SMC COMBINATION THERAPY FOR THE TREATMENT OF CANCER

Information

  • Patent Application
  • 20200384103
  • Publication Number
    20200384103
  • Date Filed
    October 10, 2019
    5 years ago
  • Date Published
    December 10, 2020
    4 years ago
Abstract
The present invention includes methods and compositions for enhancing the efficacy of SMCs in the treatment of cancer. In particular, the present invention includes methods and compositions for combination therapies that include an SMC and at least a second agent that stimulates one or more apoptotic or immune pathways. The second agent may be, e.g., an immunostimulatory compound or oncolytic virus.
Description
BACKGROUND OF THE INVENTION

The death of cells by apoptosis (or programmed cell death), and other cell death pathways, is regulated by various cellular mechanisms. Inhibitor of apoptosis (IAP) proteins, such as X-linked IAP (XIAP) or cellular IAP proteins 1 and 2 (cIAP1 and 2), are regulators of programmed cell death, including (but not limited to) apoptosis pathways, e.g., in cancer cells. Other forms of cell death could include, but are not limited to, necroptosis, necrosis, pyroptosis, and immunogenic cell death. In addition, these IAPs regulate various cell signaling pathways through their ubiquitin E3 ligase activity, which may or may not be related to cell survival. Another regulator of apoptosis is the polypeptide Smac. Smac is a proapoptotic protein released from mitochondria in conjunction with cell death. Smac can bind to IAPs, antagonizing their function. Smac mimetic compounds (SMCs) are non-endogenous proapoptotic compounds capable of carrying out one or more of the functions or activities of endogenous Smac.


The prototypical XIAP protein directly inhibits key initiator and executioner caspase proteins within apoptosis cascades. XIAP can thereby thwart the completion of apoptotic programs. Cellular IAP proteins 1 and 2 are E3 ubiquitin ligases that regulate apoptotic signaling pathways engaged by immune cytokines. The dual loss of cIAP1 and 2 can cause TNFα, TRAIL, and/or IL-1β to become toxic to, e.g., the majority of cancer cells. SMCs may inhibit XIAP, cIAP1, cIAP2, or other IAPs, and/or contribute to other proapoptotic mechanisms.


Treatment of cancer by the administration of SMCs has been proposed. However, SMCs alone may be insufficient to treat certain cancers. There exists a need for methods of treating cancer that improve the efficacy of SMC treatment in one or more types of cancer.


SUMMARY OF THE INVENTION

The present invention includes compositions and methods for the treatment of cancer by the administration of an SMC and an immunostimulatory, or immunomodulatory, agent. SMCs and immunostimulatory agents are described herein, including, without limitation, the SMCs of Table 1 and the immunostimulatory agents of Tables 2 and 3.


One aspect of the present invention is a composition including an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, such that the SMC and the immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.


Another aspect of the present invention is a method for treating a patient diagnosed with cancer, the method including administering to the patient an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, such that the SMC and the immunostimulatory agent are administered simultaneously or within 28 days of each other in amounts that together are sufficient to treat the cancer.


In some embodiments, the SMC and the immunostimulatory agent are administered within 14 days of each other, within 10 days of each other, within 5 days of each other, within 24 hours of each other, within 6 hours of each other, or simultaneously.


In particular embodiments, the SMC is a monovalent SMC, such as LCL161, SM-122, GDC-0152/RG7419, GDC-0917/CUDC-427, or SM-406/AT-406/Debio1143. In other embodiments, the SMC is a bivalent SMC, such as AEG40826/HGS1049, OICR720, TL32711/Birinapant, SM-1387/APG-1387, or SM-164.


In particular embodiments, the immunostimulatory agent is a TLR agonist from Table 2. In certain embodiments, the immunostimulatory agent is a lipopolysaccharide, peptidoglycan, or lipopeptide. In other embodiments, the immunostimulatory agent is a CpG oligodeoxynucleotide, such as CpG-ODN 2216. In still other embodiments, the immunostimulatory agent is imiquimod or poly(I:C).


In particular embodiments, the immunostimulatory agent is a virus from Table 3. In certain embodiments, the immunostimulatory agent is a vesicular stomatitis virus (VSV), such as VSV-M51R, VSV-MΔ51, VSV-IFNβ, or VSV-IFNβ-NIS. In other embodiments, the immunostimulatory agent is an adenovirus, maraba vesiculovirus, reovirus, rhabdovirus, or vaccinia virus, or a variant thereof. In some embodiments, the immunostimulatory agent is a Talimogene laherparepvec.


In some embodiments, a composition or method of the present invention includes a plurality of immunostimulatory or immunomodulatory agents, including but not limited to interferons, and/or a plurality of SMCs.


In some embodiments, a composition or method of the present invention includes one or more interferon agents, such as an interferon type 1 agent, an interferon type 2 agent, and/or an interferon type 3 agent.


In any method of the present invention, the cancer can be a cancer that is refractory to treatment by an SMC in the absence of an immunostimulatory or immunomodulatory agent. In any method of the present invention, the treatment can further include administration of a therapeutic agent including an interferon.


In any method of the present invention, the cancer can be a cancer that is selected from adrenal cancer, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, colorectal cancer, connective tissue cancer, cancer of the digestive system, endometrial cancer, epipharyngeal carcinoma, esophageal cancer, eye cancer, gallbladder cancer, gastric cancer, cancer of the head and neck, hepatocellular carcinoma, intra-epithelial neoplasm, kidney cancer, laryngeal cancer, leukemia, liver cancer, liver metastases, lung cancer, lymphoma, melanoma, myeloma, multiple myeloma, neuroblastoma, mesothelioma, neuroglioma, myelodysplastic syndrome, multiple myeloma, oral cavity cancer, ovarian cancer, paediatric cancer, pancreatic cancer, pancreatic endocrine tumors, penile cancer, plasma cell tumors, pituitary adenoma, thymoma, prostate cancer, renal cell carcinoma, cancer of the respiratory system, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer, small bowel cancer, stomach cancer, testicular cancer, thyroid cancer, ureteral cancer, and cancer of the urinary system.


The invention further includes a composition including an SMC from Table 1 and an immunostimulatory agent. The immunostimulatory agent may include a killed virus, an inactivated virus, or a viral vaccine, such that the SMC and the immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof. In particular embodiments, the said immunostimulatory agent is a NRRP or a rabies vaccine. In other embodiments, the invention includes a composition including an SMC from Table 1 and an immunostimulatory agent. The immunostimulatory agent may include a first agent that primes an immune response and at least a second agent that boosts the immune response, such that the SMC and the said immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof. In certain embodiments, one or both of the first agent and the second agent is an oncolytic virus vaccine. In other particular embodiments, the first agent is an adenovirus carrying a tumor antigen and the second agent is a vesiculovirus, such as a Maraba-MG1 carrying the same tumor antigen as the adenovirus or a Maraba-MG1 that does not carry a tumor antigen.


“Neighboring” cell means a cell sufficiently proximal to a reference cell to directly or indirectly receive an immune, inflammatory, or proapoptotic signal from the reference cell.


“Potentiating apoptosis or cell death” means to increase the likelihood that one or more cells will apoptose or die. A treatment may potentiate cell death by increasing the likelihood that one or more treated cells will apoptose, and/or by increasing the likelihood that one or more cells neighboring a treated cell will apoptose or die.


“Endogenous Smac activity” means one or more biological functions of Smac that result in the potentiation of apoptosis, including at least the inhibition of cIAP1 and cIAP2. It is not required that the biological function occur or be possible in all cells under all conditions, only that Smac is capable of the biological function in some cells under certain naturally occurring in vivo conditions.


“Smac mimetic compound” or “SMC” means a composition of one or more components, e.g., a small molecule, compound, polypeptide, protein, or any complex thereof, capable of inhibiting cIAP1 and/or inhibiting cIAP2. Smac mimetic compounds include the compounds listed in Table 1.


To “induce an apoptotic program” means to cause a change in the proteins or protein profiles of one or more cells such that the amount, availability, or activity of one or more proteins capable of participating in an IAP-mediated apoptotic pathway is increased, or such that one or more proteins capable of participating in an IAP-mediated apoptotic pathway are primed for participation in the activity of such a pathway. Inducing an apoptotic program does not require the initiation of cell death per se: induction of a program of apoptosis in a manner that does not result in cell death may synergize with treatment with an SMC that potentiates apoptosis, leading to cell death.


“Immunostimulatory agent” means a composition of one or more components cumulatively capable of inducing an apoptotic or inflammatory program in one or more cells of a subject, and cell death downstream of this program being inhibited by at least cIAP1 and cIAP2. An immunostimulatory agent may be, e.g., a TLR agonist (e.g., a compound listed in Table 2) or a virus (e.g., a virus listed in Table 3), such as an oncolytic virus.


“Treating cancer” means to induce the death of one or more cancer cells in a subject, or to provoke an immune response which could lead to tumor regression and block tumor spread (metastasis). Treating cancer may completely or partially abolish some or all of the signs and symptoms of cancer in a subject, decrease the severity of one or more symptoms of cancer in a subject, lessen the progression of one or more symptoms of cancer in a subject, or mediate the progression or severity of one or more subsequently developed symptoms.


“Prodrug” means a therapeutic agent that is prepared in an inactive form that may be converted to an active form within the body of a subject, e.g. within the cells of a subject, by the action of one or more enzymes, chemicals, or conditions present within the subject.


By a “low dosage” or “low concentration” is meant at least 5% less (e.g., at least 10%, 20%, 50%, 80%, 90%, or even 95%) than the lowest standard recommended dosage or lowest standard recommended concentration of a particular compound formulated for a given route of administration for treatment of any human disease or condition.


By a “high dosage” is meant at least 5% (e.g., at least 10%, 20%, 50%, 100%, 200%, or even 300%) more than the highest standard recommended dosage of a particular compound for treatment of any human disease or condition.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1F are a set of graphs and images showing that SMC synergizes with oncolytic rhabdoviruses to induce cancer cell death. FIGS. 1A-1F are representative of data from at least three independent experiments using biological replicates (n=3). FIG. 1A is a pair of graphs showing the results of Alamar blue viability assays of cells treated with LCL161 and increasing MOIs of VSVΔ51. Error bars, mean±s.d. FIG. 1B is a set of micrographs of cells treated with LCL161 and 0.1 MOI of VSVΔ51-GFP. FIG. 1C is a pair of graphs showing viability (Alamar Blue) of cells infected with VSVΔ51 (0.1 MOI) in the presence of increasing concentrations of LCL161. Error bars, mean±s.d. FIG. 1D is a pair of graphs showing data from cells that were infected with VSVΔ51 for 24 hours. Cell culture supernatant was exposed to virus-inactivating UV light and then media was applied to new cells for viability assays (Alamar Blue) in the presence of LCL161. Error bars, mean±s.d. FIG. 1E is a graph showing the viability of cells co-treated with LCL161 and non-spreading virus VSVΔ51AG (0.1 MOI). Error bars, mean±s.d. FIG. 1F is a graph and a pair of images relating to cells that were overlaid with agarose media containing LCL161, inoculated with VSVΔ51-GFP in the middle of the well, and infectivity measured by fluorescence and cytotoxicity was assessed by crystal violet staining (images were superimposed; non-superimposed images are in FIG. 11). Error bars, mean±s.d.



FIGS. 2A-2E are a set of graphs and images showing that SMC treatment does not alter the cancer cell response to oncolytic virus (OV) infection. FIGS. 2A-2E are representative of data from at least three independent experiments using biological replicates. FIG. 2A is a pair of graphs showing data from cells that were pretreated with LCL161 and infected with the indicated MOI of VSVΔ51. Virus titer was assessed by a standard plaque assay. FIG. 2B is a pair of graphs and a set of micrographs captured over time from cells that were treated with LCL161 and VSVΔ51-GFP. The graphs plot the number of GFP signals over time. Error bars, mean±s.d. n=12. FIG. 2C, is pair of graphs showing data from an experiment in which cell culture supernatants from LCL161 and VSVΔ51 treated cells were processed for the presence of IFNβ by ELISA. Error bars, mean±s.d. n=3. FIG. 2D is a pair of graphs showing data from an experiment in which cells were treated with LCL161 and VSVΔ51 for 20 hours and processed for RT-qPCR to measure interferon stimulated gene (ISG) expression. Error bars, mean±s.d. n=3. FIG. 2E is a pair of images showing immunoblots for STAT1 pathway activation performed on cells that were pretreated with LCL161 and subsequently stimulated with IFNβ.



FIGS. 3A-3H are a set of graphs showing that SMC treatment of OV-infected cancer cells leads to type 1 interferons (type 1 IFN) and nuclear-factor kappa B (NF-κb)-dependent production of proinflammatory cytokines. FIGS. 3A-3H are representative of data from at least three independent experiments using biological replicates (n=3). FIG. 3A is a graph showing Alamar blue viability assay of cells transfected with combinations of nontargeting (NT), TNF-R1 and DR5 siRNA and subsequently treated with LCL161 and VSVΔ51 (0.1 MOI) or IFNβ. Error bars, mean±s.d. FIG. 3B is a graph showing the viability of cells transfected with NT or IFNAR1 siRNA and subsequently treated with LCL161 and VSVΔ51ΔG. Error bars, mean±s.d. FIG. 3C is a graph showing data from an experiment in which cells were pretreated with LCL161, infected with 0.5 MOI of VSVΔ51, and cytokine gene expression was measured by RT-qPCR. Error bars, mean±s.d. FIG. 3D is a chart showing data collected from an experiment in which cytokine ELISAs were performed on cells transfected with NT or IFNAR1 siRNA and subsequently treated with LCL161 and 0.1 MOI of VSVΔ51. Error bars, mean±s.d. FIG. 3E is a graph showing the viability of cells co-treated with LCL161 and cytokines. Error bars, mean±s.d. FIG. 3F is a graph showing data from an experiment in which cells were pretreated with LCL161, stimulated with 250 U/mL (˜20 pg/mL) IFNβ and cytokine mRNA levels were determined by RT-qPCR. Error bars, mean±s.d. FIG. 3G is a pair of graphs showing the results of cytokine ELISAs conducted on cells treated with LCL161 and 0.1 MOI of VSVΔ51. FIG. 3H is a graph showing the result of cytokine ELISAs performed on cells expressing IKKβ-DN and treated with LCL161 and VSVΔ51 or IFNβ. Error bars, mean±s.d.



FIGS. 4A-4G are a set of graphs and images showing that combinatorial SMC and OV treatment is efficacious in vivo and is dependent on cytokine signaling. FIG. 4A is a pair of graphs showing data from an experiment in which EMT6-Fluc tumors were treated with 50 mg/kg LCL161 (p.o.) and, 5×108 PFU VSVΔ51 (i.v.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. n=5 per group. Log-rank with Holm-Sidak multiple comparison: **, p<0.01; ***, p<0.001. Representative data from two independent experiments are shown. FIG. 4B is a series of representative IVIS images that were acquired from the experiment of FIG. 4A. FIGS. 4C-4D are sets of immunofluorescence images of infection and apoptosis in 24 hour treated tumors using α-VSV or α-c-caspase-3 antibodies. FIG. 4E is an image showing an immunoblot in which protein lysates of tumors from the corresponding treated mice were immunoblotted with the indicated antibodies. FIG. 4F is a pair of graphs showing data from an experiment in which mice bearing EMT6-Fluc tumors were injected with neutralizing TNFα or isotype matched antibodies, and subsequently treated with 50 mg/kg LCL161 (p.o.) and 5×108 PFU VSVΔ51 (i.v.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. Vehicle α-TNFα, n=5; SMC α-TNFα, n=5; vehicle+VSVΔ51, n=5; α-TNFα, n=5; SMC+VSVΔ51 α-TNFα, n=7; SMC+VSVΔ51 α-IgG, n=7. Log-rank with Holm-Sidak multiple comparison: ***, p<0.001. FIG. 4G is a set of representative IVIS images that were acquired from the experiment of FIG. 4F.



FIGS. 5A-5E are a series of graphs and images showing that small molecule immune stimulators enhance SMC therapy in murine cancer models. FIG. 5A is a graph showing the results of Alamar blue viability assays of EMT6 cells which were co-cultured with splenocytes in a transwell system, and for which the segregated splenocytes were treated with LCL161 and the indicated TLR agonists. Error bars, mean±s.d. Representative data from at least three independent experiments using biological replicates (n=3) is shown. FIG. 5B is a pair of graphs showing the results of an experiment in which established EMT6-Fluc tumors were treated with SMC (50 mg/kg LCL161, p.o.) and poly(I:C) (15 ug i.t. or 2.5 mg/kg i.p.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Vehicle, vehicle+poly(I:C) i.p., n=4; remainder groups, n=5. Error bars, mean±s.e.m. Log-rank with Holm-Sidak multiple comparison: **, p<0.01; ***, p<0.001. FIG. 5C is a series of representative IVIS images that were acquired from the experiment of FIG. 5B. FIG. 5D is a pair of graphs showing the results of an experiment in which EMT6-Fluc tumors were treated with LCL161 or combinations of 200 μg (i.t.) and/or 2.5 mg/kg (i.p.) CpG ODN 2216. The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Vehicle, n=5; SMC, n=5; vehicle+CpG i.p., n=5; SMC+CpG i.p., n=7; vehicle+CpG i.t., n=5; SMC+CpG i.t., n=8; vehicle+CpG i.p.+i.t., n=5; SMC+CpG i.p.+i.t., n=8. Error bars, mean±s.e.m. Log-rank with Holm-Sidak multiple comparison: *, p<0.05; **, p<0.01; ***, p<0.001. FIG. 5E is a series of representative IVIS images that were acquired from the experiment of FIG. 5D.



FIG. 6 is a graph showing the responsiveness of a panel of cancer and normal cells to the combinatorial treatment of SMC and OV. The indicated cancer cell lines (n=28) and non-cancer human cells (primary human skeletal muscle (HSkM) and human fibroblasts (GM38)) were treated with LCL161 and increasing VSVΔ51 for 48 hours. The dose required to yield 50% viable cells in the presence in SMC versus vehicle was determined using nonlinear regression and plotted as a log EC50 shift toward increasing sensitivity. Representative data from at least two independent experiments using biological replicates (n=3) are shown.



FIG. 7 is pair of graphs showing that SMC and OV co-treatment is highly synergistic in cancer cells. The graphs show Alamar blue viability of cells treated with serial dilutions of a fixed ratio combination mixture of VSVΔ51 and LCL161 (PFU: μM LCL161). Combination indexes (CI) were calculated using Calcusyn. Plots represent the algebraic estimate of the CI in function of the fraction of cells affected (Fa). Error bars, mean±s.e.m. Representative data from three independent experiments using biological replicates (n=3) is shown.



FIG. 8 is a pair of graphs showing that monovalent and bivalent SMCs synergize with OVs to cause cancer cell death. The graphs show the result of Alamar blue viability assay of cells treated with 5 μM monovalent SMCs (LCL161, SM-122) or 0.1 μM bivalent SMCs (AEG40730, OICR720, SM-164) and VSVΔ51 at differing MOIs. Error bars, mean±s.d. Representative data from three independent experiments using biological replicates (n=3) is shown.



FIGS. 9A and 9B are a set of images and graphs showing that SMC-mediated cancer cell death is potentiated by oncolytic viruses. FIG. 9A is a series of images showing the results of a virus spreading assay of cells that were overlaid with 0.7% agarose in the presence of vehicle or LCL161 and 500 PFU of the indicated viruses were dispensed in to the middle of the well. Cytotoxicity was assessed by crystal violet staining. Arrow denotes extension of the cell death zone from the origin of OV infection. FIG. 9B is a set of graphs showing the Alamar blue viability of cells treated with LCL161 and increasing MOIs of VSVΔ51 or Maraba-MG1. Error bars, mean±s.d. Representative data from two independent experiments using biological replicates (n=3) is shown.



FIGS. 10A and 10B are a set of graphs and images showing that cIAP1, cIAP2 and XIAP cooperatively protect cancer cells from OV-induced cell death. FIG. 10A shows Alamar blue viability of cells transfected with nontargeting (NT) siRNA or siRNA targeting cIAP1, cIAP2 or XIAP, and subsequently treated with LCL161 and 0.1 MOI VSVΔ51 for 48 hours. Error bars, mean±s.d. Representative data from three independent experiments using biological replicates (n=3) is shown. FIG. 10B is a representative siRNA efficacy immunoblots for the experiment of FIG. 10A.



FIG. 11 is a set of images used for superimposed images depicted in FIG. 1F. Cells were overlaid with agarose media containing LCL161, inoculated with VSVΔ51-GFP in the middle of the well, and infectivity measured by fluorescence and cytotoxicity was denoted by crystal violet (CV) staining. Note: the bars represent the same size.



FIGS. 12A and 12B are a set of images and a graph showing that SMC treatment does not affect OV distribution or replication in vivo. FIG. 12A is a set of images showing images from an experiment in which EMT6-bearing mice were treated with 50 mg/kg LCL161 (p.o.) and 5×108 PFU firefly luciferase tagged VSVΔ51 (VSVΔ51-Fluc) via i.v. injection. Virus distribution and replication was imaged at 24 and 48 hours using the IVIS. Red outline denotes region of tumors. Representative data from two independent experiments are shown. Arrow indicates spleen infected with VSVΔ51-Fluc. FIG. 12B is a graph showing data from an experiment in which tumors and tissues at 48 hour post-infection were homogenized and virus titrations were performed for each group. Error bars, mean±s.e.m.



FIGS. 13A and 13B are images showing verification of siRNA-mediated knockdown of non-targeting (NT), TNFR1, DR5 and IFNAR1 by immunoblotting. FIG. 13A is an immunoblot showing knockdown in samples from the experiment of FIG. 3A. FIG. 13B is an immunoblot showing knockdown in samples from the experiment of FIG. 3B.



FIGS. 14A-14G are images and graphs showing that SMC synergizes with OVs to induce caspase-8- and RIP-1-dependent apoptosis in cancer cells. FIGS. 14A-14G show representative data from three independent experiments using biological replicates. FIG. 14A is a pair of images of immunoblots in which immunoblotting for caspase and PARP activation was conducted on cells pretreated with LCL161 and subsequently treated with 1 MOI of VSVΔ51. FIG. 14B is a series of images showing micrographs of caspase activation that were acquired with cells that were co-treated with LCL161 and VSVΔ51 in the presence of the caspase-3/7 substrate DEVD-488. FIG. 14C is a graph in which the proportion of DEVD-488-positive cells from the experiment of FIG. 14B was plotted (n=12). Error bars, mean±s.d. FIG. 14D is a series of images from an experiment in which apoptosis was assessed by micrographs of translocated phosphatidyl serine (Annexin V-CF594, green) and loss of plasma membrane integrity (YOYO-1, blue) in cells treated with LCL161 and VSVΔ51. FIG. 14E is a graph in which the proportion of Annexin V-CF594-positive and YOYO-1-negative apoptotic cells from the experiment of FIG. 14D was plotted (n=9). Error bars, mean±s.d. FIG. 14F is a pair of graphs showing alamar blue viability of cells transfected with nontargeting (NT) siRNA or siRNA targeting caspase-8 or RIP1, and subsequently treated with LCL161 and 0.1 MOI of VSVΔ51 (n=3). Error bars, mean±s.d. FIG. 14G is an image of an immunoblot showing representative siRNA efficacy for the experiment of FIG. 14F.



FIGS. 15A and 15B are a set of graphs showing that expression of TNFα transgene from OVs potentiates SMC-mediated cancer cell death further. FIG. 15A is a pair of graphs showing Alamar blue viability assay of cells co-treated with 5 μM SMC and increasing MOIs of VSVΔ51-GFP or VSVΔ51-TNFα for 24 hours. Error bars, mean±s.d. FIG. 15B is a graph showing representative EC50 shifts from the experiment of FIG. 15A. The dose required to yield 50% viable cells in the presence in SMC versus vehicle was determined using nonlinear regression and plotted as EC50 shift. Representative data from three independent experiments using biological replicates (n=3).



FIG. 16 is a set of images showing that oncolytic virus infection leads to enhanced TNFα expression upon SMC treatment. EMT6 cells were co-treated with 5 μM SMC and 0.1 MOI VSVΔ51-GFP for 24 hours, and cells were processed for the presence of intracellular TNFα via flow cytometry. Images show representative data from four independent experiments.



FIGS. 17A-17C are a pair of graphs and an image showing that TNFα signaling is required for type I IFN induced synergy with SMC treatment. FIGS. 17A-17C show representative data from at least three independent experiments using biological replicates (n=3). FIG. 17A is a graph showing the results of an Alamar blue viability assay of EMT6 cells transfected with nontargeting (NT) or TNF-R1 siRNA and subsequently treated with LCL161 and VSVΔ51 (0.1 MOI) or IFNβ. Error bars, mean±s.d. FIG. 17B is a representative siRNA efficacy blot from the experiment of FIG. 17A. FIG. 17C is a graph showing the viability of EMT6 cells that were pretreated with TNFα neutralizing antibodies and subsequently treated with 5 μM SMC and VSVΔ51 or IFNβ.



