickness and weight that is less than the total thickness and weight of a layered keyboard. More specifically, a layered keyboard includes excess material (e.g., layers) between each key assembly, whereas a singulated keyboard does not. The distance between the outer surface of a keycap and the feature plate of a singulated keyboard is less than the distance between the outer surface of a keycap and the feature plate of a layered keyboard.


Accordingly, embodiments described herein reference methods for assembling low-profile, singulated keyboards quickly and efficiently. In one embodiment, a singulated keyboard can be manufactured by fabricating each key assembly, individually, onto a feature plate using an automated assembly mechanism, such as a pick and place machine.


In further embodiments, a singulated keyboard is manufactured by prefabricating key assemblies onto a chassis strip that is divided into individual key assemblies after the chassis strip is mounted and/or affixed to a feature plate of the keyboard. In these embodiments, the chassis strip forms a portion of the structure of the key, thereby reducing the number of additional features and/or structures of the feature plate. This simplifies manufacturing and handling of the feature plate.


More particularly, a row of key assemblies can be fabricated onto a chassis strip that corresponds to a partial or complete row of keys of the keyboard. The chassis strip is thereafter mounted and/or affixed to a feature plate in a specific location, providing accurate alignment for each prefabricated key assembly on the chassis strip to a respective location on the feature plate. In these embodiments, the feature plate can be a planar substrate. As such, the feature plate does not require any particular geometry or features; the chassis of each key assembly provides structural features that engage with the various parts of the key assembly. In further embodiments, the chassis of each key assembly can provide electrical connection, define an electrical path, complete an electrical circuit, serve as a portion of an electrical circuit (e.g., resistor, capacitor, jumper, connector, interposer, and so on), serve as an electromagnetic shield, and so on. Next, each prefabricated key assembly is independently mounted and/or affixed to the feature plate. Finally, interconnecting portions of the chassis strip between the prefabricated key assemblies are removed, thereby singulating each key assembly.


In this manner, the operation of fabricating an arbitrary number of key assemblies associated with an arbitrary number of rows associated with an arbitrary number of keyboards can be performed in a continuous progressive manufacturing process. The phrase “continuous progressive manufacturing process” as used herein generally refers to any progressive manufacturing or fabrication process, or combination of processes, which can be performed, in whole or in part, by progressively adding parts to semi-finished assemblies. In some examples, an arbitrary number of key assemblies can be fabricated onto a chassis strip of arbitrary length by a single automated assembly mechanism, such as a pick and place machine. In other examples, an arbitrary number of key assemblies can be fabricated onto a chassis strip of arbitrary length by passing or conveying the chassis strip between different automated assembly mechanisms.


A continuous progressive manufacturing process may require a smaller work area, a lower average pick and place stroke length and/or time, and may provide highly accurate relative positioning and alignment of all key assemblies of a keyboard (e.g., the chassis strip can be divided into multiple rows of prefabricated key assemblies) before any of those key assemblies are permanently mounted and/or affixed to the feature plate. A manufacturing error can be corrected by separating a key assembly from a row of prefabricated key assemblies.


Similarly, the operation of accurately aligning and affixing key assemblies to a feature plate may be performed at higher speed. In particular, for embodiments described herein, an entire row of key assemblies of a keyboard can be accurately and precisely positioned and aligned in a single operation. Once mounted and/or affixed to the feature plate, interconnecting portions of the chassis strip between each prefabricated key assembly can be removed or ejected. In many cases, the chassis strip may be perforated or scored (one or more times) between the prefabricated key assemblies to facilitate removal of the interconnecting portions. In this manner, the chassis strip can be described as a panelized substrate populated with key assemblies. Depanelization of the panelized substrate is deferred until after each prefabricated key assembly is independently mounted and/or affixed to the feature plate of a keyboard. As used herein, the term “panelization” and similar phrasing refers generally to the fabrication of multiple similar or identical assemblies, circuits, structures, and so on, onto a single substrate that may be segmented or otherwise divided in a later operation (herein referred to as “depanelization”) into individual and separate (herein, “singulated”) assemblies, circuits, and structures.


These and other embodiments are discussed below with reference to FIGS. 1A-10. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes only and should not be construed as limiting.


Generally and broadly, FIGS. 1A-1B reference an electronic device 100 incorporating a keyboard 102 with multiple keys. A user provides input to the electronic device 100 by pressing a key 104 of the keyboard 102. The electronic device 100 and/or the keyboard 102 may be configured to perform, schedule, monitor, or coordinate one or more operations in response to a keypress. In many cases, the keyboard 102 is a singulated keyboard such as described herein that may be manufactured using techniques such as described herein.


The keyboard 102 is illustrated as an alphanumeric keyboard integrated in a lower clamshell portion of a foldable laptop computer, although such a configuration is not required. For example, the keyboard 102 may have a different number of keys or may be arranged in another manner. In further embodiments, the keyboard 102 may be separate from the electronic device 100.


In this embodiment, each key of the keyboard 102, including the key 104, is positioned relative to an aperture defined in the lower clamshell portion of the foldable laptop computer. In many cases, the aperture is a member of a group or mesh of apertures defined through the lower clamshell portion of the foldable laptop computer. More particularly, a keycap associated with each key extends at least partially through a similarly-shaped aperture defined in the lower clamshell portion of the foldable laptop computer. As noted with respect to other embodiments described herein, each keycap accommodates an image or symbol (not shown) that corresponds to a function associated with the key that may be performed when the key is pressed by a user.


In some embodiments, the keyboard 102 need not be integrated in a lower clamshell portion of a foldable laptop computer; the keyboard may be incorporated into, for example, a cover for a tablet computer, a peripheral input device, an input panel, or any other suitable depressible button or depressible key input system.


In particular, FIG. 1A depicts the electronic device 100 incorporating the keyboard 102, which as noted above, includes a number of keys arranged in a collection of offset rows defining a grid of keys. In particular, six rows of keys are shown. One example key of the keyboard is labeled as the key 104. FIG. 1B depicts the enclosed circle A-A of FIG. 1A, specifically showing the key 104 positioned relative to an aperture 106 defined through a housing 108 of the electronic device 100. In many embodiments, an edge of the key 104 is separated by a distance d from a sidewall of the aperture 106. The distance d can vary from embodiment to embodiment. In certain cases, the distance d is substantially constant around the periphery of the key 104. It may be appreciated that for embodiments in which the distance d is particularly small, manufacturing may be challenging; accurate and precise placement of the key 104 may be accomplished using methods described herein.


The key 104 is a depressible key that includes a keycap that may be pressed by a user to provide input to the electronic device 100. In this manner, the key 104 is configured to receive user input. The keycap can be a single layer or multi-layer keycap made from any number of suitable materials or combination of materials, such as, but not limited to, plastic, glass, sapphire, metal, ceramic, fabric, and so on. In typical examples, a symbol (not shown) is accommodated on an upper surface of the keycap. In many examples, the upper surface of the keycap has a square or rectangular shape with rounded corners, although this is not required.


The electronic device 100 is depicted as a laptop computer which can include additional components such as, but not limited to, a display, a touch/force input/output device, an audio input/output device, a data or power port, a wireless communication module, and so on. It may be appreciated that, for simplicity of illustration, the electronic device 100 in FIGS. 1A-1B is depicted without many of these components, any of which may be included entirely or partially within the housing 108.


As noted with respect to other embodiments described herein, the key 104 may be associated with a key assembly and at least one electrical switch. One example of a key assembly is shown in FIGS. 2A-2M. This key assembly is identified as the key assembly 200.


As described in further detail below, a key assembly such as depicted in FIGS. 2A-2M, can include a number of discrete parts including, but not limited to, a keycap, a key mechanism, and a buckling dome. A keycap of a key assembly has an outer surface configured to receive user input. Typically, the keycap is made from plastic, glass, fabric, or metal, although other materials or combinations of materials maybe suitable in certain embodiments. For example, a keycap can include a uniform plastic or acrylic body. In another example, a keycap can include a metal, plastic, or glass body subjacent a fabric outer layer. In some cases, the fabric outer layer can overlap more than one keycap. The example constructions of a keycap provided above are not exhaustive; a keycap such as described herein can be formed from any number of suitable materials or combination of materials.


The outer surface of the keycap accommodates an image, glyph, or symbol that corresponds to a function associated with the key that may be performed (e.g., by an electronic device in communication with the keyboard) when the key is pressed the user.


A key mechanism of the key assembly is typically engaged with an underside of the keycap and with one or more support features extending from a chassis that is, in turn, affixed to the feature plate. In this manner, the key mechanism movably couples the keycap to the feature plate and facilitates a downward linear motion (or translation) of the keycap in response to a user input. The key mechanism can be a scissor mechanism, a butterfly mechanism, or any other suitable hinged, pivoting, sliding, compressing, or rotating mechanism.


A buckling dome of a key assembly such as described herein is typically positioned between the feature plate and the keycap, and above the electrical switch. In this manner, when a user input is received and the key is pressed (during a “keypress”), a force is exerted on the keycap by the user that causes the key mechanism to compress which causes the buckling dome to buckle and the electrical switch to close. When the force is removed, the buckling dome exerts a restoring force that causes the key mechanism to extend, returning the keycap to its original position, ready to receive a subsequent user input.


In many cases, the buckling dome and electrical switch are disposed within an enclosure generally referred to herein as a “switch housing.” The switch housing defines an aperture that partially or entirely encloses the buckling dome and electrical switch to provide thermal, mechanical, optical, electrical, and/or chemical protection or features to the electric switch and buckling dome, promoting a consistent and reliable user experience of operating the associated key. It may be appreciated that the example construction of a switch housing provided above is not exhaustive; a switch housing such as described herein can be formed or fabricated in any implementation-specific manner from any number of suitable parts or subcomponents.


More particularly, FIG. 2A depicts an exploded view of one example of a key assembly 200 that may be fabricated onto a chassis which is affixed to a feature plate of a keyboard, such as the keyboard depicted in FIGS. 1A-1B.


