The disclosure relates to a slide for a rifle and a rifle with such a slide.
A gas-operated semiautomatic rifle known under the name of Sauer 303 contains a slide with a slide operating mechanism, which is movable in the longitudinal direction of the rifle, and a slide element, which is movable by the slide operating mechanism between a locked and unlocked position. The slide element in this known rifle consists of a chamber provided with locking tabs, which can be moved by rotation about its longitudinal axis between a locked position and an unlocked position. Rotation of the chamber occurs via a guide sleeve, which can be moved in the longitudinal direction via two parallel push rods.
A slide and a rifle with such a slide, which permits simple disassembly and assembly of the slide, are disclosed.
Expedient modification and advantageous embodiments are also disclosed.
The slide element in the slide according to the disclosure is not rotated about its longitudinal axis for movement between a locked and unlocked position, but pushed between an upper, locked position and a lower, unlocked position. For movement of the slide element between an upper, locked position and a lower, unlocked position, the slide operating mechanism is connected to the slide element via a control element, which is movable transversely to the slide element and is designed as a connector. The control element can therefore be simply pulled out or reinserted so that disassembly and assembly of the slide is significantly simplified.
The control element, which is designed as a connector and is movable transversely to the slide element for assembly and disassembly, cooperates, in a preferred embodiment, with an unlocking ramp on the slide element for its movement from the upper, locked position into the lower, unlocked position.
The control element can advantageously be designed in the form of a simply insertable and also easily disassembled pin. A slide handle can also be arranged on the control element. The control element can thereby be simply pulled out and the slide simply disassembled, as required. The control element can also form a part of the slide handle, so that the number of required parts can be reduced.
The slide operating mechanism preferably has two parallel push rods, between which the control element is releasably arranged. A disassembly safety can expediently be arranged in one of the push rods for secure holding of the control element and to prevent undesired disassembly. The disassembly safety can contain a safety pin arranged at right angles to the control element, which can be moved between a safety position that secures the control element and a disassembly position that releases the control element.
The unlocking ramp cooperating with the control element can expediently be arranged on a control opening running across the slide element, through which the control element runs.
Movement of the slide element into the locked position can also be controlled by the control element. However, other control elements for movement into the locked position can also be arranged on the slide element. The slide element, for example, can also contain laterally protruding shoulders, which cooperate with locking ramps on the push rods of the slide operating mechanism for movement of the slide element into the locked position.
A radially movable cartridge holder can be arranged on the slide element. The shell casing can also be held precisely at the height of the chamber in particularly expedient fashion by the cartridge holder when the slide element is moved transversely to the longitudinal axis of the barrel from the upper, locked position into the lower, unlocked position.
The disclosure also relates to a rifle containing a receiver or slide housing, a rifle barrel releasably fastened to the slide housing and the already described slide. The slide operating mechanism of the slide can be guided to move between upper guide surfaces on the slide housing and lower guide surfaces on the rifle barrel.
The rifle barrel can expediently contain a rear part, which can be mounted on the slide housing and can be firmly connected thereto, and a front part extending freely from the slide housing without firm connection to a front shaft only fastened to the slide housing. The barrel can thereby be simply taken out upwardly for disassembly without previous disassembly of the front shaft. No connections on the front side of the barrel need be loosened, and the barrel need not be pulled out of a barrel mount. For assembly, the barrel can merely be simply positioned on the side housing and connected thereto. Simpler separability of the semiautomatic rifle can therefore be achieved.
Additional details and advantages of the disclosure are apparent from the following description of the preferred exemplary embodiment with reference to the drawing. In the drawing:
A partial longitudinal section of a rifle designed here as a gas-operated semiautomatic rifle with a receiver or slide housing 1, a rifle barrel 2 fastened on slide housing 1 and a front shaft 3 is shown in
As follows from
Two radially protruding mounting pins 13 are provided on the rear part 10 of barrel 2 lying on the slide housing 1 for fastening of the rifle barrel 2 to the slide housing 1. Mounting pins 13 provided with exterior threads can be readily inserted into the rear part 10 of the rifle barrel 2 or directly molded onto the rifle barrel 2. The mounting pins 13 are designed for engagement in two holes 14 arranged next to each other in a protruding support part 15 of the slide housing 1. The rifle barrel 2 can be fastened via the two mounting pins 13 to the slide housing 1 with its front part 11 freely protruding forward by two nuts 16 accessible from the bottom of the slide housing 1. The rear end of the front shaft 3 is also fastened to the support part 15 of the slide housing 1. A downwardly protruding gas extraction block 17 is provided in the center area of the barrel 2 on front part 11.