FIGS. 18A and 18B are a schematic of OV-induced type I IFN and SMC synergy in bystander cancer cell death. FIG. 18A is a schematic showing that virus infection in refractory cancer cells leads to the production of Type 1 IFN, which subsequently induces expression of IFN stimulated genes, such as TRAIL. Type 1 IFN stimulation also leads to the NF-κB-dependent production of TNFα. IAP antagonism by SMC treatment leads to upregulation of TNFα and TRAIL expression and apoptosis of neighboring tumor cells. FIG. 18B is a schematic showing that infection of a single tumor cell results in the activation of innate antiviral Type 1 IFN pathway, leading to the secretion of Type 1 IFNs onto neighboring cells. The neighboring cells also produce the proinflammatory cytokines TNFα and TRAIL. The singly infected cell undergoes oncolysis and the remainder of the tumor mass remains intact. On the other hand, neighboring cells undergo bystander cell death due upon SMC treatment as a result of the SMC-mediated upregulation of TNFα/TRAIL and promotion of apoptosis upon proinflammatory cytokine activation.



FIGS. 19A and 19B are a graph and a blot showing that SMC treatment causes minimal transient weight loss and leads to downregulation of cIAP1/2. FIG. 19A is graph showing weights from LCL161 treated mice female BALB/c mice (50 mg/kg LCL161, p.o.) that were recorded after a single treatment (day 0). n=5 per group. Error bars, mean±s.e.m. FIG. 19B is a blot of samples from an experiment in which EMT6-tumor bearing mice were treated with 50 mg/kg LCL161 (p.o.). Tumors were harvested at the indicated time for western blotting using the indicated antibodies.



FIGS. 20A-20C are a set of graphs showing that SMC treatment induces transient weight loss in a syngeneic mouse model of cancer. FIGS. 20A-20C are graphs showing measurements of mouse weights upon SMC and oncolytic VSV (FIG. 20A), poly(I:C) (FIG. 20B), or CpG (FIG. 20C) co-treatment in tumor-bearing animals from the experiments depicted in FIGS. 4A, 5B, and 5D, respectively. Error bars, mean±s.e.m.



FIGS. 21A-21D are a series of graphs showing that VSVΔ51-induced cell death in HT-29 cell is potentiated by SMC treatment in vitro and in vivo. FIG. 21A is a graph showing data from an experiment in which cells were infected with VSVΔ51, the cell culture supernatant was exposed to UV light for 1 hour and was applied to new cells at the indicated dose in the presence of LCL161. Viability was ascertained by Alamar blue. Error bars, mean±s.d. FIG. 21B is a graph showing Alamar blue viability of cells co-treated with LCL161 and a non-spreading virus VSVΔ51ΔG (0.1 MOI). Error bars, mean±s.d. Panels a and b show representative data from three independent experiments using biological replicates (n=3). FIG. 21C is a pair of graphs showing data from an experiment in which CD-1 nude mice with established HT-29 tumors were treated with 50 mg/kg LCL161 (p.o.) and 1×108 PFU VSVΔ51 (i.t.). Vehicle, n=5; VSVΔ51, n=6; SMC, n=6; VSVΔ51+SMC, n=7. The left panel depicts tumor growth relative to day 0 post-treatment. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. Log-rank with Holm-Sidak multiple comparison: ***, p<0.001. FIG. 21D is a graph showing measurement of mouse weights upon SMC and OV co-treatment in tumor-bearing animals. Error bars, mean±s.e.m.



FIG. 22 is a blot showing that type I IFN signaling is required for SMC and OV synergy in vivo. EMT6 tumor bearing mice were treated with vehicle or 50 mg/kg LCL161 for 4 hours, and subsequently treated with neutralizing IFNAR1 or isotype antibodies for 20 hours. Subsequently, animals were treated with PBS or VSVΔ51 for 18 hours. Tumors were processed for Western blotting with the indicated antibodies.



FIGS. 23A and 23B are a pair of graphs showing that oncolytic infection of innate immune cells leads to cancer cell death in the presence of SMCs. FIG. 23A is a graph showing data from an experiment in which immune subpopulations were sorted from splenocytes (CD11b+ F4/80+: macrophage; CD11b+ Gr1+: neutrophil; CD11b− CD49b+: NK cell; CD11b− CD49b−: T and B cells) and were infected with 1 MOI of VSVΔ51 for 24 hours. Cell culture supernatants were applied to SMC-treated ETM6 cells for 24 hours and EMT6 viability was assessed by Alamar Blue. Error bars, mean±s.d. FIG. 23B is a chart showing data from an experiment in which bone marrow derived macrophages were infected with VSVΔ51 and the supernatant was applied to EMT6 cells in the presence of 5 μM SMC, and viability was measured by Alamar blue. Error bars, mean±s.d.



FIGS. 24A-24H are a series of images of full-length immunoblots. Immunoblots of FIGS. 24A-24H pertain to (FIG. 24A) FIG. 2E, (FIG. 24B) FIG. 4E, (FIG. 24C) FIG. 10B, (FIG. 24D) FIGS. 13A and 13B, (FIG. 24E) FIG. 14A, (FIG. 24F) FIG. 14G, (FIG. 24G) FIG. 19B, and (FIG. 24H) FIG. 17B, respectively.



FIGS. 25A-25B are a set of graphs showing that non-replicating rhabdovirus-derived particles (NRRPs) synergize with SMCs to cause cancer cell death. FIG. 25A is a set of graphs showing data from an experiment in which EMT6, DBT, and CT-2A cancer cells were co-treated with the SMC LCL161 (SMC; EMT6: 5 μM, DBT and CT-2A: 15 μM) and different numbers of NRRPs for 48 hr (EMT6) or 72 hr (DBT, CT-2A), and cell viability was assessed by Alamar Blue. FIG. 25B is a pair of graphs showing data from an experiment in which ufractionated mouse splenocytes were incubated with 1 particle per cell of NRRP or 250 μM CpG ODN 2216 for 24 hr. Subsequently, the supernatant was applied to EMT6 cells in a dose-response fashion, and 5 μM LCL161 was added. EMT6 viability was assessed 48 hr post-treatment by Alamar blue.



FIGS. 26A and 26B are a graph and a set of image showing that vaccines synergize with SMCs to cause cancer cell death. FIG. 26A is a graph showing data from an experiment in which EMT6 cells were treated with vehicle or 5 μM LCL161 (SMC) and 1000 CFU/mL BCG or 1 ng/mL TNFα for 48 hr, and viability was assessed by Alamar blue. FIG. 26B is a set of representative IVIS images depicting survival of mice bearing mammary fat pad tumors (EMT6-Fluc) that were treated twice with vehicle or 50 mg/kg LCL161 (SMC) and PBS intratumorally (i.t.), BCG (1×105 CFU) i.t., or BCG (1×105 CFU) intraperitoneally (i.p.) and subjected to live tumor bioluminescence imaging by IVIS CCD camera at various time points. Scale: p/sec/cm2/sr.



FIGS. 27A and 27B are a pair of graphs and a set of images showing that SMCs synergize with type I IFN to cause mammary tumor regression. FIG. 27A is a pair of graphs showing data from an experiment in which mice were injected with EMT6-Fluc tumors in the mammary fat pad and were treated at eight days post-implantation with combinations of vehicle or 50 mg/kg LCL161 (SMC) orally and bovine serum albumin (BSA), 1 μg IFNα intraperitoneally (i.p.), or 2 μg IFNα intratumorally (i.t.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. FIG. 27B is a series of representative IVIS images from the experiment described in FIG. 27A. Scale: p/sec/cm2/sr.



FIG. 28 is a graph showing that the expression of type I IFN from VSV synergizes with SMCs to cause cancer cell death. The graph shows data from an experiment in which EMT6 cells were co-treated with vehicle or 5 μM LCL161 (SMC) and differing multiplicity of infection (MOI) of VSVΔ51-GFP, VSV-IFNβ, or VSV-NIS-IFNβ. Cell viability was assessed 48 hr post-treatment by Alamar blue.



FIG. 29 is a graph showing that non-viral and viral triggers induce robust expression of TNFα in vivo. Mice were treated with 50 mg of poly(I:C) intraperitoneally or with intravenous injections of 5×108 PFU VSVΔ51, VSV-mIFNβ, or Maraba-MG1. At the indicated times, serum was isolated and processed for ELISA to quantify the levels of TNFα.



FIGS. 30A-30C are a set of graphs and images showing that virally-expressed proinflammatory cytokines synergizes with SMCs to induce mammary tumor regression. FIG. 30A is a pair of graphs showing data from an experiment in which mice were injected with EMT6-Fluc tumors in the mammary fat pad, and were treated at seven days post-implantation with combinations of vehicle or 50 mg/kg LCL161 (SMC) orally and PBS, 1×108 PFU VSVΔ51-memTNFα (i.v.), or 1×108 PFU VSVΔ51-solTNFα (i.v.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. FIG. 30B is a set of representative bioluminescent IVIS images that were acquired from the experiment described in FIG. 30A. Scale: p/sec/cm2/sr. FIG. 30C is a pair of graphs showing data from an experiment in which mice were injected with CT-26 tumors subcutaneously and were treated 10 days post-implantation with combinations of vehicle or 50 mg/kg LCL161 orally and either PBS or 1×108 PFU VSVΔ51-solTNFα intratumorally. The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m.



FIGS. 31A and 31B are a set of images showing that SMC treatment leads to down-regulation of cIAP1/2 protein in vivo in an orthotopic, syngeneic mouse model of glioblastoma. FIG. 31A is an image showing an immunoblot from an experiment in which CT-2A cells were implanted intracranially and treated with 50 mg/kg orally of LCL161 (SMC) and tumors were excised at the indicated time points and processed for western blotting using antibodies against cIAP1/2, XIAP, and β-tubulin. FIG. 31B is an image showing an immunoblot from an experiment in which CT-2A cells were implanted intracranially and treated with 10 uL of 100 μM LCL161 intratumorally and tumors were excised at the indicated time points and processed for western blotting using antibodies against cIAP1/2, XIAP, and β-tubulin.



FIGS. 32A-32E are a set of graphs and images showing that a transient proinflammatory response in the brain synergizes with SMCs to cause glioblastoma cell death. FIG. 32A is a graph showing data from an experiment in which an ELISA was conducted to determine the levels of soluble TNFα from 300 mg of crude brain protein extract that was derived from mice injected intraperitoneally (i.p.) with PBS or 50 mg poly(I:C) for 12 or 24 h. Brain protein extracts were obtained by mechanical homogenization in saline solution. FIG. 32B is a graph showing data from Alamar blue viability assays of mouse glioblastoma cells (CT-2A, K1580) that were treated with 70 mg of crude brain homogenates and 5 μM LCL161 (SMC) in culture for 48 h. Brain homogenates were obtained from mice that were treated for 12 h with i.p. injections of poly(I:C), or intravenous injections of 5×108 PFU VSVΔ51 or VSV-mIFNβ. FIG. 32C represents the Kaplan-Meier curve depicting survival of mice that received three intracranial treatments of 50 mg poly(I:C). Treatments were on days 0, 3, and 7. FIG. 32D represents the Kaplan-Meier curve depicting survival of mice bearing CT-2A intracranial tumors that received combinations of SMC, VSVΔ51 or poly(I:C). Mice received combinations of three treatments of vehicle, three treatments of 75 mg/kg LCL161 (oral), three treatments of 5×108 PFU VSVΔ51 (i.v.), or two treatments of 50 mg poly(I:C) (intracranial, i.c.). Mice were treated on day 7, 10, and 14 post tumor cell implantation with the different conditions, except for the poly(I:C) treated group that received i.c. injections on day 7 and 15. Numbers in brackets denote number of mice per group. FIG. 32E is a series of representative MRI images of mouse skulls from the experiments depicted in FIG. 32D, which shows an animal at endpoint and a representative mouse of the indicated groups at 50 days post-implantation. Dashed line denotes the brain tumor.



FIG. 33 is a graph showing that SMCs synergize with type I IFN to eradicate brain tumors. The graph represents the Kaplan-Meier curve depicting survival of mice bearing CT-2A that received intracranial injections of vehicle or 100 μM LCL161 (SMC) with PBS or 1 μg IFNα at 7 days post-implantation.





DETAILED DESCRIPTION

The present invention includes methods and compositions for enhancing the efficacy of Smac mimetic compounds (SMCs) in the treatment of cancer. In particular, the present invention includes methods and compositions for combination therapies that include an SMC and a second agent that stimulates one or more cell death pathways that are inhibited by cIAP1 and/or cIAP2. The second agent may be, e.g., a TLR agonist a virus, such as an oncolytic virus, or an interferon or related agent.


The data provided herein demonstrates that treatment with an immunostimulatory agent and an SMC results in tumor regression and durable cures in vivo (see, e.g., Example 1). These combination therapies were well tolerated by mice, with body weight returning to pre-treatment levels shortly after the cessation of therapy. Tested combination therapies were able to treat several treatment refractory, aggressive mouse models of cancer. One of skill in the art will recognize, based on the disclosure and data provided herein, that any one or more of a variety of SMCs and any one or more of a variety of immunostimulatory agents, such as a TLR agonist, pathogen, or pathogen mimetic, may be combined in one or more embodiments of the present invention to potentiate apoptosis and treat cancer.


While other approaches to improve SMC therapy have been attempted, very rarely have complete responses been observed, particularly in aggressive immunocompetent model systems. Some embodiments of the present invention, including treatment of cancer with a pathogen mimetic, e.g., a pathogen mimetic having a mechanism of action partially dependent on TRAIL, can have certain advantages. First, this approach can evoke TNFα-mediated apoptosis and necroptosis: given the plasticity and heterogeneity of some advanced cancers, treatments that simultaneously induce multiple distinct cell death mechanisms may have greater efficacy than those that do not. Second, pathogen mimetics can elicit an integrated innate immune response that includes layers of negative feedback. These feedback mechanisms may act to temper the cytokine response in a manner difficult to replicate using recombinant proteins, and thus act as a safeguard to this combination therapy strategy.


SMCs

An SMC of the present invention may be any small molecule, compound, polypeptide, protein, or any complex thereof, capable, or predicted of being capable, of inhibiting cIAP1 and/or cIAP2, and, optionally, one or more additional endogenous Smac activities. An SMC of the present invention is capable of potentiating apoptosis by mimicking one or more activities of endogenous Smac, including but not limited to, the inhibition of cIAP1 and the inhibition of cIAP2. An endogenous Smac activity may be, e.g., interaction with a particular protein, inhibition of a particular protein's function, or inhibition of a particular IAP. In particular embodiments, the SMC inhibits both cIAP1 and cIAP2. In some embodiments, the SMC inhibits one or more other IAPs in addition to cIAP1 and cIAP2, such as XIAP or Livin/ML-IAP, the single BIR-containing IAP. In particular embodiments, the SMC inhibits cIAP1, cIAP2, and XIAP. In any embodiment including an SMC and an immune stimulant, an SMC having particular activities may be selected for combination with one or more particular immune stimulants. In any embodiment of the present invention, the SMC may be capable of activities of which Smac is not capable. In some instances, these additional activities may contribute to the efficacy of the methods or compositions of the present invention.


Treatment with SMCs can deplete cells of cIAP1 and cIAP2, through, e.g., the induction of auto- or trans-ubiquitination and proteasomal-mediated degradation. SMCs can also de-repress XIAP's inhibition of caspases. SMCs may primarily function by targeting cIAP1 and 2, and by converting TNFα, and other cytokines or death ligands, from a survival signal to a death signal, e.g., for cancer cells.


Certain SMCs inhibit at least XIAP and the cIAPs. Such “pan-IAP” SMCs can intervene at multiple distinct yet interrelated stages of programmed cell death inhibition. This characteristic minimizes opportunities for cancers to develop resistance to treatment with a pan-IAP SMC, as multiple death pathways are affected by such an SMC, and allows synergy with existing and emerging cancer therapeutics that activate various apoptotic pathways in which SMCs can intervene.


One or more inflammatory cytokines or death ligands, such as TNFα, TRAIL, and IL-1β, potently synergize with SMC therapy in many tumor-derived cell lines. Strategies to increase death ligand concentrations in SMC-treated tumors, in particular using approaches that would limit the toxicities commonly associated with recombinant cytokine therapy, are thus very attractive. TNFα, TRAIL, and dozens of other cytokines and chemokines can be upregulated in response to pathogen recognition by the innate immune system of a subject. Importantly, this ancient response to microbial pathogens is usually self-limiting and safe for the subject, due to stringent negative regulation that limits the strength and duration of its activity.


SMCs may be rationally designed based on Smac. The ability of a compound to potentiate apoptosis by mimicking one or more functions or activities of endogenous Smac can be predicted based on similarity to endogenous Smac or known SMCs. An SMC may be a compound, polypeptide, protein, or a complex of two or more compounds, polypeptides, or proteins.


In some instances, SMCs are small molecule IAP antagonists based on an N-terminal tetrapeptide sequence (revealed after processing) of the polypeptide Smac. In some instances, an SMC is a monomer (monovalent) or dimer (bivalent). In particular instances, an SMC includes 1 or 2 moieties that mimic the tetrapeptide sequence of AVPI from Smac/DIABLO, the second mitochondrial activator of caspases, or other similar IBMs (e.g., IAP-binding motifs from other proteins like casp9). A dimeric SMC of the present invention may be a homodimer or a heterodimer. In certain embodiments, the dimer subunits are tethered by various linkers. The linkers may be in the same defined spot of either subunit, but could also be located at different anchor points (which may be ‘aa’ position, P1, P2, P3 or P4, with sometimes a P5 group available). In various arrangements, the dimer subunits may be in different orientations, e.g., head to tail, head to head, or tail to tail. The heterodimers can include two different monomers with differing affinities for different BIR domains or different IAPs. Alternatively, a heterodimer can include a Smac monomer and a ligand for another receptor or target which is not an IAP. In some instances, an SMCs can be cyclic. In some instances, an SMC can be trimeric or multimeric. A multimerized SMC can exhibit a fold increase in activity of 7,000-fold or more, such as 10-, 20-, 30-, 40-, 50-, 100-, 200-, 1,000-, 5,000-, 7,000-fold, or more (measured, e.g., by EC50 in vitro) over one or more corresponding monomers. This may occur, in some instances, e.g., because the tethering enhances the ubiquitination between IAPs or because the dual BIR binding enhances the stability of the interaction. Although multimers, such as dimers, may exhibit increased activity, monomers may be preferable in some embodiments. For example, in some instances, a low molecular weight SMC may be preferable, e.g., for reasons related to bioavailability.


In some instances of the present invention, an agent capable of inhibiting cIAP1/2 is a bestatin or Me-bestatin analog. Bestatin or Me-bestatin analogs may induce cIAP1/2 autoubiquitination, mimicking the biological activity of Smac.


In certain embodiments of the present invention, an SMC combination treatment includes one or more SMCs and one or more interferon agents, such as an interferon type 1 agent, an interferon type 2 agent, and an interferon type 3 agent. Combination treatments including an interferon agent may be useful in the treatment of cancer, such as multiple myeloma.


In some embodiments, a VSV expressing IFN, and optionally expressing a gene that enables imaging, such as NIS, the sodium-iodide symporter, is used in combination with an SMC. For instance, such a VSV may be used in combination with an SMC, such as the Ascentage Smac mimetic SM-1387/APG-1387, the Novartis Smac mimetic LCL161, or Birinapant. Such combinations may be useful in the treatment of cancer, such as hepatocellular carcinoma or liver metastases.


Various SMCs are known in the art. Non-limiting examples of SMCs are provided in Table 1. While Table 1 includes suggested mechanisms by which various SMCs may function, methods and compositions of the present invention are not limited by or to these mechanisms.









TABLE 1







Smac mimetic compounds












Clinical
Organization;


Compound
Structure or Reference
Status
author/inventor





GDC-0152/
Baker JE, Boerboom LE, Olinger GN. Cardioplegia-induced damage to ischemic
Clinical trials
Genentech/Roche; W.


RG7419
immature myocardium is independent of oxygen availability. Ann Thorac Surg. 1990

Fairbrother



Dec; 50(6):934-9.




GDC-0145

Clinical trials
Genentech/Roche; W.





Fairbrother


AEG40826/

Clinical trials
Aegera/Pharmascience


HGS1029


(Canada); J. Jaquith


LCL-161
Chen KF, Lin JP, Shiau CW, Tai WT, Liu CY, Yu HC, Chen PJ, Cheng AL. Inhibition of
Clinical trials
Novartis; L. Zawel



BcI-2 improves effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma cells.





Biochem Pharmacol. 2012 Aug 1; 84(3):268-77. doi: 10.1016/j.bcp.2012.04.023. Epub





2012 May 9.




AT-406/
Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, McEachern D, Liu L, Qiu S, Yang
Clinical trials
Ascenta


5M406/
CY, Miller R, Yi H, Zhang T, Sun D, Kang S, Guo M, Leopold L, Yang D, Wang S. A

(USA)/DebioPharma


Debio1143/
potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis

(Switzerland);


D1143
proteins (IAPs) in clinical development for cancer treatment. J Med Chem. 2011 Apr

Shaomeng Wang



28; 54(8):2714-26. doi: 10.1021/jm101505d. Epub 2011 Mar 28.

(University of





Michigan)


TL32711/
Dubrez L, Berthalet J, Glorian V. IAP proteins as targets for drug development in
Clinical trials
Tetralogic (USA,


Birinapant
oncology. Onco Targets Ther. 2013 Sep 16; 9:1285-1304. eCollection 2013. Review.

formerly Gentara with


(formerly


GTI cpd designations);


TL32711)


S. Condon


GDC-0917/
Wong H, Gould SE, Budha N, Darbonne WC, Kadel EE 3rd, La H, Alicke B, Halladay JS,
Clinical trials
Curis (Genentech); W.


CUDC-427
Erickson R, Portera C, Tolcher AW, Infante JR, Mamounas M, Flygare JA, Hop CE,

Fairbrother



Fairbrother WJ. Learning and confirming with preclinical studies: modeling and simulation





in the discovery of GDC-0917, an inhibitor of apoptosis proteins antagonist. Drug Metab





Dispos. 2013 Dec; 41(12):2104-13. doi: 10.1124/dmd.113.053926. Epub 2013 Sep 16.




APG-1387/

Clinical trials
Ascenta


SM-1387


(USA)/Ascentage





(China); Shaomeng





Wang


AZD5582
Hennessy EJ, Adam A, Aquila BM, Castriotta LM, Cook D, Hattersley M, Hird AW,
Clinical
AstraZeneca; E.



Huntington C, Kamhi VM, Laing NM, Li D, Macintyre T, Omer CA, Oza V, Patterson
candidate
Hennessy



T, Repik G, Rooney MT, Saeh JC, Sha L, Vasbinder MM, Wang H, Whitston D. Discovery





of a Novel Class of Dimeric Smac Mimetics as Potent IAP Antagonists Resulting in a





Clinical Candidate for the Treatment of Cancer (AZD5582). J Med Chem. 2013 Dec





27; 56(24):9897-919. doi: 10.1021/jm401075x. Epub 2013 Dec 13.




T-3256336
Sumi H, Yabuki M, Iwai K, Morimoto M, Hibino R, lnazuka M, Hashimoto K, Kosugi Y,
Clinical
Takeda (Japan); D.



Aoyama K, Yamamoto S, Yoshimatsu M, Yamasaki H, Tozawa R, Ishikawa T, Yoshida
candidate
Dougan, T. Ishikawa



S. Antitumor activity and pharmacodynamic biomarkers of a novel and orally available





small-molecule antagonist of inhibitor of apoptosis proteins. Mol Cancer Ther. 2013





Feb; 12(2):230-40. doi: 10.1158/1535-7163.MCT-12-0699. Epub 2012 Dec 12.




JP1584

Clinical
Joyant (GeminX,




candidate
USA); Xiaodong





Wang, Patrick Harran


JP1201

Clinical
Joyant (GeminX,




candidate
USA); Xiaodong





Wang, Patrick Harran


GT-A

Clinical
Joyant (GeminX,




candidate
USA); Xiaodong





Wang, Patrick Harran


AT-IAP
Gianni Chessari, Ahn Maria, Ildiko Buck, Elisabetta Chiarparin, Joe Coyle, James Day,
Clinical
Astex (UK)/Otsuka



Martyn Frederickson, Charlotte Griffiths-Jones, Keisha Hearn, Steven Howard, Tom
candidate
(Japan); G. Chessari



Heightman, Petra Hillmann, Aman Iqbal, Christopher N. Johnson, Jon Lewis, Vanessa





Martins, Joanne Munck, Mike Reader, Lee Page, Anna Hopkins, Alessia Millemaggi,





Caroline Richardson, Gordon Saxty, Tomoko Smyth, Emiliano Tamanini, Neil Thompson,





George Ward, Glyn Williams, Pamela Williams, Nicola Wilsher, and Alison Woolford.





Abstract 2944: AT-IAP, a dual cIAP1 and XIAP antagonist with oral antitumor activity in





melanoma models. Cancer Research: April 15, 2013; Volume 73, Issue 8, Supplement 1





doi: 10.1158/1538-7445.AM2013-2944 Proceedings: AACR 104th Annual Meeting 2013;





Apr 6-10, 2013; Washington, DC




inhib1
Park CM, Sun C, Olejniczak ET, Wilson AE, Meadows RP, Betz SF, Elmore SW, Fesik

Pfizer (IDUN acquired



SW. Non-peptidic small molecule inhibitors of XIAP. Bioorg Med Chem Lett. 2005 Feb

cpds from Abbott



1; 15(3):771-5.

collaboration); SW





Fesik, KJ Tomaselli


inhib2
Park CM, Sun C, Olejniczak ET, Wilson AE, Meadows RP, Betz SF, Elmore SW, Fesik

Pfizer (IDUN acquired



SW. Non-peptidic small molecule inhibitors of XIAP. Bioorg Med Chem Lett. 2005 Feb

cpds from Abbott



1; 15(3):771-5.

collaboration); SW





Fesik, KJ Tomaselli





BI-75D2
Formula: C26H26N4O4S2embedded image
Preclinical
Sanford-Burnham Institute; J. Reed





T5TR1
Crisóstomo FR, Feng Y, Zhu X, Welsh K, An J, Reed JC, Huang Z. Design and synthesis
Preclinical
Sanford-Burnham



of a simplified inhibitor for XIAP-BIR3 domain. Bioorg Med Chem Lett. 2009 Nov

Institute (NIH?); J.