The key assembly 200 includes a keycap 202, a key mechanism 204, and a switch structure 206 that are interconnected and coupled to a chassis 208. The chassis 208 can be used as a carrier to affix the entire key assembly 200 onto a feature plate of a singulated keyboard. In this manner, one or more structural, electrical, and/or support functions that may have been provided by a conventional feature plate are accomplished by the chassis 208 itself; this structure reduces the complexity of the feature plate and increases the speed and precision with which the singulated keyboard can be manufactured.


Further, as noted above, the chassis 208 may be formed in a strip or chain with an arbitrary number of other chassis (not shown in FIGS. 2A-2M) associated with an arbitrary number of other key assemblies. The distance between the chained chassis can correspond to the distance between keys of a singulated keyboard. Once a suitable number of key assemblies are fabricated onto the various chassis of the chassis strip, the chassis strip (now corresponding to a row of keys of a singulated keyboard) can be affixed to a feature plate. In this manner, the operation of providing alignment for key assemblies on a feature plate and the operation of fabricating key assemblies can be performed in parallel.


The keycap 202 of the key assembly 200 is shown in greater detail in FIGS. 2B-2E. The keycap 202 has a generally square or rectangular shape, defined by an upper surface 202a and a sidewall 202b that extends in a generally continuous manner around the periphery of the upper surface 202a.


A symbol, legend, letter, or number (not shown) can be accommodated on the upper surface 202a. As noted with respect to other embodiments described herein, the symbol can correspond to a function to be performed by a keyboard incorporating the key assembly 200. In some cases, the symbol (or a negative thereof) is printed on the upper surface 202a. In other cases, the symbol can be outlined by one or more apertures defined through the keycap 202. In these cases, the aperture(s) may be filled with a transparent or translucent material (such as epoxy, glass, plastic, and so on) to facilitate backlighting of the keycap 202.


For example, the aperture may be formed through the upper surface 202a by laser ablation and/or laser etching. In a subsequent operation, the aperture may be filled with a semi-transparent epoxy. In another example, the aperture may be defined during manufacturing of the keycap 202.


The keycap 202 can be made from any number of suitable materials or combination of materials including, but not limited to, metal, glass, plastic, ceramic, fabric, and so on. The keycap 202 can be partially or completely transparent, opaque, or translucent. In many cases, the keycap 202 is formed from a single material, but this may not be required. For example, the material(s) selected for the upper surface 202a may be different than the material(s) selected for the sidewall 202b. The upper surface 202a can be substantially flat, although this is not required.


In an alternate embodiment, the upper surface 202a has a partially concave shape that can contour to a user's finger.


In many cases, the keycap 202 includes retaining features on a lower surface 202c. The lower surface 202c can be opposite the upper surface 202a, and can be partially or entirely enclosed by the sidewall 202b.


The retaining features associated with a particular keycap can vary from embodiment to embodiment. Two example configurations of retaining features are identified in FIG. 2C as the retaining features 202d. The retaining features 202d extend from the lower surface 202c. Each retaining feature includes a channel configured to interlock with, and/or couple to, one or more portions of the key mechanism 204. As shown, the channel(s) can be formed in any number of suitable ways; one retaining feature is depicted with a downward-oriented channel whereas another is depicted with a horizontally-oriented channel. It may be appreciated that the orientation of either or both retaining features can be modified in any implementation-specific or appropriate manner. In other embodiments, the retaining features 202d can include an aperture or through-hole or the retaining features 202d can be defined on an interior surface of the sidewall 202b.


The key mechanism 204 of the key assembly 200 is illustrated as a butterfly mechanism, although this may not be required. For example, the key mechanism 204 can be a scissor mechanism, a geared mechanism, or any other suitable hinged, pivoting, sliding, or rotating mechanism. In the illustrated embodiment, the key mechanism 204 is defined by two symmetrical wings, a first wing 204a and a second wing 204b, separated by a living hinge, identified as the hinge 206c. The hinge 206c is connected to each of the first wing 204a and the second wing 204b; the hinge 206c facilitates folding of the wings about an axis generally perpendicular to the direction along which the key assembly 200 compresses in response to a keypress.


An example fold of the first wing 204a and the second wing 204b along the hinge 206c is depicted in FIGS. 2D-2E. In particular, FIG. 2D illustrates the keycap 202 in an upward position, showing the key mechanism 204 in an extended position. FIG. 2E illustrates the keycap 202 receiving a user input in the form of a force F exerted on the upper surface 202a, which causes the first wing 204a and the second wing 204b of the key mechanism 204 to fold, thereby lowering the keycap 202 a distance d downwardly in response to the user input.


The first wing 204a and the second wing 204b are illustrated with substantially the same half-rectangle shape, symmetrically mirrored across the hinge 206c. As a result, the key mechanism 204 has a generally rectangular shape when viewed from above. The first wing 204a and the second wing 204b may be made from any number of suitable materials, but in many embodiments, the first wing 204a and the second wing 204b are made from a rigid material such as a glass-filled polymer. Other suitable materials can include, but are not limited to, glass, plastic, metal, epoxy, acrylic, and so on. In many cases, the first wing 204a and the second wing 204b are made from the same material or combination of materials, but this is not required. The first wing 204a and the second wing 204b can be made to be partially or entirely optically transparent or translucent.


In one embodiment, the hinge 206c is a fabric or polymer material molded onto or between the first wing 204a and the second wing 204b. In other examples, the hinge 206c is an elastomer overmolded on the first wing 204a and the second wing 204b. In still further examples, the hinge 206c can be formed in another manner.


The first wing 204a and the second wing 204b can include one or more outwardly-facing pins configured to interlock with the retaining features 202d of the keycap 202 (see, e.g., FIGS. 2B-2E). More specifically, the first wing 204a and the second wing 204b each include at least one keycap pin, such as the keycap pin 210. In the embodiment shown in FIGS. 2A-2E, four keycap pins are shown. Although the keycap pins are illustrated as outwardly-facing pins having a generally cylindrical shape, this may not be required; some embodiments include inwardly-facing pins and/or pins having a different shape, such as an oblong or elliptical shape.


The first wing 204a and the second wing 204b can also include one or more inwardly-facing pins configured to interlock with pivot points defined in the chassis 208 of the keycap 202 (see, e.g., FIGS. 2F-2I). In other embodiments, the pivot points may be defined in the switch structure 206. More specifically, the first wing 204a and the second wing 204b each include at least one pivot pin, such as the pivot pin 212. In the embodiment illustrated in FIGS. 2A-2I, four pivot pins are shown. Although the pivot pins are illustrated as inwardly-facing pins having a generally cylindrical shape, this may not be required; some embodiments include outwardly-facing pivot pins and/or pivot pins having a different shape. The pivot pins couple the key mechanism 204 to the switch structure 206 and/or the chassis 208. In this manner, the key mechanism 204 can collapse in response to a keypress, drawing the keycap 202 downwardly, over the switch structure 206.


In the embodiment illustrated in FIG. 2A and shown in detail in FIGS. 2J-2M, the switch structure 206 of the key assembly 200 includes a switch housing 214, a buckling dome 216, and an optical film 218. The switch structure 206 is positioned within the key mechanism 204, as shown in FIG. 2A.


The switch housing 214 of the switch structure 206 can enclose an electrical switch (not shown). In many cases, the buckling dome 216 forms a part of the electric switch. For example, the buckling dome 216 can establish an electrical connection between adjacent electrically-conductive pads by contacting the electrically conductive pads. In another case, the buckling dome 216 can contact an electrically conductive pad, thereby completing an electrical path.


It may be desirable to enclose the electrical switch in order to prevent contaminants from interfering with the consistent operation of the electrical switch. In many cases, the switch housing 214 can also be a light guide. The switch housing 214 can be made from an optically transparent or translucent material such as, but not limited to, glass or plastic. In some examples, one or more sidewalls or external faces of the switch housing 214 may include a light guide feature. For example, a sidewall of the switch housing 214 may be serrated and/or formed with one or more micro-lens patterns to improve light transmission from a light source 206a through the switch housing 214 and toward the lower surface 202c of the keycap 202. In many examples, the light source 206a is a light emitting diode and is positioned within a channel or pocket defined in the switch housing 214, such as the pocket 214a. An example micro-lens pattern is shown in FIG. 2J within the pocket 214a and is identified as the lens 214b. In some cases, the light source 206a (or any other suitable electrical circuit) can be formed into or otherwise coupled to the chassis 208.


The buckling dome 216 of the switch structure 206 can provide a tactile feedback to the user in response to a keypress and can provide a restoring force to the key mechanism 204 to cause the keycap 202 to return to an upward position. In one embodiment, the buckling dome 216 has a cross shape (such as illustrated), having four ends extending from a central portion. The four extending ends may be formed to a particular side profile in order to provide a specific tactile feedback effect and/or restoring force effect. For example, the four extending ends may be formed with a curved side profile that provides a substantially linear tactile feedback effect.


In other cases, the buckling dome 216 can have another shape such as, but not limited to, a circular shape, a circular shape with cutouts, a square shape, a square shape with cutouts, a triangular shape, a hub-and-spoke shape and so on. The buckling dome 216 of the switch structure 206 can also be a portion of the electrical switch. The buckling dome 216 can be positioned within the switch housing 214 and can be coupled to a retaining feature of the chassis 208, described in further detail below. In many cases, the retaining feature(s) define a notch into which one or more portions of the buckling dome 216 may be positioned. In further embodiments, the switch housing 214 can define one or more upstops 214c that are configured to accommodate a portion of the buckling dome 216.


The optical film 218 of the switch structure 206 can be positioned over the buckling dome 216 and over the switch housing 214. In this manner the optical film 218 and the switch housing 214 cooperate to, partially or completely, seal or enclose the buckling dome 216 within the switch housing 214. This can prevent contaminants from interfering with the operation of the buckling dome 216.


The optical film 218 can include one or more dimples (one is shown) configured to interface the lower surface 202c of the keycap 202 or another feature of the keycap 202. The optical film 218 can be made from any number of suitable materials including, but not limited to, elastomers, polymers, fabrics, and so on. The optical film 218 can be coupled to the switch housing 214 with an adhesive such as silicone glue. In some cases, the optical film 218 and/or the switch housing 214 include a pressure vent (not shown) to normalize pressure within the switch housing 214 and the ambient environment. In some cases, the size of the pressure vent is selected in order to provide a specific tactile feedback effect, a particular acoustic profile, and/or restoring force effect.


