Smart battery balance system and method

Information

  • Patent Grant
  • 10976797
  • Patent Number
    10,976,797
  • Date Filed
    Tuesday, January 14, 2020
    4 years ago
  • Date Issued
    Tuesday, April 13, 2021
    3 years ago
Abstract
A smart battery power balance system and method to maximize the operating life of a mobile computing device and a portable peripheral (e.g., a peripheral having scanning capability). The mobile computing device battery and portable peripheral battery parameters such as battery level, velocity/rate of consumption and usage history are collected. A curve fitting and estimation is done to predict the empty time for complete battery discharge of the mobile computing device and portable peripheral. Based on this analysis, if the calculated empty time of the mobile computing device battery is less than the portable peripheral battery, the portable peripheral charges the mobile computing device battery and if the calculated empty time of the mobile computing device battery is greater than that of the portable peripheral battery, the portable peripheral battery does not charge the mobile computing battery.
Description
FIELD OF THE INVENTION

The present invention relates to a battery balance system and method between electronic devices.


BACKGROUND

Generally speaking the use of mobile devices has become more and more popular recently for the provision of fast and convenient use. The power source of a mobile device such as a phone or scanner generally comes from a rechargeable battery, therefore charging efficiency and the durability of the battery are important issues. Nowadays, the battery of a mobile device, because of advanced technology, is available to be in “standby” mode for almost 24 hours, and it also can continuously provide power for 3 to 4 hours. Therefore, a good battery is one of the most important factors affecting the efficiency of a mobile device. However, the power of the battery for a mobile device will gradually die out when the times of usage of a mobile device increases. Based on this reason, having a good recharger for the battery to recharge the power is very important.


SUMMARY

Accordingly, in one aspect, the present invention embraces a system comprising: a mobile computing device having a first processor coupled to a first battery, wherein said first processor monitors a plurality of first charge parameters of the first battery; a portable peripheral device coupled to the mobile computing device and having a second processor coupled to a second battery, wherein said second processor monitors a plurality of second charge parameters of the second battery; and wherein the first processor is configured to compare the first charge parameters and second charge parameters to determine if the calculated empty time of the second battery is less than the first battery and if true, the second battery receives a charge from the first battery.


In one aspect of another exemplary embodiment, a system comprising: a mobile computing device having a first processor coupled to a first battery, wherein said first processor monitors a plurality of first charge parameters of the first battery; a portable peripheral device coupled to the mobile computing device and having a second processor coupled to a second battery, wherein said second processor monitors a plurality of second charge parameters of the second battery; and wherein the first processor is configured to compare the first charge parameters and second charge parameters to determine if the calculated empty time of the second battery is less than the first battery and if true, the second battery receives a charge from the first battery.


In one aspect of yet another exemplary embodiment, a method of balancing battery charges between a plurality of electronic devices comprising: monitoring a plurality of first charge parameters of a first battery by a first processor in a mobile computing device; monitoring a plurality of second charge parameters of a second battery by a second processor in a portable peripheral device coupled to the mobile computing device; comparing the first charge parameters and second charge paramaters to determine if a calculated empty time of the second battery is less than the first battery; and if true, charging the second battery from the first battery.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A depicts a mobile computing device 100 positioned in a portable peripheral 101 which is in open position.



FIG. 1B depicts the mobile computing device 100 and portable peripheral 101 in operation mode.



FIG. 1C schematically shows the circuitry of mobile computing device 100.



FIG. 1D schematically shows the circuitry of portable peripheral 101.



FIG. 2A schematically depicts an embodiment of the mobile computing device 100 and the portable peripheral 101 with a charge manager module 200, curve estimation module, and battery log module located on the mobile computing device 100.



FIG. 2B schematically depicts another embodiment of the mobile computing device 100 and the portable peripheral 101 with the charge manager module located on the mobile computing device 100 and the curve estimation module and battery log module located on the peripheral device.



FIG. 2C schematically depicts another embodiment of the mobile computing device 100 and the portable peripheral 101 with the charge manager module, the curve estimation module and battery log module located on the peripheral device.



FIG. 3 illustrates a flowchart of the smart battery balance system and method of this disclosure.





DETAILED DESCRIPTION

In Honeywell® Sled scanning products, a Sled operates with a mobile smart computing device and can charge, for example, the smart computing device's battery with its own battery. However a mobile smart computing device such as an Apple® iPhone/iTouch devices cannot charge the Sled's battery because Apple® does not support (or allow) this. Therefore, oftentimes the Sled battery will be empty while an iPhone or iTouch will still have battery energy during usage. This results in energy wasted for a whole system.


The disclosure embraces a smart battery power balance management system and method (which may be called power balance management system or SmartCharge method herein) to maximize the operating life of a mobile computing device 100 and/or a portable peripheral 101. Portable peripheral 101 may be, for example, a peripheral having scanning or imaging capability. As shown in exemplary embodiments of FIGS. 1A and 1B, the mobile computing device 100 is capable of attaching to a chassis of portable peripheral 101 and working in conjunction with the portable peripheral 101. The mobile computing device 100 may be a handheld device and typically will slide into the portable peripheral 101 and may be snapped into place. Exemplary mobile computing devices 100 include a mobile phone, a wireless tablet device, a personal digital assistant (PDA), cellular phone, and smartphone (e.g., Apple® iPhone®, iPod® Touch®, iPad from Apple®, Android® Smartphone). Portable peripheral 101 may have a docking input/output connection port (reference 120 in FIG. 1D) for electrical attachment (and maybe physical attachment) to the mobile computing device 100. The portable peripheral 101 may also be a handheld device which configured to envelope the mobile computing device 100. Typically, when the mobile computing device 100 is in the operating position it will be partially enclosed by the portable peripheral device 101 with primarily the screen of the mobile computing device visible. In the case of Apple® products the input/output connection could be a Lightning™ connector and for Android devices a USB connection. The portable peripheral 101 transforms the mobile computing device 100 into an enterprise-ready device. The portable peripheral 101 may be a “code symbol” capturing scanner or imager which delivers fast and accurate reading of linear, two-dimensional and even poor quality bar codes. The term “code symbol” is intended broadly to refer to any machine-readable indicia that may be used to store information about an object (e.g., a barcode). An example of a portable peripheral 101 may be the Honeywell® Sled Captuvo SL22.


Upon connection of the mobile computing device 100 and the portable peripheral 101, power balance management software may be loaded from the portable peripheral 101 to the mobile computing device 100. In alternative embodiments, the power balance management software is loaded from the mobile computing device 100 to the portable peripheral 101. In other alternative embodiments it would be possible to download the power balance management software from a central site (e.g., the Apple® application store) into either or both devices 100 and 101.



FIG. 1C illustrates that the mobile computing device 100 may broadly have a user interface system 102 including a touch screen 105 with a visual display and a soft keyboard. The mobile computing device 100 typically includes a processor (or processors) 110 having a set of stored programs (“applications”), which when executed by the processor 110, provides users with a variety of functionalities. The processor 110 is communicatively coupled with the user interface system 102, a memory 112 having a database 114, a camera 116, a wireless communication system 118, an input/output (I/O) module 120 and a battery 124. An exemplary mobile computing device 100 may include a system bus 122 and/or one or more interface circuits (not shown) for coupling the processor 110 and other components (e.g., user interface system 102, memory 112, camera 116, wireless communication system 118, I/O module 120 and battery 124) to the system bus 122 and to each other. Typically, the processor 110 is configured to execute instructions and to carry out operations associated with the mobile computing device 100. For example, using instructions retrieved from the memory 112 (e.g., a memory block), the processor 110 may control the reception and manipulation of input and output data between components of the mobile computing device 100. The processor 110 typically operates with an operating system to execute computer code and produce and use data. The operating system, other computer code, and data may reside within the memory 112 that is operatively coupled to the processor 110. The processor 110 may also download and execute any smart battery power balance management software described in detail below and also store that in memory 112. The memory 112 generally provides a place to store computer code and data that are used by the mobile computing device 100. The memory 112 may include Read-Only Memory (ROM), Random-Access Memory (RAM), a hard disk drive, and/or other non-transitory storage media. The operating system, other computer code, and data may also reside on a removable non-transitory storage medium that is loaded or installed onto the mobile computing device 100 when needed. The wireless communication system 118 enables the mobile computing device 100 to communicate with a wireless network, such as a cellular network (e.g., a GSM network, a CDMA network, or an LTE network), a local area network (LAN), and/or an ad hoc network. The I/O module 120 may be a hardwire connector which allows the mobile computing device 100 to receive power and/or data when plugged in. The I/O module 120 may also allow the mobile computing device 100 to connect to the portable peripheral 101 as discussed above. Also, connected to the I/O module 120 through bus 122 is the rechargeable battery 124 capable of providing power internally to the mobile computing device 100. The battery 124 can also provide power externally to and receive external power from the portable peripheral 101 when connected as will be discussed in detail herein. The processor 110 is also capable of monitoring the battery 124 to determine charging parameters such as percentage remaining charge, rate of charging, power consumption rate, time to empty and the like.


The portable peripheral 101 shown in FIG. 1D has many of the same elements functioning in the same way as the mobile computing device 100 as indicated by the same reference numerals. In the case of a scanner (or imager), the portable peripheral processor 111 may also be configured for capturing through camera 116 an image (e.g., a code symbol); displaying the image on the visual display 105; and determining whether the image is readable by the processor 111. The portable peripheral processor 111 may also enable various charging applications which are capable of monitoring portable peripheral rechargeable battery 125 to determine charging parameters such as percentage remaining charge, rate of charging, power consumption rate, time to empty and the like of battery 125. The portable peripheral 101 may also have an encryption-ready three-track magnetic stripe reader 126 in the user interface 102 which can be integrated, facilitating quick and easy processing of credit card transactions in the portable peripheral 101.


Compatibility with the mobile computing device 100 provides operators of the portable peripheral 101 access to a myriad of applications through the mobile computing device 100 from an online downloadable store. An example of mobile computing device 100 would be an Apple® iPhone which works with the Apple® Application Store to allow the operator of the iPhone to be armed with a tremendous amount of information. When equipped with software such as Honeywell's Remote MasterMind™ 3.0 software, operators of the portable peripheral 101 can remotely work with and/or manage a deployed mobile computing device 100 leading to a lower total cost of ownership. The protective housing of the portable peripheral 101 also adds durability to the mobile computing device 100 resulting in a combination that lowers the failure rate of the mobile computing device 100. As with the mobile computing device 100, in the portable peripheral 101 the I/O module 120 is connected through bus 122 to the rechargeable battery 125 and is capable of providing power to the portable peripheral 101 (and the mobile computing device battery 124) as discussed in detail herein.



FIG. 2A discloses a charge manager software module 200, curve filling estimation software module 202 (“curve estimation module”), a battery log 204, and a battery data collect module 205 running on the mobile computing device processor 110. A counterpart in the portable peripheral 101 to battery data collect module 205 is battery data collect module 206 which runs on the processor of the portable peripheral. Also running on the portable peripheral processor 111 is charge module 208 which takes direction from charge manager software module 200 and controls charging to and from the rechargeable battery 125. Elements 200, 202, 204, 205, 206, and 208 help make up the power balance management system and method described herein.