15; 19(22):6413-8. doi: 0.1016/j.bmc1.2009.09.058. Epub 2009 Sep 17. PubMed PMID:

Reed



19819692; PubMed Central PMCID: PMC3807767.




ML-101
Welsh K, Yuan H, Stonich D, Su Y, Garcia X, Cuddy M, Houghten R, Sergienko E, Reed
Preclinical
Sanford-Burnham



JC, Ardecky R, Ganji SR, Lopez M, Dad S, Chung TDY, Cosford N. Antagonists of IAP-

Institute (NIH?); J.



family anti-apoptotic proteins—Probe 1. 2009 May 18 [updated 2010 Sep 2]. Probe

Reed



Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National





Center for Biotechnology Information (US); 2010-. Available from





http://www.ncbi.nlm.nih.gov/books/NBK47341/; Gónzalez-López M, Welsh K, Finlay D,





Ardecky RJ, Ganji SR, Su Y, Yuan H, Teriete P, Mace PD, Riedl SJ, Vuori K, Reed JC,





Cosford ND. Design, synthesis and evaluation of monovalent Smac mimetics that bind to





the BIR2 domain of the anti-apoptotic protein XIAP. Bioorg Med Chem Lett. 2011 Jul





15; 21(14):4332-6. doi: 10.1016/j.bmcl.2011.05.049. Epub 2011 May 24.




MLS-0390866
Welsh K, Yuan H, Stonich D, Su Y, Garcia X, Cuddy M, Houghten R, Sergienko E, Reed
Preclinical
Sanford-Burnham



JC, Ardecky R, Ganji SR, Lopez M, Dad S, Chung TDY, Cosford N. Antagonists of IAP-

Institute (NIH?); J.



family anti-apoptotic proteins—Probe 1. 2009 May 18 [updated 2010 Sep 2]. Probe

Reed



Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National





Center for Biotechnology Information (US); 2010-. Available from





http://www.ncbi.nlm.nih.gov/books/NBK47341/PubMed




MLS-
Finlay D, Vamos M, Gónzalez-López M, Ardecky RJ, Ganji SR, Yuan H, Su Y, Cooley
Preclinical
Sanford-Burnham



TR, Hauser CT, Welsh K, Reed JC, Cosford ND, Vuori K. Small-Molecule IAP

Institute (NIH?); J.



Antagonists Sensitize Cancer Cells to TRAIL-Induced Apoptosis: Roles of XIAP and

Reed



cIAPs. Mol Cancer Ther. 2014 Jan; 13(1):5-15. doi: 10.1158/1535-7163.MCT-13-0153.





Epub 2013 Nov 5.




ML183
Ardecky RJ, Welsh K, Finlay D, Lee PS, Gónzalez-López M, Ganji SR, Ravanan P, Mace
Preclinical
Sanford-Burnham



PD, Riedl SJ, Vuori K, Reed JC, Cosford ND. Design, synthesis and evaluation of

Institute (NIH?); J.



inhibitor of apoptosis protein (IAP) antagonists that are highly selective for the BIR2

Reed



domain of XIAP. Bioorg Med Chem Lett. 2013 Jul 15; 23(14):4253-7. doi:





10.1016/j.bmcl.2013.04.096. Epub 2013 May 14;-Lopez M, Welsh K, Yuan H, Stonich D,





Su Y, Garcia X, Cuddy M, Houghten R, Sergienko E, Reed JC, Ardecky R, Reddy S,





Finlay D, Vuori K, Dad S, Chung TDY, Cosford NDP. Antagonists of IAP-family anti-





apoptotic proteins—Probe 2. 2009 Sep 1 [updated 2011 Feb 10]. Probe Reports from the





NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for





Biotechnology Information (US); 2010-. Available from





http://www.ncbi.nlm.nih.gov/books/NBK55068/




SM-83
Gatti L, De Cesare M, Ciusani E, Coma E, Arrighetti N, Cominetti D, Belvisi L, Potenza
Preclinical
University of Milan; M.



D, Moroni E, Vasile F, Lecis D, Delia D, Castiglioni V, Scanziani E, Seneci P, Zaffaroni N,

Bolognesi



Perego P. Antitumor Activity of a Novel Homodimeric SMAC Mimetic in Ovarian





Carcinoma. Mol Pharm. 2014 Jan 6; 11(1):283-93. doi: 10.1021/mp4004578. Epub 2013





Nov 27.




SMAC037/SM
Mastrangelo E, Cossu F, Milani M, Sorrentino G, Lecis D, Delia D, Manzoni L, Drago C,
Preclinical
University of Milan; M.


37
Seneci P, Scolastico C, Rizzo V, Bolognesi M. Targeting the X-linked inhibitor of

Bolognesi



apoptosis protein through 4-substituted azabicyclo[5.3.0]alkane smac mimetics.





Structure, activity, and recognition principles. J Mol Biol. 2008 Dec 19; 384(3):673-89. doi:





10.1016/j.jmb.2008.09.064. pub 2008 Oct 7.




SMAC066
Cossu F, Malvezzi F, Canevari G, Mastrangelo E, Lecis D, Delia D, Seneci P, Scolastico
Preclinical
University of Milan; M.



C, Bolognesi M, Milani M. Recognition of Smac-mimetic compounds by the BIR domain

Bolognesi



of cIAP1. Protein Sci. 2010 ec; 19(12):2418-29. doi: 10.1002/pro.523.




SMC9a
Monomer: Seneci P, Bianchi A, Battaglia C, Belvisi L, Bolognesi M, Caprini A, Cossu F,
Preclinical
University of Milan; M.



Franco Ed, Matteo Md, Delia D, Drago C, Khaled A, Lecis D, Manzoni L, Marizzoni M,

Bolognesi



Mastrangelo E, Milani M, Motto I, Moroni E, Potenza D, Rizzo V, Servida F, Turlizzi E,





Varrone M, Vasile F, Scolastico C. Rational design, synthesis and characterization of





potent, non-peptidic Smac mimics/XIAP inhibitors as proapoptotic agents for cancer





therapy. Bioorg Med Chem. 2009 Aug 15; 17(16):5834-56. doi:





10.1016/j.bmc.2009.07.009. Epub 2009 Jul 10.





Dimer in different configurations: Ferrari V, Cutler DJ. Uptake of chloroquine by human





erythrocytes. Biochem Pharmacol. 1990 Feb 15; 39(4):753-62. PubMed PMID: 2306282.;





Cossu F, Milani M, Vachette P, Malvezzi F, Grassi S, Lecis D, Delia D, Drago C, Seneci





P, Bolognesi M, Mastrangelo E. Structural insight into inhibitor of apoptosis proteins





recognition by a potent divalent smac-mimetic. PLoS One. 2012;7(11):e49527. doi:





10.1371/journal.pone.0049527. Epub 2012 Nov 15.




OICR-720
Enwere EK, Holbrook J, Lejmi-Mrad R, Vineham J, Timusk K, Sivaraj B, Isaac M, Uehling
Preclinical
Ontario Institute for



D, Al-awar R, LaCasse E, Korneluk RG. TWEAK and cIAP1 regulate myoblast fusion

Cancer Research; R.



through the noncanonical NE-KB signaling pathway. Sci Signal. 2012 Oct 16; 5(246):ra75.

Korneluk



doi: 10.1126/scisignal.2003086.




SM-164
Sun H, Nikolovska-Coleska Z, Lu J, Meagher JL, Yang CY, Qiu S, Tomita Y, Ueda Y,
Preclinical
Ascenta



Jiang S, Krajewski K, Roller PP, Stuckey JA, Wang S. Design, synthesis, and





characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that





concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc. 2007





Dec 12; 129(49):15279-94. Epub 2007 Nov 14.




SM1200
Sheng R, Sun H, Liu L, Lu J, McEachern D, Wang G, Wen J, Min P, Du Z, Lu H, Kang S,
Preclinical
Ascenta



Guo M, Yang D, Wang S. A potent bivalent Smac mimetic (SM-1200) achieving rapid,





complete, and durable tumor regression in mice. J Med Chem. 2013 May





23; 56(10):3969-79. doi: 10.1021/jm400216d. Epub 2013 May
7.



SM-173
Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H,
Preclinical
Ascenta



Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S. SM-164: a novel, bivalent Smac





mimetic that induces apoptosis and tumor regression by concurrent removal of the





blockade of cIAP-1/2 and XIAP. Cancer Res. 2008 Nov 5; 68(22):9384-93. doi:





10.1158/0008-5472.CAN-08-2655.




Compound 21
Sun H, Stuckey JA, Nikolovska-Coleska Z, Qin D, Meagher JL, Qiu S, Lu J, Yang CY,
Preclinical
Ascenta



Saito NG, Wang S. Structure-based design, synthesis, evaluation, and crystallographic





studies of conformationally constrained Smac mimetics as inhibitors of the X-linked





inhibitor of apoptosis protein (XIAP). J Med Chem. 2008 Nov 27; 51(22):7169-80. doi:





10.1021/jm8006849.




WS-5
Zhang B, Nikolovska-Coleska Z, Zhang Y, Bai L, Qiu S, Yang CY, Sun H, Wang S, Wu
Preclinical
Ascenta



Y. Design, synthesis, and evaluation of tricyclic, conformationally constrained small-





molecule mimetics of second mitochondria-derived activator of caspases. J Med Chem.





2008 Dec 11; 51(23):7352-5. doi: 0.1021/jm801146d.




SH-130
Dai Y, Liu M, Tang W, DeSano J, Burstein E, Davis M, Pienta K, Lawrence T, Xu L.
Preclinical
Ascenta



Molecularly targeted radiosensitization of human prostate cancer by modulating inhibitor





of apoptosis. Clin Cancer Res. 2008 Dec 1; 14(23):7701-10. doi: 10.1158/1078-





0432.CCR-08-0188.




SM162
Sun H, Liu L, Lu J, Qiu S, Yang CY, Yi H, Wang S. Cyclopeptide Smac mimetics as
Preclinical
Ascenta



antagonists of IAP proteins. Bioorg Med Chem Lett. 2010 May 5; 20(10):3043-6.




SM163
Sun H, Liu L, Lu J, Qiu S, Yang CY, Yi H, Wang S. Cyclopeptide Smac mimetics as
Preclinical
Ascenta


(compound 3)
antagonists of IAP proteins. Bioorg Med Chem Lett. 2010 May 15; 20(10):3043-6.




SM337
Wang S. Design of small-molecule Smac mimetics as IAP antagonists. Curr Top
Preclinical
Ascenta



Microbiol Immunol. 2011; 348:89-113. doi: 10.1007/82_2010_111.




SM122 (or
Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H,
Preclinical
Ascenta


SH122 )
Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S. SM-164: a novel, bivalent Smac





mimetic that induces apoptosis and tumor regression by concurrent removal of the





blockade of cIAP-1/2 and XIAP. Cancer Res. 2008 Nov 15; 68(22):9384-93. doi:





10.1158/0008-5472.CAN-08-2655.




AEG40730
Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW,
Preclinical
Aegera



Jaquith JB, Morris SJ, Barker PA. cIAP1 and cIAP2 facilitate cancer cell survival by





functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008 Jun





20; 30(6):689-700. doi: 10.1016/j.molce1.2008.05.014.




LBW242
Keating J, Tsoli M, Hallahan AR, Ingram WJ, Haber M, Ziegler DS. Targeting the inhibitor
Preclinical
Novartis



of apoptosis proteins as a novel therapeutic strategy in medulloblastoma. Mol Cancer





Ther. 2012 Dec; 11(12):2654-63. doi: 10.1158/1535-7163.MCT-12-0352. Epub 2012 Sep





25.




BV6
Müller-Sienerth N, Dietz L, Holtz P, Kapp M, Grigoleit GU, Schmuck C, Wajant H,
Preclinical
Genentech



Siegmund D. SMAC mimetic BV6 induces cell death in monocytes and maturation of





monocyte-derived dendritic cells. PLoS One. 2011; 6(6):e21556. doi:





10.1371/journal.pone.0021556. Epub 2011 Jun 30.




MV1
Monomeric version of BV6: Fulda S, Vucic D. Targeting IAP proteins for therapeutic
Preclinical
Genentech



intervention in cancer. Nat Rev Drug Discov. 2012 Feb 1; 11(2):109-24. doi:





10.1038/nrd3627. Review. Erratum in: Nat Rev Drug Discov. 2012 Apr; 11(4):331.




ATRA hybrid
Itoh Y, Ishikawa M, Kitaguchi R, Okuhira K, Naito M, Hashimoto Y. Double protein
Preclinical
Genentech



knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and





IAPs antagonist. Bioorg Med Chem Lett. 2012 Jul 1; 22(13):4453-7. doi:





10.1016/j.bmc1.2012.04.134. Epub 2012 May 23.




SNIPER
Okuhira K, Demizu Y, Hattori T, Ohoka N, Shibata N, Nishimaki-Mogami T, Okuda H,
Preclinical



(bestatin and
Kurihara M, Naito M. Development of hybrid small molecules that induce degradation of




Estrogen
estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci. 2013




receptor ligand
Aug 30. doi: 10.1111/cas.12272. [Epub ahead of print]




fusion)





RMT5265
Ramachandiran S, Cain J, Liao A, He Y, Guo X, Boise LH, Fu H, Ratner L, Khoury HJ,
Preclinical
Joyant (USA)



Bernal-Mizrachi L. The Smac mimetic RMT5265.2HCL induces apoptosis in EBV and





HTLV-I associated lymphoma cells by inhibiting XIAP and promoting the mitochondrial





release of cytochrome C and Smac. Leuk Res. 2012 Jun; 36(6):784-90. doi:





10.1016/j.leukres.2011.12.024. Epub 2012 Feb 10; Li L, Thomas RM, Suzuki H, De





Brabander JK, Wang X, Herren PG. A small molecule Smac mimic potentiates TRAIL-





and TNFalpha-mediated cell death. Science. 2004 Sep 3; 305(5689): 471-4.




JP1010
Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L. Smac mimetics increase
Preclinical
Joyant (USA)



cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death





Differ. 2010 Oct; 17(10):1645-54. doi: 10.1038/cdd.2010.44. Epub 2010 Apr 30.




JP1400
Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L. Smac mimetics increase
Preclinical
Joyant (USA)



cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death





Differ. 2010 Oct; 17(10):1645-54. doi: 10.1038/cdd.2010.44. Epub 2010 Apr 30.




ABT-10

Preclinical
Abbott


A-410099.1
Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL, Ding H, Elmore
Preclinical
Abbott



SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker





AR, Tomaselli KJ, Zou H, Fesik SW. Discovery of potent antagonists of the antiapoptotic





protein XIAP for the treatment of cancer. J Med Chem. 2004 Aug 26; 47(18):4417-26.




822B
Jae Sik Shin, Seung-Woo Hong, Dong-Hoon Jin, In-Hwan Bae, Maeng-Sup Kim, Young-
Preclinical
Hanmi (Korea)



Soon Na, Jae-Lyun Lee, Yong Sang Hong, and Tae-Won Kim. Abstract 592: Novel IAP





antagonist (822B) induces apoptosis through degradation of IAP proteins which have a





BIR3 domain in human pancreatic cancer cells. Cancer Research: April 15, 2011;





Volume 71, Issue 8, Supplement 1 doi: 10.1158/1538-7445.AM2011-592 Proceedings:





AACR 102nd Annual Meeting 2011-- Apr 2-6, 2011; Orlando, FL.




GT13402

Preclinical
Tetralogic


SW iii-123
Zeng C, Vangveravong S, McDunn JE, Hawkins WG, Mach RH. Sigma-2 receptor ligand
Preclinical
(RH Mach)


(sigma2R
as a novel method for delivering a SMAC mimetic drug for treating ovarian cancer. Br J




ligand hybrid)
Cancer. 2013 Oct 29; 109(9):2368-77. doi: 10.1038/bjc.2013.593. Epub 2013 Oct 8.






Preclinical
Apoptos (USA)




Preclinical
Sanofi-





Aventis/Synthelabo





(EU)









Immunostimulatory Agents

An immunostimulatory or immunomodulatory agent of the present invention may be any agent capable of inducing a receptor-mediated apoptotic program that is inhibited by cIAP1 and cIAP2 in one or more cells of a subject. An immune stimulant of the present invention may induce an apoptotic program regulated by cIAP1(BIRC2), cIAP2 (BIRC3 or API2), and optionally, one or more additional IAPs, e.g., one or more of the human IAP proteins NAIP (BIRC1), XIAP (BIRC4), survivin (BIRC5), Apollon/Bruce (BIRC6), ML-IAP (BIRC7 or livin), and ILP-2 (BIRC8). It is additionally known that various immunomodulatory or immunostimulatory agents, such as CpGs or IAP antagonists, can change immune cell contexts.


In some instances, an immune stimulant may be a TLR agonist, such as a TLR ligand. A TLR agonist of the present invention may be an agonist of one or more of TLR-1, TLR-2, TLR-3, TLR-4, TLR-5, TLR-6, TLR-7, TLR-8, TLR-9, and TLR-10 in humans or related proteins in other species (e.g., murine TLR-1 to TLR-9 and TLR-11 to TLR-13). TLRs can recognize highly conserved structural motifs known as pathogen-associated microbial patterns (PAMPs), which are exclusively expressed by microbial pathogens, as well as danger-associated molecular patterns (DAMPs) that are endogenous molecules released from necrotic or dying cells. PAMPs include various bacterial cell wall components such as lipopolysaccharide (LPS), peptidoglycan (PGN), and lipopeptides, as well as flagellin, bacterial DNA, and viral double-stranded RNA. DAMPs include intracellular proteins such as heat shock proteins as well as protein fragments from the extracellular matrix. Agonists of the present invention further include, for example, CpG oligodeoxynucleotides (CpG ODNs), such as Class A, B, and C CpG ODN's, base analogs, nucleic acids such as dsRNA or pathogen DNA, or pathogen or pathogen-like cells or virions. In certain embodiments, the immunostimulatory agent is an agent that mimics a virus or bacteria or is a synthetic TLR agonist.


Various TLR agonists are known in the art. Non-limiting examples of TLR agonists are provided in Table 2. While Table 2 includes suggested mechanisms, uses, or TLR targets by which various TLR agonists may function, methods and compositions of the present invention are not limited by or to these mechanisms, uses, or targets.









TABLE 2







Immunostimulatory agents: TLR Agonists













Agonist


Compound
Structure or Reference
Compound Type or Application
of:





Poly-ICLC
Levy HB. Historical overview of the use of polynucleotides in cancer. J
Intratumoral administration for
Toll-like


(poly-
Biol Response Mod. 1985;4:475-480. 7. Levy HB. Induction of
treatment of mesothelioma (see,
receptor


inosinic:
interferon in vivo by polynucleotides. Tex Rep Biol Med. 1977; 35:91-
e.g., Currie AJ, Van Der Most RG,
(TLR)-3


poly-
98.
Broomfield SA, Prosser AC, Tovey



cytidylic

MG, Robinson BW. Targeting the



acid; poly

effector site with IFN-αβ-inducing



(I:C))

TLR ligands reactivates tumor-





resident CD8 T cell responses to





eradicate established solid tumors.





J. lmmunol. 2008; 180(3):1535-





1544.)



Poly (A:U)
Ducret JP, Caillé P, Sancho Garnier H, et al. A phase I clinical
Synthetic double stranded RNA
TLR-3


poly-
tolerance study of polyadenylic-polyuridylic acid in cancer patients. J
molecule



adenylic-
Biol Response Mod 1985; 4:129-133. Polyadenylic.polyuridylic acid in




poly-
the cotreatment of cancer. Michelson AM, Lacour F, Lacour J. Proc




uridylic
Soc Exp Biol Med. 1985 May; 179(1):1-8.




acid





CL075
Gorden KB. et al., 2005. Synthetic TLR agonists reveal functional
Thiazoquinoline compound
TRL-7



differences between human TLR7 and TLR8. J Immunol. 174(3):1259-

or



68; InvivoGen, InvivoGen Insight (Company Newsletter) Spring 2013:

TLR-7/8



8 pages.





Formula: C13H13N3S










embedded image









CL097
Salio M. et al., 2007. Modulation of human natural killer T cell ligands
Imidazoguinoline compound
TRL-7



on TLR-mediated antigen-presenting cell activation. PNAS 104: 20490-

or



20495. Butchi nJ. et al., 2008. Analysis of the Neuroinflammatory

TLR-7/8



Response to TLR7 Stimulation in the Brain: Comparison of Multiple





TLR7 and/or TLR8 Agonists. J Immunol 180: 7604-7612




CL264
U.S. Patent Publication No. 20110077263
Adenine analog
TRL-7



Formula: C19H23N7O4embedded image

or TLR-7/8





CL307

Base analog
TRL-7





or





TLR-7/8


Gardi-
U.S. Patent Publication No. 20110077263
Imidazoguinoline compound
TRL-7


quimod ™
Formula: C17H23N5O   embedded image

or TLR-7/8





Loxoribine
Gorden KB. et al., 2005. Synthetic TLR agonists reveal functional
Guanosine analog
TRL-7



differences between human TLR7 and TLR8. J Immunol. 174(3):1259-

or



68. 2. Schindler U. & Baichwal VR., 1994. Three NF-kB binding sites in

TLR-7/8



the human E-selectin gene required for maximal tumor necrosis factor





alpha-induced expression. Mol Cell Biol, 14(9):5820-5831.





Formula: C13H17N5O6










embedded image









Poly(dT)
Jurk M. et al., 2006. Modulating responsiveness of human TLR7 and 8
Thymidine homopolymer ODN
TRL-7



to small molecule ligands with T-rich phosphorothiate
(17 mer)
or



oligodeoxynucleotides. Eur J Immunol. 36(7):1815-26. 2. Gorden KKB.

TLR-7/8



et al., 2006. Oligodeoxynucleotides Differentially Modulate Activation of





TLR7 and TLR8 by Imidazoquinolines. J. Immunol. 177: 8164-8170.





3. Gorden KKB. et al., 2006. Cutting Edge: Activation of Murine TLR8





by a Combination of Imidazoquinoline Immune Response Modifiers and





PolyT Oligodeoxynucleotides J. Immunol., 177: 6584-6587.




R848
Hemmi H. et al. 2002. Small anti-viral compounds activate immune
Imidazoguinoline compound
TRL-7



cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol,

or



3(2):196-200. 2. Jurk m. et al. 2002. Human TLR7 or TLR8

TLR-7/8



independently confer responsiveness to the antiviral compound R848.





Nat Immunol, 3(6):499. 3. Gorden KKB. et al., 2006. Cutting Edge:





Activation of Murine TLR8 by a Combination of Imidazoguinoline





Immune Response Modifiers and PolyT Oligodeoxynucleotides J.





Immunol., 177: 6584-6587





Formula: C17H22N4O2, HCl










embedded image









ODN 1585
Ballas ZK. et al., 2001. Divergent therapeutic and immunologic effects
Class A CpG ODN
TLR-9



of oligodeoxynucleotides with distinct CpG motifs. J Immunol.





167(9):4878-86




ODN 2216

Class A CpG ODN
TLR-9


ODN 2336
Ballas ZK. et al., 2001. Divergent therapeutic and immunologic effects
Class A CpG ODN
TLR-9



of oligodeoxynucleotides with distinct CpG motifs. J Immunol.





167(9):4878-86




ODN 1668
Heit A. et al., 2004. CpG-DNA aided cross-priming by cross-presenting
Class B CpG ODN
TLR-9



B cells. J Immunol. 172(3):1501-7




ODN 1826
Z Moldoveanu, L Love-Homan, W.Q Huang, A.M Krieg CpG DNA, a
Class B CpG ODN
TLR-9



novel immune enhancer for systemic and mucosal immunization with





influenza virus Vaccine, 16 (1998), pp. 1216-1224




ODN 2006
Z Moldoveanu, L Love-Homan, W.Q Huang, A.M Krieg CpG DNA, a
Class B CpG ODN
TLR-9


(ODN 7909
novel immune enhancer for systemic and mucosal immunization with




or PF-
influenza virus Vaccine, 16 (1998), pp. 1216-1224




3512676)





ODN 2007
Krieg, A; CpG motifs in bacterial DNA and their immune effects. Annu
Class B CpG ODN
TLR-9



Rev Immunol 2002, 20: 709




ODN 2395
Roda JM. et al., 2005. CpG-containing oligodeoxynucleotides act
Class C CpG ODN
TLR-9



through TLR9 to enhance the NK cell cytokine response to





antibodycoated tumor cells. J Immunol. 175(3):1619-27.




