1. Field of the Invention
The present invention relates to multi-layer coating apparatuses and, particularly, to a multilayer coating apparatus for delivering coating materials to a surface of an object.
2. Discussion of the Related Art
A coating apparatus is for applying a coating material onto a surface of an object. The coating apparatus is usually required to be capable of controlling a flux or other coating material flowing to the surface, a flow velocity, a relative moving velocity between the surface of the object and the coating apparatus, and a distance between the object and the coating apparatus, in order to control a thickness of the coating material formed on the object and to distribute the coating material evenly on the surface of the object. In general, in many circumstances, a plurality of layers of the various coating materials is required to be coated/formed on an object. For example, a photosensitive composite film stack usually includes nine or more layers of materials. Thus, a multilayer coating apparatus that is capable of simultaneously coating a plurality of layers of materials is demanded.
In order to improve the coating quality, many modifications have been made to the coating apparatus. For example, an unfluctuating rolling edge has been proposed to sustain a flux of the liquid flowing on the slide surface, and/or an inhaled air removal device has been devised for eliminating an excess of inhaled air brought into the coating area by the moving object.
Slide hoppers are often employed in such multilayer coating apparatuses for supplying and guiding the coating materials to flow onto a surface of an object. A conventional slide-hopper-type, multilayer coating apparatus having a slide/extrusion hopper is adapted for dispensing a liquid composition onto a moving object. Such coating apparatuses generally can be categorized into a slide-rolling-edge type and a slide-curtain type.
China Patent Application No. 01100242.5 discloses a slide rolling edge type, multilayer coating apparatus and a slide curtain type, multilayer coating apparatus. In accordance with that application and referring to
The foregoing moving objects 12 to be coated may, for example, be ordinary papers, plastic films, resin half-tone papers or a composite papers, or potentially a flexible electronic substrate material. The coating materials 14A, 14B and 14C generally comprise emulsion, surface-active agents, and/or viscosity enhancing agents, as well as, of course, the primary coating material(s).
However, the aforementioned multilayer composite material 14 is formed on the slide surface 30 of the slide hopper 16 prior to being coated onto the object 12. Therefore, mutual diffusion between the coating materials 14A, 14B and 14C can inevitably occur. This mutual diffusion may adversely impair the coating quality.
Accordingly, a multilayer coating apparatus and a related method are needed in the art which can avoid the potential mutual diffusion of coating materials prior to their being coated on the object.
The present invention provides a multilayer coating apparatus for coating an object. The multilayer coating apparatus includes a slide hopper. The slide hopper has a main body, the main body essentially including a plurality of separate cavities for receiving coating materials, a plurality of separate slots in communication with the corresponding cavities, and a plurality of separate projection portions formed on the slide hopper. The projection portions each have a substantially sloping slide surface configured for allowing the coating material exiting from the slot to directly flow onto the object.
Compared with the conventional technologies, the multilayer coating apparatus according to the present invention delivers coating materials to the surface to be coated via a plurality of independent slide surfaces. Since these slide surfaces are independent of each other, diffusion between coating materials before they reach to the surface to be coated can mostly be avoided, thus improving coating quality.
Other advantages and novel features will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Many aspects of the present coating system and the method of its use can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, the emphasis instead being placed upon clearly illustrating the principles of the present coating system and its use. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate at least one preferred embodiment of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to
The slide hopper 116 further comprises a plurality of flat projection portions 130, 132 and 134 located on the top thereof, respectively corresponding to and communicating with the slots 124, 126 and 128. The flat projection portions 130, 132 and 134 correspondingly have associated sloping slide surfaces 131, 133 and 135. The plurality of slots 124, 126 and 128 are, respectively, in fluid communication with the corresponding cavities 118, 120, 122. The coating materials 114A, 114B and 114C can be forced to flow into the cavities 118, 120 and 122 from corresponding containers (not shown) by flux controlling pumps (not shown). Widths of the slots 124, 126 and 128 are advantageously equal (or at least approximately so, depending on the degree of precision required) to the width of the surface to be coated (or as the case may be, to the width of the portion of the surface desired to be coated).
The object 112 wound on the roller spindle 110 is driven to move jointly therewith. The ends of the flat projection portions 130, 132 and 134 are preferably disposed as close as possible to the surface of the object 112 to facilitate the formation of a uniform and even coating on the object 12. Upon being respectively extruded from the slots 124, 126 and 128, the coating materials 114A, 114B and 114C, under a gravitational force acting thereon, flow along the corresponding slide plane surfaces 131, 133 and 135 to the lower ends of the projection portions 130, 132 and 134. Thus, the coating materials flow separately prior to be coated on the object 112. Therefore, mutual diffusion between the coating materials, prior to reaching the object to be coated, is effectively eliminated.
The slide hopper 140 further comprises a plurality of curved projection portions 170, 172 and 174 located on the top of the slide hopper 140. These curved projection portions 170, 172 and 174 respectively correspond to and fluidly communicate with the slots 124, 126 and 128. The curved projection portions 170, 172 and 174 each have sloping curved slide surfaces 171, 173 and 175 for guiding coating materials 114A, 114B and 114C to flow toward the object 112.
The coating materials 114A, 114B and 114C are forced to flow from corresponding containers (not shown) to the cavities 118, 120 and 122 by means of flux controlling pumps (not shown). Widths of the slots 124, 126 and 128 are substantially equal to a width of the to-be-coated surface of the object 112 (or to the width of portion thereof to be coated, as the case may be). Guiding means 180, 182 and 184 are additionally provided and are configured to allow the coating materials 114A, 114B and 114C to smoothly flow from the projection bent slide edges 170, 172 and 174 onto the surface of the object 112. The object 112 is wound on and driven by a roller 110.
Upon being extruded from the slots 124, 126 and 128, the coating materials 114A, 114B and 114C, under the gravitational force acting thereon, flow along the corresponding slide curving surfaces 171, 173 and 175 to corresponding lower ends of the bent slide edges 170, 172 and 174. Thereafter, the coating materials 114A, 114B and 114C, being guided by the guiding means 180, 182, and 184, fall down to the surface of the object to be coated 112. Thus, the coating materials flow separately prior to being coated on the object 112. Therefore, mutual diffusion, prior to reaching the object to be coated, is effectively avoided.
According to another aspect of the foregoing embodiments, the slide hoppers 116 and 140 can advantageously be made of any of various ceramic materials or ceramic-based composites, including oxide ceramics, such as AlxOy, ZrxOy, Mg2SiO4, and ZrSiOx; nitride ceramics such as SixNy, TixNy, AlxNy, and BxNy; and carbide ceramics such as SixCy, TixCy, WxCy, and CrxCy; and composites composed substantially of at least one of such materials. In addition, an inhaled air removal device, such as those illustrated in
It is to be further understood that the above-described embodiments illustrate the scope of the invention but do not restrict the scope of the invention. Variations may be made to the embodiments without departing from the spirit or scope of the invention as claimed herein.
Number | Date | Country | Kind |
---|---|---|---|
200420095013.3 | Nov 2004 | CN | national |