In some embodiments, the optical film 218 is formed entirely or in part from an optically translucent or optically transparent material. The optical film 218 can have similar optical properties to the switch housing 214, although this may not be required. The optical film 218 is configured to receive light emitted from the switch housing 214, or from below the switch housing 214. The optical film 218 can be configured to direct light (e.g., with serrations, lenses, or other) toward the lower surface 202c of the keycap 202. In some cases, the optical film 218 can include a mask layer that blocks light from exiting the optical film 218 in certain regions, while permitting light from exiting the optical film 218 in other regions.


In the illustrated embodiment, the chassis 208 of the key assembly 200 is a metal substrate that is formed to define several retaining features such as a key mechanism retaining feature 220 and a buckling dome retaining feature 222.


In the embodiment illustrated in FIGS. 2A and 2J-2M, four key mechanism retaining features are depicted and two buckling dome retaining features are depicted, although other embodiments may be implemented in another manner.


Each key mechanism retaining feature 220 is configured to engage with one respective pivot pin 212 of the key mechanism 204 (see, e.g., FIGS. 2F-2I). In this manner, the key mechanism retaining features define pivot points for the pivot pins of the key mechanism 204. In many cases, the key mechanism retaining features are formed by bending tabs of the chassis 208.


Each buckling dome retaining feature is configured to engage with one respective end or portion of the buckling dome 216 (see, e.g., FIGS. 2J-2M). For example, the buckling dome retaining feature 222 can include a notch and/or a spring arm that is configured to engage (e.g., by snapping) with one or more features of the buckling dome 216. The size and/or shape of the buckling dome retaining feature 222 can affect the positioning and/or travel distance of the buckling dome 216 within the switch housing 214. In many cases, the buckling dome retaining features are formed by bending tabs of the chassis 208. In some embodiments, the buckling dome retaining features are formed as a spring and are configured to bend or flex in response to a keypress or actuation of the buckling dome 216. As an example, FIGS. 2L and 2M are presented showing bending of the buckling dome 216 and the buckling dome retaining features 222 in response to a force exerted on the optical film 218. In this example, the buckling dome 216 and the buckling dome retaining features 222 cooperate to provide a particular tactile feedback to a user. In this embodiment, the buckling dome retaining features 222 are configured to bend, flex, and/or retract in response to an actuation of the buckling dome 216. In many cases, this provides a degree of overload protection to the buckling dome 216, thereby extending the operational life of the buckling dome 216.


The chassis 208 also includes tabs 224 that may be used to position and/or place the key assembly on a feature plate of a keyboard. In other cases, the tabs 224 may be used to electrically couple the chassis 208 to a contact pad on a feature plate of a keyboard. Such an electrical coupling can also electrically couple the buckling dome 216, via the buckling dome retaining feature 222, to the contact pad.


In many embodiments, a key assembly such as the key assembly 200 can be fabricated with other key assemblies onto a chassis strip that defines a linear series of chassis, such as the chassis 208. In this example, the chassis strip can be formed from metal and can define a row of chassis suitable for fabricating a row of key assemblies that corresponds to a row of keys of a keyboard.


Generally and broadly, FIGS. 3A-3G depict a chassis strip (e.g., a chain of chassis) that can be populated with a number of key assemblies, such as the key assembly 200 depicted in FIGS. 2A-2M. The chassis strip may be made from any number of suitable materials, but in many embodiments, the chassis strip is formed from metal, such as sheet metal (e.g., stainless steel). Other materials can include, but are not limited to, plastic, acrylic, glass, ceramic, nylon, and so on.


The process of fabricating multiple key assemblies onto a chassis strip may occur progressively in stages. FIGS. 3A-3G are provided to illustrate intermediate stages of one example process of fabricating multiple key assemblies onto a chassis strip, although it is appreciated that the order presented herein is not required. Similarly, additional or fewer operations may be performed in particular implementations.



FIG. 3A depicts a top view of a chassis strip that can be used to fabricate multiple key assemblies such as the key assembly depicted in FIGS. 2A-2M. The chassis strip 300 is formed to define a series chassis configured to be populated by a series of key assemblies. The chassis strip 300 can be formed from any number of suitable materials, although in many embodiments, it is formed from a sheet of stamped metal such as aluminum or stainless steel.


The chassis strip 300 in the illustrated embodiment defines three chassis, one of which is labeled as the chassis 302. The chassis strip 300 can have any suitable length. The spacing between the various chassis defined by the chassis strip 300 can be regular or irregular.


The chassis 302 defines four key mechanism retaining features, one of which is labeled as the key mechanism retaining feature 304. Generally, the key mechanism retaining features extend outwardly from a centerline of the chassis 302 through a central cutout region 306. The key mechanism retaining features are configured to receive and/or accommodate pins extending from a key mechanism, such as the pivot pin 212 that extends from the key mechanism 204 in FIGS. 2A-2M.


In addition, the chassis 302 defines two buckling dome retaining features, one of which is labeled as the buckling dome retaining feature 308. The chassis strip 300 also includes one or more breakaway features that may be used to separate the interconnecting portions from the chassis strip 300. In the present example, the breakaway features can include a perforation 310, but may also include a score, a channel, or other feature that is configured to facilitate a break or separation of the material of the chassis strip 300. In other examples, more than one breakaway feature can be used. The perforation 310 can be used to separate one chassis from an adjacent chassis. In some embodiments, the perforation 310 may not be required or may be positioned in another location different from that shown. In still further cases, adjacent chassis can be separated by more than two perforations; in some cases, different perforations can have different breakaway characteristics.


The central cutout region 306 may be sized to accommodate an electrical switch or circuit on a feature plate of a keyboard. In other cases, the central cutout region 306 may be sized to accommodate a light emitting element such as a light emitting diode.


Generally, the buckling dome retaining features extend inwardly into the central cutout region 306 and are configured to accommodate and support a buckling dome, such as the buckling dome 216 depicted in FIGS. 2A-2M. Collectively, the key mechanism retaining features and the buckling dome retaining features are referred to herein as “retaining features.” The retaining features can be formed with detent recesses or through-holes that define pivot points for other parts of the key assemblies. For example, the four key mechanism retaining features are depicted in FIG. 3A with through-holes configured to accommodate four corresponding pins that extend from a key mechanism, such as the pivot pin 212 that extends from the key mechanism 204 depicted in FIGS. 2A-2M.


In many embodiments, the retaining features of the chassis 302 can be reoriented (e.g., bent, flexed, stamped, formed, folded, and so on) in a direction generally perpendicular to the plane of the chassis 302, such as shown in FIG. 3B. This operation orients the retaining features so as to accommodate other parts of the key assemblies, such as a key mechanism or a buckling dome. In some embodiments, the retaining features can be reoriented, bent, or otherwise formed to a particular side profile. The side profile of the retaining features may be the same or different, and may vary from embodiment to embodiment.


Once the retaining features are formed as shown in FIG. 3B, or in any other suitable or implementation-specific orientation, a switch housing 312 (such as the switch housing 214 of the key assembly 200 depicted in FIG. 2) can be attached to the chassis 302, such as shown in FIG. 3C. The switch housing 312 can be attached to the chassis 302 using any suitable method such as, but not limited to, overmolding, insert molding, adhering, welding, soldering, heat-staking via through-holes (not shown) defined in the chassis 302, and so on. For example, in one embodiment the chassis strip 300 can be an insert in an insert molding process that forms each switch housing at substantially the same time, such as shown in FIG. 3D. In this example, the chassis strip 300 can include through-holes (not visible in FIG. 3D) through which a portion 312a of the switch housing 312 can extend, permanently attaching the switch housing 312 to the chassis strip 300.


In another example, each switch housing can be overmolded onto the chassis strip 300, such as shown in FIG. 3E. In this example, the chassis strip 300 can include through-holes (not visible in FIG. 3D) through which a portion 312b of the switch housing 312 can extend. Before, during, or after the portion 312b is cured, it may be pressed against the chassis strip 300 to permanently attach the switch housing 312 to the chassis strip 300. In other cases, the portion 312b can be heat staked.


It may be appreciated that the example methods of forming the switch housing(s) onto the chassis strip 300 provided above are not exhaustive and are merely examples; other suitable or implementation-specific methods of forming and/or affixing one or more switch housings to a chassis strip 300 such as described herein can be used.


The switch housing 312 can be made from a material such as, but not limited to, polymers, elastomers, glasses, metals, and so on. In many embodiments the switch housing 312 is optically transparent or translucent.


Once the switch housing 312 is formed onto the chassis 302, a buckling dome 314 can be positioned within the switch housing 312, over the central cutout region 306, and between the two buckling dome retaining features, such as depicted in FIG. 3F. In many cases, the buckling dome 314 is snap fit into the buckling dome retaining features of the chassis 302. In some cases, the buckling dome 314 can be welded, soldered, or adhered to the buckling dome retaining features of the chassis 302, although this may not be required. As noted with respect to other embodiments described herein, the buckling dome 314 can be made from any number of suitable materials including, but not limited to, metal and plastic. Similarly, the buckling dome 314 can be configured to take any suitable shape.


Thereafter, once the buckling dome 314 is positioned within the switch housing 312, an optical film 316 can be positioned over the switch housing 312, such as depicted in FIG. 3G. As noted with respect to other embodiments described herein, the optical film 316 can cooperate with the switch housing 312 to form an optical path from a light emitter to a keycap positioned over the key assembly. As such, the optical film 316 is typically made from an optically clear or optically translucent material although, in certain embodiments, this may not be required. The optical film 316 can be adhered to the switch housing 312, formed onto the switch housing 312 (e.g., overmolding, insert molding, etc.), heat staked into the switch housing 312, or can be affixed to the switch housing 312 using any other suitable technique.


Thereafter, a key mechanism 318 can be positioned over the switch housing 312, such as depicted in FIG. F. Thereafter, the chassis strip 300 can be referred to as a chassis strip with a number of “prefabricated” key assemblies. The strip is identified in FIG. 3H as the chassis strip with prefabricated key assemblies 320.