Element 210 in FIG. 2A stands for a connection interface between the I/O 120 of the mobile computing device 100 and I/O 120 of the portable peripheral 101. In the case where the mobile computing device 100 is an iPhone/iTouch the interface connection hardware may be a Lightning™ connector and may use iAP2 protocol software which is an Apple® accessory protocol to pass data back and forth. In the case where device 101 is an Android® phone a USB connector may be used with Android Open Accessory (AOA) protocol to pass data back and forth.


Charge manager software module 200 is the primary software with a user interface which may be displayed on the mobile computing device visual display 105 or on the portable peripheral visual display 105. One of the functions of the charge manager software module 200 is to check whether the operator has enabled the power balance management system functionality (i.e., Smartcharge) or not. If yes, software module 200 will start the battery power balance process. If not, it will not start the battery power balance method and will notify processors 110 and 111 to use a normal charge method. Curve filling estimation software module 202 performs a curve fitting and estimation to predict the empty time for complete battery discharge of the batteries 124, 125 of the mobile computing device 100 and portable peripheral 101 based on parameters obtained by monitoring the batteries 124, 125. Battery log 204 is configured to store history date of batteries 124 and 125. Mobile computing device battery data collect module 205 will be used to collect mobile computing device battery's 124 parameters (such as battery percentage of available power (Pp), power consumption, time to empty, and the like) through iOS™ or an Android® API and send them to the other modules 200, 202, and 204. Similarly, portable peripheral battery data collect module 206 shall be used to collect portable peripheral battery's 125 parameters (similar to battery 124, information such as battery percentage of available power (Ps), power consumption, time to empty, and the like) through the portable peripheral's API and forward them to modules 200, 202, and 204. Charge module 208 may be used to control the hardware of the portable peripheral 101 to enable or disable the charging of the mobile computing device battery 124 by the portable peripheral battery 125 during normal charging operations as well as permit charging of the portable peripheral battery 125 by the mobile computing device battery 124 during enablement of the power balance management system. Charge module 208 will receive instructions from charge manager module 200 on when to perform these functions.


The charge manager module 200 will obtain the parameters (e.g., Pp, Ps) from the collection modules 205 and 206. The charge manager module 200 can analyze these parameters to decide when to let the portable peripheral battery 125 charge the mobile portable computing device battery 124 and when to stop the portable peripheral 101 from charging the mobile computing device 100. The smart battery balance system and process can also use these parameters to decide when to let the mobile portable computing device battery 124 charge the portable peripheral battery 125 and when to stop the mobile computing device 100 from charging the portable peripheral 101. The charge manager module 200 may also use the battery parameters to determine the rate (or velocity) of battery consumption of mobile computing device 100 (Vp) and portable peripheral 101 (Vs). The battery empty time can then be predicted for the mobile computing device 100 (Tp) and the portable peripheral 101 (Ts). The charge manager module 200 may use a first method to obtain a prediction of the empty time (T) is to divide current battery percentage (P) with average battery consuming velocity (Vmean) (i.e., T=P/Vmean). Another method the charge manager module 200 may use to procure the predicted empty time of the batteries 124, 125 is to analyze historic battery percentage data and time to get a trend line for when the battery will be empty.


The charge manager module 200 will enable battery charging automatically and dynamically (i.e., constant change between charging and not charging) of the portable peripheral battery 125 (and also the mobile computing device battery 125). If the portable peripheral battery 125 empty time is longer than mobile computing device battery 124 empty time, then the smart battery balance process will let portable peripheral 101 charge the mobile computing device battery 124. If mobile computing device's battery 124 empty time is longer than portable peripheral's battery 125 empty time, then the smart battery power balance system and process will either stop portable peripheral 101 from charging the mobile computing device battery 124 or will actually have the mobile computing device 100 charge the rechargeable battery 125 of the portable peripheral. The idea is to maximize the battery life for the whole system so the mobile computing device battery 124 empty time is still maintained longer than the portable peripheral battery 125 empty time, but a more a balanced charge is maintained between the two devices. Because if nothing is done, the portable peripheral's battery 125 will be substantially 0% while the mobile computing device battery 124 is not and an operator cannot use the portable peripheral 101 to perform functions such as barcode scanning. With this battery power balancing system and process described herein enabled, it is possible to obtain the maximum uptime for both device 100 and peripheral 101.



FIG. 2B shows an alternative embodiment of the system of FIG. 2A. In this embodiment, the charge manager module 200 is located in the mobile computing device and running on processor 110. However, the curve estimation module 202 and battery log module 204 are running and performing their functions as described above on the portable peripheral 101 instead of the mobile device 100.



FIG. 2C shows another alternative embodiment of the systems of 2A and 2B. In this embodiment, the charge manager module 200, curve estimation module 202 and battery log module 204 are performing their functions but are all located in the portable peripheral. In this case, charge manager module will manage the charge of battery 125 and charge module 212 under instructions from module 200 will conduct charging operations of battery 124.



FIG. 3 shows a flowchart 300 of the process of the smart battery power balance management system. As described above, elements of the charging software (e.g., charge manager module 200, curve estimation module 202, battery log module 204, battery data collect modules 204, 206) may reside on both (or either of) the mobile computing device 100 and the portable peripheral 101 in the processors 110 and 111. Some portions are running on processor 110 and some are running on processor 111. The charge manager module software 200 is booted in step 302 in the mobile computing device 100 and the portable peripheral 101. In step 304, the battery power balance enablement decision is made. The battery power balance method can be enabled or disabled. If the operator chooses to enable, then the system will use the method described herein to maximize the whole battery life for both the mobile computing device 100 and portable peripheral 101 and proceed to step 308. If the operator chooses to disable the smart battery balance method (i.e., not use steps 308, 310, 312, 314, 316, 318, and 320), then in step 306 a normal charge routine is executed whereby the mobile computing device battery 124 is just charged when running low or becomes empty by the portable peripheral device battery 125. In this scenario, the portable peripheral 101 will keep charging the mobile computing device 100 no matter what the portable peripheral battery 125 percentage is or the portable peripheral 101 will charge the mobile computing device battery 124 at a predefined portable peripheral battery voltage range.


If enabled, in steps 308 and 310 the mobile computing device battery 124 and portable peripheral battery 125 parameters such as battery level, velocity/rate of consumption and usage history are collected by their respective processors (110 and 111) in modules 204, 206 and logged in step 312 in the battery log 204. In step 314, a curve fitting and estimation is done in curve estimation module 202 to predict the empty time for complete battery discharge of the device battery 124 and portable peripheral battery 125. As discussed above, equation T=P/Vmean may be used to obtain the remaining battery hours. However, curve fitting and estimation may obtain a better estimate of a trend line using least squares method or linear regression to estimate the battery remaining time. In step 316, the portable peripheral remaining charge in the portable peripheral battery 125 is calculated. If the calculated empty time of the mobile computing device battery 124 is less than the portable peripheral battery 125 (i.e., “yes”), the process proceeds to step 318 and the portable peripheral charges the mobile computing device battery 124 and reverts to step 308. If in step 316, the calculated empty time of the mobile computing device battery 124 is greater than that of the portable peripheral battery 125 (i.e., “no”), the process proceeds to step 318. In this case, the portable peripheral battery 125 charging of the mobile computing device battery is disabled. In addition, the portable peripheral battery 125 may receive charging from the mobile computing device battery 124. The process then reverts back to step 308. The battery balancing steps are running regularly in a continuous loop of the steps in FIG. 3, so the battery charging from the mobile computing device 100 adjusts dynamically depending on the battery remaining hours calculation of the mobile computing device battery 124 and portable peripheral battery 125.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:

