Inkjet printers and other electronic printing devices have become ubiquitous in society. These printing devices can utilize a slotted substrate to deliver ink in the printing process. Such printing devices can provide many desirable characteristics at an affordable price. However, the desire for ever more features at ever-lower prices continues to press manufacturers to improve efficiencies.
One way of meeting consumer demands is by improving the slotted substrates that are incorporated into print head dies, fluid ejecting devices, printers, and other printing devices. Currently, the slotted substrates can have a propensity to crack and ultimately break. Cracking of the substrate and ultimately the print head die increases production costs as a result of lower yields and decreases product reliability.
Accordingly, the present invention arose out of a desire to provide slotted substrates having desirable characteristics.
The same components are used throughout the drawings to reference like features and components.
a shows an expanded view of a portion of the prior art substrate shown in
a shows an expanded view of a portion of the exemplary substrate shown in
b-5f show cross-sectional views of the exemplary substrate shown in
a shows a cross-sectional view of the exemplary substrate shown in
a shows a cross-sectional view of the exemplary substrate shown in
Overview
The embodiments described below pertain to methods and systems for forming slots in a substrate. Several embodiments of this process will be described in the context of forming fluid feed slots in a substrate that can be incorporated into a print head die or other fluid ejecting device.
As commonly used in print head dies, the substrate can comprise a semiconductor substrate that can have microelectronics incorporated within, deposited over, and/or supported by the substrate on a thin-film surface that can be opposite a back surface or backside. The fluid-feed slot(s) can allow fluid, commonly ink, to be supplied from an ink supply or reservoir to fluid ejecting elements contained in ejection chambers within the print head die.
In some embodiments, this can be accomplished by connecting the fluid-feed slot to one or more ink feed passageways, each of which can supply an individual ejection chamber. The fluid ejecting elements in Thermal Inkjet (TIJ) devices commonly comprise heating elements or firing resistors that heat fluid causing increased pressure through rapid explosive boiling in the ejection chamber. A portion of that fluid can be ejected through a firing nozzle; the ejected fluid is subsequently replaced by fluid supplied from the reservoir that passes through the fluid-feed slot.
The fluid-feed slots can be configured to reduce stress concentrations on substrate material in and around the slots of the slotted substrate. In some embodiments, the slots can comprise a central region and at least one terminal region joined with the central region. In other embodiments, the terminal region can be defined, at least in part, by a bowl-shaped portion. In some of these embodiments, the bowl-shaped portion can have a diameter at a first surface of the substrate that is greater than a width of the central region at the first surface. The increased width of the terminal region can reduce areas of stress concentration by distributing stresses over a greater amount of substrate material. Other exemplary embodiments can utilize terminal regions having various other shapes that can reduce stress concentrations, especially at, or proximate to, the first and/or second surfaces of the substrate. The various slot configurations can among other attributes provide desired fluid flow characteristics and minimize stress concentration, while resulting in a stronger, more robust slotted substrate that is less prone to cracking.
Exemplary Printer System
Exemplary Embodiments and Methods
The various slots 303-305 pass through portions of a substrate 308. In this exemplary embodiment, silicon can be a suitable substrate. In some embodiments, substrate 308 comprises a crystalline substrate such as monocrystalline silicon or polycrystalline silicon. Examples of other suitable substrates include, among others, gallium arsenide, glass, silica, ceramics, or other semi-conducting material. Suitable substrates are commonly brittle materials for which stress concentration and profiles of slots can determine, at least in part, the strength of a part and its resistance to cracking. The substrate 308 can comprise various configurations as will be recognized by one of skill in the art.
The exemplary embodiments can utilize substrate thicknesses ranging from less than 100 microns to more than 2000 microns. One exemplary embodiment can utilize a substrate that is approximately 675 microns thick.
The functions of the substrate 308 can include mechanical (support), hydraulic (fluid delivery), and active electronic, among others. The substrate has a first surface 310 and a second surface 312. Positioned above the substrate are the independently controllable fluid ejecting elements or fluid drop generators that in this embodiment comprise firing resistors 314 that are used to heat ink. In this exemplary embodiment, the firing resistors 314 are part of a stack of thin film layers on top of the substrate 308. The thin film layers can further comprise a barrier layer 316.
The barrier layer can comprise, among other things, a photo resist polymer substrate. Above the barrier layer is an orifice plate 318 that can comprise, but is not limited to a thin nickel structure. The orifice plate can have a plurality of nozzles 319 through which fluid heated by the various firing resistors 314 can be ejected for printing on a print media (not shown). The various layers can be formed, deposited, or attached upon the preceding layers. The configuration given here is but one possible configuration. For example, in an alternative embodiment, the orifices or nozzles and the barrier layer are integral.