As noted above, a chassis strip with prefabricated key assemblies 320, such as shown in FIG. 3H, can be formed to any suitable length. In some examples, a chassis strip can include prefabricated key assemblies corresponding to a partial or complete row of keys of a keyboard. In other examples, a single chassis strip can include prefabricated key assemblies corresponding to all keys of a keyboard, spaced in an implementation-specific and/or keyboard-specific manner. Prior to affixing and/or mounting the various prefabricated key assemblies to a feature plate of the keyboard (using methods such as described herein), the single chassis strip can be separated into smaller chassis strips, each smaller chassis strip corresponding to a partial or complete row of keys of the keyboard.


The chassis strip with prefabricated key assemblies 320 can be tested before subsequent manufacturing operations are performed. Tests can include, but are not limited to, function and/or strength tests of each prefabricated key assembly, force-response tests of each prefabricated key assembly, spot function tests of one or more prefabricated key assembly, defect inspection tests, dimension and/or tolerance tests, and so on. The tests can be conducted in any suitable manner. If a prefabricated key assembly fails a test, the prefabricated key assembly can be repaired, or removed from the chassis strip; remaining prefabricated key assemblies on the chassis strip can be affixed and/or mounted to a feature plate of a keyboard using methods such as described herein. In some embodiments, testing of the prefabricated key assemblies may not be required.


Once a suitable number of key assemblies are fabricated (and/or tested) on the chassis strip, the chassis strip can be affixed and/or mounted to a feature plate of a keyboard. As noted above, the chassis strip may be associated with a particular row of keys of a keyboard. In this example, the chassis strip may be affixed to a specific location of the feature plate, thereby aligning each prefabricated key assembly to a respective location on the feature plate. Next, each prefabricated key assembly is independently mounted and/or affixed to the feature plate. Finally, interconnecting portions of the chassis strip between the prefabricated key assemblies are removed, thereby singulating each key assembly. In some cases, a chassis strip can extend between more than one feature plate of more than one keyboard. In this example, multiple keyboards can be manufactured substantially simultaneously. It is with respect to these embodiments that FIGS. 4A-4D are provided.



FIG. 4A depicts a top view of a chassis strip that includes a number of prefabricated key assemblies, positioned over a feature plate of a partially-assembled feature plate 400. As illustrated, a chassis strip 402 includes a number of prefabricated key assemblies, one of which is identified as the prefabricated key assembly 404.


The chassis strip 402 is positioned above a feature plate 406. The feature plate 406 can be a substantially planar substrate. In many embodiments, the feature plate 406 may not require any particular geometry and/or features. In this manner, the feature plate 406 may not require special manufacturing or handling. In some cases, the feature plate 406 is populated with one or more electrical components, traces, or registration fiducials or indicia prior to receiving the chassis strip 402. As shown, the feature plate 406 is previously populated with a number of light-emitting diodes, one of which is identified as the light emitting diode 408.


The chassis strip 402 can be aligned over the feature plate 406 such that the prefabricated key assembly 404 aligns with a location 410. The location 410 can be identified by or as a fiducial or other indicia suitable for registration by an automated assembly mechanism, such as a pick and place machine. In some cases, the location 410 can be associated with one or more electrical contact pads formed onto the substrate. The electrical contact pads can be associated with an electrical switch, a backlight circuit, a sensor circuit (e.g., force sensor, touch sensor, depression depth sensor, temperature sensor, and so on), or any combination thereof.


In other examples, the chassis strip 402 can be aligned over the feature plate 406 such that the prefabricated key assembly 404 aligns with the light emitting diode 408. The light emitting diode 408 can be a backlight associated with the prefabricated key assembly 404. The light emitting diode 408 can be identified by or as a fiducial or other indicia suitable for registration by an automated assembly mechanism, such as a pick and place machine.


In other cases, both the location 410 and the light emitting diode 408 can function as alignment fiducials and/or indicia that may be registered by an automated assembly mechanism, such as a pick and place machine.


Once the chassis strip 402 is aligned with the feature plate 406, the chassis strip 402 can be permanently or temporarily mounted and/or affixed to the feature plate 406, such as shown in FIG. 4B. The operation of affixing the chassis strip 402 to the feature plate 406 can be accomplished in any number of suitable ways including, but not limited to, welding, soldering, adhering, clamping, heat staking, and so on.


After the chassis strip 402 is mounted and/or affixed to the feature plate 406, the individual prefabricated key assemblies can be attached to the feature plate 406. For example, the prefabricated key assembly 404 can be mounted and/or affixed to the feature plate 406 using any suitable technique such as, but not limited to, welding, soldering, adhering, heat staking, and so on.


Once the prefabricated key assembly 404 is independently mounted and/or affixed to the feature plate 406, interconnecting portions between prefabricated key assemblies can be ejected, eliminated, or otherwise removed using an appropriate technique. One interconnecting portion between prefabricated key assemblies of the chassis strip 402 is labeled as the interconnecting portion 412. FIG. 4C depicts the interconnecting portion 412 removed and ejected.


In one example, the interconnecting portions are removed by breaking a perforation or other breakaway feature, such as the perforation 310 depicted in FIG. 3A. In another embodiment, the interconnecting portions can be removed by laser cutting, laser ablation, chemical etching, chemical degradation and manual ejection, mechanical routing and ejection and so on.


In many cases, the operation of affixing the prefabricated key assembly 404 to the feature plate 406 can be the same operation that results in the ejection of the interconnecting portion 412. For example, laser cutting along a perforation may serve to weld and/or solder the prefabricated key assembly 404 to the feature plate 406 while simultaneously separating the interconnecting portion 412 from the chassis strip 402. In further embodiments, the operation of affixing the prefabricated key assembly 404 to the feature plate 406 can also connect one or more portions of the key assembly to an electrical circuit. For example, laser cutting along a perforation may serve to weld and/or solder the prefabricated key assembly 404 to the feature plate, connecting a portion of the key assembly to an electrical circuit such as an electrical switch, while simultaneously separating the interconnecting portion 412 from the chassis strip 402.


In addition, the operation of affixing the prefabricated key assembly 404 to the feature plate 406 can electrically isolate conductive portions of one key assembly from electrically conductive portions of an adjacent key assembly.


Once the interconnecting portions between adjacent key assemblies are removed, the chassis strip 402 is, effectively, depanelized. Each key assembly is accurately and precisely placed onto the feature plate 406 (see, e.g., FIG. 4D) of the partially-assembled feature plate 400. Thereafter, the partially-assembled feature plate 400 can be referred to as a “singulated” feature plate.


Generally and broadly, FIGS. 5A-5D depict various example intermediate stages associated with a method of manufacturing a singulated feature plate such as described herein. In particular, a chassis strip is populated with a number of key assemblies, such as the key assembly 200 depicted in FIG. 2, and thereafter positioned over and affixed to a feature plate of a keyboard. Once affixed to the keyboard, the key assemblies may be singulated, thereby depanelizing the chassis strip.


As noted with respect to other embodiments described herein, a process of manufacturing a singulated feature plate for a keyboard may occur in stages. FIGS. 5A-5D are provided to illustrate intermediate stages of one example process of manufacturing a singulated feature plate, although it is appreciated that the order presented herein is not required. Similarly, additional or fewer operations may be performed in particular implementations.



FIG. 5A depicts a side assembly view of a chassis strip 500 that may be used to fabricate key assemblies. The chassis strip 500 defines a row of chassis, one of which is identified as the chassis 502. Adjacent chassis can be separated by interconnecting portions, one of which is identified as the interconnecting portion 504. The interconnecting portion 504 can be at least partially defined by a breakaway feature, such as a perforation, score, or channel, identified as the singulating lines 506. As with other embodiments described herein, the chassis 502 can receive various parts of a key assembly such as a switch housing 508 and a key mechanism 510. The key assembly is identified as the key assembly 512a.


It may be appreciated that for the simplicity of illustration other parts or components that may be required for a key assembly 512a are not shown. Such components or parts may include a keycap, a switch structure, a buckling dome, an optical film, an electric circuit, a light guide, and so on.



FIG. 5B depicts the chassis strip 500 of FIG. 5A including a number of prefabricated key assemblies, one of which is identified as the prefabricated key assembly 512b, positioned above a feature plate 514 of a keyboard. The feature plate 514 can include one or more light emitting diodes, one of which is identified as the light emitting diode 516. In many embodiments, the chassis strip 500 can be aligned by registering the position and placement of the light emitting diode 516. In this manner, the light emitting diode 516 can serve as an alignment fiducial. In other cases, the chassis strip 500 can be aligned by registering the position and placement of one or more fiducials formed on a top surface of the feature plate 514.



FIG. 5C depicts the chassis strip and feature plate of FIG. 5B, particularly showing the prefabricated key assemblies, including the prefabricated key assembly 512b, coupled to the feature plate 514 of the keyboard. As noted with respect to other embodiments described herein, the prefabricated key assemblies can be coupled, affixed, bonded, joined, or otherwise attached to the feature plate 514 in any number of suitable ways. In many embodiments, each individual prefabricated key assembly of the prefabricated key assemblies is independently affixed to the feature plate 514. In these embodiments, the interconnecting portions between the prefabricated key assemblies, such as the interconnecting portion 504, may not be coupled to (e.g., disconnected from) the feature plate 514.



FIG. 5D depicts the feature plate 514 of FIG. 5C, showing interconnecting portions of the chassis strip (not shown) between prefabricated key assemblies removed, thereby singulating the key assemblies. One such singulated key assembly is identified as the singulated key assembly 512c. As noted with respect to other embodiments described herein, the operation of affixing the prefabricated key assemblies to the feature plate 514 can be the same operation that results in the ejection of the interconnecting portion, such as the interconnecting portion 504 depicted in FIGS. 5A-5C. For example, laser cutting along one or more singulating lines may serve to weld and/or solder the prefabricated key assemblies to the feature plate 514 while simultaneously separating the interconnecting portions from the chassis strip. One such example solder interface is identified as the solder joint 518. In further embodiments, the operation of affixing the prefabricated key assemblies to the feature plate 514 can also connect one or more portions of the key assembly to an electrical circuit (not shown). For example, laser cutting along a singulating line may serve to weld and/or solder the prefabricated key assemblies to the feature plate 514, connecting a portion of the key assembly to an electrical circuit such as an electrical switch, while simultaneously separating the interconnecting portions from the chassis strip.