  • U.S. Pat. Nos. 6,832,725; 7,128,266;
  • U.S. Pat. Nos. 7,159,783; 7,413,127;
  • U.S. Pat. Nos. 7,726,575; 8,294,969;
  • U.S. Pat. Nos. 8,317,105; 8,322,622;
  • U.S. Pat. Nos. 8,366,005; 8,371,507;
  • U.S. Pat. Nos. 8,376,233; 8,381,979;
  • U.S. Pat. Nos. 8,390,909; 8,408,464;
  • U.S. Pat. Nos. 8,408,468; 8,408,469;
  • U.S. Pat. Nos. 8,424,768; 8,448,863;
  • U.S. Pat. Nos. 8,457,013; 8,459,557;
  • U.S. Pat. Nos. 8,469,272; 8,474,712;
  • U.S. Pat. Nos. 8,479,992; 8,490,877;
  • U.S. Pat. Nos. 8,517,271; 8,523,076;
  • U.S. Pat. Nos. 8,528,818; 8,544,737;
  • U.S. Pat. Nos. 8,548,242; 8,548,420;
  • U.S. Pat. Nos. 8,550,335; 8,550,354;
  • U.S. Pat. Nos. 8,550,357; 8,556,174;
  • U.S. Pat. Nos. 8,556,176; 8,556,177;
  • U.S. Pat. Nos. 8,559,767; 8,599,957;
  • U.S. Pat. Nos. 8,561,895; 8,561,903;
  • U.S. Pat. Nos. 8,561,905; 8,565,107;
  • U.S. Pat. Nos. 8,571,307; 8,579,200;
  • U.S. Pat. Nos. 8,583,924; 8,584,945;
  • U.S. Pat. Nos. 8,587,595; 8,587,697;
  • U.S. Pat. Nos. 8,588,869; 8,590,789;
  • U.S. Pat. Nos. 8,596,539; 8,596,542;
  • U.S. Pat. Nos. 8,596,543; 8,599,271;
  • U.S. Pat. Nos. 8,599,957; 8,600,158;
  • U.S. Pat. Nos. 8,600,167; 8,602,309;
  • U.S. Pat. Nos. 8,608,053; 8,608,071;
  • U.S. Pat. Nos. 8,611,309; 8,615,487;
  • U.S. Pat. Nos. 8,616,454; 8,621,123;
  • U.S. Pat. Nos. 8,622,303; 8,628,013;
  • U.S. Pat. Nos. 8,628,015; 8,628,016;
  • U.S. Pat. Nos. 8,629,926; 8,630,491;
  • U.S. Pat. Nos. 8,635,309; 8,636,200;
  • U.S. Pat. Nos. 8,636,212; 8,636,215;
  • U.S. Pat. Nos. 8,636,224; 8,638,806;
  • U.S. Pat. Nos. 8,640,958; 8,640,960;
  • U.S. Pat. Nos. 8,643,717; 8,646,692;
  • U.S. Pat. Nos. 8,646,694; 8,657,200;
  • U.S. Pat. Nos. 8,659,397; 8,668,149;
  • U.S. Pat. Nos. 8,678,285; 8,678,286;
  • U.S. Pat. Nos. 8,682,077; 8,687,282;
  • U.S. Pat. Nos. 8,692,927; 8,695,880;
  • U.S. Pat. Nos. 8,698,949; 8,717,494;
  • U.S. Pat. Nos. 8,717,494; 8,720,783;
  • U.S. Pat. Nos. 8,723,804; 8,723,904;
  • U.S. Pat. No. 8,727,223; U.S. Pat. No. D702,237;
  • U.S. Pat. Nos. 8,740,082; 8,740,085;
  • U.S. Pat. Nos. 8,746,563; 8,750,445;
  • U.S. Pat. Nos. 8,752,766; 8,756,059;
  • U.S. Pat. Nos. 8,757,495; 8,760,563;
  • U.S. Pat. Nos. 8,763,909; 8,777,108;
  • U.S. Pat. Nos. 8,777,109; 8,779,898;
  • U.S. Pat. Nos. 8,781,520; 8,783,573;
  • U.S. Pat. Nos. 8,789,757; 8,789,758;
  • U.S. Pat. Nos. 8,789,759; 8,794,520;
  • U.S. Pat. Nos. 8,794,522; 8,794,525;
  • U.S. Pat. Nos. 8,794,526; 8,798,367;
  • U.S. Pat. Nos. 8,807,431; 8,807,432;
  • U.S. Pat. Nos. 8,820,630; 8,822,848;
  • U.S. Pat. Nos. 8,824,692; 8,824,696;
  • U.S. Pat. Nos. 8,842,849; 8,844,822;
  • U.S. Pat. Nos. 8,844,823; 8,849,019;
  • U.S. Pat. Nos. 8,851,383; 8,854,633;
  • U.S. Pat. Nos. 8,866,963; 8,868,421;
  • U.S. Pat. Nos. 8,868,519; 8,868,802;
  • U.S. Pat. Nos. 8,868,803; 8,870,074;
  • U.S. Pat. Nos. 8,879,639; 8,880,426;
  • U.S. Pat. Nos. 8,881,983; 8,881,987;
  • U.S. Pat. Nos. 8,903,172; 8,908,995;
  • U.S. Pat. Nos. 8,910,870; 8,910,875;
  • U.S. Pat. Nos. 8,914,290; 8,914,788;
  • U.S. Pat. Nos. 8,915,439; 8,915,444;
  • U.S. Pat. Nos. 8,916,789; 8,918,250;
  • U.S. Pat. Nos. 8,918,564; 8,925,818;
  • U.S. Pat. Nos. 8,939,374; 8,942,480;
  • U.S. Pat. Nos. 8,944,313; 8,944,327;
  • U.S. Pat. Nos. 8,944,332; 8,950,678;
  • U.S. Pat. Nos. 8,967,468; 8,971,346;
  • U.S. Pat. Nos. 8,976,030; 8,976,368;
  • U.S. Pat. Nos. 8,978,981; 8,978,983;
  • U.S. Pat. Nos. 8,978,984; 8,985,456;
  • U.S. Pat. Nos. 8,985,457; 8,985,459;
  • U.S. Pat. Nos. 8,985,461; 8,988,578;
  • U.S. Pat. Nos. 8,988,590; 8,991,704;
  • U.S. Pat. Nos. 8,996,194; 8,996,384;
  • U.S. Pat. Nos. 9,002,641; 9,007,368;
  • U.S. Pat. Nos. 9,010,641; 9,015,513;
  • U.S. Pat. Nos. 9,016,576; 9,022,288;
  • U.S. Pat. Nos. 9,030,964; 9,033,240;
  • U.S. Pat. Nos. 9,033,242; 9,036,054;
  • U.S. Pat. Nos. 9,037,344; 9,038,911;
  • U.S. Pat. Nos. 9,038,915; 9,047,098;
  • U.S. Pat. Nos. 9,047,359; 9,047,420;
  • U.S. Pat. Nos. 9,047,525; 9,047,531;
  • U.S. Pat. Nos. 9,053,055; 9,053,378;
  • U.S. Pat. Nos. 9,053,380; 9,058,526;
  • U.S. Pat. Nos. 9,064,165; 9,064,167;
  • U.S. Pat. Nos. 9,064,168; 9,064,254;
  • U.S. Pat. Nos. 9,066,032; 9,070,032;
  • U.S. Design Pat. No. D716,285;
  • U.S. Design Pat. No. D723,560;
  • U.S. Design Pat. No. D730,357;
  • U.S. Design Pat. No. D730,901;
  • U.S. Design Pat. No. D730,902;
  • U.S. Design Pat. No. D733,112;
  • U.S. Design Pat. No. D734,339;
  • International Publication No. 2013/163789;
  • International Publication No. 2013/173985;
  • International Publication No. 2014/019130;
  • International Publication No. 2014/110495;
  • U.S. Patent Application Publication No. 2008/0185432;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2010/0265880;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341;
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0287258;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0308625;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0313325;
  • U.S. Patent Application Publication No. 2013/0342717;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0008439;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. Patent Application Publication No. 2014/0034734;
  • U.S. Patent Application Publication No. 2014/0036848;
  • U.S. Patent Application Publication No. 2014/0039693;
  • U.S. Patent Application Publication No. 2014/0042814;
  • U.S. Patent Application Publication No. 2014/0049120;
  • U.S. Patent Application Publication No. 2014/0049635;
  • U.S. Patent Application Publication No. 2014/0061306;
  • U.S. Patent Application Publication No. 2014/0063289;
  • U.S. Patent Application Publication No. 2014/0066136;
  • U.S. Patent Application Publication No. 2014/0067692;
  • U.S. Patent Application Publication No. 2014/0070005;
  • U.S. Patent Application Publication No. 2014/0071840;
  • U.S. Patent Application Publication No. 2014/0074746;
  • U.S. Patent Application Publication No. 2014/0076974;
  • U.S. Patent Application Publication No. 2014/0078341;
  • U.S. Patent Application Publication No. 2014/0078345;
  • U.S. Patent Application Publication No. 2014/0097249;
  • U.S. Patent Application Publication No. 2014/0098792;
  • U.S. Patent Application Publication No. 2014/0100813;
  • U.S. Patent Application Publication No. 2014/0103115;
  • U.S. Patent Application Publication No. 2014/0104413;
  • U.S. Patent Application Publication No. 2014/0104414;
  • U.S. Patent Application Publication No. 2014/0104416;
  • U.S. Patent Application Publication No. 2014/0104451;
  • U.S. Patent Application Publication No. 2014/0106594;
  • U.S. Patent Application Publication No. 2014/0106725;
  • U.S. Patent Application Publication No. 2014/0108010;
  • U.S. Patent Application Publication No. 2014/0108402;
  • U.S. Patent Application Publication No. 2014/0110485;
  • U.S. Patent Application Publication No. 2014/0114530;
  • U.S. Patent Application Publication No. 2014/0124577;
  • U.S. Patent Application Publication No. 2014/0124579;
  • U.S. Patent Application Publication No. 2014/0125842;
  • U.S. Patent Application Publication No. 2014/0125853;
  • U.S. Patent Application Publication No. 2014/0125999;
  • U.S. Patent Application Publication No. 2014/0129378;
  • U.S. Patent Application Publication No. 2014/0131438;
  • U.S. Patent Application Publication No. 2014/0131441;
  • U.S. Patent Application Publication No. 2014/0131443;
  • U.S. Patent Application Publication No. 2014/0131444;
  • U.S. Patent Application Publication No. 2014/0131445;
  • U.S. Patent Application Publication No. 2014/0131448;
  • U.S. Patent Application Publication No. 2014/0133379;
  • U.S. Patent Application Publication No. 2014/0136208;
  • U.S. Patent Application Publication No. 2014/0140585;
  • U.S. Patent Application Publication No. 2014/0151453;
  • U.S. Patent Application Publication No. 2014/0152882;
  • U.S. Patent Application Publication No. 2014/0158770;
  • U.S. Patent Application Publication No. 2014/0159869;
  • U.S. Patent Application Publication No. 2014/0166755;
  • U.S. Patent Application Publication No. 2014/0166759;
  • U.S. Patent Application Publication No. 2014/0168787;
  • U.S. Patent Application Publication No. 2014/0175165;
  • U.S. Patent Application Publication No. 2014/0175172;
  • U.S. Patent Application Publication No. 2014/0191644;
  • U.S. Patent Application Publication No. 2014/0191913;
  • U.S. Patent Application Publication No. 2014/0197238;
  • U.S. Patent Application Publication No. 2014/0197239;
  • U.S. Patent Application Publication No. 2014/0197304;
  • U.S. Patent Application Publication No. 2014/0214631;