ODN M362
Hartmann G, Battiany J, Poeck H, et al.: Rational design of new CpG
Class C CpG ODN
TLR-9



oligonucleotides that combine B cell activation with high IFN-alpha





induction in plasmacytoid dendritic cells. Eur J Immunol 2003, 33:1633-





41




ODN 1018
Magone, M. T., Chan, C. C., Beck, L., Whitcup, S. M., Raz, E. (2000)
Class B
TLR-9



Systemic or mucosal administration of immunostimulatory DNA inhibits

agonist



early and late phases of murine allergic conjunctivitis Eur. J.





Immunol. 30,1841-1850




CL401
Formula: C54H92N8O45   embedded image
Dual TLR agonist
TLR-2 and TLR-7





Adili- poline ™ (CL413;)
Formula: C81H145N17O12S   embedded image
Dual TLR agonist
TLR-2 and TLR-7





CL531
Formula: C82H144N16O14S   embedded image
Dual TLR agonist
TLR-2 and TLR-7





CL572 (
Formula: C41H65N9O7S   embedded image
Dual TLR agonist
Human TLR-2, mouse TLR-7, an human TLR-7





Adi- Fectin ™ (CL347;)
Formula: C72H134N11O6P   embedded image
TLR agonist and nucleic acid carrier
TLR-7





CL419
Formula: C48H97N5O5S   embedded image
TLR agonist and nucleic acid carrier
TLR-2





Pamadi- Fectin ™ (CL553;)
Formula: C67H118N12O8S   embedded image
TLR agonist and nucleic acid carrier
TLR-2 and TLR-7





Peptido-

TLR ligand; cell surface location
TLR-1/2;


glycan

(Expert Rev Clin Pharmacol 4(2):
TLR-2/6




275-289, 2011)



Diacylated
Buwitt-Beckmann u. et al., 2005. Toll-like receptor 6-independent
TLR ligand; cell surface location
TLR-2/6


lipopeptide
signaling by diacylated lipopeptides. Eur J Immunol. 35(1):282-9




Triacylated
Aliprantis ao et al., 1999. Cell activation and apoptosis by bacterial
TLR ligand; cell surface location
TLR-1/2


lipopeptide
lipoproteins through toll-like receptor-2. Science. 285(5428):736-9.





Ozinsky a. et al., 2000. The repertoire for pattern recognition of





pathogens by the innate immune system is defined by cooperation





between toll-like receptors. PNAS. 97(25):13766-71. 3




Lipopoly-
N/A
TLR ligand; cell surface location;
TLR-4


saccharide

intratumoral administration for



(LPS)

treatment of glioma. (see, e.g.,





Mariani CL, Rajon D, Bova FJ,





Streit WJ. Nonspecific





immunotherapy with





intratumoral lipopolysaccharide





and zymosan A but not GM-CSF





leads to an effective anti-tumor





response in subcutaneous RG-2





gliomas. J. Neurooncol. 2007;





85(3):231-240. )



CpG 7909

Intravenous administration for
TLR-9




treatment of non-Hodgkin





lymphoma. (see, e.g., Link BK,





Ballas ZK, Weisdorf D, et al.





Oligodeoxynucleotide CpG 7909





delivered as intravenous infusion





demonstrates immunologic





modulation in patients with





previously treated non-Hodgkin





lymphoma. J. Immunother. 2006;





29(5):558-568.)



852A

Intravenous administration for
TLR-7




treatment of melanoma and other





cancer [12,55]; (see, e.g., Dudek





AZ, Yunis C, Harrison LI, et al.





First in human Phase I trial of





852A, a novel systemic Toll-





like receptor 7 agonist, to





activate innate immune





responses in patients with





advanced cancer. Olin. Cancer





Res. 2007; 13(23):7119-7125′;





Dummer R, Hauschild A,





Becker JC, et al. An





exploratory study of systemic





administration of the Toll-like





receptor-7 agonist 852A in





patients with refractory





metastatic melanoma. Clin.





Cancer Res. 2008; 14(3):856-





864. intravenous administration





for





treatment of chronic lymphocytic





leukemia (see, e.g., Spaner DE,





Shi Y, White D, et al. A Phase





I/II trial of TLR7 agonist





immunotherapy in chronic





lymphocytic leukemia. Leukemia.





2010; 24(1):222-226.)



Ampligen

Intravenous administration for
TLR-3




treatment of chronic fatigue





syndrome [60]; intravenous





administration for treatment of HIV





(see, e.g., Thompson KA, Strayer





DR, Salvato PD, et al. Results of a





double-blind placebo-controlled





study of the double-stranded RNA





drug polyl:polyC12U in the





treatment of HIV infection.





Eur. J. Olin. Microbiol. Infect.





Dis. 1996; 15(7):580-587.





[PubMed: 8874076])



Resiquimod

Oral administration for treatment of
TLR-7/8




hepatitis C ((see, e.g., Pockros PJ,





Guyader D, Patton H, et al. Oral





resiquimod in chronic HCV infection:





safety and efficacy in 2 placebo-





controlled, double-blind Phase IIa





studies. J. Hepatol. 2007;





47(2):174-182.);





Topical administration for treatment





of Herpes simplex virus 2 (see, e.g.,





Mark KE, Corey L, Meng TC, et al.





Topical resiquimod 0.01% gel





decreases herpes simplex virus type





2 genital shedding: a randomized,





controlled trial. J. Infect. Dis. 2007;





195(9):1342-1331.)



ANA975

Oral administration for treatment of
TLR-7




hepatitis (see, e.g., Fletcher S,





Steffy K, Averett D. Masked oral





prodrugs of Toll-like receptor 7





agonists: a new approach for the





treatment of infectious disease.





Curr. Opin. Investig. Drugs. 2006;





7(8):702-708.)



Imiquimod

Imidazoquinoline compound; topical
TLR-7


(InvivoGen)

administration for treatment of basal





cell carcinoma (see, e.g., Schulze





HJ, Cribier B, Requena L, et al.





Imiquimod 5% cream for the





treatment of superficial basal cell





carcinoma: results from a





randomized vehicle-controlled





Phase III study in Europe. Br. J.





Dermatol. 2005; 152(5):939-947;





Quirk C, Gebauer K, Owens M,





Stampone P. Two-year interim





results from a 5-year study





evaluating clinical recurrence of





superficial basal cell carcinoma after





treatment with imiquimod 5% cream





daily for 6 weeks. Australas. J.





Dermatol. 2006; 47(4):258-265.);





Topical administration for treatment





of squamous cell carcinoma (see,





e.g., Ondo AL, Mings SM, Pestak





RM, Shanler SD. Topical





combination therapy for cutaneous





squamous cell carcinoma in situ with





5-fluorouracil cream and imiquimod





cream in patients who have failed





topical monotherapy. J. Am. Acad.





Dermatol. 2006; 55(6):1092-1094.)





Topical administration for treatment





of melanoma (see, e.g., Turza K,





Dengel LT, Harris RC, et al.





Effectiveness of imiquimod limited to





dermal melanoma metastases, with





simultaneous resistance of





subcutaneous metastasis. J. Cutan.





Pathol. 2009 DOI: 10.1111/j.1600-





0560.2009.01290.x. (Epub ahead of





print); (see, e.g., Green DS,





Dalgleish AG, Belonwu N, Fischer





MD, Bodman-Smith MD. Topical





imiquimod and intralesional





interleukin-2 increase activated





lymphocytes and restore the





Th1/Th2 balance in patients with





metastatic melanoma. Br. J.





Dermatol. 2008; 159(3):606-614.);





Topical administration for treatment





of vulvar intraepithelial neoplasia





(see, e.g., Van Seters M, Van





Beurden M, Ten Kate FJ, et al.





Treatment of vulvar intraepithelial





neoplasia with topical imiquimod. N.





Engl. J. Med. 2008; 358(14):1465-





1473.);





Topical administration for treatment





of cutaneous lymphoma (see, e.g.,





Stavrakoglou A, Brown VL, Coutts I.





Successful treatment of primary





cutaneous follicle centre lymphoma





with topical 5% imiquimod. Br. J.





Dermatol. 2007; 157(3):620-622.);





Topical treatment as Human





papillomavirus (HPV) vaccine (see,





e.g., Daayana S, Elkord E, Winters





U, et al. Phase II trial of imiquimod





and HPV therapeutic vaccination in





patients with vulval intraepithelial





neoplasia. Br. J. Cancer. 2010;





102(7):1129-1136.);





Subcutaneous/intramuscular





administration: New York





esophageal squamous cell





carcinoma 1 cancer antigen (NY-





ESO-1) protein vaccine for





melanoma (see, e.g., Adams S,





O'Neill DW, Nonaka D, et al.





Immunization of malignant





melanoma patients with full-length





NY-ESO-1 protein using TLR7





agonist imiquimod as vaccine





adjuvant. J. Immunol. 2008;





181(1):776-784.)



Mono-

Subcutaneous/intramuscular
TLR-4


phosphoryl

administration for vaccination



lipid A

against HPV (see, e.g., Harper DM,



(MPL)

Franco EL, Wheeler CM, et al.





Sustained efficacy up to 4.5 years of





a bivalent L1 virus-like particle





vaccine against human





papillomavirus types 16 and 18:





follow-up from arandomised control





trial. Lancet. 2006; 367(9518):1247-





1255.);





Subcutaneous/intramuscular





administration for vaccination





against non-small-cell lung cancer





(see, e.g., Butts C, Murray N,





Maksymiuk A, et al. Randomized





Phase IIB trial of BLP25 liposome





vaccine in stage IIIB and IV non-





small-cell lung cancer. J. Clin.





Oncol. 2005; 23(27):6674-6681.)



CpG 7909

Subcutaneous/intramuscular
TLR-9


(i.e., PF-

administration for treatment of non-



3512676)

small-cell lung cancer (see, e.g.,





Manegold C, Gravenor D, Woytowitz





D, et al. Randomized Phase II trial





of a Toll-like receptor 9 agonist





oligodeoxynucleotide, PF-3512676,





in combination with first-line taxane





plus platinum chemotherapy for





advanced-stage non-small-cell lung





cancer. J. Clin. Oncol. 2008;





26(24):3979-3986; Readett, D.;





Denis, L.; Krieg, A.; Benner, R.;





Hanson, D. PF-3512676 (CPG





7909) a Toll-like receptor 9 agonist-





status of development for non-small





cell lung cancer (NSCLC).





Presented at: 12th World Congress





on Lung Cancer; Seoul, Korea. 2-6





September 2007);





Subcutaneous/intramuscular





administration for treatment of





metastatic melanoma (see, e.g.,





Pashenkov M, Goess G, Wagner C,





et al. Phase II trial of a Toll-like





receptor 9-activating oligonucleotide





in patients with metastatic





melanoma. J. Olin. Oncol. 2006;





24(36):5716-5724.;





Subcutaneous/intramuscular





administration; Melan-A peptide





vaccine for melanoma (see, e.g.,





Speiser DE, Lienard D, Rufer N, et





al. Rapid and strong human CD8+ T





cell responses to vaccination with





peptide, IFA, and CpG





oligodeoxynucleotide 7909. J. Olin.





Invest. 2005; 115(3):





739-746; Appay V, Jandus C,





Voelter V, et al. New generation





vaccine induces effective





melanoma-





specific CD8+ T cells in the





circulation but not in the tumor site.





J. Immunol. 2006; 177(3):1670-





1678.);





Subcutaneous/intramuscular





administration; NY-ESO-1 protein





vaccine (see, e.g., Valmori D,





Souleimanian NE, Tosello V, et al.





Vaccination with NY-ESO-1 protein





and CpG in Montanide induces





integrated antibody/Th1 responses





and CD8 T cells through cross-





priming. Proc. Natl Acad. Sci. USA.





2007; 104(21):8947-8952.)



CpG 1018

Subcutaneous/intramuscular
TLR-9


ISS

administration for treatment of





lymphoma (see, e.g., Friedberg JW,





Kim H, McCauley M, et al.





Combination immunotherapy with a





CpG oligonucleotide (1018 ISS) and





rituximab in patients with non-





Hodgkin lymphoma: increased





interferon-α/β-inducible gene





expression, without significant





toxicity. Blood. 2005; 105(2):489-





495; Friedberg JW, Kelly JL,





Neuberg D, et al. Phase II study of a





TLR-9 agonist (1018 ISS) with





rituximab in patients with relapsed or





refractory follicular lymphoma. Br. J.





Haematol. 2009; 146(3):282-291.)



Bacillus
N/A
Intratumoral administration for
TLR-2


Calmette-

treatment of bladder cancer (see,



Guerin

e.g., Simons MP, O'Donnell MA.



(BCG)

Griffith TS. Role of neutrophils in





BCG immunotherapy for bladder





cancer. Urol. Oncol. 2008;





26(4):341-345.)



Zymosan A

Intratumoral administration for
TLR-2




treatment of glioma (see, e.g.,





Mariani CL, Rajon D, Bova FJ, Streit





WJ. Nonspecific immunotherapy





with intratumoral lipopolysaccharide





and zymosan A but not GM-CSF





leads to an effective anti-tumor





response in subcutaneous RG-2





gliomas. J. Neurooncol. 2007;





85(3):231-240.)







text missing or illegible when filed








In other instances, an immune stimulant may be a virus, e.g., an oncolytic virus. An oncolytic virus is a virus that selectively infects, replicates, and/or selectively kills cancer cells. Viruses of the present invention include, without limitation, adenoviruses, Herpes simplex viruses, measles viruses, Newcastle disease viruses, parvoviruses, polioviruses, reoviruses, Seneca Valley viruses, retroviruses, Vaccinia viruses, vesicular stomatitis viruses, lentiviruses, rhabdoviruses, sindvis viruses, coxsackieviruses, poxviruses, and others. In particular embodiments of the present invention, the immunostimulatory agent is a rhabodvirus, e.g., VSV. Rhabdoviruses can replicate quickly with high IFN production. In other particular embodiments, the immunostimulatory agent is a feral member, such as Maraba virus, with the MG1 double mutation, Farmington virus, Carajas virus. Viral immunostimulatory agents of the present invention include mutant viruses (e.g., VSV with a Δ51 mutation in the Matrix, or M, protein), transgene-modified viruses (e.g., VSV-hIFNβ), viruses carrying -TNFα, -LTα/TNFβ, -TRAIL, FasL, -TL1α, chimeric viruses (eg rabies), or pseudotyped viruses (e.g., viruses pseudotyped with G proteins from LCMV or other viruses). In some instances, the virus of the present invention will be selected to reduce neurotoxicity. Viruses in general, and in particular oncolytic viruses, are known in the art.


In certain embodiments, the immunostimulatory agent is a killed VSV NRRP particle or a prime-and-boost tumor vaccine. NRRPs are wild type VSV that have been modified to produce an infectious vector that can no longer replicate or spread, but that retains oncolytic and immunostimulatory properties. NRRPs may be produced using gamma irradiation, UV, or busulfan. Particular combination therapies include prime-and-boost with adeno-MAGE3 (melanoma antigen) and/or Maraba-MG1-MAGE3. Other particular combination therapies include UV-killed or gamma irradiation-killed wild-type VSV NRRPs. NRRPs may demonstrate low or absent neurotixicity. NRRPs may be useful, e.g., in the treatment of glioma, hematological (liquid) tumors, or multiple myeloma.


In some instances, the immunostimulatory agent of the present invention is a vaccine strain, attenuated virus or microorganism, or killed virus or microorganism. In some instances, the immunostimulatory agent may be, e.g., BCG, live or dead Rabies vaccines, or an influenza vaccine.


Non-limiting examples of viruses of the present invention, e.g., oncolytic viruses, are provided in Table 3. While Table 3 includes suggested mechanisms or uses for the provided viruses, methods and compositions of the present invention are not limited by or to these mechanisms or uses.









TABLE 3







Immunostimulatory agents











Modification(s)/




Strain
Description
Virus
Clinical Trial; Indication; Route; Status; Reference





Oncorine (H101)
E1B-55k-
Adenovirus
Phase 2; SCCHN; intratumoral (IT); completed; Xu R H, Yuan Z Y, Guan Z Z,





Cao Y, Wang H Q, Hu X H, Feng J F, Zhang Y, Li F, Chen Z T, Wang J J, Huang





J J, Zhou Q H, Song S T. [Phase II clinical study of intratumoral H101, an E1B





deleted adenovirus, in combination with chemotherapy in patients with cancer].





Ai Zheng. 2003 December; 22(12): 1307-10. Chinese.


Oncorine (H101)
E3-
Adenovirus
Phase 3; SCCHN; IT; Completed; Xia Z J, Chang J H, Zhang L, Jiang W Q,





Guan Z Z, Liu J W, Zhang Y, Hu X H, Wu G H, Wang H Q, Chen Z C, Chen J C,





Zhou Q H, Lu J W, Fan Q X, Huang J J, Zheng X. [Phase III randomized clinical





trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined





with cisplatin-based chemotherapy in treating squamous cell cancer of head





and neck or esophagus]. Ai Zheng. 2004 December; 23(12): 1666-70. Chinese.


Onyx-015
E1B-55k-
Adenovirus
Phase 1; Lung Mets; intravenous (IV); Completed; Nemunaitis J, Cunningham





C, Buchanan A, Blackburn A, Edelman G, Maples P, Netto G, Tong A, Randlev





B, Olson S, Kirn D. Intravenous infusion of a replication-selective adenovirus





(ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene





Ther. 2001 May; 8(10): 746-59.


Onyx-015
E3B-
Adenovirus
Phase 1; Glioma; Intracavity; Completed; Chiocca E A, Abbed K M, Tatter S,





Louis D N, Hochberg F H, Barker F, Kracher J, Grossman S A, Fisher J D,





Carson K, Rosenblum M, Mikkelsen T, Olson J, Markert J, Rosenfeld S,





Nabors L B, Brem S, Phuphanich S, Freeman S, Kaplan R, Zwiebel J. A phase





I open-label, dose-escalation, multi-institutional trial of injection with an E1B-





Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent





malignant gliomas, in the adjuvant setting. Mol Ther. 2004 November; 10(5): 958-66.





Phase 1; Ovarian cancer; intraperitoneal (IP); Completed; Vasey P A, Shulman





L N, Campos S, Davis J, Gore M, Johnston S, Kirn D H, O'Neill V, Siddiqui N,





Seiden M V, Kaye S B. Phase I trial of intraperitoneal injection of the E1B-55-





kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5





every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J





Clin Oncol. 2002 Mar. 15; 20(6): 1562-9.





Phase 1; SCCHN; IT; Completed; Ganly I, Kirn D, Eckhardt G, Rodriguez G I,





Soutar D S, Otto R, Robertson A G, Park O, Gulley M L, Heise C, Von Hoff D D,





Kaye S B. A phase I study of Onyx-015, an E1B attenuated adenovirus,





administered intratumorally to patients with recurrent head and neck cancer.





Clin Cancer Res. 2000 March; 6(3): 798-806. Erratum in: Clin Cancer Res 2000





May; 6(5): 2120. Clin Cancer Res 2001 March; 7(3): 754. Eckhardt S G [corrected to





Eckhardt G].





Phase 1; Solid tumors; IV; Completed; Nemunaitis J, Senzer N, Sarmiento S,





Zhang Y A, Arzaga R, Sands B, Maples P, Tong A W. A phase I trial of





intravenous infusion of ONYX-015 and enbrel in solid tumor patients. Cancer





Gene Ther. 2007 November; 14(11): 885-93. Epub 2007 Aug. 17.





Phase 1; Sarcoma; IT; Completed; Galanis E, Okuno S H, Nascimento A G,





Lewis B D, Lee R A, Oliveira A M, Sloan J A, Atherton P, Edmonson J H,





Erlichman C, Randlev B, Wang Q, Freeman S, Rubin J. Phase I-II trial of





ONYX-015 in combination with MAP chemotherapy in patients with advanced





sarcomas. Gene Ther. 2005 March; 12(5): 437-45.





Phase 1/2; PanCa; IT; Completed; Hecht J R, Bedford R, Abbruzzese J L,





Lahoti S, Reid T R, Soetikno R M, Kirn D H, Freeman S M. A phase I/II trial of





intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous





gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res. 2003





February; 9(2): 555-61.





Phase 2; CRC; IV; Completed; Hamid O, Varterasian M L, Wadler S, Hecht J R,





Benson A 3rd, Galanis E, Uprichard M, Omer C, Bycott P, Hackman R C,





Shields A F. Phase II trial of intravenous CI-1042 in patients with metastatic





colorectal cancer. J Clin Oncol. 2003 Apr. 15; 21 (8): 1498-504.





Phase 2; Hepatobiliary; IT; Completed; Makower D, Rozenblit A, Kaufman H,





Edelman M, Lane M E, Zwiebel J, Haynes H, Wadler S. Phase II clinical trial of





intralesional administration of the oncolytic adenovirus ONYX-015 in patients





with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res. 2003





February; 9(2): 693-702.





Phase 2; CRC, PanCa; intra-arteria (IA); Completed; Reid T, Galanis E,





Abbruzzese J, Sze D, Wein L M, Andrews J, Randlev B, Heise C, Uprichard M,





Hatfield M, Rome L, Rubin J, Kirn D. Hepatic arterial infusion of a replication-





selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical





endpoints. Cancer Res. 2002 Nov. 1; 62(21): 6070-9.





Phase 2; SCCHN; IT; Completed; Nemunaitis J, Khuri F, Ganly I, Arseneau J,





Posner M, Vokes E, Kuhn J, McCarty T, Landers S, Blackburn A, Romel L,





Randlev B, Kaye S, Kirn D. Phase II trial of intratumoral administration of





ONYX-015, a replication-selective adenovirus, in patients with refractory head





and neck cancer. J Clin Oncol. 2001 Jan. 15; 19(2): 289-98.





Phase 2; SCCHN; IT; Completed; Khuri FR, Nemunaitis J, Ganly I, Arseneau J,





Tannock I F, Romel L, Gore M, Ironside J, MacDougall R H, Heise C, Randlev





B, Gillenwater A M, Bruso P, Kaye S B, Hong W K, Kirn D H. a controlled trial of





intratumoral ONYX-015, a selectively-replicating adenovirus, in combination





with cisplatin and 5-fluorouracil in patients with recurrent head and neck





cancer. Nat Med. 2000 August; 6(8): 879-85.





Phase 2; CRC; IV; Completed; Reid T R, Freeman S, Post L, McCormick F,





Sze D Y. Effects of Onyx-015 among metastatic colorectal cancer patients that





have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther. 2005





August; 12(8): 673-81.


CG7060
PSA control
Adenovirus
Phase 1; Prostate cancer; IT; Completed; DeWeese T L, van der Poel H, Li S,





Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez





R, Hauik T, DeMarzo A M, Piantadosi S, Yu D C, Chen Y, Henderson D R,





Carducci M A, Nelson W G, Simons J W. A phase I trial of CV706, a replication-





competent, PSA selective oncolytic adenovirus, for the treatment of locally





recurrent prostate cancer following radiation therapy. Cancer Res. 2001 Oct.





15; 61 (20): 7464-72.


CG7870/CV787
Rat probasin-
Adenovirus
Phase 1/2; Prostate cancer; IV; Completed; Small E J, Carducci M A, Burke J M,



E1A

Rodriguez R, Fong L, van Ummersen L, Yu D C, Aimi J, Ando D, Working P,





Kirn D, Wilding G. A phase I trial of intravenous CG7870, a replication-





selective, prostate-specific antigen-targeted oncolytic adenovirus, for the





treatment of hormone-refractory, metastatic prostate cancer. Mol Ther. 2006





July; 14(1): 107-17. Epub 2006 May 9.


CG7870/CV787
hPSA-E1B,
Adenovirus
Phase 1/2; Prostate cancer; IV; Terminated 2005



E3+


CG0070
E2F-1,
Adenovirus
Phase 2/3; Bladder cancer; Intracavity; Not yet open; Ramesh N, Ge Y, Ennist



GM-CSF

D L, Zhu M, Mina M, Ganesh S, Reddy P S, Yu D C. CG0070, a conditionally





replicating granulocyte macrophage colony-stimulating factor-armed oncolytic





adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006 Jan.





1; 12(1): 305-13.


Telomelysin
hTERT
Adenovirus
Phase 1; Solid tumors; IT; Completed; Nemunaitis J, Tong A W, Nemunaitis M,





Senzer N, Phadke A P, Bedell C, Adams N, Zhang Y A, Maples P B, Chen S,





Pappen B, Burke J, Ichimaru D, Urata Y, Fujiwara T. A phase I study of





telomerase-specific replication competent oncolytic adenovirus (telomelysin)





for various solid tumors. Mol Ther. 2010 February; 18(2): 429-34. doi:





10.1038/mt.2009.262. Epub 2009 Nov. 24.


Ad5-CD/TKrep
CD/TK
Adenovirus
Phase 1; Prostate cancer; IT; Completed; Freytag S O, Khil M, Stricker H,





Peabody J, Menon M, DePeralta-Venturina M, Nafziger D, Pegg J, Paielli D,





Brown S, Barton K, Lu M, Aguilar-Cordova E, Kim J H. Phase I study of





replication-competent adenovirus-mediated double suicide gene therapy for the





treatment of locally recurrent prostate cancer. Cancer Res. 2002 Sep. 1;





62(17): 4968-76.





Phase 1; Prostate cancer; IT; Completed; Freytag S O, Stricker H, Pegg J,





Paielli D, Pradhan D G, Peabody J, DePeralta-Venturina M, Xia X, Brown S, Lu





M, Kim J H. Phase I study of replication-competent adenovirus-mediated





double-suicide gene therapy in combination with conventional-dose three-





dimensional conformal radiation therapy for the treatment of newly diagnosed,





intermediate- to high-risk prostate cancer. Cancer Res. 2003 Nov. 1;





63(21): 7497-506.