FIGS. 5E-5H depict various example intermediate stages associated with a method of manufacturing a singulated feature plate such as described herein. In particular, a chassis strip is populated with a number of key assemblies, such as the key assembly 200 depicted in FIG. 2, and thereafter positioned over a feature plate of a keyboard. In this embodiment, heat staking features extending from each switch housing of the key assemblies are deformed against an underside of the feature plate, thereby affixing the chassis strip to the feature plate. Once affixed to the keyboard, the key assemblies may be singulated, thereby depanelizing the chassis strip.


As noted with respect to other embodiments described herein, a process of manufacturing a singulated feature plate for a keyboard may occur in stages. FIGS. 5E-5H are provided to illustrate intermediate stages of one example process of manufacturing a singulated feature plate by heat staking (or otherwise deforming) portions of a key assembly to the feature plate, although it is appreciated that the order presented herein is not required. Similarly, additional or fewer operations may be performed in particular implementations.



FIG. 5E depicts a side assembly view of a chassis strip 500′ that may be used to fabricate key assemblies. As with the embodiments described above in reference to FIGS. 5A-5D, the chassis strip 500′ defines a row or chain of chassis, one of which is identified as the chassis 520. Adjacent chassis can be separated by interconnecting portions, one of which is identified as the interconnecting portion 522. As with other embodiments described herein, the interconnecting portion 522 can be at least partially defined by a perforation or channel.


As with other embodiments described herein, the chassis 520 can receive various parts of a key assembly such as a switch housing 524 and a key mechanism 526. The key assembly is identified as the key assembly 528a.


The switch housing 524 is formed with one or more protrusions, one of which is identified as the protrusion 524a. The protrusion 524a can be formed from any number of suitable materials, but in many embodiments, is formed from the same material as the switch housing 524. The protrusion 524a can be formed as an integral portion of the switch housing 524. In many cases, the switch housing 524 includes more than one protrusion, although this may not be required. For example, a single protrusion formed with a particular shape (e.g., cross shape, triangular shape, and so on) may be suitable in some embodiments.


It may be appreciated that for the simplicity of illustration other parts or components that may be required for a key assembly 528a are not shown. Such components or parts may include a keycap, a switch structure, a buckling dome, an optical film, an electric circuit, a light guide, and so on.


Further, it may be appreciated that the protrusion 524a need not necessarily extend from the switch housing. In some embodiments, the protrusion 524a may extend from the chassis 520. In still further embodiments, the protrusion 524a may be a separate part that is configured to extend through one or more of the switch housing 524 and the chassis 520. In other cases, more than one element of the key assembly can include a protrusion 524a; a first protrusion can extend from the switch housing whereas a second protrusion extends from the chassis.



FIG. 5F depicts the chassis strip 500′ of FIG. 5E including a number of prefabricated key assemblies, one of which is identified as the prefabricated key assembly 528b, on a feature plate 530 of a keyboard. The feature plate 530 can include one or more light emitting diodes, electrical circuits, or contact pads one or more of which can serve as an alignment fiducial for aligning the prefabricated key assembly 528b with the feature plate 530. In other cases, the chassis strip 500′ can be aligned by registering the position and placement of one or more fiducials formed on a top surface of the feature plate 530. The feature plate 530 can also define a through-hole or aperture that is configured to accommodate and/or receive the protrusion 524a.



FIG. 5G depicts the chassis strip and feature plate of FIG. 5F, particularly showing the prefabricated key assemblies, including the prefabricated key assembly 528b, coupled to the feature plate 530 of the keyboard after deformation of the protrusion 524a. After deformation, the protrusion 524a is identified as the retainer 524b. In some cases, the retainer 524b is formed in a heat staking process. In other embodiments, the retainer 524b is formed by bending, folding, twisting, or otherwise manipulating the protrusion 524a.



FIG. 5H depicts the feature plate 530 of FIG. 5G, showing interconnecting portions of the chassis strip (not shown) between prefabricated key assemblies removed, thereby singulating the key assemblies. One such singulated key assembly is identified as the singulated key assembly 528c. As noted with respect to other embodiments described herein, the operation of affixing the prefabricated key assemblies to the feature plate 530 can be the same operation that results in the ejection of the interconnecting portion, such as the interconnecting portion 522 depicted in FIG. 5E. For example, laser cutting along one or more singulating lines may serve to weld and/or solder the prefabricated key assemblies to the feature plate 530 while simultaneously separating the interconnecting portions from the chassis strip. One such example solder interface is identified as the solder joint 532. In further embodiments, the operation of affixing the prefabricated key assemblies to the feature plate 530 can also connect one or more portions of the key assembly to an electrical circuit (not shown). For example, laser cutting along a singulating line may serve to weld and/or solder the prefabricated key assemblies to the feature plate 530, connecting a portion of the key assembly to an electrical circuit such as an electrical switch, while simultaneously separating the interconnecting portions from the chassis strip.


In the embodiment illustrated in FIGS. 5A-5H, the interconnecting portions between chassis of a chassis strip are formed from the same material as the chassis and are formed generally in the same plane as the plane of the chassis strip. However, this may not be required. For example, FIG. 6A depicts a side view of a chassis strip 600a having interconnecting portions, such as the interconnecting portion 602, that are elevated with respect to the plane of the chassis strip. This configuration may make the operation of singulating the prefabricated key assemblies simpler. Alternatively, FIG. 6B depicts a side view of a chassis strip 600b having interconnecting portions, such as the interconnecting portion 604, that are a different material from the chassis, such as the chassis 606. In these embodiments, the interconnecting portion 604 can be made from a disposable or disintegrable material such as can be removed by melting, dissolving, etching, ablating, blasting, and so on. The interconnecting portion 604 can be formed from plastic, glass, a different metal from the chassis 606, or any other suitable material. In further embodiments, an interconnecting portion may be configured to be received in an aperture, recess, or indentation defined in a feature plate. In such an embodiment, removal of the interconnecting portions may not be required. For example, FIG. 6C depicts a side view of a chassis strip 600c having interconnecting portions, such as the interconnecting portion 608, that are lower than the plane of the chassis strip.


It may be appreciated that the foregoing description of FIGS. 6A-6C, and various alternatives thereof and variations thereto are presented, generally, for purposes of explanation, and to facilitate a thorough understanding of various possible configurations of a chassis strip. However, it will be apparent to one skilled in the art that some of the specific details presented herein may not be required in order to practice a particular described embodiment, or an equivalent thereof. In particular, it may be appreciated that the chassis strip described above can be assembled and/or manufactured in any number of suitable ways.


As noted above, once the chassis strip is depanelized, the feature plate can be referred to as a singulated keyboard. Generally and broadly, FIGS. 7A-7D depict various example intermediate stages associated with a method manufacturing a singulated keyboard by positioning a singulated feature plate relative to one or more apertures defined through a housing of the singulated keyboard. In some cases, the housing may be a housing of an electronic device that incorporates the singulated keyboard, such as the electronic device 100 depicted in FIG. 1A.


As noted with respect to other embodiments described herein, a process of manufacturing a singulated keyboard may occur in stages. FIGS. 7A-7D are provided to illustrate intermediate stages of one example process of manufacturing a singulated keyboard, although it is appreciated that the order presented herein is not required. Similarly, additional or fewer operations may be performed in particular implementations.



FIGS. 7A-7B depict a top and side cross-section view, respectively, of a singulated feature plate 700 of a keyboard. The singulated feature plate 700 includes multiple singulated key assemblies and keycaps (collectively, “keys”), such as the key 702, independently affixed to a feature plate 704.



FIG. 7C depicts the feature plate of FIG. 7B disposed within a housing 706 of an electronic device. The electronic device can be a keyboard, a laptop computing device, or any suitable electronic device. FIG. 7D depicts the enclosed circle F-F of FIG. 7C, specifically showing the key 702 positioned relative to an aperture 708 defined through the housing 706 of the electronic device. In many embodiments, an edge of the key 702 is separated by a distance d from a sidewall of the aperture 708. The distance d can vary from embodiment to embodiment. In certain cases, the distance d is substantially constant around the periphery of the key 702.


The embodiments described above with reference to FIGS. 2A-7D are provided, generally, to facilitate an understanding of methods of assembling a singulated keyboard such as described herein, and, in particular a low-profile singulated keyboard that may be incorporated into a low-profile electronic device such as a laptop computer or a cover for a tablet or other electronic device. FIGS. 8-10 are provided as simplified flow charts depicting example operations of such methods. It may be appreciated, however, that the operations and steps presented with respect to these methods and techniques, as well as other methods and techniques described herein, are meant as exemplary and accordingly are not exhaustive. One may further appreciate that an alternate step order or fewer or additional steps may be implemented in particular embodiments.



FIG. 8 is a flow chart depicting example operations of a method of fabricating key assemblies on a chassis strip. The method 800 begins at operation 802 in which one or more chassis are formed onto a chassis strip. In one example, the chassis are formed by stamping sheet metal or feed stock. The spacing between the chassis corresponds to the spacing between keys of a keyboard. Next, at operation 804, structural features can be formed on, in, or with the chassis formed at operation 802. In one example, tabs extending from the chassis can be bent upwardly (see, e.g., the key mechanism retaining feature 220 as shown in FIG. 2). Next, at operation 806, a key assembly part or more than one key assembly part, can be engaged with the structural features formed at operation 804 (see, e.g., FIGS. 2F-2I).



FIG. 9 is a flow chart depicting example operations of a method of assembling a keyboard by deferring depanelization of a panelized substrate of prefabricated key assemblies (e.g., chassis strip). The method depicted may be related to the embodiment depicted in FIGS. 4A-5D. The method 900 begins at operation 902 in which a chassis strip with prefabricated key assemblies is positioned over and aligned with a feature plate. Next, at operation 904, the chassis strip may be affixed to the feature plate. Next, at operation 906, the prefabricated key assemblies are singulated by removing interconnecting portions between the key assemblies.