  • U.S. Patent Application Publication No. 2014/0217166;
  • U.S. Patent Application Publication No. 2014/0217180;
  • U.S. Patent Application Publication No. 2014/0231500;
  • U.S. Patent Application Publication No. 2014/0232930;
  • U.S. Patent Application Publication No. 2014/0247315;
  • U.S. Patent Application Publication No. 2014/0263493;
  • U.S. Patent Application Publication No. 2014/0263645;
  • U.S. Patent Application Publication No. 2014/0267609;
  • U.S. Patent Application Publication No. 2014/0270196;
  • U.S. Patent Application Publication No. 2014/0270229;
  • U.S. Patent Application Publication No. 2014/0278387;
  • U.S. Patent Application Publication No. 2014/0278391;
  • U.S. Patent Application Publication No. 2014/0282210;
  • U.S. Patent Application Publication No. 2014/0284384;
  • U.S. Patent Application Publication No. 2014/0288933;
  • U.S. Patent Application Publication No. 2014/0297058;
  • U.S. Patent Application Publication No. 2014/0299665;
  • U.S. Patent Application Publication No. 2014/0312121;
  • U.S. Patent Application Publication No. 2014/0319220;
  • U.S. Patent Application Publication No. 2014/0319221;
  • U.S. Patent Application Publication No. 2014/0326787;
  • U.S. Patent Application Publication No. 2014/0332590;
  • U.S. Patent Application Publication No. 2014/0344943;
  • U.S. Patent Application Publication No. 2014/0346233;
  • U.S. Patent Application Publication No. 2014/0351317;
  • U.S. Patent Application Publication No. 2014/0353373;
  • U.S. Patent Application Publication No. 2014/0361073;
  • U.S. Patent Application Publication No. 2014/0361082;
  • U.S. Patent Application Publication No. 2014/0362184;
  • U.S. Patent Application Publication No. 2014/0363015;
  • U.S. Patent Application Publication No. 2014/0369511;
  • U.S. Patent Application Publication No. 2014/0374483;
  • U.S. Patent Application Publication No. 2014/0374485;
  • U.S. Patent Application Publication No. 2015/0001301;
  • U.S. Patent Application Publication No. 2015/0001304;
  • U.S. Patent Application Publication No. 2015/0003673;
  • U.S. Patent Application Publication No. 2015/0009338;
  • U.S. Patent Application Publication No. 2015/0009610;
  • U.S. Patent Application Publication No. 2015/0014416;
  • U.S. Patent Application Publication No. 2015/0021397;
  • U.S. Patent Application Publication No. 2015/0028102;
  • U.S. Patent Application Publication No. 2015/0028103;
  • U.S. Patent Application Publication No. 2015/0028104;
  • U.S. Patent Application Publication No. 2015/0029002;
  • U.S. Patent Application Publication No. 2015/0032709;
  • U.S. Patent Application Publication No. 2015/0039309;
  • U.S. Patent Application Publication No. 2015/0039878;
  • U.S. Patent Application Publication No. 2015/0040378;
  • U.S. Patent Application Publication No. 2015/0048168;
  • U.S. Patent Application Publication No. 2015/0049347;
  • U.S. Patent Application Publication No. 2015/0051992;
  • U.S. Patent Application Publication No. 2015/0053766;
  • U.S. Patent Application Publication No. 2015/0053768;
  • U.S. Patent Application Publication No. 2015/0053769;
  • U.S. Patent Application Publication No. 2015/0060544;
  • U.S. Patent Application Publication No. 2015/0062366;
  • U.S. Patent Application Publication No. 2015/0063215;
  • U.S. Patent Application Publication No. 2015/0063676;
  • U.S. Patent Application Publication No. 2015/0069130;
  • U.S. Patent Application Publication No. 2015/0071819;
  • U.S. Patent Application Publication No. 2015/0083800;
  • U.S. Patent Application Publication No. 2015/0086114;
  • U.S. Patent Application Publication No. 2015/0088522;
  • U.S. Patent Application Publication No. 2015/0096872;
  • U.S. Patent Application Publication No. 2015/0099557;
  • U.S. Patent Application Publication No. 2015/0100196;
  • U.S. Patent Application Publication No. 2015/0102109;
  • U.S. Patent Application Publication No. 2015/0115035;
  • U.S. Patent Application Publication No. 2015/0127791;
  • U.S. Patent Application Publication No. 2015/0128116;
  • U.S. Patent Application Publication No. 2015/0129659;
  • U.S. Patent Application Publication No. 2015/0133047;
  • U.S. Patent Application Publication No. 2015/0134470;
  • U.S. Patent Application Publication No. 2015/0136851;
  • U.S. Patent Application Publication No. 2015/0136854;
  • U.S. Patent Application Publication No. 2015/0142492;
  • U.S. Patent Application Publication No. 2015/0144692;
  • U.S. Patent Application Publication No. 2015/0144698;
  • U.S. Patent Application Publication No. 2015/0144701;
  • U.S. Patent Application Publication No. 2015/0149946;
  • U.S. Patent Application Publication No. 2015/0161429;
  • U.S. Patent Application Publication No. 2015/0169925;
  • U.S. Patent Application Publication No. 2015/0169929;
  • U.S. Patent Application Publication No. 2015/0178523;
  • U.S. Patent Application Publication No. 2015/0178534;
  • U.S. Patent Application Publication No. 2015/0178535;
  • U.S. Patent Application Publication No. 2015/0178536;
  • U.S. Patent Application Publication No. 2015/0178537;
  • U.S. Patent Application Publication No. 2015/0181093;
  • U.S. Patent Application Publication No. 2015/0181109;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
  • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
  • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
  • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
  • U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);
  • U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
  • U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/483,056 for VARIABLE DEPTH OF FIELD BARCODE SCANNER filed Sep. 10, 2014 (McCloskey et al.);
  • U.S. patent application Ser. No. 14/513,808 for IDENTIFYING INVENTORY ITEMS IN A STORAGE FACILITY filed Oct. 14, 2014 (Singel et al.);
  • U.S. patent application Ser. No. 14/519,195 for HANDHELD DIMENSIONING SYSTEM WITH FEEDBACK filed Oct. 21, 2014 (Laffargue et al.);
  • U.S. patent application Ser. No. 14/519,179 for DIMENSIONING SYSTEM WITH MULTIPATH INTERFERENCE MITIGATION filed Oct. 21, 2014 (Thuries et al.);
  • U.S. patent application Ser. No. 14/519,211 for SYSTEM AND METHOD FOR DIMENSIONING filed Oct. 21, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/519,233 for HANDHELD DIMENSIONER WITH DATA-QUALITY INDICATION filed Oct. 21, 2014 (Laffargue et al.);
  • U.S. patent application Ser. No. 14/519,249 for HANDHELD DIMENSIONING SYSTEM WITH MEASUREMENT-CONFORMANCE FEEDBACK filed Oct. 21, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/527,191 for METHOD AND SYSTEM FOR RECOGNIZING SPEECH USING WILDCARDS IN AN EXPECTED RESPONSE filed Oct. 29, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/529,563 for ADAPTABLE INTERFACE FOR A MOBILE COMPUTING DEVICE filed Oct. 31, 2014 (Schoon et al.);
  • U.S. patent application Ser. No. 14/529,857 for BARCODE READER WITH SECURITY FEATURES filed Oct. 31, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/398,542 for PORTABLE ELECTRONIC DEVICES HAVING A SEPARATE LOCATION TRIGGER UNIT FOR USE IN CONTROLLING AN APPLICATION UNIT filed Nov. 3, 2014 (Bian et al.);
  • U.S. patent application Ser. No. 14/531,154 for DIRECTING AN INSPECTOR THROUGH AN INSPECTION filed Nov. 3, 2014 (Miller et al.);
  • U.S. patent application Ser. No. 14/533,319 for BARCODE SCANNING SYSTEM USING WEARABLE DEVICE WITH EMBEDDED CAMERA filed Nov. 5, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/535,764 for CONCATENATED EXPECTED RESPONSES FOR SPEECH RECOGNITION filed Nov. 7, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/568,305 for AUTO-CONTRAST VIEWFINDER FOR AN INDICIA READER filed Dec. 12, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/573,022 for DYNAMIC DIAGNOSTIC INDICATOR GENERATION filed Dec. 17, 2014 (Goldsmith);
  • U.S. patent application Ser. No. 14/578,627 for SAFETY SYSTEM AND METHOD filed Dec. 22, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/580,262 for MEDIA GATE FOR THERMAL TRANSFER PRINTERS filed Dec. 23, 2014 (Bowles);
  • U.S. patent application Ser. No. 14/590,024 for SHELVING AND PACKAGE LOCATING SYSTEMS FOR DELIVERY VEHICLES filed Jan. 6, 2015 (Payne);
  • U.S. patent application Ser. No. 14/596,757 for SYSTEM AND METHOD FOR DETECTING BARCODE PRINTING ERRORS filed Jan. 14, 2015 (Ackley);
  • U.S. patent application Ser. No. 14/416,147 for OPTICAL READING APPARATUS HAVING VARIABLE SETTINGS filed Jan. 21, 2015 (Chen et al.);
  • U.S. patent application Ser. No. 14/614,706 for DEVICE FOR SUPPORTING AN ELECTRONIC TOOL ON A USER'S HAND filed Feb. 5, 2015 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/614,796 for CARGO APPORTIONMENT TECHNIQUES filed Feb. 5, 2015 (Morton et al.);