Ad5-D24-RGD
RGD, Delta-24
Adenovirus
Phase 1; Ovarian cancer; IP; Completed; Kimball K J, Preuss M A, Barnes M N,





Wang M, Siegal G P, Wan W, Kuo H, Saddekni S, Stockard C R, Grizzle W E,





Harris R D, Aurigemma R, Curiel D T, Alvarez R D. A phase I study of a tropism-





modified conditionally replicative adenovirus for recurrent malignant





gynecologic diseases. Clin Cancer Res. 2010 Nov. 1; 16(21): 5277-87. doi:





10.1158/1078-0432.CCR-10-0791. Epub 2010 Oct. 26.





Phase 1; Glioma; IT; Recruiting





Phase 1/2; Glioma; IT; Recruiting


Ad5-SSTR/TK-
SSTR, TK, RGD
Adenovirus
Phase 1; Ovarian cancer; IP; Active; Ramesh N, Ge Y, Ennist D L, Zhu M, Mina


RGD


M, Ganesh S, Reddy P S, Yu D C. CG0070, a conditionally replicating





granulocyte macrophage colony-stimulating factor-armed oncolytic





adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006 Jan.





1; 12(1): 305-13.


CGTG-102
Ad5/3, GM-CSF
Adenovirus
Phase 1/2; Solid tumors; IT; Not open; Koski A, Kangasniemi L, Escutenaire S,





Pesonen S, Cerullo V, Diaconu I, Nokisalmi P, Raki M, Rajecki M, Guse K,





Ranki T, Oksanen M, Holm S L, Haavisto E, Karioja-Kallio A, Laasonen L,





Partanen K, Ugolini M, Helminen A, Karli E, Hannuksela P, Pesonen S,





Joensuu T, Kanerva A, Hemminki A. Treatment of cancer patients with a





serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther.





2010 October; 18(10): 1874-84. doi: 10.1038/mt.2010.161. Epub 2010 Jul. 27.


CGTG-102
Delta-24
Adenovirus
Phase 1; Solid tumors; IT/IV; Recruiting


INGN-007
wtE1a, ADP
Adenovirus
Phase 1; Solid tumors; IT; Not open; Lichtenstein D L, Spencer J F, Doronin K,


(VRX-007)


Patra D, Meyer J M, Shashkova E V, Kuppuswamy M, Dhar D, Thomas M A,





Tollefson A E, Zumstein L A, Wold W S, Toth K. An acute toxicology study with





INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian





hamsters; comparisons with wild-type Ad5 and a replication-defective





adenovirus vector. Cancer Gene Ther. 2009 August; 16(8): 644-54. doi:





10.1038/cgt.2009.5. Epub 2009 Feb. 6.


ColoAd1
Ad3/11p
Adenovirus
Phase 1/2; CRC, HCC; ; Not open; Kuhn I, Harden P, Bauzon M, Chartier C,





Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, Seymour L, Rubanyi G M,





Harkins R N, Hermiston T W. Directed evolution generates a novel oncolytic





virus for the treatment of colon cancer. PLoS One. 2008 Jun. 18; 3(6): e2409.





doi: 10.1371/journal.pone.0002409.


CAVATAK

Coxsackie
Phase 1; Melanoma; IT; Completed




virus
Phase 2; Melanoma; IT; Recruiting




(CVA21)
Phase 1; SCCHN; IT; Terminated





Phase 1; Solid tumors; IV; Recruiting


Talimogene
GM-CSF
Herpes
Phase 1; Solid tumors; IT; Completed; Hu J C, Coffin R S, Davis C J, Graham


laherparepvec

simplex
N J, Groves N, Guest P J, Harrington K J, James N D, Love C A, McNeish I,


(OncoVEX)

virus
Medley L C, Michael A, Nutting C M, Pandha H S, Shorrock C A, Simpson J,





Steiner J, Steven N M, Wright D, Coombes R C. A phase I study of





OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus





expressing granulocyte macrophage colony-stimulating factor. Clin Cancer





Res. 2006 Nov. 15; 12(22): 6737-47.


Talimogene
ICP34.5(−)
Herpes
Phase 2; Melanoma; IT; Completed; Kaufman H L, Kim D W, DeRaffele G,


laherparepvec

simplex
Mitcham J, Coffin R S, Kim-Schulze S. Local and distant immunity induced by


(OncoVEX)

virus
intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in





patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010





March; 17(3): 718-30. doi: 10.1245/s10434-009-0809-6; Senzer N N, Kaufman H L,





Amatruda T, Nemunaitis M, Reid T, Daniels G, Gonzalez R, Glaspy J, Whitman





E, Harrington K, Goldsweig H, Marshall T, Love C, Coffin R, Nemunaitis J J.





Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-





encoding, second-generation oncolytic herpesvirus in patients with





unresectable metastatic melanoma. J Clin Oncol. 2009 Dec. 1; 27(34): 5763-71.





doi: 0.1200/JCO.2009.24.3675. Epub 2009 Nov. 2.


Talimogene
ICP47(−)
Herpes
Phase 3; Melanoma; IT; Active


laherparepvec

simplex


(OncoVEX)

virus


Talimogene
Us11 ↑
Herpes
Phase 1/2; SCCHN; IT; Completed; Harrington K J, Hingorani M, Tanay M A,


laherparepvec

simplex
Hickey J, Bhide S A, Clarke P M, Renouf L C, Thway K, Sibtain A, McNeish I A,


(OncoVEX)

virus
Newbold K L, Goldsweig H, Coffin R, Nutting C M. Phase I/II study of oncolytic





HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage





III/IV squamous cell cancer of the head and neck. Clin Cancer Res. 2010 Aug. 1;





16(15): 4005-15. doi: 10.1158/1078-0432.CCR-10-0196.


G207
ICP34.5(−),
Herpes
Phase 1/2; Glioma; IT; Completed; Markert J M, Liechty P G, Wang W, Gaston



ICP6(−)
simplex
S, Braz E, Karrasch M, Nabors L B, Markiewicz M, Lakeman A D, Palmer C A,




virus
Parker J N, Whitley R J, Gillespie G Y. Phase lb trial of mutant herpes simplex





virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol





Ther. 2009 January; 17(1): 199-207. doi: 10.1038/mt.2008.228. Epub 2008 Oct. 28;





Markert J M, Medlock M D, Rabkin S D, Gillespie G Y, Todo T, Hunter W D,





Palmer C A, Feigenbaum F, Tornatore C, Tufaro F, Martuza R L. Conditionally





replicating herpes simplex virus mutant, G207 for the treatment of malignant





glioma: results of a phase I trial. Gene Ther. 2000 May; 7(10): 867-74.


G207
LacZ(+)
Herpes
Phase 1; Glioma; IT; Completed




simplex




virus


G47Delta
From G207,
Herpes
Phase 1; Glioma; IT; Recruiting; Todo T, Martuza R L, Rabkin S D, Johnson P A.



ICP47−
simplex
Oncolytic herpes simplex virus vector with enhanced MHC class I presentation




virus
and tumor cell killing. Proc Natl Acad Sci USA. 2001 May 22; 98(11): 6396-





401. Epub 2001 May 15. PubMed PMID: 11353831; PubMed Central PMCID:





PMC33479.


HSV 1716
ICP34.5(−)
Herpes
Phase 1; Non-CNS solid tumors; IT; Recruiting


(Seprehvir)

simplex
Phase 1; SCCHN; IT; Completed; Mace A T, Ganly I, Soutar D S, Brown S M.




virus
Potential for efficacy of the oncolytic Herpes simplex virus 1716 in patients with





oral squamous cell carcinoma. Head Neck. 2008 August; 30(8): 1045-51. doi:





10.1002/hed.20840.





Phase 1; Glioma; IT; Completed; Harrow S, Papanastassiou V, Harland J,





Mabbs R, Petty R, Fraser M, Hadley D, Patterson J, Brown S M, Rampling R.





HSV1716 injection into the brain adjacent to tumor following surgical resection





of high-grade glioma: safety data and long-term survival. Gene Ther. 2004





November; 11(22): 1648-58; Papanastassiou V, Rampling R, Fraser M, Petty R,





Hadley D, Nicoll J, Harland J, Mabbs R, Brown M. The potential for efficacy of





the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoral





injection into human malignant glioma: a proof of principle study. Gene Ther.





2002 March; 9(6): 398-406.





Phase 1; Melanoma; IT; MacKie R M, Stewart B, Brown S M. Intralesional





injection of herpes simplex virus 1716 in metastatic melanoma. Lancet. 2001





Feb. 17; 357(9255): 525-6.





Phase 1; Mesothelioma; IP; not active


HF10
HSV-1
Herpes
Phase 1; Solid tumors; IT; Recruiting



HF strain
simplex
Phase 1; Pancreatic cancer; IT; Completed; Nakao A, Kasuya H, Sahin T T,




virus
Nomura N, Kanzaki A, Misawa M, Shirota T, Yamada S, Fujii T, Sugimoto H,





Shikano T, Nomoto S, Takeda S, Kodera Y, Nishiyama Y. A phase I dose-





escalation clinical trial of intraoperative direct intratumoral injection of HF10





oncolytic virus in non-resectable patients with advanced pancreatic cancer.





Cancer Gene Ther. 2011 March; 18(3): 167-75. doi: 10.1038/cgt.2010.65. Epub





2010 Nov. 19.





Phase 1; Breast cancer; IT; Completed; Kimata H, Imai T, Kikumori T,





Teshigahara O, Nagasaka T, Goshima F, Nishiyama Y, Nakao A. Pilot study





of oncolytic viral therapy using mutant herpes simplex virus (HF10) against





recurrent metastatic breast cancer. Ann Surg Oncol. 2006 August; 13(8): 1078-84.





Epub 2006 Jul. 24.





Phase 1; SCCHN; IT; Completed; Fujimoto Y, Mizuno T, Sugiura S, Goshima





F, Kohno S, Nakashima T, Nishiyama Y. Intratumoral injection of herpes





simplex virus HF10 in recurrent head and neck squamous cell carcinoma. Acta





Otolaryngol. 2006 October; 126(10): 1115-7.


NV1020

Herpes
Phase 1; CRC liver mets; IA; Completed; Fong Y, Kim T, Bhargava A,




simplex
Schwartz L, Brown K, Brody L, Covey A, Karrasch M, Getrajdman G,




virus
Mescheder A, Jarnagin W, Kemeny N. A herpes oncolytic virus can be





delivered via the vasculature to produce biologic changes in human colorectal





cancer. Mol Ther. 2009 February; 17(2): 389-94. doi: 10.1038/mt.2008.240. Epub





2008 Nov. 18.


MV-CEA
CEA
Measles
Phase 1; Ovarian cancer; IP; Completed; Galanis E, Hartmann L C, Cliby W A,




virus
Long H J, Peethambaram P P, Barrette B A, Kaur J S, Haluska P J Jr, Aderca I,




(Edmonston)
Zollman P J, Sloan J A, Keeney G, Atherton P J, Podratz K C, Dowdy S C,





Stanhope C R, Wilson T O, Federspiel M J, Peng K W, Russell S J. Phase I trial of





intraperitoneal administration of an oncolytic measles virus strain engineered to





express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res.





2010 Feb. 1; 70(3): 875-82. doi: 10.1158/0008-5472.CAN-09-2762. Epub 2010





Jan. 26.





Phase 1; Glioma; IT; Recruiting


MV-NIS
NIS
Measles
Phase 1; Myeloma; IV; Recruiting




virus
Phase 1; Ovarian cancer; IP; Recruiting




(Edmonston)
Phase 1; Mesothelioma; IP; Recruiting





Phase 1; SCCHN; IT; Not open


NDV-HUJ

Newcastle
Phase 1/2; Glioma; IV; Completed; Freeman A I, Zakay-Rones Z, Gomori J M,




disease
Linetsky E, Rasooly L, Greenbaum E, Rozenman-Yair S, Panet A, Libson E,




virus
Irving C S, Galun E, Siegal T. Phase I/II trial of intravenous NDV-HUJ oncolytic





virus in recurrent glioblastoma multiforme. Mol Ther. 2006 January; 13(1): 221-8.





Epub 2005 Oct. 28; Pecora A L, Rizvi N, Cohen G I, Meropol N J, Sterman D,





Marshall J L, Goldberg S, Gross P, O'Neil J D, Groene W S, Roberts M S, Rabin





H, Bamat M K, Lorence R M. Phase I trial of intravenous administration of





PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin





Oncol. 2002 May 1; 20(9): 2251-66.


PV701

Newcastle
Phase 1; Solid tumors; IV; Completed; Laurie S A, Bell J C, Atkins H L, Roach J,




disease
Bamat M K, O'Neil J D, Roberts M S, Groene W S, Lorence R M. A phase 1




virus
clinical study of intravenous administration of PV701, an oncolytic virus, using





two-step desensitization. Clin Cancer Res. 2006 Apr. 15; 12(8): 2555-62.


MTH-68/H

Newcastle
Phase 2; Solid tumors; Inhalation; Completed; Csatary L K, Eckhardt S,




disease
Bukosza I, Czegledi F, Fenyvesi C, Gergely P, Bodey B, Csatary C M.




virus
Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect





Prev. 1993; 17(6): 619-27.


H-1PV

Parvovirus
Phase 1/2; Glioma; IT/IV; Recruiting; Geletneky K, Kiprianova I, Ayache A,





Koch R, Herrero Y Calle M, Deleu L, Sommer C, Thomas N, Rommelaere J,





Schlehofer J R. Regression of advanced rat and human gliomas by local or





systemic treatment with oncolytic parvovirus H-1 in rat models. Neuro Oncol.





2010 August; 12(8): 804-14. doi: 10.1093/neuonc/noq023. Epub 2010 Mar. 18.


PVS-RIPO
IRES
Poliovirus
Phase 1; Glioma; IT; Recruiting; Goetz C, Gromeier M. Preparing an oncolytic




(Sabin)
poliovirus recombinant for clinical application against glioblastoma multiforme.





Cytokine Growth Factor Rev. 2010 April-June; 21(2-3): 197-203. doi:





10.1016/j.cytogfr.2010.02.005. Epub 2010 Mar. 17. Review.


Reolysin

Reovirus
Phase 1/2; Glioma; IT; Completed; Forsyth P, Roldán G, George D, Wallace C,




(Dearing)
Palmer C A, Morris D, Cairncross G, Matthews M V, Markert J, Gillespie Y,





Coffey M, Thompson B, Hamilton M. A phase I trial of intratumoral





administration of reovirus in patients with histologically confirmed recurrent





malignant gliomas. Mol Ther. 2008 March; 16(3): 627-32. doi:





10.1038/sj.mt.6300403. Epub 2008 Feb. 5.





Phase 1; Peritoneal cancer; IP; Recruiting





Phase 1; Solid tumors; IV; Completed; Vidal L, Pandha H S, Yap T A, White C L,





Twigger K, Vile R G, Melcher A, Coffey M, Harrington K J, DeBono J S. A phase





I study of intravenous oncolytic reovirus type 3 Dearing in patients with





advanced cancer. Clin Cancer Res. 2008 Nov. 1; 14(21): 127-37. doi:





10.1158/1078-0432.CCR-08-0524.





Phase 1; Solid tumors; IV; Recruiting





Phase 1; CRC; IV; Recruiting





Phase 2; Sarcoma; IV; Completed





Phase 2; Melanoma; IV; Suspended





Phase 2; Ovarian, peritoneal cancer; IV; Recruiting





Phase 2; Pancreatic cancer; IV; Recruiting





Phase 2; SCCHN; IV; Not recruiting





Phase 2; Melanoma; IV; Recruiting





Phase 2; Pancreatic cancer; IV; Recruiting





Phase 2; Lung cancer; IV; Recruiting





Phase 3; SCCHN; IV; Recruiting


NTX-010

Seneca
Phase 2; Small cell lung cancer; IV; Recruiting; PMID: 17971529




Valley




virus


Toca 511
CD
Retrovirus
Phase 1/2; Glioma; IT; Recruiting; Tai C K, Wang W J, Chen T C, Kasahara N.





Single-shot, multicycle suicide gene therapy by replication-competent retrovirus





vectors achieves long-term survival benefit in experimental glioma. Mol Ther.





2005 November; 12(5): 842-51.


JX-594
GM-CSF
Vaccinia
Phase 1; CRC; IV; Recruiting




(Wyeth




strain)


JX-594
TK(−)
Vaccinia
Phase 1; Solid tumors; IV; Completed




(Wyeth
Phase 1; HCC; IT; Completed; Park B H, Hwang T, Liu T C, Sze D Y, Kim J S,




strain)
Kwon H C, Oh S Y, Han S Y, Yoon J H, Hong S H, Moon A, Speth K, Park C, Ahn





Y J, Daneshmand M, Rhee B G, Pinedo H M, Bell J C, Kirn D H. Use of a targeted





oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver





cancer: a phase I trial. Lancet Oncol. 2008 June; 9(6): 533-42. doi:





10.1016/S1470-2045(08)70107-4. Epub 2008 May 19. Erratum in: Lancet





Oncol. 2008 July; 9(7): 613.





Phase 1; Pediatric solid tumors; IT; Recruiting





Phase 1; Melanoma; IT; Completed; Hwang T H, Moon A, Burke J, Ribas A,





Stephenson J, Breitbach C J, Daneshmand M, De Silva N, Parato K, Diallo J S,





Lee Y S, Liu T C, Bell J C, Kirn D H. A mechanistic proof-of-concept clinical trial





with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with





metastatic melanoma. Mol Ther. 2011 October; 19(10): 1913-22. doi:





10.1038/mt.2011.132. Epub 2011 Jul. 19.





Phase 1/2; Melanoma; IT; Completed; Mastrangelo M J, Maguire H C Jr,





Eisenlohr L C, Laughlin C E, Monken C E, McCue P A, Kovatich A J, Lattime E C.





Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients





with cutaneous melanoma. Cancer Gene Ther. 1999 September-October; 6(5): 409-22.





Phase 2; HCC; IT; Not recruiting, analyzing data





Phase 2B; HCC; IV; Recruiting





Phase 1/2; CRC; IV/IT; Recruiting





Phase 2; CRC; IT; Not yet recruiting


vvDD-CDSR
TK−, VGF−,
Vaccinia
Phase 1; Solid tumors; IT/IV; Recruiting; McCart J A, Mehta N, Scollard D,



LacZ, CD,
(Western
Reilly R M, Carrasquillo J A, Tang N, Deng H, Miller M, Xu H, Libutti S K,



Somatostatin R
Reserve)
Alexander H R, Bartlett D L. Oncolytic vaccinia virus expressing the human





somatostatin receptor SSTR2: molecular imaging after systemic delivery using





111In-pentetreotide. Mol Ther. 2004 September; 10(3): 553-61.


GL-ONC1
Renilla
Vaccinia
Phase 1; Solid tumors; IV; Recruiting, Gentschev I, Müller M, Adelfinger M,



luciferase

Weibel S, Grummt F, Zimmermann M, Bitzer M, Heisig M, Zhang Q, Yu Y A,





Chen N G, Stritzker J, Lauer U M, Szalay A A. Efficient colonization and therapy





of human hepatocellular carcinoma (HCC) using the oncolytic vaccinia virus





strain GLV-1h68. PLoS One. 2011; 6(7): e22069. doi:





10.1371/journal.pone.0022069. Epub 2011 Jul. 11.


(GLV-h68)
GFP, β-gal
Vaccinia
Phase 1/2; Peritoneal carcinomatosis; IP; Recruiting


Lister
β-glucoronidase
Vaccinia
Phase 1/2; SCCHN; IV; Recruiting


VSV-hIFNβ
IFN-β
Vesicular
Phase 1; HCC; IT; Recruiting




stomatitis




virus




(Indiana)


DNX-2401
DNAtrix
Adenovirus
See, e.g., Molecular Therapy 21(10): 1814-1818, 2013 and






Journal of Vascular and Interventional Radiology 24(8):






1115-1122, 2013


Toca511
Tocagen
Lentivirus
See, e.g., Molecular Therapy 21 (10): 1814-1818, 2013 and






Journal of Vascular and Interventional Radiology 24(8):






1115-1122, 2013


HSV T-VEC

HSV
See, e.g., Molecular Therapy 21(10): 1814-1818, 2013 and






Journal of Vascular and Interventional Radiology 24(8):






1115-1122, 2013


H-1

Parvovirus
See, e.g., Molecular Therapy 21 (10): 1814-1818, 2013 and


ParvOryx



Journal of Vascular and Interventional Radiology 24(8):






1115-1122, 2013


VACV-TRAIL
(see work of
Vaccinia
See, e.g., Molecular Therapy 21 (10): 1814-1818, 2013 and



Karolina Autio
virus

Journal of Vascular and Interventional Radiology 24(8):




and Suvi

1115-1122, 2013



Parvainen,



Helsinki)


VACV-CD40L
(see work of
Vaccinia
See, e.g., Molecular Therapy 21 (10): 1814-1818, 2013 and



Karolina Autio
virus

Journal of Vascular and Interventional Radiology 24(8):




and Suvi

1115-1122, 2013



Parvainen,



Helsinki)


Maraba
(see work of Dave
Rhabdovirus
Preclinical/Clinical Candidate



Stojdl, and



John Bell)


Maraba-
(see work of Dave
Rhabdovirus


MG1
Stojdl, and



John Bell)


Maraba
(see work of Dave
Rhabdovirus
Preclinical/Clinical Candidate


MG1-
Stojdl, Brian


hMAGE-A3
Litchy and John



Bell)




Sindbis
Preclinical/Clinical Candidate




virus




Coxsackievirus
Preclinical/Clinical Candidate




A21


MYXV

Poxvirus
Preclinical/Clinical Candidate Chan W M, Rahman M M, McFadden G. Oncolytic





myxoma virus: the path to clinic. Vaccine. 2013 Sep. 6; 31(39): 4252-8. doi:





10.1016/j.vaccine.2013.05.056. Epub 2013 May 29.


WT VSV
The parental rWT

Recombinant VSV used as oncolytic agent against cancer(see, e.g., see, e.g.,


(‘Rose lab’)
VSV for most

J Gen Virol/93(12): 2529-2545, 2012; Lawson N D, Stillman E A, Whitt M A,



VSV-based OVs.

Rose J K. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad



The L gene and

Sci USA. 1995 May 9; 92(10): 4477-81. Erratum in: Proc Natl Acad Sci USA



the N-terminal 49

1995 Sep. 12; 92(19): 9009.)



residues of the



N gene are derived



from the Mudd-



Summers strain,



the rest is from



the San Juan



strain (both



Indiana serotype)


VSV-WT-XN2
Derivative of

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


(or XN1)
rWT VSV (‘Rose

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



lab’). Generated

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



using pVSV-XN2 (or

10.1099/vir.0.046672-0. Epub 2012 Oct. 10.; Schnell M J, Buonocore L,



pVSV-XN1), a

Kretzschmar E, Johnson E, Rose J K. Foreign glycoproteins expressed from



full-length VSV

recombinant vesicular stomatitis viruses are incorporated efficiently into virus



plasmid containing

particles. Proc Natl Acad Sci USA. 1996 Oct. 15; 93(21): 11359-65.)



uniqueXhol and



Nhel sites flanked



by VSV



transcription start



and stop signals



between G and L



genes. pVSV-XN2



(or pVSV-XN1) is



commonly used



to generate



recombinant VSVs



encoding an



extra gene


WT VSV
Alternative rWT

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


(‘Wertz lab’)
VSV. The N, P,

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



M and L genes

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



originate from

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Whelan S P, Ball L A, Barr J N,



the San Juan

Wertz G T. Efficient recovery of infectious vesicular stomatitis virus entirely from



strain; G gene

cDNA clones. Proc Natl Acad Sci USA. 1995 Aug. 29; 92(18): 8388-92.)



from the Orsay



strain (both



Indiana



serotype).



Rarely used



in OV studies


VSV-WT-GFP,
WT VSV encoding

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


-RFP, -Luc,
reporter genes

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


-LacZ
(between G and

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



L) to track

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Fernadez et al., “Genetically



virus infection.

Engineered Vesicular Stomatitis Virus in Gene Therapy: Application for



Based on pVSV-

Treatment of Malignant Disease”, J Virol 76: 895-904 (2002); Lan Wu, Tian-gui



XN2. Toxicity

Huang, Marcia Meseck, Jennifer Altomonte, Oliver Ebert, Katsunori Shinozaki,



similar to

Adolfo Garcia-Sastre, John Fallon, John Mandeli, and Savio L. C. Woo. Human



VSV-WT

Gene Therapy. June 2008, 19(6): 635-647)


VSV-G/GFP
GFP sequence fused

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



to VSV G gene is

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



inserted between

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



the WT G and L

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Dalton, K. P. & Rose, J. K. (2001).



genes (in addition

Vesicular stomatitis virus glycoprotein containing the entire green fluorescent



to WT G). Toxicity

protein on its cytoplasmic domain is incorporated efficiently into virus particles.



similar to that

Virology 279, 414-421.)



of VSV-WT


VSV-rp30
Derivative of

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



VSV-G/GFP.