The exemplary print cartridge shown in
a shows an expanded view of corner 412. The end wall 403n is generally perpendicular to the sidewall 403k, and the intersection of the two walls can form an approximately 90-degree corner. Some slots can be slightly rounded at the corners (as shown in dashed lines), but still maintain the general configuration. A moderate load applied to this configuration can result in a relatively high state of stress in substrate material proximate a corner region of the slot. For example,
The portion of the substrate material 414 at, or proximate to, the first or second surfaces can be subject to high stress owing to the slot geometry and combination of compressive, tensional, and/or torsional forces, among others. Applied loads, in combination with the geometry of the corner regions, such as 414, can lead to crack initiation at these sites. Such cracks, once initiated, can propagate and ultimately cause failure of the substrate 308a. Since the slotted substrate is commonly incorporated into a print cartridge or other fluid ejecting device, a failure of the substrate can cause the entire component to fail.
Individual slots 503-505 can have a central region designated “a” and at least one terminal region. As shown in this embodiment, each slot has two terminal regions designated “b” and “c”. Other exemplary embodiments can have more, or less, terminal regions, some examples of which will be discussed in more detail below.
a shows an expanded cut-away view of a portion of the substrate 308b shown in
A bowl-shaped terminal region(s) can comprise a hemisphere, or a frusto-conical shape, among others. This exemplary slot configuration can reduce stress concentrations on regions of the substrate proximate a slot. The exemplary embodiments can be especially effective at reducing stress concentrations on regions of the substrate proximate a first or second surface of the substrate and a slot. This can be achieved, at least in part, by expanding a width or diameter of the terminal region relative to the central region, thereby avoiding small radii of curvature in the slotted substrate. Such an expanded terminal region can spread any stress forces out over a greater area of the substrate material and thus reducing regions of stress concentration.
b shows a cross-sectional view of substrate 308b. The view is taken along the long axis of slot 504, as shown in
Two terminal regions (504b and 504c) can be seen at opposite ends of the slot 504. As shown here, individual terminal regions do not extend through the entire thickness t of the slot. In this embodiment, the terminal regions pass through approximately 25 percent of the slot. Other exemplary embodiments can pass through less or more of the thickness of the slot. Some exemplary terminal regions can pass through a range of about 1 percent to about 100 percent of the slot's thickness. For example, some exemplary embodiments can have individual terminal regions that pass through about 10 percent to about 40 percent of a substrate's thickness. As shown in
c shows another cross-section taken through the substrate 308b as shown in
Individual terminal regions can have many suitable configurations or shapes as discussed above. In this embodiment, the terminal regions each have a generally bowl-shaped configuration. The bowl-shape has a central axis c that in this embodiment can extend generally orthogonally to the substrate's first surface 310b, though such need not be the case. The bowl's perimeter can be defined, at least in part, by multiple radii each of which has a focus on the central axis c. In this orientation, the bowl's perimeter can be largest at the substrate's first surface as shown at r1. The bowl's perimeter can become progressively smaller as shown at r2 and r3 respectively as the bowl extends into the substrate 308b.
In this embodiment, the central axis of the terminal region 503c passes through the long axis of the slot 503, however, such need not be the case, and other exemplary embodiments can be offset or have other configurations.
d and 5e show further cross-sections of the substrate 308b taken at different elevational levels through the substrate and generally parallel to the first surface 310b (shown
e shows a second cross-section 524 of the substrate 308b. The second cross-section 524 is elevationally spaced from the first cross-section 520 of
f shows an expanded view of a portion of the cross-section of slot 503, as shown in
The various exemplary embodiments can be utilized with a wide variety of slot dimensions. In some embodiments, the width w of a slot as measured at the central region can be less than about 50 microns. Other embodiments can have a width of more than about 1000 microns. Various other embodiments can have a width ranging between these values. In some embodiments, the width can be about 80-130 microns, with one embodiment having a width of about 100 microns. The total length of a slot, including the central and terminal regions can be from less than about 300 microns to about 25,000 microns or more.
a shows a cross-section of the substrate 308c shown in
a shows a cross-sectional view of the slotted substrate shown in
In the embodiment shown in
In some embodiments, the chamfered areas of the central region can match the angle or contour of one or more of the terminal regions at the first surface. In still other embodiments, the chamfered configuration can be applied to the entire slot at a first and/or second surface of the substrate. Such a configuration can further decrease the total area subject to high stress concentration that can be prone to fracture. Other exemplary embodiments can achieve similar desirable results by rounding or blending rather than, or in addition to, chamfering.
Exemplary slots can be formed utilizing a variety of slot formation techniques. Such techniques can include one or more of laser machining, sand drilling, mechanically removing, and etching. Mechanically removing can include various techniques such as drilling and cutting or sawing, among others. Etching can include dry etching and wet etching among others. A single technique can be used to form the slots or a combination of techniques can be used.
In the example shown here, mechanically removing comprises removing substrate material with drill bits 902 and 904. In this embodiment, the slots (803 and 804) were formed, and then additional substrate material is removed to form the desired slot shape. In other embodiments, the order of removal can be reversed.