  • U.S. patent application Ser. No. 29/516,892 for TABLE COMPUTER filed Feb. 6, 2015 (Bidwell et al.);
  • U.S. patent application Ser. No. 14/619,093 for METHODS FOR TRAINING A SPEECH RECOGNITION SYSTEM filed Feb. 11, 2015 (Pecorari);
  • U.S. patent application Ser. No. 14/628,708 for DEVICE, SYSTEM, AND METHOD FOR DETERMINING THE STATUS OF CHECKOUT LANES filed Feb. 23, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/630,841 for TERMINAL INCLUDING IMAGING ASSEMBLY filed Feb. 25, 2015 (Gomez et al.);
  • U.S. patent application Ser. No. 14/635,346 for SYSTEM AND METHOD FOR RELIABLE STORE-AND-FORWARD DATA HANDLING BY ENCODED INFORMATION READING TERMINALS filed Mar. 2, 2015 (Sevier);
  • U.S. patent application Ser. No. 29/519,017 for SCANNER filed Mar. 2, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/405,278 for DESIGN PATTERN FOR SECURE STORE filed Mar. 9, 2015 (Zhu et al.);
  • U.S. patent application Ser. No. 14/660,970 for DECODABLE INDICIA READING TERMINAL WITH COMBINED ILLUMINATION filed Mar. 18, 2015 (Kearney et al.);
  • U.S. patent application Ser. No. 14/661,013 for REPROGRAMMING SYSTEM AND METHOD FOR DEVICES INCLUDING PROGRAMMING SYMBOL filed Mar. 18, 2015 (Soule et al.);
  • U.S. patent application Ser. No. 14/662,922 for MULTIFUNCTION POINT OF SALE SYSTEM filed Mar. 19, 2015 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/663,638 for VEHICLE MOUNT COMPUTER WITH CONFIGURABLE IGNITION SWITCH BEHAVIOR filed Mar. 20, 2015 (Davis et al.);
  • U.S. patent application Ser. No. 14/664,063 for METHOD AND APPLICATION FOR SCANNING A BARCODE WITH A SMART DEVICE WHILE CONTINUOUSLY RUNNING AND DISPLAYING AN APPLICATION ON THE SMART DEVICE DISPLAY filed Mar. 20, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/669,280 for TRANSFORMING COMPONENTS OF A WEB PAGE TO VOICE PROMPTS filed Mar. 26, 2015 (Funyak et al.);
  • U.S. patent application Ser. No. 14/674,329 for AIMER FOR BARCODE SCANNING filed Mar. 31, 2015 (Bidwell);
  • U.S. patent application Ser. No. 14/676,109 for INDICIA READER filed Apr. 1, 2015 (Huck);
  • U.S. patent application Ser. No. 14/676,327 for DEVICE MANAGEMENT PROXY FOR SECURE DEVICES filed Apr. 1, 2015 (Yeakley et al.);
  • U.S. patent application Ser. No. 14/676,898 for NAVIGATION SYSTEM CONFIGURED TO INTEGRATE MOTION SENSING DEVICE INPUTS filed Apr. 2, 2015 (Showering);
  • U.S. patent application Ser. No. 14/679,275 for DIMENSIONING SYSTEM CALIBRATION SYSTEMS AND METHODS filed Apr. 6, 2015 (Laffargue et al.);
  • U.S. patent application Ser. No. 29/523,098 for HANDLE FOR A TABLET COMPUTER filed Apr. 7, 2015 (Bidwell et al.);
  • U.S. patent application Ser. No. 14/682,615 for SYSTEM AND METHOD FOR POWER MANAGEMENT OF MOBILE DEVICES filed Apr. 9, 2015 (Murawski et al.);
  • U.S. patent application Ser. No. 14/686,822 for MULTIPLE PLATFORM SUPPORT SYSTEM AND METHOD filed Apr. 15, 2015 (Qu et al.);
  • U.S. patent application Ser. No. 14/687,289 for SYSTEM FOR COMMUNICATION VIA A PERIPHERAL HUB filed Apr. 15, 2015 (Kohtz et al.);
  • U.S. patent application Ser. No. 29/524,186 for SCANNER filed Apr. 17, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/695,364 for MEDICATION MANAGEMENT SYSTEM filed Apr. 24, 2015 (Sewell et al.);
  • U.S. patent application Ser. No. 14/695,923 for SECURE UNATTENDED NETWORK AUTHENTICATION filed Apr. 24, 2015 (Kubler et al.);
  • U.S. patent application Ser. No. 29/525,068 for TABLET COMPUTER WITH REMOVABLE SCANNING DEVICE filed Apr. 27, 2015 (Schulte et al.);
  • U.S. patent application Ser. No. 14/699,436 for SYMBOL READING SYSTEM HAVING PREDICTIVE DIAGNOSTICS filed Apr. 29, 2015 (Nahill et al.);
  • U.S. patent application Ser. No. 14/702,110 for SYSTEM AND METHOD FOR REGULATING BARCODE DATA INJECTION INTO A RUNNING APPLICATION ON A SMART DEVICE filed May 1, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/702,979 for TRACKING BATTERY CONDITIONS filed May 4, 2015 (Young et al.);
  • U.S. patent application Ser. No. 14/704,050 for INTERMEDIATE LINEAR POSITIONING filed May 5, 2015 (Charpentier et al.);
  • U.S. patent application Ser. No. 14/705,012 for HANDS-FREE HUMAN MACHINE INTERFACE RESPONSIVE TO A DRIVER OF A VEHICLE filed May 6, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/705,407 for METHOD AND SYSTEM TO PROTECT SOFTWARE-BASED NETWORK-CONNECTED DEVICES FROM ADVANCED PERSISTENT THREAT filed May 6, 2015 (Hussey et al.);
  • U.S. patent application Ser. No. 14/707,037 for SYSTEM AND METHOD FOR DISPLAY OF INFORMATION USING A VEHICLE-MOUNT COMPUTER filed May 8, 2015 (Chamberlin);
  • U.S. patent application Ser. No. 14/707,123 for APPLICATION INDEPENDENT DEX/UCS INTERFACE filed May 8, 2015 (Pape);
  • U.S. patent application Ser. No. 14/707,492 for METHOD AND APPARATUS FOR READING OPTICAL INDICIA USING A PLURALITY OF DATA SOURCES filed May 8, 2015 (Smith et al.);
  • U.S. patent application Ser. No. 14/710,666 for PRE-PAID USAGE SYSTEM FOR ENCODED INFORMATION READING TERMINALS filed May 13, 2015 (Smith);
  • U.S. patent application Ser. No. 29/526,918 for CHARGING BASE filed May 14, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/715,672 for AUGMENTED REALITY ENABLED HAZARD DISPLAY filed May 19, 2015 (Venkatesha et al.);
  • U.S. patent application Ser. No. 14/715,916 for EVALUATING IMAGE VALUES filed May 19, 2015 (Ackley);
  • U.S. patent application Ser. No. 14/722,608 for INTERACTIVE USER INTERFACE FOR CAPTURING A DOCUMENT IN AN IMAGE SIGNAL filed May 27, 2015 (Showering et al.);
  • U.S. patent application Ser. No. 29/528,165 for IN-COUNTER BARCODE SCANNER filed May 27, 2015 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/724,134 for ELECTRONIC DEVICE WITH WIRELESS PATH SELECTION CAPABILITY filed May 28, 2015 (Wang et al.);
  • U.S. patent application Ser. No. 14/724,849 for METHOD OF PROGRAMMING THE DEFAULT CABLE INTERFACE SOFTWARE IN AN INDICIA READING DEVICE filed May 29, 2015 (Barten);
  • U.S. patent application Ser. No. 14/724,908 for IMAGING APPARATUS HAVING IMAGING ASSEMBLY filed May 29, 2015 (Barber et al.);
  • U.S. patent application Ser. No. 14/725,352 for APPARATUS AND METHODS FOR MONITORING ONE OR MORE PORTABLE DATA TERMINALS (Caballero et al.);
  • U.S. patent application Ser. No. 29/528,590 for ELECTRONIC DEVICE filed May 29, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 29/528,890 for MOBILE COMPUTER HOUSING filed Jun. 2, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/728,397 for DEVICE MANAGEMENT USING VIRTUAL INTERFACES CROSS-REFERENCE TO RELATED APPLICATIONS filed Jun. 2, 2015 (Caballero);
  • U.S. patent application Ser. No. 14/732,870 for DATA COLLECTION MODULE AND SYSTEM filed Jun. 8, 2015 (Powilleit);
  • U.S. patent application Ser. No. 29/529,441 for INDICIA READING DEVICE filed Jun. 8, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/735,717 for INDICIA-READING SYSTEMS HAVING AN INTERFACE WITH A USER'S NERVOUS SYSTEM filed Jun. 10, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/738,038 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES filed Jun. 12, 2015 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/740,320 for TACTILE SWITCH FOR A MOBILE ELECTRONIC DEVICE filed Jun. 16, 2015 (Bandringa);
  • U.S. patent application Ser. No. 14/740,373 for CALIBRATING A VOLUME DIMENSIONER filed Jun. 16, 2015 (Ackley et al.);
  • U.S. patent application Ser. No. 14/742,818 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 18, 2015 (Xian et al.);
  • U.S. patent application Ser. No. 14/743,257 for WIRELESS MESH POINT PORTABLE DATA TERMINAL filed Jun. 18, 2015 (Wang et al.);
  • U.S. patent application Ser. No. 29/530,600 for CYCLONE filed Jun. 18, 2015 (Vargo et al);
  • U.S. patent application Ser. No. 14/744,633 for IMAGING APPARATUS COMPRISING IMAGE SENSOR ARRAY HAVING SHARED GLOBAL SHUTTER CIRCUITRY filed Jun. 19, 2015 (Wang);
  • U.S. patent application Ser. No. 14/744,836 for CLOUD-BASED SYSTEM FOR READING OF DECODABLE INDICIA filed Jun. 19, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/745,006 for SELECTIVE OUTPUT OF DECODED MESSAGE DATA filed Jun. 19, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/747,197 for OPTICAL PATTERN PROJECTOR filed Jun. 23, 2015 (Thuries et al.);
  • U.S. patent application Ser. No. 14/747,490 for DUAL-PROJECTOR THREE-DIMENSIONAL SCANNER filed Jun. 23, 2015 (Jovanovski et al.); and
  • U.S. patent application Ser. No. 14/748,446 for CORDLESS INDICIA READER WITH A MULTIFUNCTION COIL FOR WIRELESS CHARGING AND EAS DEACTIVATION, filed Jun. 24, 2015 (Xie et al.).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.