As noted with respect to other embodiments described herein, the interconnecting portions between the key assemblies can be removed using any suitable technique or combination of techniques. For example, the interconnecting portions can be removed by breaking two or more perforations defining the edges of the interconnecting portions. As a result of the breaking operation, the key assemblies are singulated and the panelized substrate of prefabricated key assemblies is depanelized. More specifically, the various key assemblies can be mechanically, electrically, and physically separated from one another.


In other examples, the interconnecting portions can be removed by laser or acoustic welding the key assemblies to the feature plate; the operation of laser or acoustic welding can cause one or more perforations defining the edges of the interconnecting portions to weaken or separate. As a result of the welding operation, the key assemblies are singulated and the panelized substrate of prefabricated key assemblies is depanelized. In some cases, the operation of welding can electrically connect one or more chassis to one or more electrical circuits or traces accommodated on a top surface of the feature plate.


In another example, the interconnecting portions between key assemblies can be formed from a dissolvable or disintegrable material. In these examples, the dissolvable or disintegrable material may be disintegrated or dissolved using a suitable process. As a result of the disintegration or dissolution operation, the key assemblies are singulated and the panelized substrate of prefabricated key assemblies is depanelized. In some cases, the operation of disintegrating and/or dissolving the interconnecting portions can also clean or dissolve other portions of the feature plate.


In yet another example, the interconnecting portions between the key assemblies can be formed from solder. The chassis strip and feature plate can be placed in a reflow oven, causing the interconnecting portions to melt and wet to separate electrical contacts accommodated on a top surface of the feature plate. In many cases, the separate electrical contacts may be treated with flux prior to the reflow operation. The separated electrical contacts can be associated with electrical signal paths, electrical ground references, or may be floating. In some cases, the separate electrical contacts may be physically separated while being electrically connected by a trace (e.g., separated nodes of a circuit ground). The physical separation of the electrical contacts encourages the interconnecting portions between adjacent key assemblies to break. As a result of the reflow operation, the key assemblies are singulated and the panelized substrate of prefabricated key assemblies is depanelized.



FIG. 10 is a flow chart depicting example operations of manufacturing a chassis strip of prefabricated key assemblies. The method depicted may be related to the embodiment depicted in FIGS. 4A-5D. The method 1000 begins at operation 1002 in which a chassis strip having an arbitrary number of prefabricated key assemblies is selected. The chassis strip can correspond to multiple rows of keys of a keyboard. Next, at operation 1004, the chassis strip may be segmented into smaller chassis strips of prefabricated key assemblies. In this example, the segments of the chassis strip may each correspond to a respective one row of keys of a keyboard. Next, at operation 1006, one of the segments formed in operation 1004 can be selected and affixed to a feature plate of a keyboard.


In some cases, a single chassis strip having an arbitrary number of prefabricated key assemblies can correspond to a single row of multiple feature plates associated with multiple keyboards. In this example, multiple keyboards may be manufactured next to one another in a row. The single chassis strip can be positioned over a row of feature plates, separated by some distance from one another. The chassis strip may include interconnecting portions that interconnect a first row of a first feature plate with a corresponding second row of a second feature plate. The second feature plate may be positioned adjacent to the first feature plate.


Although many embodiments described herein reference low-profile singulated keyboards, it is appreciated that the methods and techniques described herein can additionally or alternatively be used to fabricate any number of assemblies or devices. For example, the methods described herein may be used in any suitable manner in the course of manufacturing or fabricating consumer or commercial products such as, but not limited to, user input devices, computing devices, display devices, backlight devices, tactile devices, wearable devices, tablet computing devices, industrial control devices, automotive devices, music devices, audiovisual devices, and so on.


Furthermore, it may be appreciated that although many embodiments described herein reference planar keyboards, other keyboard configurations are possible. For example, an ergonomic keyboard may have multiple feature plates arranged at angles relative to one another. In other examples, a number pad of a keyboard may include a separate feature plate.


Although the disclosure above is described in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments but is instead defined by the claims herein presented.