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



Generated by

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



positive selection

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wollmann, G., Tattersail, P. & van



on glioblastoma

den Pol, A. N. (2005). Targeting human glioblastoma cells: comparison of nine



cells and

viruses with oncolytic potential. J Virol 79, 6005-6022.)



contains two



silent mutations



and two missense



mutations, one in



P and one in L.



‘rp30’ indicates



30 repeated passages


VSV-p1-GFP,
VSV expressing

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


VSV-p1-RFP
GFP or red

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



fluorescent

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



protein (RFP or

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wollmann, G., Rogulin, V., Simon,



dsRed) reporter

I., Rose, J. K. & van den Pol, A. N. (2010). Some attenuated variants of



gene at position

vesicular stomatitis virus show enhanced oncolytic activity against human



1. Attenuated

glioblastoma cells relative to normal brain cells. J Virol 84, 1563-1573.)



because all VSV



genes are moved



downward, to



positions 2-6.



Safe and still



effective as an



OV


VSV-dG-GFP
Similar to

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


(or RFP)
VSV-p1-GFP or

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


(replication-
VSV-p1-RFP

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:


defective)
described above,

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wollmann, G., Rogulin, V., Simon,



but with the G

I., Rose, J. K. & van den Pol, A. N. (2010). Some attenuated variants of



gene deleted.

vesicular stomatitis virus show enhanced oncolytic activity against human



Cannot generate

glioblastoma cells relative to normal brain cells. J Virol 84, 1563-1573.)



a second round



of infection.



Poor ability to



kill tumor cells


VSV-ΔP,
Each virus cannot

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


-ΔL, -ΔG
replicate alone

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


(semi-
because of one

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:


replication-
VSV gene deleted,

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Muik, A., Dold, C., Geiβ, Y., Volk,


competent)
but when viruses

A., Werbizki, M., Dietrich, U. & von Laer, D. (2012). Semireplication-competent



co-infect, they

vesicular stomatitis virus as a novel platform for oncolytic virotherapy. J Mol



show good

Med (Berl) 90, 959-970.)



replication,



safety and



oncolysis



(especially the



combination of



VSVΔG/VSVΔL).



VSVΔP and VSVΔL



contain dsRed in



place of the



corresponding



viral gene.



VSVΔG contains



GFP gene in



place of G


VSV-M51R
M mutant; the

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



M51R mutation was

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



introduced into M

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:





10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Kopecky, S. A., Willingham, M. C.





& Lyles, D. S. (2001). Matrix protein and another viral component contribute to





induction of apoptosis in cells infected with vesicular stomatitis virus. J Virol 75,





12169-12181.)


VSV-ΔM51,
M mutant; the

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


VSV-ΔM51-
ΔM51 mutation

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


GFP, -RFP,
was introduced

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:


-FLuc, -Luc,
into M. In

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Stojdl, D. F., Lichty, B. D.,


-LacZ
addition, some

tenOever, B. R., Paterson, J. M., Power, A. T., Knowles, S., Marius, R.,



recombinants

Reynard, J., Poliquin, L. & other authors (2003). VSV strains with defects in



encode a

their ability to shutdown innate immunity are potent systemic anti-cancer



reporter gene

agents. Cancer Cell 4, 263-275.; Power, A. T. & Bell, J. C. (2007). Cell-based



between the G

delivery of oncolytic viruses: a new strategic alliance for a biological strike



and L

against cancer. Mol Ther 15, 660-665.; Wu, L., Huang, T. G., Meseck, M.,





Altomonte, J., Ebert, O., Shinozaki, K., Garci{acute over ( )}a-Sastre, A., Fallon, J., Mandeli,





J. & Woo, S. L. (2008). rVSV(MD51)-M3 is an effective and safe oncolytic virus





for cancer therapy. Hum Gene Ther 19, 635-647.)


VSV-*Mmut
M mutant; VSV

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



with a single

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



mutation or

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



combination

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Hoffmann, M., Wu, Y. J., Gerber,



of mutations at

M., Berger-Rentsch, M., Heimrich, B., Schwemmle, M. & Zimmer, G. (2010).



the following M

Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis



positions: M33A,

virus M mutants lacking host shut-off activity. J Gen Virol 91, 2782-2793.)



M51R, V221F



and S226R


VSV-M6PY >
M mutant; the

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


A4-R34E
M51R mutation

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


and other
was introduced

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:


M mutants
into the M gene,

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Irie, T., Carnero, E., Okumura, A.,



and, in addition,

Garci{acute over ( )}a-Sastre, A. & Harty, R. N. (2007). Modifications of the PSAP region of



the mutations

the matrix protein lead to attenuation of vesicular stomatitis virus in vitro and in



in the PSAP motif

vivo. J Gen Virol 88, 2559-2567.)



(residues 37-



40) of M


VSV-M(mut)
M mutant; VSV

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



M residues 52-

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



54 are mutated

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



from DTY to AAA.

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Heiber, J. F. & Barber, G. N.



M(mut) cannot

(2011). Vesicular stomatitis virus expressing tumor suppressor p53 is a highly



block nuclear

attenuated, potent oncolytic agent. J Virol 85, 10440-10450.)



mRNA export


VSV-G5, -G5R,
G mutant;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


-G6, -G6R
VSV-expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



mutant G with

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



amino acid

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Janelle, V., Brassard, F., Lapierre,



substitutions at

P., Lamarre, A. & Poliquin, L. (2011). Mutations in the glycoprotein of vesicular



various positions

stomatitis virus affect cytopathogenicity: potential for oncolytic virotherapy. J



(between residues

Virol 85, 6513-6520.)



100 and 471).



Triggers type I



IFN secretion as



the M51R, but



inhibits cellular



transcription and



host protein



translation like



WT


VSV-CT1
G mutant; the

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



cytoplasmic tail of

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



the G protein was

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



truncated from 29

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ozduman, K., Wollmann, G.,



to 1 aa. Decreased

Ahmadi, S. A. & van den Pol, A. N. (2009). Peripheral immunization blocks



neuropathology, but

lethal actions of vesicular stomatitis virus within the brain. J Virol 83, 11540-



marginal oncolytic

11549.; Wollmann, G., Rogulin, V., Simon, I., Rose, J. K. & van den Pol, A. N.



efficacy

(2010). Some attenuated variants of vesicular stomatitis virus show enhanced





oncolytic activity against human glioblastoma cells relative to normal brain





cells. J Virol 84, 1563-1573.)


VSV-CT9-
G mutant; the

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


M51
cytoplasmic tail

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



of VSV-G was

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



reduced from 29

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ozduman, K., Wollmann, G.,



to 9 aa, also has

Ahmadi, S. A. & van den Pol, A. N. (2009). Peripheral immunization blocks



ΔM51 mutation.

lethal actions of vesicular stomatitis virus within the brain. J Virol 83, 11540-



Attenuated

11549.; Wollmann, G., Rogulin, V., Simon, I., Rose, J. K. & van den Pol, A. N.



neurotoxicity and

(2010). Some attenuated variants of vesicular stomatitis virus show enhanced



good OV abilities

oncolytic activity against human glioblastoma cells relative to normal brain





cells. J Virol 84, 1563-1573.)


VSV-
Foreign

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


DV/F(L289A)
glycoprotein; VSV

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


(same as
expressing the

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:


rVSV-F)
NDV fusion

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ebert, O., Shinozaki, K., Kournioti,



protein gene

C., Park, M. S., Garci{acute over ( )}a-Sastre, A. & Woo, S. L. (2004). Syncytia induction



between G and L.

enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for



The L289A mutation

cancer. Cancer Res 64, 3265-3270.)



in this protein



allows it to



induce syncytia



alone (without



NDV HN protein)


VSV-S-GP
Foreign

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



glycoprotein;

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



VSV with the

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



native G gene

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Bergman, I., Griffin, J. A., Gao, Y.



deleted and

& Whitaker-Dowling, P. (2007). Treatment of implanted mammary tumors with



replaced with a

recombinant vesicular stomatitis virus targeted to Her2/neu. Int J Cancer 121,



modified

425-430.)



glycoprotein



protein (GP) from



Sindbis virus



(SV). Also



expressing mouse



GM-CSF and GFP



(between SV GP



and VSV L). The



modified GP



protein recognizes



the Her2 receptor,



which is



overexpressed on



many breast cancer



cells


VSV-ΔG-
Foreign

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


SV5-F
glycoprotein; VSV

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



G gene is replaced

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



with the fusogenic

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Chang, G., Xu, S., Watanabe, M.,



simian parainfluenza

Jayakar, H. R., Whitt, M. A. & Gingrich, J. R. (2010). Enhanced oncolytic



virus 5 fusion

activity of vesicular stomatitis virus encoding SV5-F protein against prostate



protein (SV5-F)

cancer. J Urol 183, 1611-1618.)



gene


VSV-FAST,
Foreign

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


VSV-(ΔM51)-
glycoprotein; VSV

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


FAST
or VSV-MΔ51

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



expressing the p14

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Brown, C. W., Stephenson, K. B.,



FAST protein of

Hanson, S., Kucharczyk, M., Duncan, R., Bell, J. C. & Lichty, B. D. (2009). The



reptilian reovirus

p14 FAST protein of reptilian reovirus increases vesicular stomatitis virus



(between VSV G and

neuropathogenesis. J Virol 83, 552-561.)



L)


VSV-LCMV-GP
Foreign

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


(replication-
glycoprotein; VSV

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


defective)
lacking the G gene

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



was pseudotyped with

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Muik, A., Kneiske, I., Werbizki, M.,



the non-neurotropic

Wilflingseder, D., Giroglou, T., Ebert, O., Kraft, A., Dietrich, U., Zimmer, G. &



glycoprotein of

other authors (2011). Pseudotyping vesicular stomatitis virus with lymphocytic



LMCV

choriomeningitis virus glycoproteins enhances infectivity for glioma cells and





minimizes neurotropism. J Virol 85, 5679-5684.)


VSV-H/F,
Foreign

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


-αEGFR, -αFR,
glycoprotein; VSV

Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic


-αPSMA
lacking the G gene

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:


(replication-
was pseudotyped

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ayala-Breton, C., Barber, G. N.,


defective)
with the MV F and

Russell, S. J. & Peng, K. W. (2012). Retargeting vesicular stomatitis virus using



H displaying

measles virus envelope glycoproteins. Hum Gene Ther 23, 484-491.)



single-chain



antibodies (scFv)



specific for



epidermal growth



factor receptor,



folate receptor,



or prostate



membrane-specific



antigen.



Retargeted VSV



to cells that



expressed the



targeted receptor


VSV- let-
microRNA target;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


7wt
the let-7

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



microRNA targets

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



are inserted into

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Edge, R. E., Falls, T. J., Brown, C.



the 3′-UTR of

W., Lichty, B. D., Atkins, H. & Bell, J. C. (2008). A let-7 microRNA-sensitive



VSV M

vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 16,





1437-1443.)


VSV-124,
microRNA target;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


-125, -128,
VSV recombinants

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


-134 (M or
with neuron-specific

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:


L mRNA)
microRNA (miR-124,

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Kelly, E. J., Nace, R., Barber, G. N.



125, 128 or 134)

& Russell, S. J. (2010). Attenuation of vesicular stomatitis virus encephalitis



targets inserted

through microRNA targeting. J Virol 84, 1550-1562.)



in the 3′-UTR



of VSV M or L



mRNA


VSV-mp53,
Cancer suppressor;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


VSV- M(mut)-
VSV [WT or

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


mp53
M(mut)]

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



expressing the

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Heiber, J. F. & Barber, G. N.



murine p53 gene.

(2011). Vesicular stomatitis virus expressing tumor suppressor p53 is a highly



M(mut) has

attenuated, potent oncolytic agent. J Virol 85, 10440-10450.)



residues 52-54



of the M protein



changed from



DTY to AAA


VSV-
Suicide gene;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


C:U
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic




E. coli CD/UPRT,


virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



catalysing the

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Porosnicu, M., Mian, A. & Barber,



modification of

G. N. (2003). The oncolytic effect of recombinant vesicular stomatitis virus is



5-fluorocytosine

enhanced by expression of the fusion cytosine deaminase/uracil



into

phosphoribosyltransferase suicide gene. Cancer Res 63, 8366-8376.)



chemotherapeutic



5-FU


VSV-C
Suicide gene;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



VSV-MΔ51

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



expressing

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



CD/UPRT

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Leveille, S., Samuel, S., Goulet, M.





L. & Hiscott, J. (2011). Enhancing VSV oncolytic activity with an improved





cytosine deaminase suicide gene strategy. Cancer Gene Ther 18, 435-443.)


VSV-
Suicide gene;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


(MΔ51)-
VSV-MΔ51

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


NIS
expressing the

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



human NIS

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Goel, A., Carlson, S. K., Classic, K.



gene (for

L., Greiner, S., Naik, S., Power, A. T., Bell, J. C. & Russell, S. J. (2007).



‘radiovirotherapy’

Radioiodide imaging and radiovirotherapy of multiple myeloma using



with 131I)

VSV(D51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium





iodide symporter gene. Blood 110, 2342-2350.)


VSV- TK
Suicide gene;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



TK; can improve

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



oncolysis if

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Fernandez, M., Porosnicu, M.,



used with non-

Markovic, D. & Barber, G. N. (2002). Genetically engineered vesicular



toxic prodrug

stomatitis virus in gene therapy: application for treatment of malignant disease.



ganciclovir

J Virol 76, 895-904.)


VSV
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


-mIFNβ,
VSV expressing the

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic


-hIFNβ,
murine (m), human

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:


VSV-rIFNβ
(h) or rat (r) IFN-

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Jenks, N., Myers, R., Greiner, S.



β gene

M., Thompson, J., Mader, E. K., Greenslade, A., Griesmann, G. E., Federspiel,





M. J., Rakela, J. & other authors (2010). Safety studies on intrahepatic or





intratumoral injection of oncolytic vesicular stomatitis virus expressing





interferonb in rodents and nonhuman primates. Hum Gene Ther 21, 451-462.;





Obuchi, M., Fernandez, M. & Barber, G. N. (2003). Development of





recombinant vesicular stomatitis viruses that exploit defects in host defense to





augment specific oncolytic activity. J Virol 77, 8843-8856.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


IL4
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



IL-4

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:





10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Fernandez, M., Porosnicu, M.,





Markovic, D. & Barber, G. N. (2002). Genetically engineered vesicular





stomatitis virus in gene therapy: application for treatment of malignant disease.





J Virol 76, 895-904.)


VSV-
VSV expressing

Naik S, Nace R, Federspiel M J, Barber G N, Peng K W, Russell S J. Curative


IFN-
IFNb and thyroidal

one-shot systemic virotherapy in murine myeloma. Leukemia. 2012


NIS
sodium iodide

August; 26(8): 1870-8. doi: 10.1038/leu.2012.70. Epub 2012 Mar. 19.



symporter


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


IL12
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



IL-12

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:





10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Shin, E. J., Wanna, G. B., Choi, B.,





Aguila, D., III, Ebert, O., Genden, E. M. & Woo, S. L. (2007a). Interleukin-12





expression enhances vesicular stomatitis virus oncolytic therapy in murine





squamous cell carcinoma. Laryngoscope 117, 210-214.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


IL23
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



IL-23.

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



Significantly

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Miller, J. M., Bidula, S. M., Jensen,



attenuated in the

T. M. & Reiss, C. S. (2010). Vesicular stomatitis virus modified with single



CNS, but effective

chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo. Int



OV

J Infereron Cytokine Mediator Res 2010, 63-72.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


IL28
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



IL-28, a member

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



of the type III

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wongthida, P., Diaz, R. M., Galivo,



IFN (IFN-λ)

F., Kottke, T., Thompson, J., Pulido, J., Pavelko, K., Pease, L., Melcher, A. &



family

Vile, R. (2010). Type III IFN interleukin-28 mediates the antitumor efficacy of





oncolytic virus VSV in immune-competent mouse models of cancer. Cancer





Res 70, 4539-4549.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


opt.hIL-15
VSV-MΔ51

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



expressing a

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



highly secreted

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Stephenson, K. B., Barra, N. G.,



version of human

Davies, E., Ashkar, A. A. & Lichty, B. D. (2012). Expressing human interleukin-



IL-15

15 from oncolytic vesicular stomatitis virus improves survival in a murine





metastatic colon adenocarcinoma model through the enhancement of





antitumor immunity. Cancer Gene Ther 19, 238-246.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


CD40L
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



CD40L, a member

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



of the tumor

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Galivo, F., Diaz, R. M.,



necrosis factor

Thanarajasingam, U., Jevremovic, D., Wongthida, P., Thompson, J., Kottke, T.,



(TNF) family of

Barber, G. N., Melcher, A. & Vile, R. G. (2010). Interference of CD40L-



cell-surface

mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum



molecules

Gene Ther 21, 439-450.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


Flt3L
VSV-MΔ51

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



expressing the

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



soluble form of

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Leveille, S., Goulet, M. L., Lichty,



the human Flt3L,

B. D. & Hiscott, J. (2011). Vesicular stomatitis virus oncolytic treatment



a growth factor

interferes with tumor-associated dendritic cell functions and abrogates tumor



activating DCs

antigen presentation. J Virol 85, 12160-12169.)


VSV/hDCT
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



VSV-MΔ51

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



expressing hDCT

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:





10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Boudreau, J. E., Bridle, B. W.,





Stephenson, K. B., Jenkins, K. M., Brunellie{grave over ( )} re, J., Bramson, J. L., Lichty, B.





D. & Wan, Y. (2009). Recombinant vesicular stomatitis virus transduction of





dendritic cells enhances their ability to prime innate and adaptive antitumor





immunity. Mol Ther 17, 1465-1472.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


hgp100
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



hgp100, an altered

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



self-TAA against

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wongthida, P., Diaz, R. M., Galivo,



which tolerance is

F., Kottke, T., Thompson, J., Melcher, A. & Vile, R. (2011). VSV oncolytic



well-established

virotherapy in the B16 model depends upon intact MyD88 signaling. Mol Ther



in C57BL/6 mice

19, 150-158.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


ova
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



chicken ovalbumin

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



(for B16ova cancer

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Diaz, R. M., Galivo, F., Kottke, T.,



model)

Wongthida, P., Qiao, J., Thompson, J., Valdes, M., Barber, G. & Vile, R. G.





(2007). Oncolytic immunovirotherapy for melanoma using vesicular stomatitis





virus. Cancer Res 67, 2840-2848.)


VSV-gG
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,



VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



EHV-1 glycoprotein

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



G, a broad-

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Altomonte, J., Wu, L., Chen, L.,



spectrum viral

Meseck, M., Ebert, O., Garci{acute over ( )}a-Sastre, A., Fallon, J. & Woo, S. L. (2008).



chemokine-binding

Exponential enhancement of oncolytic vesicular stomatitis virus potency by



protein

vector-mediated suppression of inflammatory responses in vivo. Mol Ther 16,





146-153.)


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


UL141
VSV expressing

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



a secreted form

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



of the human

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Altomonte, J., Wu, L., Meseck, M.,



cytomegalovirus

Chen, L., Ebert, O., Garcia-Sastre, A., Fallon, J., Mandeli, J. & Woo, S. L.



UL141 protein,

(2009). Enhanced oncolytic potency of vesicular stomatitis virus through



known to inhibit

vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther 16, 266-



the function of

278.)



NK cells by



blocking the



ligand of NK cell-



activating



receptors


VSV-
Immunomodulation;

Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,


(Δ51)-M3
VSV-MΔ51

Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic



expressing the

virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:



murine

10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wu, L., Huang, T. G.,Meseck, M.,



gammaherpesvirus-

Altomonte, J., Ebert, O., Shinozaki, K., Garci{acute over ( )}a-Sastre, A., Fallon, J., Mandeli,



68 chemokine-

J. & Woo, S. L. (2008). rVSV(MD51)-M3 is an effective and safe oncolytic virus



binding protein

for cancer therapy. Hum Gene Ther 19, 635-647.)



M3


HSV-1
Genome and
Herpesviridae
Clinical phase I/II; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ds

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



DNA; Enveloped

January-February; 18(1): 69-81



Representative



Host: Human


NDV
Genome and
Paramyxoviridae
Clinical phase I/II; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ss

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



(−) RNA;

January-February; 18(1): 69-81



Enveloped



Representative



Host: Avian


Adeno
Genome and
Adenoviridae
Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ds

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



DNA; Naked

January-February; 18(1): 69-81



Representative



Host: Human


Reo
Genome and
Reoviridae
Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ds

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



RNA; Naked

January-February; 18(1): 69-81



Representative



Host: Mammalian


Vaccinia
Genome and
Poxviridae
Preclinical in vivo; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ds

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



DNA; Enveloped

January-February; 18(1): 69-81



Representative



Host: Cow/horse,



others


Polio
Genome and
Picornaviridae
Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ss

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



(+) RNA;

January-February; 18(1): 69-81



Naked



Representative



Host: Human


VSV
Genome and
Rhabdoviridae
Preclinical in vivo; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ss (−)

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



RNA; Enveloped

January-February; 18(1): 69-81



Representative



Host: Livestock/



mosquito


MVM
Genome and
Parvoviridae
Preclinical in vitro; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ss

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



DNA; Naked

January-February; 18(1): 69-81



Representative



Host: Mouse


Sindbis
Genome and
Togaviridae
Preclinical in vitro; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ss (+)

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



RNA; Enveloped

January-February; 18(1): 69-81



Representative



Host: Mammalian/



mosquito


PRV
Genome and
Herpesviridae
Preclinical in vitro; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ds

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



DNA; Enveloped

January-February; 18(1): 69-81



Representative



Host: Pig


Measles
Genome and
Paramyxoviridae
Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ss (−)

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



RNA; Enveloped

January-February; 18(1): 69-81



Representative



Host: Human


Myxoma
Genome and
Poxviridae
Preclinical in vivo; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ds

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



DNA; Enveloped

January-February; 18(1): 69-81



Representative



Host: Rabbit


H1PV
Genome and
Parvoviridae
Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ss

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



DNA; Naked

January-February; 18(1): 69-81



Representative



Host: Rat


SVV
Genome and
Picornaviridae
Preclinical in vitro; Glioma; Wollmann et al. Oncolytic virus therapy for



Structure: ss

glioblastoma multiforme: concepts and candidates. Cancer J. 2012



(+) RNA;

January-February; 18(1): 69-81



Naked



Representative



Host: Pig


HSV (G207)I


Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy





for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Markert J M, Medlock M D, Rabkin S D, et al.





Conditionally replicating herpes simplex virus mutant, G207 for the treatment





of malignant glioma: results of a phase I trial. Gene Ther. 2000; 7: 867Y874.





Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy





for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Markert J M, Liechty P G, Wang W, et al. Phase Ib





trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection





for recurrent GBM. Mol Ther. 2009; 17: 199Y207.





Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy





for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81


HSV (1716)


Phase II; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy





for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Rampling R, Cruickshank G, Papanastassiou V, et al.





Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null





mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 2000; 7:





859Y866.





Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy





for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Papanastassiou V, Rampling R, Fraser M, et al. The





potential for efficacy of the modified (ICP 34.5(j)) herpes simplex virus





HSV1716 following intratumoral injection into human malignant glioma: a proof





of principle study. Gene Ther. 2002; 9: 398Y406.





Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy





for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Harrow S, Papanastassiou V, Harland J, et al.





HSV1716 injection into the brain adjacent to tumor following surgical resection





of high-grade glioma: safety data and long-term survival. Gene Ther. 2004; 11:





1648Y1658.





Phase II; Malignant glioma; Wollmann et al. Oncolytic virus therapy for





glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81


HSV


Phase I; Malignant glioma; Wollmann et al. Oncolytic virus therapy for


(G4721)


glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81


HSV


Phase I; Malignant glioma; Wollmann et al. Oncolytic virus therapy for


(M032)


glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81


AdV (ONYX-


Phase I; Malignant glioma; injection to tumor resection cavity; Wollmann et al.


015)


Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates.






Cancer J. 2012 January-February; 18(1): 69-81; Chiocca E A, Abbed K M,






Tatter S, et al. A phase I open-label, dose-escalation, multi-institutional





trial of injection with an E1BAttenuated adenovirus, ONYX-015, into the





peritumoral region of recurrent malignant gliomas, in the adjuvant setting.





Mol Ther. 2004; 10: 958Y966.


AdV


Phase I; Malignant glioma; Wollmann et al. Oncolytic virus therapy for


(Delta24-


glioblastoma multiforme: concepts and candidates. Cancer J. 2012


RGD)


January-February; 18(1): 69-81


ReoV


Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy





for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Forsyth P, Roldan G, George D, et al. A phase I





trial of intratumoral administration of reovirus in patients with histologically





confirmed recurrent malignant gliomas. Mol Ther. 2008; 16: 627Y632.





Phase I; Malignant glioma; Convection enhanced; Wollmann et al. Oncolytic





virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J.





2012 January-February; 18(1): 69-81


NDV


Phase I/II; Malignant glioma; IV; Wollmann et al. Oncolytic virus therapy for


(HUJ)


glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Freeman A I, Zakay-Rones Z, Gomori J M, et al.





Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma





multiforme. Mol Ther. 2006; 13: 221Y228.





Phase I/II; Malignant glioma; IV; Wollmann et al. Oncolytic virus therapy for





glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81


NDV


Case Studies/Series; Malignant glioma; IV; Wollmann et al. Oncolytic virus


(MTH-68)


therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Csatary L K, Bakacs T. Use of Newcastle





disease virus vaccine (MTH- 68/H) in a patient with high-grade glioblastoma.