Devices that are described as in “communication” with each other or “coupled” to each other need not be in continuous communication with each other or in direct physical contact, unless expressly specified otherwise. On the contrary, such devices need only transmit to each other as necessary or desirable, and may actually refrain from exchanging data most of the time. For example, a machine in communication with or coupled with another machine via the Internet may not transmit data to the other machine for long period of time (e.g. weeks at a time). In addition, devices that are in communication with or coupled with each other may communicate directly or indirectly through one or more intermediaries.


Although process (or method) steps may be described or claimed in a particular sequential order, such processes may be configured to work in different orders. In other words, any sequence or order of steps that may be explicitly described or claimed does not necessarily indicate a requirement that the steps be performed in that order unless specifically indicated. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step) unless specifically indicated. Where a process is described in an embodiment the process may operate without any user intervention.

Claims
  • 1. A portable peripheral device comprising: a processor coupled to a first battery, wherein the processor is configured to: enable a charge manager in the portable peripheral device, wherein the charge manager is configured to: calculate a first discharge time for the first battery based on at least one first charge parameter for the first battery; andcalculate a second discharge time for a second battery associated with a mobile computing device, based on at least one second charge parameter for the second battery, wherein the portable peripheral device is coupled to the mobile computing device, and wherein the second battery is charged using the first battery;compare the first discharge time for the first battery to the second discharge time for the second battery; anddisable charging of the second battery by the first battery, in response to a determination that the first discharge time for the first battery is less than the second discharge time for the second battery.
  • 2. The portable peripheral device of claim 1, wherein the processor is further configured to enable charging of the first battery by the second battery, in response to the determination that the first discharge time for the first battery is less than the second discharge time for the second battery.
  • 3. The portable peripheral device of claim 1, wherein the processor is further configured to receive an input for enabling balancing of battery charges for the first battery and the second battery.
  • 4. The portable peripheral device of claim 1, wherein the mobile computing device and the portable peripheral device are physically and electrically attached.
  • 5. The portable peripheral device of claim 1, wherein: the at least one first charge parameter comprises at least one of a current battery percentage of the first battery, a power consumption rate of the first battery, time for complete discharge for the first battery, a rate of charging the first battery, and usage history of the first battery; andthe at least one second charge parameter comprises at least one of a current battery percentage of the second battery, a power consumption rate of the second battery, time for complete discharge for the second battery, a rate of charging the second battery, and usage history of the second battery.
  • 6. The portable peripheral device of claim 1, wherein the processor is further configured to: analyze the at least one first charge parameter and the at least one second charge parameter to perform curve fitting and estimation to predict the first discharge time for the first battery and the second discharge time for the second battery.
  • 7. The portable peripheral device of claim 1, wherein the processor is further configured to: predict the first discharge time for the first battery by dividing a current battery percentage of the first battery with an average battery consuming velocity for the first battery; andpredict the second discharge time for the second battery by dividing a current battery percentage of the second battery with an average battery consuming velocity for the second battery.
  • 8. The portable peripheral device of claim 1, wherein the processor is further configured to: predict the first discharge time for the first battery by analyzing historic battery percentage data versus time to calculate a trend line for the first battery; andpredict the second discharge time for the second battery by analyzing historic battery percentage data versus time to calculate a trend line for the second battery.
  • 9. The portable peripheral device of claim 2, wherein the processor is further configured to: dynamically adjust the charging of the first battery by the second battery, based on the first discharge time for the first battery and the second discharge time for the second battery.
  • 10. The portable peripheral device of claim 1, wherein the processor is further configured to analyze the at least one first parameter and the at least one second parameter using one of least squares method and linear regression to predict the first discharge time for the first battery and the second discharge time for the second battery.
  • 11. A mobile computing device comprising: a processor coupled to a first battery, wherein the processor is configured to: enable a charge manager in the mobile computing device, wherein the charge manager is configured to: calculate a first discharge time for the first battery based on at least one first charge parameter for the first battery; andcalculate a second discharge time for a second battery associated with a portable peripheral device, based on at least one second charge parameter for the second battery, wherein the mobile computing device is coupled to the portable peripheral device, and wherein the first battery is charged using the second battery;compare the first discharge time for the first battery to the second discharge time for the second battery; anddisable charging of the first battery by the second battery, in response to a determination that the second discharge time for the second battery is less than the first discharge time for the first battery.
  • 12. The mobile computing device of claim 11, wherein the processor is further configured to enable charging of the second battery by the first battery, in response to the determination that the second discharge time for the second battery is less than the first discharge time for the first battery.
  • 13. The mobile computing device of claim 11, wherein the processor is further configured to receive an input for enabling balancing of battery charges for the first battery and the second battery.
  • 14. The mobile computing device of claim 11, wherein the mobile computing device and the portable peripheral device are physically and electrically attached when the mobile computing device is in an operating position.
  • 15. The mobile computing device of claim 11, wherein: the at least one first charge parameter comprises at least one of a current battery percentage of the first battery, a power consumption rate of the first battery, time for complete discharge for the first battery, a rate of charging the first battery, and usage history of the first battery; andthe at least one second charge parameter comprises at least one of a current battery percentage of the second battery, a power consumption rate of the second battery, time for complete discharge for the second battery, a rate of charging the second battery, and usage history of the second battery.
  • 16. The mobile computing device of claim 11, wherein the processor is further configured to analyze the at least one first charge parameter and the at least one second charge parameter using one of least squares method and linear regression to predict the first discharge time for the first battery and the second discharge time for the second battery.
  • 17. The mobile computing device of claim 11, wherein the processor is further configured to: predict the first discharge time for the first battery by dividing a current battery percentage of the first battery with an average battery consuming velocity for the first battery; andpredict the second discharge time for the second battery by dividing a current battery percentage of the second battery with an average battery consuming velocity for the second battery.
  • 18. The mobile computing device of claim 12, wherein the processor is further configured to dynamically adjust the charging of the second battery by the first battery, based on the first discharge time for the first battery and the second discharge time for the second battery.
  • 19. A method comprising: calculating, by a charge manager enabled by a processor associated with a mobile computing device: a first discharge time for a first battery associated with the mobile computing device, based on at least one first charge parameter for the first battery; anda second discharge time for a second battery associated with a portable peripheral device, based on at least one second charge parameter for the second battery, wherein the mobile computing device is coupled to the portable peripheral device, and wherein the first battery is charged using the second battery;comparing, by the processor, the first discharge time for the first battery to the second discharge time for the second battery; anddisabling, by the processor, charging of the first battery by the second battery, in response to a determination that the second discharge time for the second battery is less than the first discharge time for the first battery.
  • 20. The method of claim 19, further comprising: enabling, by the processor, charging of the second battery by the first battery, in response to the determination that the second discharge time for the second battery is less than the first discharge time for the first battery.
Priority Claims (1)
Number Date Country Kind
201611130208.0 Dec 2016 CN national
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of and claims the benefit of priority to U.S. application Ser. No. 15/829,167 entitled “SMART BATTERY BALANCE SYSTEM AND METHOD” filed on Dec. 1, 2017, which claims the benefit of Chinese Patent Application for Invention No. 201611130208.0 for a Smart Battery Balance System and Method filed Dec. 9, 2016 at the State Intellectual Property Office of China, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (737)
Number Name Date Kind
5461717 Notarianni Oct 1995 A
5523671 Stewart Jun 1996 A
5666066 Jo Sep 1997 A
5998972 Gong Dec 1999 A
6617829 Smith Sep 2003 B1
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
7902794 Ahmad Mar 2011 B2
8001419 Killian Aug 2011 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Van et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein, Jr. Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8583955 Lu et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre, Jr. Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz, Sr. Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Du et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844817 Glanzer et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue et al. Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein, Jr. Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 El et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9026187 Huang May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber et al. Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9061527 Tobin et al. Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9076459 Braho et al. Jul 2015 B2
9079423 Bouverie et al. Jul 2015 B2
9080856 Laffargue Jul 2015 B2
9082023 Feng et al. Jul 2015 B2
9084032 Rautiola et al. Jul 2015 B2
9087250 Coyle Jul 2015 B2
9092681 Havens et al. Jul 2015 B2
9092682 Wilz et al. Jul 2015 B2
9092683 Koziol et al. Jul 2015 B2
9093141 Liu Jul 2015 B2
9098763 Lu et al. Aug 2015 B2
9104929 Todeschini Aug 2015 B2
9104934 Li et al. Aug 2015 B2
9107484 Chaney Aug 2015 B2
9111159 Liu et al. Aug 2015 B2
9111166 Cunningham, IV Aug 2015 B2
9135483 Liu et al. Sep 2015 B2
9137009 Gardiner Sep 2015 B1
9141839 Xian et al. Sep 2015 B2
9147096 Wang Sep 2015 B2
9148474 Skvoretz Sep 2015 B2
9158000 Sauerwein, Jr. Oct 2015 B2
9158340 Reed et al. Oct 2015 B2
9158953 Gillet et al. Oct 2015 B2