It is shown in
The slide operating mechanism 5 depicted separately in
The slide element 6 is shown in
By displacement of the slide operating mechanism 5, as shown in
In the locked position depicted in
If, on the other hand, the slide operating mechanism 5 is pushed rearward, when viewed in the firing direction, against the force of the slide spring 7, either via the slide handle 32 or the gas pressure during release of a shot, the slide element 6 is moved downward into the locked position depicted in
It is apparent in
On the rear end of the left push rod 24 of the slide operating mechanism 5, viewed in the firing direction, a disassembly safety 47, further shown in
As follows from
It is apparent from
The cartridge holder 58 is guided to move according to
The gas-operated semiautomatic rifle described above functions as follows:
During the firing of a shot, part of the powder gas is passed through the gas extraction hole 19 from the rifle barrel 2 into gas cylinder 18. Through the diversion of gas pressure into the gas cylinder 18, the piston 20 is forced rearward, when viewed in the firing direction. The slide operating mechanism 5 with the support 22 and two push rods 24 is then also pushed rearward against the force of slide spring 7. Due to the rearward movement of the two push rods 24, the slide element 6 can be moved downwardly so that the locking block 35 can reach the rifle barrel 2 from the locking groove 43 and the slide element 6 can open the chamber in the rifle barrel 2 to the rear. During backward movement of the slide element 6, the empty cartridge is ejected via the ejector opening 12 and the lock is tightened. A new cartridge can then be brought to the level of the chamber via the magazine spring of a magazine. The slide element 6 is forced forward by the slide spring 7 via the slide operating mechanism 5 with support 22 and the two push rods 24, and a new cartridge is pushed into the chamber. The slide element 6 reaches the locked position again via the locking ramps 27 on the push rods 24, and the slide is closed. To facilitate movement of the slide element 6 into the locked position, slope 65, apparent in
For disassembly of the rifle barrel 2 in the gas-operated semiautomatic rifle described above, the two sleeve-like nuts 16, inaccessible from the bottom of slide housing 1 and provided with an interior hexagon, can be simply loosened by means of an Allen wrench. The entire rifle barrel 2 can then be easily removed upwardly. No prior disassembly of the front shaft 3 is required. When the rifle barrel 2 is removed, the safety pin 48 of the disassembly safety 47 also reaches the upper disassembly position, so that the pin-like control element 31 can be pulled out via the slide handle 32 and the slide element 6 thereby disassembled.
For assembly of the rifle barrel 2, this must merely be positioned on the slide housing 1 with the front shaft 3 fastened via the guide rod 4 so that the two holding pins 13 enter the holes 14 provided for them in the support part 15 of the slide housing 1 and the gas extraction block 17 reaches the receptacle 33 of the support 22 of the slide operating mechanism guided on guide rod 4. By tightening nut 16, the rifle barrel 2 is then fixed. In this way, particularly rapid and simple assembly and disassembly of barrel 2 is made possible. When the rifle barrel 2 is mounted, the safety pin 48 of the disassembly safety 47 is situated in the lower safety position where the pulling out of the pin-like control element 31 is prevented.
The disclosure is not restricted to the gas-operated semiautomatic rifle described above. It is correspondingly also usable in other automatic rifles, repeating rifles or other rifles.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 108 125 | May 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1363262 | North | Dec 1920 | A |
2077415 | House | Apr 1937 | A |
2373213 | Williams | Apr 1945 | A |
3200710 | Kelly et al. | Aug 1965 | A |
3675534 | Beretta | Jul 1972 | A |
3816950 | Vesamaa | Jun 1974 | A |
4014247 | Tollinger | Mar 1977 | A |
4161836 | Hayashi | Jul 1979 | A |
5913262 | Keppeler | Jun 1999 | A |
6276256 | Kimmig | Aug 2001 | B1 |
7469624 | Adams | Dec 2008 | B1 |
9534860 | Leimer | Jan 2017 | B2 |
20070131104 | Botty | Jun 2007 | A1 |
20100300278 | Zedrosser | Dec 2010 | A1 |
20140059910 | Norton | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
19836964 | Dec 1999 | DE |
202004006496 | Sep 2005 | DE |
0896198 | Feb 1999 | EP |
Entry |
---|
Result of examination report for German Application No. 10 2015 108 125.3 filed May 22, 2015. |
European Search Report dated Sep. 30, 2016 for EP 3 096 107. |
Number | Date | Country | |
---|---|---|---|
20160341500 A1 | Nov 2016 | US |