In another example, a drill bit, such as 902, can be run around the perimeter of the slot to form the desired shape or configuration. Alternatively, a drill bit, such as 904, can be received or advanced into the substrate and moved horizontally along a long axis of the slot. This technique can be used to form a surface that is oblique to the first or second surfaces. In a further example, a drill bit, such as 904, can remove substrate material along a substrate surface from both sides of a slot at the same time. For example, in
In one embodiment, a drill bit, such as 904, can be received vertically into the substrate at one end of a slot. The drill bit can remove substrate material to form a first terminal region of the slot. The drill bit can subsequently be moved horizontally along a slot length to a second opposite end where it can form a second terminal region before being removed from the substrate. A suitable drill bit can be utilized that will form a chamfered and/or rounded profile as desired. Suitable drill bits can have various dimensions and/or configurations as desired. Suitable drill bits are available from various sources including OSG Tap & Die, INC.
As shown in this embodiment, the slots can comprise a central region “a” and two terminal regions “b” and “c” consistent with the nomenclature described above. For example, slot 1103 can comprise a central region 1103a and two terminal regions 1103b and 1103c.
In this embodiment, individual terminal regions can have a generally pyramidal shape that is represented here by a square shape at the substrate's first surface. The rectangular central region can have a width w1 that is less than a width w2 of the terminal region where the width of the terminal region is taken along a direction essentially parallel to a direction along which the width of the central region is taken. In this embodiment the terminal regions were formed by laser machining, though other suitable processes can be utilized.
As shown in this embodiment, the firing chambers are positioned only proximate to the central region of the slots, though other exemplary embodiments can position firing chambers around more or less of the total perimeter of an individual slot.
Though the embodiments described so far have had terminal regions that are geometrically similar, other exemplary embodiments can have other configurations. For example, an exemplary slot can have one terminal region that is generally bowl-shaped and an opposing terminal end that is generally pyramidal. Alternatively or additionally, the terminal regions can have many exemplary geometrical shapes or configurations beyond those shown here. Further, although the illustrated embodiments show the terminal regions to be generally centered along a long axis of the slot such need not be the case. For example, other exemplary embodiments can have one or more terminal regions that are offset from the long axis of the slot.
The described embodiments can provide a slotted substrate that can have a reduced propensity to crack. The slotted substrate can be incorporated into a print head die and/or other fluid ejecting devices. The exemplary slots can supply ink to firing chambers positioned proximate the slot. The tailored topology of these exemplary slots can reduce stress concentrations that can cause substrate cracking and ultimately lead to a failure of the die. By reducing the propensity for the substrate to crack, the described embodiments can contribute to a higher quality, stronger, more robust, less expensive product.
Although the invention has been described in language specific to structural features and methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or steps described. Rather, the specific features and steps are disclosed as preferred forms of implementing the claimed invention.
This patent application is a divisional claiming priority from a patent application having Ser. No. 10/210,727 titled “Slotted Substrate and Method of Making” filed Jul. 31, 2002, and issued as U.S. Pat. No. 6,666,546 B1.
Number | Name | Date | Kind |
---|---|---|---|
5066357 | Smyth, Jr. et al. | Nov 1991 | A |
5317346 | Garcia | May 1994 | A |
5361087 | Tajima et al. | Nov 1994 | A |
5378137 | Asakawa et al. | Jan 1995 | A |
5441593 | Baughman et al. | Aug 1995 | A |
5449630 | Lur et al. | Sep 1995 | A |
5588597 | Reinecke et al. | Dec 1996 | A |
5658471 | Murthy et al. | Aug 1997 | A |
5719604 | Inui et al. | Feb 1998 | A |
5786988 | Harari | Jul 1998 | A |
5820919 | Terai | Oct 1998 | A |
5847725 | Cleland et al. | Dec 1998 | A |
5910679 | Kim | Jun 1999 | A |
5953029 | Keefe et al. | Sep 1999 | A |
5988786 | Waller et al. | Nov 1999 | A |
6020270 | Wong et al. | Feb 2000 | A |
6106096 | Komplin et al. | Aug 2000 | A |
6107158 | Zheng et al. | Aug 2000 | A |
6133926 | Kawai et al. | Oct 2000 | A |
6142611 | Pan | Nov 2000 | A |
6184570 | MacDonald, Jr. et al. | Feb 2001 | B1 |
6250738 | Waller et al. | Jun 2001 | B1 |
6315397 | Truninger et al. | Nov 2001 | B2 |
6331055 | Miller et al. | Dec 2001 | B1 |
6348396 | Ishitsuka et al. | Feb 2002 | B1 |
6745469 | Soik et al. | Jun 2004 | B1 |
20010023979 | Brouvillette et al. | Sep 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20040031151 A1 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10210727 | Jul 2002 | US |
Child | 10642872 | US |