9159059 Daddabbo et al. Oct 2015 B2
9165174 Huck Oct 2015 B2
9171543 Emerick et al. Oct 2015 B2
9183425 Wang Nov 2015 B2
9189669 Zhu et al. Nov 2015 B2
9195844 Todeschini et al. Nov 2015 B2
9202458 Braho et al. Dec 2015 B2
9208366 Liu Dec 2015 B2
9208367 Smith Dec 2015 B2
9219836 Bouverie et al. Dec 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224024 Bremer et al. Dec 2015 B2
9224027 Van et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9235553 Fitch et al. Jan 2016 B2
9237211 Tabe Jan 2016 B2
9239950 Fletcher Jan 2016 B2
9245492 Ackley et al. Jan 2016 B2
9248640 Heng Feb 2016 B2
9250652 London et al. Feb 2016 B2
9250712 Todeschini Feb 2016 B1
9251411 Todeschini Feb 2016 B2
9258033 Showering Feb 2016 B2
9261398 Amundsen et al. Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9262660 Lu et al. Feb 2016 B2
9262662 Chen et al. Feb 2016 B2
9262664 Soule et al. Feb 2016 B2
9269036 Bremer Feb 2016 B2
9270782 Hala et al. Feb 2016 B2
9274806 Barten Mar 2016 B2
9274812 Doren et al. Mar 2016 B2
9275388 Havens et al. Mar 2016 B2
9277668 Feng et al. Mar 2016 B2
9280693 Feng et al. Mar 2016 B2
9282501 Wang et al. Mar 2016 B2
9286496 Smith Mar 2016 B2
9292969 Laffargue et al. Mar 2016 B2
9297900 Jiang Mar 2016 B2
9298667 Caballero Mar 2016 B2
9298964 Li et al. Mar 2016 B2
9301427 Feng et al. Mar 2016 B2
9304376 Anderson Apr 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
9313377 Todeschini et al. Apr 2016 B2
9317037 Byford et al. Apr 2016 B2
9319548 Showering et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342723 Liu et al. May 2016 B2
9342724 McCloskey et al. May 2016 B2
9342827 Smith May 2016 B2
9355294 Smith et al. May 2016 B2
9360304 Xue et al. Jun 2016 B2
9361882 Ressler et al. Jun 2016 B2
9365381 Colonel et al. Jun 2016 B2
9367722 Xian et al. Jun 2016 B2
9371067 Dao Jun 2016 B2
9373018 Colavito et al. Jun 2016 B2
9375945 Bowles Jun 2016 B1
9378403 Wang et al. Jun 2016 B2
D760719 Zhou et al. Jul 2016 S
9383848 Daghigh Jul 2016 B2
9384374 Bianconi Jul 2016 B2
9390596 Todeschini Jul 2016 B1
9396375 Qu et al. Jul 2016 B2
9398008 Todeschini et al. Jul 2016 B2
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9405011 Showering Aug 2016 B2
9407840 Wang Aug 2016 B2
9411386 Sauerwein, Jr. Aug 2016 B2
9412242 Van et al. Aug 2016 B2
9418252 Nahill et al. Aug 2016 B2
9418269 Havens et al. Aug 2016 B2
9418270 Van et al. Aug 2016 B2
9423318 Liu et al. Aug 2016 B2
9429992 Ashenbrenner Aug 2016 B1
D766244 Zhou et al. Sep 2016 S
9443123 Hejl Sep 2016 B2
9443222 Singel et al. Sep 2016 B2
9448610 Davis et al. Sep 2016 B2
9454689 McCloskey et al. Sep 2016 B2
9464885 Lloyd et al. Oct 2016 B2
9465967 Xian et al. Oct 2016 B2
9478113 Xie et al. Oct 2016 B2
9478983 Kather et al. Oct 2016 B2
D771631 Fitch et al. Nov 2016 S
9481186 Bouverie et al. Nov 2016 B2
9488986 Solanki Nov 2016 B1
9489782 Payne et al. Nov 2016 B2
9490540 Davies et al. Nov 2016 B1
9491729 Rautiola et al. Nov 2016 B2
9497092 Gomez et al. Nov 2016 B2
9507974 Todeschini Nov 2016 B1
9519814 Cudzilo Dec 2016 B2
9521331 Bessettes et al. Dec 2016 B2
9530038 Xian et al. Dec 2016 B2
D777166 Bidwell et al. Jan 2017 S
9558386 Yeakley Jan 2017 B2
9572901 Todeschini Feb 2017 B2
9582696 Barber et al. Feb 2017 B2
9606581 Howe et al. Mar 2017 B1
D783601 Schulte et al. Apr 2017 S
9616749 Chamberlin Apr 2017 B2
9618993 Murawski et al. Apr 2017 B2
D785617 Bidwell et al. May 2017 S
D785636 Oberpriller et al. May 2017 S
9646189 Lu et al. May 2017 B2
9646191 Unemyr et al. May 2017 B2
9652648 Ackley et al. May 2017 B2
9652653 Todeschini et al. May 2017 B2
9656487 Ho May 2017 B2
9659198 Giordano et al. May 2017 B2
9660477 Dowd May 2017 B2
D790505 Vargo et al. Jun 2017 S
D790546 Zhou et al. Jun 2017 S
D790553 Fitch et al. Jun 2017 S
9680282 Hanenburg Jun 2017 B2
9697401 Feng et al. Jul 2017 B2
9701140 Alaganchetty et al. Jul 2017 B1
9715614 Todeschini et al. Jul 2017 B2
9734493 Gomez et al. Aug 2017 B2
10019334 Caballero et al. Jul 2018 B2
10021043 Sevier Jul 2018 B2
10327158 Wang et al. Jun 2019 B2
10410029 Powilleit Sep 2019 B2
20060164036 Ulla Jul 2006 A1
20070063048 Havens et al. Mar 2007 A1
20070294546 Lee Dec 2007 A1
20080185432 Caballero et al. Aug 2008 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100265880 Rautiola et al. Oct 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120111946 Golant May 2012 A1
20120168511 Kotlarsky et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120228382 Havens et al. Sep 2012 A1
20120248188 Kearney Oct 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130082104 Kearney et al. Apr 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130176000 Bishop Jul 2013 A1
20130201316 Binder Aug 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedrao Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130332524 Fiala et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140034734 Sauerwein, Jr. Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140097249 Gomez et al. Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein, Jr. Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140176041 Sun Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197238 Liu et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140217984 Banerjee et al. Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140267609 Laffargue Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 Digregorio Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150031452 Rundell et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150039878 Barten Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150060544 Feng et al. Mar 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150178523 Gelay et al. Jun 2015 A1
20150178534 Jovanovski et al. Jun 2015 A1
20150178535 Bremer et al. Jun 2015 A1
20150178536 Hennick et al. Jun 2015 A1
20150178537 El et al. Jun 2015 A1
20150181093 Zhu et al. Jun 2015 A1
20150181109 Gillet et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150194833 Fathollahi Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150310243 Ackley et al. Oct 2015 A1
20150310389 Crimm et al. Oct 2015 A1
20150324181 Segal Nov 2015 A1
20150327012 Bian et al. Nov 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160062473 Bouchat et al. Mar 2016 A1
20160092805 Geisler et al. Mar 2016 A1
20160101936 Chamberlin Apr 2016 A1
20160102975 McCloskey et al. Apr 2016 A1
20160104019 Todeschini et al. Apr 2016 A1
20160104274 Jovanovski et al. Apr 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue et al. Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160117627 Raj et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160125873 Braho et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171597 Todeschini Jun 2016 A1
20160171666 McCloskey Jun 2016 A1
20160171720 Todeschini Jun 2016 A1
20160171775 Todeschini et al. Jun 2016 A1
20160171777 Todeschini et al. Jun 2016 A1
20160174674 Oberpriller et al. Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160178685 Young et al. Jun 2016 A1
20160178707 Young et al. Jun 2016 A1
20160179132 Harr Jun 2016 A1
20160179143 Bidwell et al. Jun 2016 A1
20160179368 Roeder Jun 2016 A1
20160179378 Kent et al. Jun 2016 A1
20160180130 Bremer Jun 2016 A1
20160180133 Oberpriller et al. Jun 2016 A1
20160180136 Meier et al. Jun 2016 A1
20160180594 Todeschini Jun 2016 A1
20160180663 McMahan et al. Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160180713 Bernhardt et al. Jun 2016 A1
20160185136 Ng et al. Jun 2016 A1
20160185291 Chamberlin Jun 2016 A1
20160186926 Oberpriller et al. Jun 2016 A1
20160188861 Todeschini Jun 2016 A1
20160188939 Sailors et al. Jun 2016 A1
20160188940 Lu et al. Jun 2016 A1
20160188941 Todeschini et al. Jun 2016 A1
20160188942 Good et al. Jun 2016 A1
20160188943 Franz Jun 2016 A1
20160188944 Wilz et al. Jun 2016 A1
20160189076 Mellott et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160189088 Pecorari et al. Jun 2016 A1
20160189092 George et al. Jun 2016 A1
20160189284 Mellott et al. Jun 2016 A1
20160189288 Todeschini et al. Jun 2016 A1
20160189366 Chamberlin et al. Jun 2016 A1
20160189443 Smith Jun 2016 A1
20160189447 Valenzuela Jun 2016 A1
20160189489 Au et al. Jun 2016 A1
20160191684 Dipiazza et al. Jun 2016 A1
20160192051 Dipiazza et al. Jun 2016 A1
20160202951 Pike et al. Jul 2016 A1
20160202958 Zabel et al. Jul 2016 A1
20160202959 Doubleday et al. Jul 2016 A1
20160203021 Pike et al. Jul 2016 A1
20160203429 Mellott et al. Jul 2016 A1
20160203797 Pike et al. Jul 2016 A1
20160203820 Zabel et al. Jul 2016 A1
20160204623 Haggerty et al. Jul 2016 A1
20160204636 Allen et al. Jul 2016 A1
20160204638 Miraglia et al. Jul 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Wilz et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160316190 McCloskey et al. Oct 2016 A1
20160323310 Todeschini et al. Nov 2016 A1
20160325677 Fitch et al. Nov 2016 A1
20160327614 Young et al. Nov 2016 A1
20160327930 Charpentier et al. Nov 2016 A1
20160328762 Pape Nov 2016 A1
20160330218 Hussey et al. Nov 2016 A1
20160336623 Nayar Nov 2016 A1
20160343163 Venkatesha et al. Nov 2016 A1
20160343176 Ackley Nov 2016 A1
20160364914 Todeschini Dec 2016 A1
20160370220 Ackley et al. Dec 2016 A1
20160372282 Bandringa Dec 2016 A1
20160373847 Vargo et al. Dec 2016 A1
20160377414 Thuries et al. Dec 2016 A1
20160377417 Jovanovski et al. Dec 2016 A1
20170010141 Ackley Jan 2017 A1
20170010328 Mullen et al. Jan 2017 A1
20170010780 Waldron et al. Jan 2017 A1
20170016714 Laffargue et al. Jan 2017 A1
20170018094 Todeschini Jan 2017 A1
20170046603 Lee et al. Feb 2017 A1
20170047864 Stang et al. Feb 2017 A1
20170053146 Liu et al. Feb 2017 A1
20170053147 Germaine et al. Feb 2017 A1
20170053647 Nichols et al. Feb 2017 A1
20170055606 Xu et al. Mar 2017 A1
20170060316 Larson Mar 2017 A1
20170061961 Nichols et al. Mar 2017 A1
20170064634 Van et al. Mar 2017 A1
20170083730 Feng et al. Mar 2017 A1
20170091502 Furlong et al. Mar 2017 A1
20170091706 Lloyd et al. Mar 2017 A1
20170091741 Todeschini Mar 2017 A1
20170091904 Ventress, Jr. Mar 2017 A1
20170092908 Chaney Mar 2017 A1
20170094238 Germaine et al. Mar 2017 A1
20170098947 Wolski Apr 2017 A1
20170100949 Celinder et al. Apr 2017 A1
20170108838 Todeschini et al. Apr 2017 A1
20170108895 Chamberlin et al. Apr 2017 A1
20170118355 Wong et al. Apr 2017 A1
20170123598 Phan et al. May 2017 A1
20170124369 Rueblinger et al. May 2017 A1
20170124396 Todeschini et al. May 2017 A1
20170124687 McCloskey et al. May 2017 A1
20170126873 McGary et al. May 2017 A1
20170126904 D'Armancourt et al. May 2017 A1
20170139012 Smith May 2017 A1
20170140329 Bernhardt et al. May 2017 A1
20170140731 Smith May 2017 A1
20170147847 Berggren et al. May 2017 A1
20170150124 Thuries May 2017 A1
20170169198 Nichols Jun 2017 A1
20170171035 Lu et al. Jun 2017 A1
20170171703 Maheswaranathan Jun 2017 A1
20170171803 Maheswaranathan Jun 2017 A1
20170180359 Wolski et al. Jun 2017 A1
20170180577 Nguon et al. Jun 2017 A1
20170181299 Shi et al. Jun 2017 A1
20170190192 Delario et al. Jul 2017 A1
20170193432 Bernhardt Jul 2017 A1
20170193461 Celinder et al. Jul 2017 A1
20170193727 Van et al. Jul 2017 A1
20170200108 Au et al. Jul 2017 A1
20170200275 McCloskey et al. Jul 2017 A1
20180120915 Li May 2018 A1
Foreign Referenced Citations (4)
Number Date Country
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
2014110495 Jul 2014 WO
Non-Patent Literature Citations (110)
Entry
Final Rejection dated Aug 13, 2019 for U.S. Appl. No. 15/829,167.
Non-Final Rejection dated Apr 5, 2019 for U.S. Appl. No. 15/829,167.
Notice of Allowance and Fees Due (PTOL-85) dated Feb 20, 2020 U.S. Appl. No. 15/829,167.
Notice of Allowance and Fees Due (PTOL-85) dated Oct 22, 2019 for U.S. Appl. No. 15/829,167.
U.S. Patent Application Brian L Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages [Previously cited and copy provided in parent application], U.S. Appl. No. 14/747,490.
U.S. Patent Application for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.), U.S. Appl. No. 13/367,978.
U.S. Patent Application for a Mobile-Phone Adapter for Electronic Transactions, filed Jul. 10, 2014 (Hejl), U.S. Appl. No. 14/327,827.
U.S. Patent Application for a System and Method for Indicia Verification, filed Jul. 18, 2014 (Hejl), U.S. Appl. No. 14/334,934.
U.S. Patent Application for Adaptable Interface for a Mobile Computing Device filed Oct. 31, 2014 (Schoon et al.), U.S. Appl. No. 14/529,563.
U.S. Patent Application for Aimer for Barcode Scanning filed Mar. 31, 2015 (Bidwell), U.S. Appl. No. 14/674,329.
U.S. Patent Application for an Axially Reinforced Flexible Scan Element, filed Jul. 25, 2014 (Reublinger et al.); 41 pages, U.S. Appl. No. 14/340,627.
