The present disclosure relates to a slot die and a coating apparatus having the same, and more particularly, to a slot die in which a chamber structure for accommodating a coating material is provided at a die body, and a coating apparatus having the same.
Generally, a secondary battery includes a battery case, an electrolyte and an electrode assembly accommodated in the battery case.
The electrode assembly has a structure in which cathodes, separators and anodes are stacked in turns. The cathode and the anode of the electrode assembly respectively include current collectors made of aluminum foil (Al-foil) and copper foil (Cu-foil). The cathode current collector and the anode current collector are respectively coated with a cathode active material and an anode active material, and a region not coated with an active material, namely, a non-coated region, is connected to an electrode tab.
In order to obtain uniform charge/discharge characteristics of the secondary battery, the current collectors should be precisely coated with a cathode active material layer and an anode active material. For this, a slot-coating process is generally performed.
The coating solution flows into the chamber 11 through the feed unit 10, fills the chamber 11 and then discharges out through the slit 12.
The coating solution discharging through the slit 12 is successively coated onto a substrate. The active material coated onto the substrate has a coating width which is determined by the width of the slit 12.
A slot-coating apparatus is disclosed in Korean Unexamined Patent Publication No. 2011-0098578 and Korean Unexamined Patent Publication No. 2004-0084013.
Korean Unexamined Patent Publication No. 2011-0098578 discloses a method for designing an interior of a slot-coating die for successive and uniform coating of an electrode-coating catalyst slurry, which includes selecting a fluid model for analyzing flow characteristics of a fluid in a die from rheologic property information of a catalyst slurry fluid, determining a chamber shape in the slot-coating die in consideration of the rheologic characteristics of the catalyst slurry fluid, and determining a process condition for forming a catalyst layer of a uniform thickness. In addition, Korean Unexamined Patent Publication No. 2011-0098578 discloses a semi-cylindrical chamber having a center portion of a convex hanger shape in which a catalyst layer of a uniform thickness is formed by determining a width of the convex region.
Korean Unexamined Patent Publication No. 2004-0084013 discloses a precise coating apparatus and method for discharging a coating solution in an optimal condition by installing exchangeable lips of various shapes. Korean Unexamined Patent Publication No. 2004-0084013 discloses a precise coating apparatus including a fixed block, an upstream die and a downstream die respectively installed at an upstream die block and a downstream die block mounted to the fixed block, an upstream lip and a downstream lip exchangeably fixed to the upstream die and the downstream die, respectively, and a coating solution supply manifold.
When it is needed to change a coating width, in a general slot die, a design size of a shim plate which determines widths of a slit and an inner space of the chamber is adjusted to implement various coating widths.
In addition, in the general slot die, whenever the coating width is adjusted, the die body must also be newly designed and fabricated, which consumes much time and costs.
The present disclosure is designed to solve the problems of the related art, and therefore the present disclosure is directed to providing a slot die which is configured to prevent a dead zone from being generated in a chamber when a coating width is adjusted, and a coating apparatus having the same.
The present disclosure is also directed to providing a slot die whose structure may be easily changed when a coating width is changed, and a coating apparatus having the same.
In one aspect of the present disclosure, there is provided a slot die, which includes a feed unit for introducing a coating material, a chamber for accommodating a coating material supplied through the feed unit, a slit communicating with the chamber to discharge the coating material, and a die body having die lips which form the slit, wherein the chamber includes a chamber block which has an inner space for accommodating the coating material and is configured so that the entire block is exchangeable with respect to the die body, and wherein a coating width is determined by a width of the inner space of the chamber block.
Preferably, the chamber block includes a block body, separately from the die body, and the block body is detachably assembled to the die body.
Preferably, chamber blocks whose inner spaces have different widths are provided for different coating widths, and the different chamber blocks have the same outer width.
The slot die may further include a shim plate which has an inner width corresponding to the width of the inner space of the chamber block and is fixed to the die body.
In another aspect of the present disclosure, there is provided a coating apparatus, which includes a slot die including a feed unit for introducing a coating material, a chamber having a chamber block in which an inner space is formed to accommodate a coating material supplied through the feed unit, a slit communicating with the chamber to discharge the coating material, and die lips which form the slit; a coating solution supply manifold for supplying a coating material to the slot die; and a coating roll disposed at the front of the slit to be spaced apart from the slit to carry a substrate to be coated, wherein the chamber block is installed so that the entire block is exchangeable with respect to a die body of the slot die, and wherein a coating width is determined by a width of the inner space of the chamber block.
According to the present disclosure, a coating width may be conveniently changed by freely exchanging a chamber suitable for a desired coating width.
In addition, according to the present disclosure, it is possible to prevent a dead zone from be generated in the chamber.
The accompanying drawings illustrate preferred embodiments of the present disclosure and, together with the foregoing disclosure, serve to provide further understanding of the technical spirit of the present disclosure. However, the present disclosure is not to be construed as being limited to the drawings. In the drawings:
Referring to
The feed unit 107 gives a passage for introducing a coating material into the die body 101 and preferably has a pipe shape. The coating material supplied through the feed unit 107 may be active material slurry for an electrode.