JAMA. 1999; 281: 1588Y1589.





Case Studies/Series; Malignant glioma; IV; Wollmann et al. Oncolytic virus





therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Csatary L K, Gosztonyi G, Szeberenyi J,





et al. MTH-68/H oncolytic viral treatment in human high-grade gliomas.





J Neurooncol. 2004; 67: 83Y93.





Case Studies/Series; Malignant glioma; IV; Wollmann et al. Oncolytic virus





therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81; Wagner S, Csatary C M, Gosztonyi G,





et al. Combined treatment of pediatric high-grade glioma with the oncolytic





viral strain MTH-68/H and oral valproic acid. APMIS. 2006; 114: 731Y743.


Measles


Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy


(MV- CEA)


for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81


H1


Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy


H1PV


for glioblastoma multiforme: concepts and candidates. Cancer J. 2012





January-February; 18(1): 69-81


Polio


Phase I; Malignant glioma; convection-enahnced IT injection; Wollmann et al.


(PVS- RIPO)


Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates.






Cancer J. 2012 January-February; 18(1): 69-81










Cancers

The methods and compositions of the present invention may be used to treat a wide variety of cancer types. One of skill in the art will appreciate that, since cells of many if not all cancers are capable of receptor-mediated apoptosis, the methods and compositions of the present invention are broadly applicable to many if not all cancers. The combinatorial approach of the present invention is efficacious in various aggressive, treatment refractory tumor models. In particular embodiments, for example, the cancer treated by a method of the present invention may be adrenal cancer, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain and other central nervous system (CNS) cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, colorectal cancer, connective tissue cancer, cancer of the digestive system, endometrial cancer, epipharyngeal carcinoma, esophageal cancer, eye cancer, gallbladder cancer, gastric cancer, cancer of the head and neck, hepatocellular carcinoma, intra-epithelial neoplasm, kidney cancer, laryngeal cancer, leukemia, liver cancer, liver metastases, lung cancer, lymphomas including Hodgkin's and non-Hodgkin's lymphomas, melanoma, myeloma, multiple myeloma, neuroblastoma, mesothelioma, neuroglioma, myelodysplastic syndrome, multiple myeloma, oral cavity cancer (e.g. lip, tongue, mouth, and pharynx), ovarian cancer, paediatric cancer, pancreatic cancer, pancreatic endocrine tumors, penile cancer, plasma cell tumors, pituitary adenomathymoma, prostate cancer, renal cell carcinoma, cancer of the respiratory system, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer, small bowel cancer, stomach cancer, testicular cancer, thyroid cancer, ureteral cancer, cancer of the urinary system, and other carcinomas and sarcomas. Other cancers are known in the art.


The cancer may be a cancer that is refractory to treatment by SMCs alone. The methods and compositions of the present invention may be particularly useful in cancers that are refractory to treatment by SMCs alone. Typically, a cancer refractory to treatment with SMCs alone may be a cancer in which IAP-mediated apoptotic pathways are not significantly induced. In particular embodiments, a cancer of the present invention is a cancer in which one or more apoptotic pathways are not significantly induced, i.e., is not activated in a manner such that treatment with SMCs alone is sufficient to effectively treat the cancer. For instance, a cancer of the present invention can be a cancer in which a cIAP1/2-mediated apoptotic pathway is not significantly induced.


A cancer of the present invention may be a cancer refractory to treatment by one or more immunostimulatory agents. In particular embodiments, a cancer of the present invention may be a cancer refractory to treatment by one or more immunostimulatory agents (absent an SMC) and also refractory to treatment by one or more SMCs (absent an immunostimulatory agent).


Formulations and Administration

In some instances, delivery of a naked, i.e. native form, of an SMC and/or immunostimulatory agent may be sufficient to potentiate apoptosis and/or treat cancer. SMCs and/or immunostimulatory agents may be administered in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitably pharmacologically effective, e.g., capable of potentiating apoptosis and/or treating cancer.


Salts, esters, amides, prodrugs and other derivatives of an SMC or immunostimulatory agent can be prepared using standard procedures known in the art of synthetic organic chemistry. For example, an acid salt of SMCs and/or immunostimulatory agents may be prepared from a free base form of the SMC or immunostimulatory agent using conventional methodology that typically involves reaction with a suitable acid. Generally, the base form of the SMC or immunostimulatory agent is dissolved in a polar organic solvent, such as methanol or ethanol, and the acid is added thereto. The resulting salt either precipitates or can be brought out of solution by addition of a less polar solvent. Suitable acids for preparing acid addition salts include, but are not limited to, both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.


An acid addition salt can be reconverted to the free base by treatment with a suitable base. Certain typical acid addition salts of SMCs and/or immunostimulatory agents, for example, halide salts, such as may be prepared using hydrochloric or hydrobromic acids. Conversely, preparation of basic salts of SMCs and/or immunostimulatory agents of the present invention may be prepared in a similar manner using a pharmaceutically acceptable base, such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like. Certain typical basic salts include, but are not limited to, alkali metal salts, e.g., sodium salt, and copper salts.


Preparation of esters may involve functionalization of, e.g., hydroxyl and/or carboxyl groups that are present within the molecular structure of SMCs and/or immunostimulatory agents. In certain embodiments, the esters are acyl-substituted derivatives of free alcohol groups, i.e., moieties derived from carboxylic acids of the formula RCOOH where R is alky, and preferably is lower alkyl. Esters may be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.


Amides may also be prepared using techniques known in the art. For example, an amide may be prepared from an ester using suitable amine reactants or prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.


An SMC or immunostimulatory agent of the present invention may be combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition. Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, e.g., to stabilize the composition, increase or decrease the absorption of the SMC or immunostimulatory agent, or improve penetration of the blood brain barrier (where appropriate). Physiologically acceptable compounds may include, e.g., carbohydrates (e.g., glucose, sucrose, or dextrans), antioxidants (e.g. ascorbic acid or glutathione), chelating agents, low molecular weight proteins, protection and uptake enhancers (e.g., lipids), compositions that reduce the clearance or hydrolysis of the active agents, or excipients or other stabilizers and/or buffers. Other physiologically acceptable compounds, particularly of use in the preparation of tablets, capsules, gel caps, and the like include, but are not limited to, binders, diluents/fillers, disintegrants, lubricants, suspending agents, and the like. In certain embodiments, a pharmaceutical formulation may enhance delivery or efficacy of an SMC or immunostimulatory agent.


In various embodiments, an SMC or immunostimulatory agent of the present invention may be prepared for parenteral, topical, oral, nasal (or otherwise inhaled), rectal, or local administration. Administration may occur, for example, transdermally, prophylactically, or by aerosol.


A pharmaceutical composition of the present invention may be administered in a variety of unit dosage forms depending upon the method of administration. Suitable unit dosage forms, include, but are not limited to, powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectibles, implantable sustained-release formulations, and lipid complexes.


In certain embodiments, an excipient (e.g., lactose, sucrose, starch, mannitol, etc.), an optional disintegrator (e.g. calcium carbonate, carboxymethylcellulose calcium, sodium starch glycollate, crospovidone, etc.), a binder (e.g. alpha-starch, gum arabic, microcrystalline cellulose, carboxymethylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose, cyclodextrin, etc.), or an optional lubricant (e.g., talc, magnesium stearate, polyethylene glycol 6000, etc.) may be added to an SMC or immunostimulatory agent and the resulting composition may be compressed to manufacture an oral dosage form (e.g., a tablet). In particular embodiments, a compressed product may be coated, e.g., to mask the taste of the compressed product, to promote enteric dissolution of the compressed product, or to promote sustained release of the SMC or immunostimulatory agent. Suitable coating materials include, but are not limited to, ethyl-cellulose, hydroxymethylcellulose, polyoxyethylene glycol, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, and Eudragit (Rohm & Haas, Germany; methacrylic-acrylic copolymer).


Other physiologically acceptable compounds that may be included in a pharmaceutical composition including an SMC or immunostimulatory agent may include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid. The choice of pharmaceutically acceptable carrier(s), including a physiologically acceptable compound, depends, e.g., on the route of administration of the SMC or immunostimulatory agent and on the particular physio-chemical characteristics of the SMC or immunostimulatory agent.


In certain embodiments, one or more excipients for use in a pharmaceutical composition including an SMC or immunostimulatory agent may be sterile and/or substantially free of undesirable matter. Such compositions may be sterilized by conventional techniques known in the art. For various oral dosage form excipients, such as tablets and capsules, sterility is not required. Standards are known in the art, e.g., the USP/NF standard.


An SMC or immunostimulatory agent pharmaceutical composition of the present invention may be administered in a single or in multiple administrations depending on the dosage, the required frequency of administration, and the known or anticipated tolerance of the subject for the pharmaceutical composition with respect to dosages and frequency of administration. In various embodiments, the composition may provide a sufficient quantity of an SMC or immunostimulatory agent of the present invention to effectively treat cancer.


The amount and/or concentration of an SMC or immunostimulatory agent to be administered to a subject may vary widely, and will typically be selected primarily based on activity of the SMC or immunostimulatory agent and the characteristics of the subject, e.g., species and body weight, as well as the particular mode of administration and the needs of the subject, e.g., with respect to a type of cancer. Dosages may be varied to optimize a therapeutic and/or prophylactic regimen in a particular subject or group of subjects.


In certain embodiments, an SMC or immunostimulatory agent of the present invention is administered to the oral cavity, e.g., by the use of a lozenge, aerosol spray, mouthwash, coated swab, or other mechanism known in the art.


In certain embodiments, an SMC or immunostimulatory agent of the present invention may be administered systemically (e.g., orally or as an injectable) in accordance with standard methods known in the art. In certain embodiments, the SMC or immunostimulatory agent may be delivered through the skin using a transdermal drug delivery systems, i.e., transdermal “patches,” wherein the SMCs or immunostimulatory agents are typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin. In such a structure, the drug composition is typically contained in a layer or reservoir underlying an upper backing layer. The reservoir of a transdermal patch includes a quantity of an SMC or immunostimulatory agent that is ultimately available for delivery to the surface of the skin. Thus, the reservoir may include, e.g., an SMC or immunostimulatory agent of the present invention in an adhesive on a backing layer of the patch or in any of a variety of different matrix formulations known in the art. The patch may contain a single reservoir or multiple reservoirs.


In particular transdermal patch embodiments, a reservoir may comprise a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery. Examples of suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, and polyurethanes. Alternatively, the SMC and/or immunostimulatory agent-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, a liquid or hydrogel reservoir, or another form of reservoir known in the art. The backing layer in these laminates, which serves as the upper surface of the device, preferably functions as a primary structural element of the patch and provides the device with a substantial portion of flexibility. The material selected for the backing layer is preferably substantially impermeable to the SMC and/or immunostimulatory agent and to any other materials that are present.


Additional formulations for topical delivery include, but are not limited to, ointments, gels, sprays, fluids, and creams. Ointments are semisolid preparations that are typically based on petrolatum or other petroleum derivatives. Creams including an SMC or immunostimulatory agent are typically viscous liquids or semisolid emulsions, e.g. oil-in-water or water-in-oil emulsions. Cream bases are typically water-washable and include an oil phase, an emulsifier, and an aqueous phase. The oil phase, also sometimes called the “internal” phase, of a cream base is generally comprised of petrolatum and a fatty alcohol, e.g., cetyl alcohol or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation is generally a nonionic, anionic, cationic, or amphoteric surfactant. The specific ointment or cream base to be used may be selected to provide for optimum drug delivery according to the art. As with other carriers or vehicles, an ointment base may be inert, stable, non-irritating, and non-sensitizing.


Various buccal and sublingual formulations are also contemplated.


In certain embodiments, administration of an SMC or immunostimulatory agent of the present invention may be parenteral. Parenteral administration may include intraspinal, epidural, intrathecal, subcutaneous, or intravenous administration. Means of parenteral administration are known in the art. In particular embodiments, parenteral administration may include a subcutaneously implanted device.


In certain embodiments, it may be desirable to deliver an SMC or immunostimulatory agent to the brain. In embodiments including system administration, this could require that the SMC or immunostimulatory agent cross the blood brain barrier. In various embodiments this may be facilitated by co-administering an SMC or immunostimulatory agent with carrier molecules, such as cationic dendrimers or arginine-rich peptides, which may carry an SMC or immunostimulatory agent over the blood brain barrier.


In certain embodiments, an SMC or immunostimulatory agent may be delivered directly to the brain by administration through the implantation of a biocompatible release system (e.g., a reservoir), by direct administration through an implanted cannula, by administration through an implanted or partially implanted drug pump, or mechanisms of similar function known the art. In certain embodiments, an SMC or immunostimulatory agent may be systemically administered (e.g., injected into a vein). In certain embodiments, it is expected that the SMC or immunostimulatory agent will be transported across the blood brain barrier without the use of additional compounds included in a pharmaceutical composition to enhance transport across the blood brain barrier.


In certain embodiments, one or more an SMCs or immunostimulatory agents of the present invention may be provided as a concentrate, e.g., in a storage container or soluble capsule ready for dilution or addition to a volume of water, alcohol, hydrogen peroxide, or other diluent. A concentrate of the present invention may be provided in a particular amount of an SMC or immunostimulatory agent and/or a particular total volume. The concentrate may be formulated for dilution in a particular volume of diluents prior to administration.


An SMC or immunostimulatory agent may be administered orally in the form of tablets, capsules, elixirs or syrups, or rectally in the form of suppositories. The compound may also be administered topically in the form of foams, lotions, drops, creams, ointments, emollients, or gels. Parenteral administration of a compound is suitably performed, for example, in the form of saline solutions or with the compound incorporated into liposomes. In cases where the compound in itself is not sufficiently soluble to be dissolved, a solubilizer, such as ethanol, can be applied. Other suitable formulations and modes of administration are known or may be derived from the art.


An SMC or immunostimulatory agent of the present invention may be administered to a mammal in need thereof, such as a mammal diagnosed as having cancer. An SMC or immunostimulatory agent of the present invention may be administered to potentiate apoptosis and/or treat cancer.


A therapeutically effective dose of a pharmaceutical composition of the present invention may depend upon the age of the subject, the gender of the subject, the species of the subject, the particular pathology, the severity of the symptoms, and the general state of the subject's health.


The present invention includes compositions and methods for the treatment of a human subject, such as a human subject having been diagnosed with cancer. In addition, a pharmaceutical composition of the present invention may be suitable for administration to an animal, e.g., for veterinary use. Certain embodiments of the present invention may include administration of a pharmaceutical composition of the present invention to non-human organisms, e.g., a non-human primates, canine, equine, feline, porcine, ungulate, or lagomorphs organism or other vertebrate species.


Therapy according to the invention may be performed alone or in conjunction with another therapy, e.g., another cancer therapy, and may be provided at home, the doctor's office, a clinic, a hospital's outpatient department, or a hospital. Treatment optionally begins at a hospital so that the doctor can observe the therapy's effects closely and make any adjustments that are needed or it may begin on an outpatient basis. The duration of the therapy depends on the type of disease or disorder being treated, the age and condition of the subject, the stage and type of the subject's disease, and how the patient responds to the treatment.


In certain embodiments, the combination of therapy of the present invention further includes treatment with a recombinant interferon, such as IFN-α, IFN-β, IFN-γ, pegylated IFN, or liposomal interferon. In some embodiments, the combination of therapy of the present invention further includes treatment with recombinant TNF-α, e.g., for isolated-limb perfusion. In particular embodiments, the combination therapy of the present invention further includes treatment with one or more of a TNF-α or IFN-inducing compound, such as DMXAA, Ribavirin, or the like. Additional cancer immunotherapies that may be used in combination with present invention include antibodies, e.g., monoclonal antibodies, targeting CTLA-4, PD-1, PD-L1, PD-L2, or other checkpoint inhibitors.


Routes of administration for the various embodiments include, but are not limited to, topical, transdermal, nasal, and systemic administration (such as, intravenous, intramuscular, subcutaneous, inhalation, rectal, buccal, vaginal, intraperitoneal, intraarticular, ophthalmic, otic, or oral administration). As used herein, “systemic administration” refers to all nondermal routes of administration, and specifically excludes topical and transdermal routes of administration.


In any of the above embodiments, the route of administration may be optimized based on the characteristics of the SMC or immunostimulatory agent. In some instances, the SMC or immunostimulatory agent is a small molecule or compound. In other instances, the SMC or immunostimulatory agent is a nucleic acid. In still other instances, the immunostimulatory agent may be a cell or virus. In any of these or other embodiments, appropriate formulations and routes of administration will be selected in accordance with the art.


In the embodiments of the present invention, an SMC and an immunostimulatory agent are administered to a subject in need thereof, e.g., a subject having cancer. In some instances, the SMC and immunostimulatory agent will be administered simultaneously. In some embodiments, the SMC and immunostimulatory agent may be present in a single therapeutic dosage form. In other embodiments, the SMC and immunostimulatory agent may be administered separately to the subject in need thereof. When administered separately, the SMC and immunostimulatory agent may be administered simultaneously or at different times. In some instances, a subject will receive a single dosage of an SMC and a single dosage of an immunostimulatory agent. In certain embodiments, one or more of the SMC and immunostimulatory agent will be administered to a subject in two or more doses. In certain embodiments, the frequency of administration of an SMC and the frequency of administration of an immunostimulatory agent are non-identical, i.e., the SMC is administered at a first frequence and the immunostimulatory agent is administered at a second frequency.


In some embodiments, an SMC is administered within one week of the administration of an immunostimulatory agent. In particular embodiments, an SMC is administered within 3 days (72 hours) of the administration of an immunostimulatory agent. In still more particular embodiments, an SMC is administered within 1 day (24 hours) of the administration of an immunostimulatory agent.


In particular embodiments of any of the methods of the present invention, the SMC and immunostimulatory agent are administered within 28 days of each other or less, e.g., within 14 days of each other. In certain embodiments of any of the methods of the present invention, the SMC and immunostimulatory agent are administered, e.g., simultaneously or within 1 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 18 hours, 24 hours, 36 hours, 2 days, 4 days, 8 days, 10 days, 12 days, 16 days, 20 days, 24 days, or 28 days of each other. In any of these embodiments, the first administration of an SMC of the present invention may precede the first administration of an immunostimulatory agent of the present invention. Alternatively, in any of these embodiments, the first administration of an SMC of the present invention may follow the first administration of an immunostimulatory agent of the present invention. Because an SMC and/or immunostimulatory agent of the present invention may be administered to a subject in two more doses, and because, in such instances, doses of the SMC and immunostimulatory agent of the present invention may be administered at different frequencies, it is not required that the period of time between the administration of an SMC and the administration of an immunostimulatory agent remain constant within a given course of treatment or for a given subject.


One or both of the SMC and the immunostimulatory agent may be administered in a low dosage or in a high dosage. In embodiments in which the SMC and immunostimulatory agent are formulated separately, the pharmacokinetic profiles for each agent can be suitably matched to the formulation, dosage, and route of administration, etc. In some instances, the SMC is administered at a standard or high dosage and the immunostimulatory agent is administered at a low dosage. In some instances, the SMC is administered at a low dosage and the immunostimulatory agent is administered at a standard or high dosage. In some instances, both of the SMC and the immunostimulatory agent are administered at a standard or high dosage. In some instances, both of the SMC and the immunostimulatory agent are administered at a low dosage.


The dosage and frequency of administration of each component of the combination can be controlled independently. For example, one component may be administered three times per day, while the second component may be administered once per day or one component may be administered once per week, while the second component may be administered once per two weeks. Combination therapy may be given in on-and-off cycles that include rest periods so that the subject's body has a chance to recover from effects of treatment.


Kits

In general, kits of the invention contain one or more SMCs and one or more immunostimulatory agents. These can be provided in the kit as separate compositions, or combined into a single composition as described above. The kits of the invention can also contain instructions for the administration of one or more SMCs and one or more immunostimulatory agents.


Kits of the invention can also contain instructions for administering an additional pharmacologically acceptable substance, such as an agent known to treat cancer that is not an SMC or immunostimulatory agent of the present invention.


The individually or separately formulated agents can be packaged together as a kit. Non-limiting examples include kits that contain, e.g., two pills, a pill and a powder, a suppository and a liquid in a vial, two topical creams, ointments, foams etc. The kit can include optional components that aid in the administration of the unit dose to subjects, such as vials for reconstituting powder forms, syringes for injection, customized IV delivery systems, inhalers, etc. Additionally, the unit dose kit can contain instructions for preparation and administration of the compositions. The kit may be manufactured as a single use unit dose for one subject, multiple uses for a particular subject (at a constant dosage regimen or in which the individual compounds may vary in potency as therapy progresses); or the kit may contain multiple doses suitable for administration to multiple subjects (“bulk packaging”). The kit components may be assembled in cartons, blister packs, bottles, tubes, and the like.


The dosage of each compound of the claimed combinations depends on several factors, including: the administration method, the disease (e.g., a type of cancer) to be treated, the severity of the disease, and the age, weight, and health of the person to be treated. Additionally, pharmacogenomic (the effect of genotype on the pharmacokinetic, pharmacodynamic or efficacy profile of a therapeutic) information about a particular subject may affect the dosage regimen or other aspects of administration.


EXAMPLES
Example 1: Smac Mimetics Prime Tumors for Destruction by the Innate Immune System

Smac mimetic compounds are a class of apoptosis sensitizing drugs that have proven safe in cancer patient Phase I trials. Stimulating an innate anti-pathogen response may generate a potent yet safe inflammatory “cytokine storm” that would trigger death of tumors treated with Smac mimetics. The present example demonstrates that activation of innate immune responses via oncolytic viruses and adjuvants, such as poly(I:C) and CpG, induces bystander death of cancer cells treated with Smac mimetics in a manner mediated by IFNβ, TNFα or TRAIL. This therapeutic strategy may lead to durable cures, e.g., in several aggressive mouse models of cancer. With these and other innate immune stimulants having demonstrated safety in human clinical trials, the data provided herein points strongly towards their combined use with Smac mimetics for treating cancer.


The present example examines whether stimulating the innate immune system using pathogen mimetics would be a safe and effective strategy to generate a cytokine milieu necessary to initiate apoptosis in tumors treated with an SMC. We report here that non-pathogenic oncolytic viruses, as well as mimetics of microbial RNA or DNA, such as poly (I:C) and CpG, induce bystander killing of cancer cells treated with an SMC that is dependent either upon IFNβ, TNFα, or TRAIL production. Importantly, this therapeutic strategy was tolerable in vivo and led to durable cures in several aggressive mouse models of cancer.


SMC Therapy Sensitizes Cancer Cells to Bystander Cell Death During Oncolytic Virus Infection

Oncolytic viruses (OVs) are emerging biotherapies for cancer currently in phase I-III clinical evaluation. One barrier to OV therapy may be the induction of type I IFN- and NFκB-responsive cytokines by the host, which orchestrate an antiviral state in tumors. It was examined whether we could harness those innate immune cytokines to induce apoptosis in cancer cells pretreated with an SMC. To begin, a small panel of tumor-derived and normal cell lines (n=30) was screened for responsiveness to the SMC LCL161 and the oncolytic rhabdovirus VSVΔ51. We chose LCL161 because this compound is the most clinically advanced drug in the SMC class, and VSVΔ51 because it is known to induce a robust antiviral cytokine response. In 15 of the 28 cancer cell lines tested (54%), SMC treatment enhanced sensitivity the EC50 of VSVΔ51 by 10-10,000 fold (FIG. 6, and representative examples in FIGS. 1A and 1B). Similarly, low dose of VSVΔ51 reduced the EC50 of SMC therapy from undetermined levels (>2500 nM) to 4.5 and 21.9 nM in two representative cell lines: the mouse mammary carcinoma EMT6 and the human glioblastoma SNB75 cells, respectively (FIG. 1C). Combination index analyses determined that the interaction between SMC therapy and VSVΔ51 was synergistic (FIG. 7). Experiments using four other SMCs and five other oncolytic viruses showed that a spectrum of monovalent and bivalent SMCs synergize with VSVΔ51 (FIG. 8). We find that the oncolytic rhabdoviruses, VSVΔ51 and Maraba-MG1, are superior in eliciting bystander killing in synergizing with SMCs, compared to HSV, reovirus, vaccinia and wild-type VSV platforms, all of which have elaborate mechanisms to disarm aspects of innate immune signalling (FIGS. 9A AND 9B). Genetic experiments using RNAi-mediated silencing demonstrated that both XIAP and the cIAPs must be inhibited to obtain synergy with VSVΔ51 (FIGS. 10A, 10B, and 24C). In stark contrast to the results in tumor-derived cell lines, non-cancer GM38 primary human skin fibroblasts and HSkM human skeletal myoblasts were unaffected by VSVΔ51 and SMC combination therapy (FIG. 6). Taken together, these data indicate that oncolytic VSV synergizes with SMC therapy in a tumor-selective fashion.