Claims
  • 1. A row of interconnected key assemblies comprising: an array of key assemblies, each key assembly comprising: a chassis having a first retaining feature and a second retaining feature;a switch housing formed on the chassis;a key mechanism surrounding the switch housing and engaged with the first retaining feature; anda buckling dome positioned within an opening defined through the switch housing and engaged with the second retaining feature.
  • 2. The row of interconnected key assemblies of claim 1, wherein for at least one key assembly of the array of key assemblies the buckling dome is electrically connected to the chassis via the second retaining feature.
  • 3. The row of interconnected key assemblies of claim 1, wherein for at least one key assembly of the array of key assemblies the second retaining feature is configured to flex in response to an actuation of the buckling dome.
  • 4. The row of interconnected key assemblies of claim 1, wherein for at least one key assembly of the array of key assemblies the switch housing comprises an upstop that accommodates a portion of the buckling dome.
  • 5. The row of interconnected key assemblies of claim 1, wherein each chassis associated with each key assembly of the array of key assemblies is coupled to at least one other chassis via a removable interconnecting portion.
  • 6. The row of interconnected key assemblies of claim 5, wherein at least one removable interconnecting portion defines a breakaway feature that facilitates removal of the at least one removable interconnecting portion from the array of key assemblies.
  • 7. The row of interconnected key assemblies of claim 6, wherein the breakaway feature comprises one or more of: a perforation;a score; ora channel.
  • 8. A keyboard comprising: a feature plate; anda row of key assemblies comprising: a first key assembly comprising a first chassis affixed to the feature plate;a second key assembly comprising a second chassis affixed to the feature plate; anda removable interconnecting portion attached to the first chassis and to the second chassis, thereby coupling the first chassis to the second chassis.
  • 9. The keyboard of claim 8, wherein the first chassis is configured to complete an electrical path between at least two electrical contacts accommodated on the feature plate.
  • 10. The keyboard of claim 8, wherein: the first key assembly comprises a buckling dome; andthe first chassis electrically connects the buckling dome to an electrical circuit accommodated on the feature plate.
  • 11. The keyboard of claim 8, wherein: the first key assembly comprises a switch housing molded onto the first chassis; andthe first chassis aligns an optical feature of the switch housing with a light emitting diode disposed on the feature plate.
  • 12. The keyboard of claim 8, wherein the removable interconnecting portion is disconnected from the feature plate.
  • 13. A method of manufacturing a keyboard comprising: forming an array of key assemblies, comprising: forming a first key assembly on a first chassis of a chassis strip;forming a second key assembly on a second chassis of the chassis strip, the second chassis separated from the first chassis by an interconnecting portion;positioning the chassis strip on a feature plate;affixing the first chassis to the feature plate;affixing the second chassis to the feature plate; andremoving the interconnecting portion, whereinthe first key assembly includes a switch housing on the first chassis;the first chassis includes a first retaining feature and a second retaining feature; andforming the first key assembly includes: engaging a key mechanism with the first retaining feature; andengaging a buckling dome with the second retaining feature.
  • 14. The method of claim 13, wherein the operation of forming the first key assembly comprises molding the switch housing onto the first chassis.
  • 15. The method of claim 13, wherein: forming the first key assembly further comprises placing an optical film over the switch housing;positioning the chassis strip on the feature plate comprises aligning the first key assembly with a light emitting diode coupled to the feature plate; andthe light emitting diode is optically coupled to the switch housing.
  • 16. The method of claim 13, wherein removing the interconnecting portion occurs substantially simultaneously with the operation of affixing the first chassis to the feature plate.
  • 17. The method of claim 13, further comprising positioning the feature plate within a housing that defines a group of apertures arranged in a grid.
  • 18. The method of claim 17, wherein positioning the feature plate within the housing comprises: aligning the first key assembly within a first aperture of the group of apertures; andaligning the second key assembly within a second aperture of the group of apertures.
  • 19. The method of claim 13, wherein forming the first key assembly further comprises forming the first retaining feature by bending one or more portions of the first chassis.
  • 20. The method of claim 19, wherein engaging the key mechanism with the first retaining feature includes inserting a pin of the key mechanism into a hole defined in the first retaining feature.
US Referenced Citations (321)
Number Name Date Kind
3657492 Arndt et al. Apr 1972 A
3917917 Murata Nov 1975 A
3978297 Lynn et al. Aug 1976 A
4095066 Harris Jun 1978 A
4319099 Asher Mar 1982 A
4349712 Michalski Sep 1982 A
4484042 Matsui Nov 1984 A
4596905 Fowler Jun 1986 A
4598181 Selby Jul 1986 A
4670084 Durand et al. Jun 1987 A
4755645 Naoki et al. Jul 1988 A
4937408 Hattori et al. Jun 1990 A
4987275 Miller et al. Jan 1991 A
5021638 Nopper et al. Jun 1991 A
5092459 Uljanic et al. Mar 1992 A
5136131 Komaki Aug 1992 A
5278372 Takagi et al. Jan 1994 A
5280146 Inagaki et al. Jan 1994 A
5340955 Calvillo et al. Aug 1994 A
5382762 Mochizuki Jan 1995 A
5397867 Demeo Mar 1995 A
5408060 Muurinen Apr 1995 A
5421659 Liang Jun 1995 A
5422447 Spence Jun 1995 A
5457297 Chen Oct 1995 A
5477430 LaRose et al. Dec 1995 A
5481074 English Jan 1996 A
5504283 Kako et al. Apr 1996 A
5512719 Okada et al. Apr 1996 A
5625532 Sellers Apr 1997 A
5804780 Bartha Sep 1998 A
5828015 Coulon Oct 1998 A
5847337 Chen Dec 1998 A
5874700 Hochgesang Feb 1999 A
5875013 Takahara Feb 1999 A
5876106 Kordecki et al. Mar 1999 A
5878872 Tsai Mar 1999 A
5881866 Miyajima et al. Mar 1999 A
5898147 Domzaiski et al. Apr 1999 A
5924555 Sadamori et al. Jul 1999 A
5935691 Tsai Aug 1999 A
5960942 Thornton Oct 1999 A
5986227 Hon Nov 1999 A
6020565 Pan Feb 2000 A
6068416 Kumamoto et al. May 2000 A
6215420 Harrison et al. Apr 2001 B1
6257782 Maruyama et al. Jul 2001 B1
6259046 Iwama et al. Jul 2001 B1
6377685 Krishnan Apr 2002 B1
6388219 Hsu et al. May 2002 B2
6423918 King et al. Jul 2002 B1
6482032 Szu et al. Nov 2002 B1
6530283 Okada et al. Mar 2003 B2
6538801 Jacobson et al. Mar 2003 B2
6542355 Huang Apr 2003 B1
6552287 Janniere Apr 2003 B2
6556112 Van Zeeland et al. Apr 2003 B1
6559399 Hsu et al. May 2003 B2
6560612 Yamada et al. May 2003 B1
6572289 Lo et al. Jun 2003 B2
6573463 Ono Jun 2003 B2
6585435 Fang Jul 2003 B2
6624369 Ito et al. Sep 2003 B2
6706986 Hsu Mar 2004 B2
6738050 Comiskey May 2004 B2
6750414 Sullivan Jun 2004 B2
6759614 Yoneyama Jul 2004 B2
6762381 Kunthady et al. Jul 2004 B2
6765503 Chan et al. Jul 2004 B1
6788450 Kawai et al. Sep 2004 B2
6797906 Ohashi Sep 2004 B2
6850227 Takahashi et al. Feb 2005 B2
6860660 Hochgesang et al. Mar 2005 B2
6911608 Levy Jun 2005 B2
6926418 Ostergård et al. Aug 2005 B2
6940030 Takeda et al. Sep 2005 B2
6977352 Oosawa Dec 2005 B2
6979792 Lai Dec 2005 B1
6987466 Welch et al. Jan 2006 B1
6987503 Inoue Jan 2006 B2
7012206 Oikawa Mar 2006 B2
7030330 Suda Apr 2006 B2
7038832 Kanbe May 2006 B2
7126499 Lin et al. Oct 2006 B2
7129930 Cathey et al. Oct 2006 B1
7134205 Bruennel Nov 2006 B2
7146701 Mahoney et al. Dec 2006 B2
7151236 Ducruet et al. Dec 2006 B2
7151237 Mahoney et al. Dec 2006 B2
7154059 Chou Dec 2006 B2
7166813 Soma Jan 2007 B2
7172303 Shipman et al. Feb 2007 B2
7189932 Kim Mar 2007 B2
7256766 Albert et al. Aug 2007 B2
7283119 Kishi Oct 2007 B2
7301113 Nishimura et al. Nov 2007 B2
7312790 Sato et al. Dec 2007 B2
7378607 Koyano et al. May 2008 B2
7385806 Liao Jun 2008 B2
7391555 Albert et al. Jun 2008 B2
7414213 Hwang Aug 2008 B2
7429707 Yanai et al. Sep 2008 B2
7432460 Clegg Oct 2008 B2
7510342 Lane et al. Mar 2009 B2
7531764 Lev et al. May 2009 B1
7541554 Hou Jun 2009 B2
7589292 Jung et al. Sep 2009 B2
7639187 Caballero et al. Dec 2009 B2
7639571 Ishii et al. Dec 2009 B2
7651231 Chou et al. Jan 2010 B2
7679010 Wingett Mar 2010 B2
7724415 Yamaguchi May 2010 B2
7781690 Ishii Aug 2010 B2
7813774 Perez-Noguera Oct 2010 B2
7842895 Lee Nov 2010 B2
7847204 Tsai Dec 2010 B2
7851819 Shi Dec 2010 B2
7866866 Wahlstrom Jan 2011 B2
7893376 Chen Feb 2011 B2
7923653 Ohsumi Apr 2011 B2
7947915 Lee et al. May 2011 B2
7999748 Ligtenberg et al. Aug 2011 B2
8063325 Sung et al. Nov 2011 B2
8077096 Chiang et al. Dec 2011 B2
8080744 Yeh et al. Dec 2011 B2
8098228 Shimodaira et al. Jan 2012 B2
8109650 Chang et al. Feb 2012 B2
8119945 Lin Feb 2012 B2
8124903 Tatehata et al. Feb 2012 B2
8134094 Tsao et al. Mar 2012 B2
8143982 Lauder et al. Mar 2012 B1
8156172 Muehl et al. Apr 2012 B2
8178808 Strittmatter et al. May 2012 B2
8184021 Chou May 2012 B2
8212160 Tsao Jul 2012 B2
8212162 Zhou Jul 2012 B2
8218301 Lee Jul 2012 B2
8232958 Tolbert Jul 2012 B2
8246228 Ko et al. Aug 2012 B2
8253048 Ozias et al. Aug 2012 B2
8253052 Chen Sep 2012 B2
8263887 Chen et al. Sep 2012 B2
8289280 Travis Oct 2012 B2
8299382 Takemae et al. Oct 2012 B2
8317384 Chung et al. Nov 2012 B2
8319298 Hsu Nov 2012 B2
8325141 Marsden Dec 2012 B2
8330725 Mahowald et al. Dec 2012 B2
8354629 Lin Jan 2013 B2
8378857 Pance Feb 2013 B2
8383972 Liu Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8404990 Lutgring et al. Mar 2013 B2
8451146 Mahowald et al. Mar 2013 B2
8431849 Chen Apr 2013 B2
8436265 Koike et al. May 2013 B2
8462514 Myers et al. Jun 2013 B2