U.S. Patent Application for Apparatus and Methods for Monitoring One or More Portable Data Terminals (Caballero et al.), U.S. Appl. No. 14/725,352.
U.S. Patent Application for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape), U.S. Appl. No. 14/707,123.
U.S. Patent Application for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.), U.S. Appl. No. 14/715,672.
U.S. Patent Application for Auto-Contrast Viewfinder for an Indicia Reader filed Dec. 12, 2014 (Todeschini), U.S. Appl. No. 14/568,305.
U.S. Patent Application for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.), U.S. Appl. No. 14/264,173.
U.S. Patent Application for Barcode Reader With Security Features filed Oct. 31, 2014 (Todeschini et al.), U.S. Appl. No. 14/529,857.
U.S. Patent Application for Barcode Scanning System Using Wearable Device With Embedded Camera filed Nov. 5, 2014 (Todeschini), U.S. Appl. No. 14/533,319.
U.S. Patent Application for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages, U.S. Appl. No. 14/740,373.
U.S. Patent Application for Cargo Apportionment Techniques filed Feb. 5, 2015 (Morton et al.), U.S. Appl. No. 14/614,796.
U.S. Patent Application for Cloud-Based System for Reading of Decodable Indicia filed Jun. 19, 2015 (Todeschini et al.), U.S. Appl. No. 14/744,836.
U.S. Patent Application for Concatenated Expected Responses for Speech Recognition filed Nov. 7, 2014 (Braho et al.), U.S. Appl. No. 14/535,764.
U.S. Patent Application for Cordless Indicia Reader With a Multifunction Coil for Wireless Charging and EAS Deactivation, filed Jun. 24, 2015 (Xie et al.), U.S. Appl. No. 14/748,446.
U.S. Patent Application for Data Collection Module and System filed Jun. 8, 2015 (Powilleit), U.S. Appl. No. 14/732,870.
U.S. Patent Application for Decodable Indicia Reading Terminal With Combined Illumination filed Mar. 18, 2015 (Kearney et al.), U.S. Appl. No. 14/660,970.
U.S. Patent Application for Design Patiern for Secure Store filed Mar. 9, 2015 (Zhu et al.); 23 pages, U.S. Appl. No. 14/405,278.
U.S. Patent Application for Device for Supporting an Electronic Tool on a User's Hand filed Feb. 5, 2015 (Oberpriller et al.), U.S. Appl. No. 14/614,706.
U.S. Patent Application for Device Management Proxy for Secure Devices filed Apr. 1, 2015 (Yeakley et al.), U.S. Appl. No. 14/676,327.
U.S. Patent Application for Device Management Using Virtual Interfaces Cross-Reference to Related Applications filed Jun. 2, 2015 (Caballero), U.S. Appl. No. 14/728,397.
U.S. Patent Application for Device, System, and Method for Determining the Status of Checkout Lanes filed Feb. 23, 2015 (Todeschini), U.S. Appl. No. 14/628,708.
U.S. Patent Application for Dimensioning System Calibration Systems and Methods filed Apr. 6, 2015 (Laffargue et al.), U.S. Appl. No. 14/679,275.
U.S. Patent Application for Dimensioning System With Guided Alignment, filed Aug. 6, 2014 (Li et al.), U.S. Appl. No. 14/453,019.
U.S. Patent Application for Dimensioning System With Multipath Interference Mitigation filed Oct. 21, 2014 (Thuries et al.), U.S. Appl. No. 14/519,179.
U.S. Patent Application for Directing an Inspector Through an Inspection filed Nov. 3, 2014 (Miller et al.), U.S. Appl. No. 14/531,154.
U.S. Patent Application for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering), U.S. Appl. No. 14/257,364.
U.S. Patent Application for Dynamic Diagnostic Indicator Generation filed Dec. 17, 2014 (Goldsmith), U.S. Appl. No. 14/573,022.
U.S. Patent Application for Electronic Device With Wireless Path Selection Capability filed May 28, 2015 (Wang et al.), U.S. Appl. No. 14/724,134.
U.S. Patent Application for Evaluating Image Values filed May 19, 2015 (Ackley), U.S. Appl. No. 14/715,916.
U.S. Patent Application for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.), U.S. Appl. No. 14/231,898.
U.S. Patent Application for Handheld Dimensioner With Data-Quality Indication filed Oct. 21, 2014 (Laffargue et al.), U.S. Appl. No. 14/519,233.
U.S. Patent Application for Handheld Dimensioning System With Feedback filed Oct. 21, 2014 (Laffargue et al.), U.S. Appl. No. 14/519,195.
U.S. Patent Application for Handheld Dimensioning System With Measurement-Conformance Feedback filed Oct. 21, 2014 (Ackley et al.), U.S. Appl. No. 14/519,249.
U.S. Patent Application for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.), U.S. Appl. No. 14/705,012.
U.S. Patent Application for Identifying Inventory Items in a Storage Facility filed Oct. 14, 2014 (Singel et al.), U.S. Appl. No. 14/513,808.
U.S. Patent Application for Imaging Apparatus Comprising Image Sensor Array Having Shared Global Shutter Circuitry filed Jun. 19, 2015 (Wang), U.S. Appl. No. 14/744,633.
U.S. Patent Application for Imaging Apparatus Having Imaging Assembly filed May 29, 2015 (Barber et al.), U.S. Appl. No. 14/724,908.
U.S. Patent Application for Indicia Reader filed Apr. 1, 2015 (Huck), U.S. Appl. No. 14/676,109.
U.S. Patent Application for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.), U.S. Appl. No. 14/200,405.
U.S. Patent Application for Indicia Reading System Employing Digital Gain Control filed Jun. 18, 2015 (Xian et al.), U.S. Appl. No. 14/742,818.
U.S. Patent Application for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.), U.S. Appl. No. 14/150,393.
U.S. Patent Application for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini), U.S. Appl. No. 14/735,717.
U.S. Patent Application for Interactive Indicia Reader, filed Aug. 6, 2014 (Todeschini), U.S. Appl. No. 14/452,697.
U.S. Patent Application for Interactive User Interface for Capturing a Document in an Image Signal filed May 27, 2015 (Showering et al.), U.S. Appl. No. 14/722,608.
U.S. Patent Application for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages, U.S. Appl. No. 14/704,050.
U.S. Patent Application for Laser Scanning Code Symbol Reading System, filed Jul. 24, 2014 (Xian et al.), U.S. Appl. No. 14/339,708.
U.S. Patent Application for Media Gate for Thermal Transfer Printers filed Dec. 23, 2014 (Bowles), U.S. Appl. No. 14/580,262.
U.S. Patent Application for Medication Management System filed Apr. 24, 2015 (Sewell et al.), U.S. Appl. No. 14/695,364.
U.S. Patent Application for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data Sources filed May 8, 2015 (Smith et al.), U.S. Appl. No. 14/707,492.
U.S. Patent Application for Method and Application for Scanning a Barcode With a Smart Device While Continuously Running and Displaying an Application on the SI'Art Device Display filed Mar. 20, 2015 (Todeschini), U.S. Appl. No. 14/664,063.
U.S. Patent Application for Method and System for Recognizing Speech Using Wildcards in an Expected Response filed Oct. 29, 2014 (Braho et al.), U.S. Appl. No. 14/527,191.
U.S. Patent Application for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.), U.S. Appl. No. 14/705,407.
U.S. Patent Application for Method of and System for Detecting Object Weighing Interferences filed Jun. 12, 2015 (Amundsen et al.), U.S. Appl. No. 14/738,038.
U.S. Patent Application for Method of Programming the Default Cable Interface Software in an Indicia Reading Device filed May 29, 2015 (Barten), U.S. Appl. No. 14/724,849.
U.S. Patent Application for Methods for Training a Speech Recognition System filed Feb. 11, 2015 (Pecorari), U.S. Appl. No. 14/619,093.
U.S. Patent Application for Mobile Computing Device With Data Cognition Software, filed on Aug. 19, 2014 (Todeschini et al.), U.S. Appl. No. 14/462,801.
U.S. Patent Application for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.), U.S. Appl. No. 14/446,391.
U.S. Patent Application for Multifunction Point of Sale System filed Mar. 19, 2015 (Van Horn et al.), U.S. Appl. No. 14/662,922.
U.S. Patent Application for Multiple Platform Support System and Method filed Apr. 15, 2015 (Qu et al.), U.S. Appl. No. 14/686,822.
U.S. Patent Application for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned., U.S. Appl. No. 14/277,337.
U.S. Patent Application for Navigation System Configured to Integrate Motion Sensing Device Inputs filed Apr. 2, 2015 (Showering), U.S. Appl. No. 14/676,898.
U.S. Patent Application for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.), U.S. Appl. No. 14/747,197.
U.S. Patent Application for Optical Reading Apparatus Having Variable Settings filed Jan. 21, 2015 (Chen et al.), U.S. Appl. No. 14/416,147.
U.S. Patent Application for Portable Electronic Devices Having a Separate Location Trigger Unit for Use in Controlling an Application Unit filed Nov. 3, 2014 (Bian et al. ), U.S. Appl. No. 14/398,542.
U.S. Patent Application for Pre-Paid Usage System for Encoded Information Reading Terminals filed May 13, 2 0 15 (Smith), U.S. Appl. No. 14/710,666.
U.S. Patent Application for Reprogramming System and Method for Devices Including Programming Symbol filed Mar. 18, 2015 (Soule et al.), U.S. Appl. No. 14/661,013.
U.S. Patent Application for Safety System and Method filed Dec. 22, 2014 (Ackley et al.), U.S. Appl. No. 14/578,627.
U.S. Patent Application for Secure Unatiended Network Authentication filed Apr. 24, 2015 (Kubler et al.); 52 pages, U.S. Appl. No. 14/695,923.
U.S. Patent Application for Selective Output of Decoded Message Data filed Jun. 19, 2015 (Todeschini et al.), U.S. Appl. No. 14/745,006.
U.S. Patent Application for Shelving and Package Locating Systems for Delivery Vehicles filed Jan. 6, 2015 (Payne), U.S. Appl. No. 14/590,024.
U.S. Patent Application for Symbol Reading System Having Predictive Diagnostics filed Apr. 29, 2015 (Nahill et al.), U.S. Appl. No. 14/699,436.
U.S. Patent Application for System and Method for Detecting Barcode Printing Errors filed Jan. 14, 2015 (Ackley), U.S. Appl. No. 14/596,757.
U.S. Patent Application for System and Method for Dimensioning filed Oct. 21, 2014 (Ackley et al.), U.S. Appl. No. 14/519,211.
U.S. Patent Application for System and Method for Display of Information Using a Vehicle-Mount Computer filed May 8, 2015 (Chamberlin), U.S. Appl. No. 14/707,037.
U.S. Patent Application for System and Method for Power Management of Mobile Devices filed Apr. 9, 2015 (Murawski et al.), U.S. Appl. No. 14/682,615.
U.S. Patent Application for System and Method for Regulating Barcode Data Injection Into a Running Application on a SI1art Device filed May 1, 2015 (Todeschini et al.), U.S. Appl. No. 14/702,110.
U.S. Patent Application for System and Method for Reliable Store-and-Forward Data Handling by Encoded Information Reading Terminals filed Mar. 2, 2015 (Sevier), U.S. Appl. No. 14/635,346.
U.S. Patent Application for System for Communication Via a Peripheral Hub filed Apr. 15, 2015 (Kohtz et al.), U.S. Appl. No. 14/687,289.
U.S. Patent Application for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Bandringa), U.S. Appl. No. 14/740,320.
U.S. Patent Application for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.), U.S. Appl. No. 14/283,282.
U.S. Patent Application for Terminal Including Imaging Assembly filed Feb. 25, 2015 (Gomez et al.), U.S. Appl. No. 14/630,841.
U.S. Patent Application for Tracking Battery Conditions filed May 4, 2015 (Young et al.), U.S. Appl. No. 14/702,979.
U.S. Patent Application for Transforming Components of a Web Page to Voice Prompts filed Mar. 26, 2015 (Funyak et al.), U.S. Appl. No. 14/669,280.
U.S. Patent Application for Variable Depth of Field Barcode Scanner filed Sep. 10, 2014 (McCloskey et al.); 29 pages, U.S. Appl. No. 14/483,056.
U.S. Patent Application for Vehicle Mount Computer With Configurable Ignition Switch Behavior filed Mar. 20, 2015 (Davis et al.), U.S. Appl. No. 14/663,638.
U.S. Patent Application for Wireless Mesh Point Portable Data Terminal filed Jun. 18, 2015 (Wang et al.), U.S. Appl. No. 14/743,257.
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages.
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages.
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/519,017 for Scanner filed Mar. 2, 2015 (Zhou et al.); 11 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 29/524,186 for Scanner filed Apr. 17, 2015 (Zhou et al.); 17 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages.
U.S. Appl. No. 29/528,165 for In-Counter Barcode Scanner filed May 27, 2015 (Oberpriller et al.); 13 pages.
U.S. Appl. No. 29/528,590 for Electronic Device filed May 29, 2015 (Fitch et al.); 9 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2. 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al).
Related Publications (1)
Number Date Country
20200150740 A1 May 2020 US
Continuations (1)
Number Date Country
Parent 15829167 Dec 2017 US
Child 16742572 US