The chamber 102 includes a chamber block 103 in which an inner space is formed to serve as a buffer region for accommodating a coating material. The inner space formed in the chamber block 103 may have a substantially semi-cylindrical shape. The width of the inner space formed in the chamber block 103 corresponds to a width of the slit 104 communicating with the chamber 102, which also corresponds to a coating width. In other words, the width of the inner space formed in the chamber block 103 determines the coating width of the slot die 100.
Even though it is depicted that the chamber block 103 includes a part of the extension of the slit 104, the present disclosure is not limited thereto, and it is also possible that the chamber block 103 may be modified so that there is only the inner space having a semi-cylindrical shape in which a coating material is accommodated.
The chamber block 103 is configured to have a block body, separately from the die body 101, and the chamber block 103 is installed so that the entire chamber block 103 may be exchanged with respect to the die body 101. In detail, the chamber block 103 is inserted into an accommodation portion formed at the die body 101 and detachably assembled thereto by means of a predetermined coupling unit such as a bolt.
As shown in
As shown in
The shim plate 106 is inserted into and fixed to the die body 101 to support the chamber 102 and has an inner width corresponding to the width of the inner space of the chamber block 103.
Referring to
As described above, the slot die 100 includes a feed unit 107 for introducing a coating material, a chamber 102 in which an inner space is formed to accommodate a coating material supplied through the feed unit 107, a slit 104 communicating with the chamber 102 to discharge the coating material, and die lips 105 which give a small gap to form the slit 104.
The feed unit 107 may have a pipe shape and be assembled to the die body 101, and the coating solution supply manifold for supplying a coating material is coupled to the feed unit 107. The coating solution supply manifold may adopt any manifold available for a general coating apparatus, and thus is not described in detail here.
The chamber 102 includes a chamber block 103 in which the inner space for accommodating a coating material is formed. The chamber block 103 is configured to have a block body, separately from the die body 101, and is detachably assembled to the die body 101. The chamber block 103 may adopt various blocks whose inner spaces are different for different coating widths.
The coating roll 200 is disposed at the front of the slit 104 and spaced apart from the slit 104 to successively carry a substrate 1 to be coated.
The coating solution supplied by the coating solution supply manifold flows into the chamber 102 through the feed unit 107, fills the chamber 102 and then discharges through the slit 104 toward the coating roll 200. The coating solution discharging from the slit 104 is coated onto the substrate 1 which is successively carried by the coating roll 200.
If the coating width on the substrate 1 needs to be adjusted, the chamber block 103 should be separated from the die body 101 and exchanged with another chamber block 103 having a different inner width to easily change the coating width.
As described above, according to the present disclosure, the coating width may be conveniently changed by exchanging the chamber block 103 according to a desired coating width. In addition, since a dead zone is not generated in the chamber 102 even though the structure of the chamber 102 is changed, it is possible to form a uniform coating film.
If the present disclosure is applied, a coating width may be easily adjusted by exchanging a chamber without changing a design of a slot die. Therefore, it is possible to reduce time and costs consumed for redesigning and exchanging the slot die.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0142019 | Dec 2012 | KR | national |
The present application is a continuation of International Application No PCT/KR2013/011316 filed on Dec. 6, 2013, which claims priority to Korean Patent Application No. 10-2012-0142019 filed on Dec. 7, 2012 in the Republic of Korea, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3595204 | McIntyre | Jul 1971 | A |
4667879 | Muller | May 1987 | A |
5421921 | Gill | Jun 1995 | A |
5500274 | Francis et al. | Mar 1996 | A |
5516273 | Delmore et al. | May 1996 | A |
5538754 | Sandock | Jul 1996 | A |
20040247794 | Tokimasa | Dec 2004 | A1 |
20060096528 | Kawatake | May 2006 | A1 |
20080274222 | Cloeren | Nov 2008 | A1 |
20080274223 | Cloeren | Nov 2008 | A1 |
20110244144 | Uchida | Oct 2011 | A1 |
20110272832 | Neavin | Nov 2011 | A1 |
20140331923 | Kim | Nov 2014 | A1 |
20160114340 | Choi | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
1756605 | Apr 2006 | CN |
102405544 | Apr 2012 | CN |
102527575 | Jul 2012 | CN |
0530751 | Mar 1993 | EP |
S6291267 | Apr 1987 | JP |
H0584458 | Apr 1993 | JP |
H07171467 | Jul 1995 | JP |
H10314642 | Dec 1998 | JP |
2002066420 | Mar 2002 | JP |
2005028227 | Feb 2005 | JP |
2007125503 | May 2007 | JP |
2007260643 | Oct 2007 | JP |
2008036624 | Feb 2008 | JP |
20040084013 | Oct 2004 | KR |
20070092384 | Sep 2007 | KR |
20110098578 | Sep 2011 | KR |
201201992 | Jan 2012 | TW |
Entry |
---|
Extended Search Report from European Application No. 13861017.5, dated Dec. 16, 2015. |
International Search Report for PCT/KR2013/011316 dated Apr. 3, 2014. |
Number | Date | Country | |
---|---|---|---|
20140331923 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2013/011316 | Dec 2013 | US |
Child | 14446435 | US |