8500348 Dumont et al. Aug 2013 B2
8502094 Chen Aug 2013 B2
8542194 Akens et al. Sep 2013 B2
8548528 Kim et al. Oct 2013 B2
8564544 Jobs et al. Oct 2013 B2
8569639 Strittmatter Oct 2013 B2
8575632 Kuramoto et al. Nov 2013 B2
8581127 Jhuang et al. Nov 2013 B2
8592699 Kessler et al. Nov 2013 B2
8592702 Tsai Nov 2013 B2
8592703 Johnson et al. Nov 2013 B2
8604370 Chao Dec 2013 B2
8629362 Knighton et al. Jan 2014 B1
8642904 Chiba et al. Feb 2014 B2
8651720 Sherman et al. Feb 2014 B2
8659882 Liang et al. Feb 2014 B2
8731618 Jarvis et al. May 2014 B2
8748767 Ozias et al. Jun 2014 B2
8759705 Funakoshi et al. Jun 2014 B2
8760405 Nam Jun 2014 B2
8786548 Oh et al. Jul 2014 B2
8791378 Lan Jul 2014 B2
8835784 Hirota Sep 2014 B2
8847090 Ozaki Sep 2014 B2
8847711 Yang et al. Sep 2014 B2
8853580 Chen Oct 2014 B2
8854312 Meierling Oct 2014 B2
8870477 Merminod et al. Oct 2014 B2
8884174 Chou et al. Nov 2014 B2
8921473 Hyman Dec 2014 B1
8922476 Stewart et al. Dec 2014 B2
8943427 Heo et al. Jan 2015 B2
8976117 Krahenbuhl et al. Mar 2015 B2
8994641 Stewart et al. Mar 2015 B2
9007297 Stewart et al. Apr 2015 B2
9012795 Niu et al. Apr 2015 B2
9024214 Niu et al. May 2015 B2
9029723 Pegg May 2015 B2
9063627 Yairi et al. Jun 2015 B2
9064642 Welch et al. Jun 2015 B2
9086733 Pance Jul 2015 B2
9087663 Los Jul 2015 B2
9093229 Leong et al. Jul 2015 B2
9213416 Chen Dec 2015 B2
9223352 Smith et al. Dec 2015 B2
9234486 Das et al. Jan 2016 B2
9235236 Nam Jan 2016 B2
9274654 Slobodin et al. Mar 2016 B2
9275810 Pance et al. Mar 2016 B2
9300033 Han et al. Mar 2016 B2
9305496 Kimura Apr 2016 B2
9405369 Modarres et al. Aug 2016 B2
9412533 Hendren et al. Aug 2016 B2
9443672 Martisauskas Sep 2016 B2
9448628 Tan et al. Sep 2016 B2
9448631 Winter et al. Sep 2016 B2
9449772 Leong et al. Sep 2016 B2
9471185 Guard Oct 2016 B2
9477382 Hicks et al. Oct 2016 B2
9502193 Niu et al. Nov 2016 B2
9612674 Degner et al. Apr 2017 B2
9640347 Kwan et al. May 2017 B2
9734965 Verd Martinez Aug 2017 B2
9793066 Brock et al. Oct 2017 B1
20020079211 Katayama et al. Jun 2002 A1
20020093436 Lien Jul 2002 A1
20020113770 Jacobson et al. Aug 2002 A1
20020149835 Kanbe Oct 2002 A1
20030169232 Ito Sep 2003 A1
20040004559 Rast Jan 2004 A1
20040225965 Garside et al. Nov 2004 A1
20050035950 Daniels Feb 2005 A1
20050253801 Kobayashi Nov 2005 A1
20060011458 Purcocks Jan 2006 A1
20060020469 Rast Jan 2006 A1
20060120790 Chang Jun 2006 A1
20060181511 Woolley Aug 2006 A1
20060243987 Lai Nov 2006 A1
20070200823 Bytheway et al. Aug 2007 A1
20070285393 Ishakov Dec 2007 A1
20080131184 Brown et al. Jun 2008 A1
20080136782 Mundt et al. Jun 2008 A1
20080251370 Aoki Oct 2008 A1
20090046053 Shigehiro et al. Feb 2009 A1
20090103964 Takagi et al. Apr 2009 A1
20090128496 Huang May 2009 A1
20090262085 Wassingbo et al. Oct 2009 A1
20090267892 Faubert Oct 2009 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100066568 Lee Mar 2010 A1
20100109921 Annerfors May 2010 A1
20100156796 Kim et al. Jun 2010 A1
20100253630 Homma et al. Oct 2010 A1
20110032127 Roush Feb 2011 A1
20110056817 Wu Mar 2011 A1
20110056836 Tatebe et al. Mar 2011 A1
20110205179 Braun Aug 2011 A1
20110261031 Muto Oct 2011 A1
20110267272 Meyer et al. Nov 2011 A1
20110284355 Yang Nov 2011 A1
20120012446 Hwa Jan 2012 A1
20120032972 Hwang Feb 2012 A1
20120090973 Liu Apr 2012 A1
20120098751 Liu Apr 2012 A1
20120286701 Yang et al. Nov 2012 A1
20120298496 Zhang Nov 2012 A1
20120313856 Hsieh Dec 2012 A1
20130043115 Yang et al. Feb 2013 A1
20130093500 Bruwer Apr 2013 A1
20130093733 Yoshida Apr 2013 A1
20130100030 Los et al. Apr 2013 A1
20130120265 Horii et al. May 2013 A1
20130161170 Fan et al. Jun 2013 A1
20130215079 Johnson et al. Aug 2013 A1
20130242601 Kloeppel et al. Sep 2013 A1
20130270090 Lee Oct 2013 A1
20140015777 Park et al. Jan 2014 A1
20140027259 Kawana et al. Jan 2014 A1
20140071654 Chien Mar 2014 A1
20140082490 Jung et al. Mar 2014 A1
20140090967 Inagaki Apr 2014 A1
20140098042 Kuo et al. Apr 2014 A1
20140118264 Leong et al. May 2014 A1
20140151211 Zhang Jun 2014 A1
20140184496 Gribetz et al. Jul 2014 A1
20140191973 Zellers et al. Jul 2014 A1
20140218851 Klein et al. Aug 2014 A1
20140252881 Dinh et al. Sep 2014 A1
20140291133 Fu et al. Oct 2014 A1
20140375141 Nakajima Dec 2014 A1
20150016038 Niu et al. Jan 2015 A1
20150083561 Han et al. Mar 2015 A1
20150090571 Leong et al. Apr 2015 A1
20150270073 Yarak, III et al. Sep 2015 A1
20150277559 Vescovi et al. Oct 2015 A1
20150287553 Welch et al. Oct 2015 A1
20150309538 Zhang Oct 2015 A1
20150332874 Brock et al. Nov 2015 A1
20150348726 Hendren Dec 2015 A1
20150370339 Ligtenberg et al. Dec 2015 A1
20150378391 Huitema et al. Dec 2015 A1
20160049266 Stringer et al. Feb 2016 A1
20160093452 Zercoe et al. Mar 2016 A1
20160172129 Zercoe et al. Jun 2016 A1
20160189890 Leong et al. Jun 2016 A1
20160189891 Zercoe et al. Jun 2016 A1
20160259375 Andre et al. Sep 2016 A1
20160329166 Hou et al. Nov 2016 A1
20160336124 Leong et al. Nov 2016 A1
20160336127 Leong et al. Nov 2016 A1
20160336128 Leong et al. Nov 2016 A1
20160343523 Hendren et al. Nov 2016 A1
20160351360 Knopf et al. Dec 2016 A1
20160365204 Cao et al. Dec 2016 A1
20160378234 Ligtenberg et al. Dec 2016 A1
20160379775 Leong et al. Dec 2016 A1
20170004937 Leong et al. Jan 2017 A1
20170004939 Kwan et al. Jan 2017 A1
20170011869 Knopf et al. Jan 2017 A1
20170090106 Cao et al. Mar 2017 A1
20170301487 Leong et al. Oct 2017 A1
20170315624 Leong et al. Nov 2017 A1
20180029339 Liu et al. Feb 2018 A1
20180074694 Lehmann et al. Mar 2018 A1
Foreign Referenced Citations (184)
Number Date Country
2155620 Feb 1994 CN
2394309 Aug 2000 CN
1533128 Sep 2004 CN
1542497 Nov 2004 CN
2672832 Jan 2005 CN
1624842 Jun 2005 CN
1812030 Aug 2006 CN
1838036 Sep 2006 CN
1855332 Nov 2006 CN
101051569 Oct 2007 CN
200961844 Oct 2007 CN
200986871 Dec 2007 CN
101146137 Mar 2008 CN
201054315 Apr 2008 CN
201084602 Jul 2008 CN
201123174 Sep 2008 CN
201149829 Nov 2008 CN
101315841 Dec 2008 CN
201210457 Mar 2009 CN
101438228 May 2009 CN
101465226 Jun 2009 CN
101494130 Jul 2009 CN
101502082 Aug 2009 CN
201298481 Aug 2009 CN
101546667 Sep 2009 CN
101572195 Nov 2009 CN
101800281 Aug 2010 CN
101807482 Aug 2010 CN
101868773 Oct 2010 CN
201655616 Nov 2010 CN
102110542 Jun 2011 CN
102119430 Jul 2011 CN
201904256 Jul 2011 CN
102163084 Aug 2011 CN
201927524 Aug 2011 CN
201945951 Aug 2011 CN
201945952 Aug 2011 CN
201956238 Aug 2011 CN
102197452 Sep 2011 CN
202008941 Oct 2011 CN
202040690 Nov 2011 CN
102280292 Dec 2011 CN
102338348 Feb 2012 CN
102375550 Mar 2012 CN
202205161 Apr 2012 CN
102496509 Jun 2012 CN
10269527 Aug 2012 CN
102622089 Aug 2012 CN
102629526 Aug 2012 CN
202372927 Aug 2012 CN
102679239 Sep 2012 CN
102683072 Sep 2012 CN
202434387 Sep 2012 CN
202523007 Nov 2012 CN
102832068 Dec 2012 CN
102955573 Mar 2013 CN
102956386 Mar 2013 CN
102969183 Mar 2013 CN
103000417 Mar 2013 CN
103165327 Jun 2013 CN
103180979 Jun 2013 CN
203012648 Jun 2013 CN
203135988 Aug 2013 CN
103377841 Oct 2013 CN
103489986 Jan 2014 CN
203414880 Jan 2014 CN
103681056 Mar 2014 CN
103699181 Apr 2014 CN
203520312 Apr 2014 CN
203588895 May 2014 CN
103839715 Jun 2014 CN
103839720 Jun 2014 CN
103839722 Jun 2014 CN
103903891 Jul 2014 CN
103956290 Jul 2014 CN
203733685 Jul 2014 CN
104021968 Sep 2014 CN
204102769 Jan 2015 CN
204117915 Jan 2015 CN
104517769 Apr 2015 CN
204632641 Sep 2015 CN
105097341 Nov 2015 CN
2530176 Jan 1977 DE
3002772 Jul 1981 DE
29704100 Apr 1997 DE
202008001970 Aug 2008 DE
0441993 Aug 1991 EP
1835272 Sep 2007 EP
1928008 Jun 2008 EP
2202606 Jun 2010 EP
2426688 Mar 2012 EP
2439760 Apr 2012 EP
2463798 Jun 2012 EP
2664979 Nov 2013 EP
2147420 Mar 1973 FR
2911000 Jul 2008 FR
2950193 Mar 2011 FR
1361459 Jul 1974 GB
S50115562 Sep 1975 JP
S60055477 Mar 1985 JP
S61172422 Oct 1986 JP
S62072429 Apr 1987 JP
S63182024 Nov 1988 JP
H0422024 Apr 1992 JP
H0520963 Jan 1993 JP
H0524512 Aug 1993 JP
H05342944 Dec 1993 JP
H09204148 Aug 1997 JP
H10312726 Nov 1998 JP
H11194882 Jul 1999 JP
2000010709 Jan 2000 JP
2000057871 Feb 2000 JP
2000339097 Dec 2000 JP
2001100889 Apr 2001 JP
2003114751 Sep 2001 JP
2002260478 Sep 2002 JP
2002298689 Oct 2002 JP
2003522998 Jul 2003 JP
2005108041 Apr 2005 JP
2006164929 Jun 2006 JP
2006185906 Jul 2006 JP
2006521664 Sep 2006 JP
2006269439 Oct 2006 JP
2006277013 Oct 2006 JP
2006344609 Dec 2006 JP
2007115633 May 2007 JP
2007514247 May 2007 JP
2007156983 Jun 2007 JP
2008021428 Jan 2008 JP
2008041431 Feb 2008 JP
2008100129 May 2008 JP
2008191850 Aug 2008 JP
2008533559 Aug 2008 JP
2008293922 Dec 2008 JP
2009099503 May 2009 JP
2009181894 Aug 2009 JP
2010061956 Mar 2010 JP
2010244088 Oct 2010 JP
2010244302 Oct 2010 JP
2011018484 Jan 2011 JP
2011065126 Mar 2011 JP
2011150804 Aug 2011 JP
2011165630 Aug 2011 JP
2011524066 Aug 2011 JP
2011187297 Sep 2011 JP
2012022473 Feb 2012 JP
2012043705 Mar 2012 JP
2012063630 Mar 2012 JP
2012098873 May 2012 JP
2012134064 Jul 2012 JP
2012186067 Sep 2012 JP
2012230256 Nov 2012 JP
2014017179 Jan 2014 JP
2014026807 Feb 2014 JP
2014216190 Nov 2014 JP
2014220039 Nov 2014 JP
2016053778 Apr 2016 JP
1019990007394 Jan 1999 KR
1020020001668 Jan 2002 KR
100454203 Oct 2004 KR
1020060083032 Jul 2006 KR
1020080064116 Jul 2008 KR
1020080066164 Jul 2008 KR
2020110006385 Jun 2011 KR
1020120062797 Jun 2012 KR
1020130040131 Apr 2013 KR
20150024201 Mar 2015 KR
200703396 Jan 2007 TW
M334397 Jun 2008 TW
201108284 Mar 2011 TW
201108286 Mar 2011 TW
M407429 Jul 2011 TW
201246251 Nov 2012 TW
201403646 Jan 2014 TW
WO9744946 Nov 1997 WO
WO2005057320 Jun 2005 WO
WO2006022313 Mar 2006 WO
WO2007049253 May 2007 WO
WO2008045833 Apr 2008 WO
WO2009005026 Jan 2009 WO
WO2012011282 Jan 2012 WO
WO2012027978 Mar 2012 WO
WO2013096478 Jun 2013 WO
WO2014175446 Oct 2014 WO
Non-Patent Literature Citations (5)
Entry
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016.
U.S. Appl. No. 14/472,260, filed Aug. 28, 2014, pending.
U.S. Appl. No. 14/501,680, filed Sep. 30, 2014, pending.
U.S. Appl. No. 15/342,715, filed Nov. 3, 2016, pending.
U.S. Appl. No. 15/459,009, filed Mar. 15, 2017, pending.
Related Publications (1)
Number Date Country
20180040441 A1 Feb 2018 US