To determine if VSVΔ51 elicits bystander cell death in IAP-depleted neighbouring cells not infected by the virus, cells were treated with SMCs prior to infection with a low dose of VSVΔ51 (MOI=0.01 infectious particles per cell). We assessed whether conditioned media derived from cells infected with VSVΔ51 (which was subsequently inactivated by UV light) could induce death when transferred to a plate of virus naïve cancer cells treated with an SMC. The conditioned media induced cell death only when the cells were co-treated with an SMC (FIG. 1D). We also found that a low-dose of a pseudo-typed G-less strain of VSVΔ51 (MOI=0.1), containing a deletion of the gene encoding for its glycoprotein (VSVΔ51ΔG) that limits the virus to a single round of infection, was toxic to an entire plate of cancer cells treated with an SMC (FIG. 1E). Finally, we performed a cytotoxicity assay in cells overlaid with agarose, used to retard the spread of VSVΔ51 expressing a fluorescent tag, and observed dramatic cell death in SMC treated cells outside of the zone of virus infection (FIGS. 1F and 11). Overall, these results indicate that VSVΔ51 infection leads to the release of at least one soluble factor that can potently induce bystander cell death in neighboring, uninfected, cancer cells treated with SMCs.


SMC Therapy does not Impair the Cellular Innate Immune Response to Oncolytic VSV


The cellular innate immune response to an RNA virus infection in mammalian tumor cells can be initiated by members of a family of cytosolic (RIG-I-like receptors, RLRs) and endosomal (toll-like receptors, TLRs) viral RNA sensors. Once triggered, these receptors can seed parallel IFN-response factor (IRF) 3/7 and nuclear-factor kappa B (NF-κB) cell signalling cascades. These signals can culminate in the production of IFNs and their responsive genes as well as an array of inflammatory chemokines and cytokines. This prompts neighboring cells to preemptively express an armament of antiviral genes and also aids in the recruitment and activation of cells within the innate and adaptive immune systems to ultimately clear the virus infection. The cIAP proteins have recently been implicated in numerous signalling pathways downstream of pathogen recognition, including those emanating from RLRs and TLRs. Accordingly, it was examined whether SMC therapy alters the antiviral response to oncolytic VSV infection in tumor cells and in mice. To begin, the effect of SMC therapy on VSVΔ51 productivity and spread was evaluated. Single-step and multi-step growth curves of VSVΔ51 productivity revealed that SMC treatment does not affect the growth kinetics of VSVΔ51 in EMT6 or SNB75 cells in vitro (FIG. 2A). Moreover, analysis through time-lapse microscopy demonstrates that SMC treatment does not alter VSVΔ51 infectivity in or spread through tumor cells (FIG. 2B). Furthermore, viral replication and spread in vivo were analyzed by determining tumor load using IVIS imaging and tissue virus titration. No differences in viral kinetics were found upon SMC treatment in EMT6 tumor-bearing mice (FIGS. 12A and 12B). As EMT6 and SNB75 cells both have functional type I IFN responses that regulate the VSV life cycle, these data provide strong, albeit indirect, evidence that SMC therapy does not affect the antiviral signalling cascades in cancer cells.


To probe deeper, IFNβ production was measured in EMT6 and SNB75 cells treated with VSVΔ51 and SMCs. This experiment revealed that the SMC treated cancer cells respond to VSVΔ51 by secreting IFNβ (FIG. 2C), although at slightly lower levels as compared to VSVΔ51 alone. It was asked whether the dampened IFNβ secretion from SMC treated cells had any bearing on the induction of downstream IFN stimulated genes (ISGs). Quantitative RT-PCR analyses of a small panel of ISGs in cells treated with VSVΔ51 and SMC revealed that IAP inhibition had no bearing on ISG gene expression in response to an oncolytic VSV infection (FIG. 2D). Consistent with this finding, western blot analyses indicated that SMCs do not alter the activation of Jak/Stat signalling downstream of IFNβ (FIGS. 2E and 24A). Collectively, these data suggest that SMCs do not impede the ability of tumor cells to sense and respond to an infection from VSVΔ51.


IFNβ Orchestrates Bystander Cell Death During SMC and Oncolytic VSV Co-Therapy

SMCs sensitize a number of cancer cell lines towards caspase 8-dependant apoptosis induced by TNFα, TRAIL, and IL-1β. As RNA viruses can trigger the production of these cytokines as part of the cellular antiviral response, the involvement of cytokine signaling in SMC and OV induced cell death was investigated. To start, the TNF receptor (TNF-R1) and/or the TRAIL receptor (DR5) were silenced and synergy between SMC and VSVΔ51 was assayed. This experiment revealed that TNFα and TRAIL are not only involved, but collectively are indispensable for bystander cell death (FIGS. 3A-3H, 13A, and 24D). Consistent with this finding, western blot and immunofluorescence experiments revealed strong activation of the extrinsic apoptosis pathway, and RNAi knockdown experiments demonstrated a requirement for both caspase-8 and Rip1 in the synergy response (FIGS. 14A-14G, 24E, and 24F). Moreover, engineering TNFα into VSVΔ51 improved synergy with SMC therapy by an order of magnitude (FIGS. 15A and 15B).


Next, the type I IFN receptor (IFNAR1) was silenced and it was found, unexpectedly, that IFNAR1 knockdown prevented the synergy between SMC therapy and oncolytic VSV (FIGS. 3B, 13B, and 24D). It was predicted that IFNAR1 knockdown would dampen but not completely suppress bystander killing, as TRAIL is a well-established ISG that is responsive to type I IFN28. TNFα and IL-1β are considered to be independent of IFN signaling, but they are nevertheless responsive to NF-κB signaling downstream of virus detection. This result suggests the possibility of a non-canonical type I IFN-dependant pathway for the production of TNFα and/or IL-1β. Indeed, when the mRNA expression of IFNβ, TRAIL, TNFα, and IL-1β were probed during an oncolytic VSV infection, a significant temporal lag was found between the induction of IFNβ and that of both TRAIL and TNFα (FIG. 3C). This data also suggests that TNFα—like TRAIL—may be induced secondary to IFNβ. To prove this concept, IFNAR1 was silenced before treating cells with VSVΔ51. IFNAR1 knockdown completely abrogated the induction of both TRAIL and TNFα by oncolytic VSV (FIG. 3D). Moreover, synergy with SMC was recapitulated using recombinant type I IFNs (IFNα/β) and type II IFN (IFNγ), but not type III IFNs (IL28/29) (FIG. 3E). Taken together, these data indicate that type I IFN is required for the induction of TNFα and TRAIL during a VSVΔ51 infection of tumor cells. Moreover, the production of these cytokines is responsible for bystander killing of neighboring, uninfected SMC-treated cells.


To explore the non-canonical induction of TNFα further, the mRNA expression levels of TRAIL and TNFα in SNB75 cells treated with recombinant IFNβ were measured. Both cytokines were induced by IFNβ treatment (FIG. 3F), and ELISA experiments confirmed the production of their respective protein products in the cell culture media (FIG. 3G). Interestingly, there was a significant time lag between the induction of TRAIL and that of TNFα. As TRAIL is a bona fide ISG and TNFα is not, this result raised the possibility that TNFα is not induced by IFNβ directly, but responds to a downstream ISG up-regulated by IFNβ. Thus, quantitative RT-PCR was performed on 176 cytokines in SNB75 cells and 70 that were significantly up-regulated by IFNβ were identified (Table 4). The role of these ISGs in the induction of TNFα by IFNβ is currently being investigated. It is also intriguing that SMC treatment potentiated the induction of both TRAIL and TNFα by IFNβ in SNB75 cells (FIGS. 3F and 3G). Furthermore, using a dominant-negative construct of IKK, it was found that the production of these inflammatory cytokines downstream of IFNβ was dependent, at least in part, on classical NF-κB signalling (FIG. 3H). In EMT6 cells, SMC treatment was found to enhance cellular production of TNFα (5- to 7-fold percentage increase) upon VSV infection (FIG. 16). Finally, it was also demonstrated that blocking TNF-R1 signalling (with antibodies or siRNA) prevents EMT6 cell death in the presence of SMC and VSVΔ51 or IFNβ (FIGS. 17A-17C and 24H). The relationship between type I IFN and TNFα is complex, having either complimentary or inhibitory effects depending on the biological context. However, without limiting the present invention to any particular mechanism of action, a simple working model can be proposed as follows: Tumor cells infected by an oncolytic RNA virus up-regulate type I IFN, and this process is not affected by SMC antagonism of the IAP proteins. Those IFNs in turn signal to neighboring, uninfected cancer cells to express and secrete TNFα and TRAIL, a process that is enhanced by SMC treatment, which consequently induces autocrine and paracrine programmed cell death in uninfected tumor cells exposed to SMC (FIGS. 18A and 18B).












TABLE 4





VSV
IFNβ
Gene Name
Gene Identification


















25465.4
1017.8
CCL8
Chemokine (C-C motif) ligand 8


13388.9
44.9
IL29
Interleukin 29 (interferon, lambda 1)


5629.3
24.3
IFNB1
Interferon, beta 1, fibroblast


1526.8
16.2
TNFSF15
Tumor necrosis factor (ligand) superfamily, member 15


847
24.6
CCL5
Chemokine (C-C motif) ligand 5


747.7
17.2
CCL3
Chemokine (C-C motif) ligand 3


650.9
60.6
TNFSF10
Tumor necrosis factor (ligand) superfamily, member 10


421.3
296.1
IL12A
Interleukin 12A


289.3
10.7
TNFSF18
Tumor necrosis factor (ligand) superfamily, member 18


255.3
18.8
CCL7
Chemokine (C-C motif) ligand 7


154.2
19.2
IL6
Interleukin 6 (interferon, beta 2)


150.8
12.9
IL1RN
Interleukin 1 receptor antagonist


108.1
25.5
CCL20
Chemokine (C-C motif) ligand 20


78.6
6.2
CXCL1
Chemokine (C-X-C motif) ligand 1


64.7
14.8
CCL2
Chemokine (C-C motif) ligand 2


62.5
14.5
CCL4
Chemokine (C-C motif) ligand 4


55.6
1.2
CXCL3
Chemokine (C-X-C motif) ligand 3


55.2
4.3
TNF
Tumor necrosis factor (TNF superfamily, member 2)


48.8
4.3
IGF1
Insulin-like growth factor 1 (somatomedin C)


48.4
2.8
CXCL2
Chemokine (C-X-C motif) ligand 2


38.5
3.8
CCL11
Chemokine (C-C motif) ligand 11


37.5
3.8
HGF
Hepatocyte growth factor


36.5
75.1
NGFB
Nerve growth factor, beta polypeptide


32.9
4
FGF14
Fibroblast growth factor 14


24.7
25.6
FGF20
Fibroblast growth factor 20


21.5
16.4
IL1B
Interleukin 1, beta


20
36.3
CSF2
Colony stimulating factor 2 (granulocyte-macrophage)


18.3
2.6
GDF3
Growth differentiation factor 3


17.2
2
CCL28
Chemokine (C-C motif) ligand 28


12
2.1
CCL22
Chemokine (C-C motif) ligand 22


11.3
2.5
CCL17
Chemokine (C-C motif) ligand 17


10.5
2
CCL13
Chemokine (C-C motif) ligand 13


10.5
15.3
IL20
Interleukin 20


9.7
22.8
FGF16
Fibroblast growth factor 16


8.8
3.6
TNFSF14
Tumor necrosis factor (ligand) superfamily, member 14


8.2
2.7
FGF2
Fibroblast growth factor 2 (basic)


7.1
8.1
BDNF
Brain-derived neurotrophic factor


7.1
9.7
IL1A
Interleukin 1, alpha


7.1
10.9
ANGPT4
Angiopoietin 4


7
1.5
TGFB3
Transforming growth factor, beta 3


7
5.8
IL22
Interleukin 22


6.9
9.7
IL1F5
Interleukin 1 family, member 5 (delta)


6.7
2.4
IFNW1
Interferon, omega 1


6.6
12.6
IL11
Interleukin 11


6.6
25.1
IL1F8
Interleukin 1 family, member 8 (eta)


6.3
−1.3
EDA
Ectodysplasin A


5.9
8
FGF5
Fibroblast growth factor 5


5.8
5
VEGFC
Vascular endothelial growth factor C


5.2
4.9
LIF
Leukemia inhibitory factor


5
1.3
CCL25
Chemokine (C-C motif) ligand 25


4.9
8.3
BMP3
Bone morphogenetic protein 3


4.9
1.6
IL17C
Interleukin 17C


4.8
−2.3
TNFSF7
CD70 molecule


4.3
2.5
TNFSF8
Tumor necrosis factor (ligand) superfamily, member 8


4.3
2.5
FASLG
Fas ligand (TNF superfamily, member 6)


4.2
2.7
BMP8B
Bone morphogenetic protein 8b


4.2
6
IL7
Interleukin 7


4.1
5.2
CCL24
Chemokine (C-C motif) ligand 24


4
−2.2
INHBE
Inhibin, beta E


4
5.8
IL23A
Interleukin 23, alpha subunit p19


3.8
−1.1
IL17F
Interleukin 17F


3.7
2.9
CCL21
Chemokine (C-C motif) ligand 21


3.5
8.5
CSF1
Colony stimulating factor 1 (macrophage)


3.5
3
IL15
Interleukin 15


3.4
5.7
NRG2
Neuregulin 2


3.3
N/A
INHBB
Inhibin, beta B


3.3
N/A
LTB
Lymphotoxin beta (TNF superfamily, member 3)


3.3
N/A
BMP7
Bone morphogenetic protein 7


3
−3.8
IL1F9
Interleukin 1 family, member 9


2.9
6.1
IL12B
Interleukin 12B


2.8
6.2
FLT3LG
Fms-related tyrosine kinase 3 ligand


2.7
3
FGF1
Fibroblast growth factor 1 (acidic)


2.5
−2
CXCL13
Chemokine (C-X-C motif) ligand 13


2.4
2.2
IL17B
Interleukin 17B


2.3
7.8
GDNF
Glial cell derived neurotrophic factor


2.3
−1.7
GDF7
Growth differentiation factor 7


2.3
−2.4
LTA
Lymphotoxin alpha (TNF superfamily, member 1)


2.2
1.7
LEFTY2
Left-right determination factor 2


2.1
5
FGF19
Fibroblast growth factor 19


2.1
9.8
FGF23
Fibroblast growth factor 23


2.1
4.8
CLC
Cardiotrophin-like cytokine factor 1


2.1
3
ANGPT1
Angiopoietin 1


2
10.6
TPO
Thyroid peroxidase


2
2.1
EFNA5
Ephrin-A5


1.9
6.4
IL1F10
Interleukin 1 family, member 10 (theta)


1.9
7.6
LEP
Leptin (obesity homolog, mouse)


1.8
3
IL5
Interleukin 5 (colony-stimulating factor, eosinophil)


1.8
5.7
IFNE1
Interferon epsilon 1


1.8
2.7
EGF
Epidermal growth factor (beta-urogastrone)


1.7
3.4
CTF1
Cardiotrophin 1


1.7
−1.9
BMP2
Bone morphogenetic protein 2


1.7
3
EFNB2
Ephrin-B2


1.6
1
FGF8
Fibroblast growth factor 8 (androgen-induced)


1.6
−2
TGFB2
Transforming growth factor, beta 2


1.5
−1.6
BMP8A
Bone morphogenetic protein 8a


1.5
3.3
NTF5
Neurotrophin 5 (neurotrophin 4/5)


1.5
1
GDF10
Growth differentiation factor 10


1.5
1.5
TNFSF13B
Tumor necrosis factor (ligand) superfamily, member 13b


1.5
2.5
IFNA1
Interferon, alpha 1


1.4
−1.3
INHBC
Inhibin, beta C


1.4
2.8
FGF7
Galactokinase 2


1.4
3.3
IL24
Interleukin 24


1.4
−1.1
CCL27
Chemokine (C-C motif) ligand 27


1.3
1.9
FGF13
Fibroblast growth factor 13


1.3
1.4
IFNK
Interferon, kappa


1.3
2
ANGPT2
Angiopoietin 2


1.3
7.6
IL18
Interleukin 18 (interferon-gamma-inducing factor)


1.3
7
NRG1
Neuregulin 1


1.3
4.9
NTF3
Neurotrophin 3


1.2
15
FGF10
Fibroblast growth factor 10


1.2
1.9
KITLG
KIT ligand


1.2
−1.3
IL17D
Interleukin 17D


1.2
1.1
TNFSF4
Tumor necrosis factor (ligand) superfamily, member 4


1.2
1.3
VEGFA
Vascular endothelial growth factor


1.1
2.4
FGF11
Fibroblast growth factor 11


1.1
−1.4
IL17E
Interleukin 17E


1.1
−2.1
TGFB1
Transforming growth factor, beta 1


1
3.1
GH1
Growth hormone 1


−1
6.1
IL9
Interleukin 9


−1
−2.5
EFNB3
Ephrin-B3


−1
1.8
VEGFB
Vascular endothelial growth factor B


−1
−1.2
IL1F7
Interleukin 1 family, member 7 (zeta)


−1
−2.1
GDF11
Growth differentiation factor 11


−1.1
1.3
ZFP91
Zinc finger protein 91 homolog (mouse)


−1.2
−1.1
BMP6
Bone morphogenetic protein 6


−1.2
−1.2
AMH
Anti-Mullerian hormone


−1.3
−1
LEFTY1
Left-right determination factor 1


−1.3
2.4
EFNA3
Ephrin-A3


−1.3
−1.3
LASS1
LAG1 longevity assurance homolog 1


−1.5
1
EFNA4
Ephrin-A4


−1.8
1.3
PDGFD
DNA-damage inducible protein 1


−1.8
1.8
IL10
Interleukin 10


−1.9
1.6
GDF5
Growth differentiation factor 5


−1.9
1.3
EFNA2
Ephrin-A2


−1.9
−1.5
EFNB1
Ephrin-B1


−1.9
−1.4
GDF8
Growth differentiation factor 8


−1.9
1.6
PDGFC
Platelet derived growth factor C


−2.2
2.4
TSLP
Thymic stromal lymphopoietin


−2.3
−1.5
BMP10
Bone morphogenetic protein 10


−2.4
−4.6
CXCL12
Chemokine (C-X-C motif) ligand 12


−2.5
4
IFNG
Interferon, gamma


−2.6
1.2
EPO
Erythropoietin


−2.7
−2.1
GAS6
Growth arrest-specific 6


−2.9
2.9
PRL
Prolactin


−2.9
−2.1
BMP4
Bone morphogenetic protein 4


−2.9
−5.7
INHA
Inhibin, alpha


−3
−1.3
GDF9
Growth differentiation factor 9


−3.1
−1.5
FGF18
Fibroblast growth factor 18


−3.2
N/A
IL17
Interleukin 17


−3.2
−1.1
IL26
Interleukin 26


−3.4
1.2
EFNA1
Ephrin-A1


−3.8
−1.1
FGF12
Fibroblast growth factor 12


−4
−2.3
FGF9
Fibroblast growth factor 9 (glia-activating factor)


−4.5
1.4
CCL26
Chemokine (C-C motif) ligand 26


−8
9.7
CCL19
Chemokine (C-C motif) ligand 19


N/A
N/A
BMP15
Bone morphogenetic protein 15


N/A
N/A
CCL15
Chemokine (C-C motif) ligand 14


N/A
N/A
CCL16
Chemokine (C-C motif) ligand 16


N/A
N/A
CCL18
Chemokine (C-C motif) ligand 18


N/A
N/A
CCL23
Chemokine (C-C motif) ligand 23


N/A
N/A
CD40LG
CD40 ligand (TNF superfamily)


N/A
N/A
CSF3
Colony stimulating factor 3 (granulocyte)


N/A
N/A
CXCL5
Chemokine (C-X-C motif) ligand 5


N/A
N/A
FGF4
Fibroblast growth factor 4


N/A
N/A
FGF6
Fibroblast growth factor 6


N/A
N/A
GH2
Growth hormone 2


N/A
N/A
IL2
Interleukin 2


N/A
N/A
IL21
Interleukin 21


N/A
N/A
IL28A
Interleukin 28A (interferon, lambda 2)


N/A
N/A
INHBA
Inhibin, beta A


N/A
N/A
NRG3
Neuregulin 3


N/A
N/A
TNFSF11
Tumor necrosis factor (ligand) superfamily, member 11


N/A
N/A
TNFSF13
Tumor necrosis factor (ligand) superfamily, member 13


N/A
6.5
NRG4
Neuregulin 4


N/A
6.1
IL3
Interleukin 3 (colony-stimulating factor, multiple)


N/A
1.8
TNFSF9
Tumor necrosis factor (ligand) superfamily, member 9









Oncolytic VSV Potentiates SMC Therapy in Preclinical Animal Models of Cancer

To evaluate SMC and oncolytic VSV co-therapy in vivo, the EMT6 mammary carcinoma was used as a syngeneic, orthotopic model. Preliminary safety and pharmacodynamic experiments revealed that a dose of 50 mg/kg LCL161 delivered by oral gavage was well tolerated and induced cIAP1/2 knockdown in tumors for at least 24 hrs, and up to 48-72 hours in some cases (FIGS. 19A, 19B, and 24G). When tumors reached ˜100 mm3, we began treating mice twice weekly with SMC and VSVΔ51, delivered systemically. As single agents, SMC therapy led to a decrease in the rate of tumor growth and a modest extension in survival, while VSVΔ51 treatments had no bearing on tumor size or survival (FIGS. 4A and 4B). In stark contrast, combined SMC and VSVΔ51 treatment induced dramatic tumor regressions and led to durable cures in 40% of the treated mice. Consistent with the bystander killing mechanism elucidated in vitro, immunofluorescence analyses revealed that the infectivity of VSVΔ51 was transient and limited to small foci within the tumor (FIG. 4C), whereas caspase-3 activation was widespread in the SMC and VSVΔ51 co-treated tumors (FIG. 4D). Furthermore, immunoblots with tumor lysates demonstrated activation of caspase-8 and -3 in doubly-treated tumors (FIGS. 4E, 24B, and 24G). While the animals in the combination treatment cohort experienced weight loss, the mice fully recovered following the last treatment (FIG. 20A).


To confirm these in vivo data in another model system, the human HT-29 colorectal adenocarcinoma xenograft model was tested in nude (athymic) mice. HT-29 is a cell line that is highly responsive to bystander killing by SMC and VSVΔ51 co-treatment in vitro (FIGS. 21A and 21B). Similar to our findings in the EMT6 model system, combination therapy with SMC and VSVΔ51 induced tumor regression and a significant extension of mouse survival (FIG. 21C). In contrast, neither monotherapy had any effect on HT-29 tumors. Furthermore, there was no additional weight loss in the double treated mice compared to SMC treated mice (FIG. 21D). These results indicate that the synergy is highly efficacious in a refractory xenograft model and that the adaptive immune response does not have a major role initially in the efficacy of SMC and OV co-therapy.


Role of the Innate Antiviral Responses and Immune Effectors in Co-Treatment Synergy

It was next determined whether oncolytic VSV infection coupled with SMC treatment leads to TNFα- or IFNβ-mediated cell death in vivo. It was investigated whether blocking TNFα signalling via neutralizing antibodies would affect SMC and VSVΔ51 synergy in the EMT6 tumor model. Compared to isotype matched antibody controls, the application of TNFα neutralizing antibodies reverted the tumor regression and decreased the survival rate to values close to the control and single treatment groups (FIGS. 4F and 4G). This demonstrates that TNFα is required in vivo for the anti-tumor combination efficacy of SMC and oncolytic VSV.


To investigate the role of IFNβ signaling in the SMC and OV combination paradigm, Balb/c mice bearing EMT6 tumors were treated with IFNAR1 blocking antibodies. Mice treated with the IFNAR1 blocking antibody succumbed to viremia within 24-48 hours post infection. Prior to death, tumors were collected at 18-20 hours after virus infection, and the tumors were analyzed for caspase activity. Even though these animals with defective type I IFN signaling were ill due to a large viral burden, the excised tumors did not demonstrate signs of caspase-8 activity and only showed minimal signs of caspase-3 activity (FIG. 22) in contrast to the control group, which showed the expected activation of caspases within the tumor (FIG. 22). These results support the hypothesis that intact type I IFN signaling is required to mediate the anti-tumor effects of the combination approach.


To assess the contribution of innate immune cells or other immune mediators to the efficacy of OV/SMC combination therapy, treating EMT6 tumors was first attempted in immunodeficient NOD-scid or NSG (NOD-scid-IL2Rgammanull) mice. However, similar to the IFNAR1 depletion signaling studies, these mice also died rapidly due to viremia. Therefore, the contribution of innate immune cells was addressed by employing an ex vivo splenocyte culture system as a surrogate model. Innate immune populations that have the capacity to produce TNFα were positively selected and further sorted from naïve splenocytes. Macrophages (CD11b+ F4/80+), neutrophils (CD11b+ Gr1+), NK cells (CD11b− CD49b+) and myeloid-negative (lymphoid) population (CD11b− CD49−) were stimulated with VSVΔ51, and the conditioned medium was transferred to EMT6 cells to measure cytotoxicity in the presence of SMC. These results show that VSVΔ51-stimulated macrophages and neutrophils, but not NK cells, are capable of producing factors that lead to cancer cell death in the presence of SMCs (FIG. 23A). Primary macrophages from bone marrow were also isolated and these macrophages also responded to oncolytic VSV infection in a dose-dependent manner to produce factors which kill EMT6 cells (FIG. 23B). Altogether, these findings demonstrate that multiple innate immune cell populations can respond to mediate the observed anti-tumor effects, and that macrophages are the most likely effectors of this response.


Immune Adjuvants Poly(I:C) and CpG Potentiate SMC Therapy In Vivo

It was next investigated whether synthetic TLR agonists, which are known to induce an innate proinflammatory response, would synergize with SMC therapy. EMT6 cells were co-cultured with mouse splenocytes in a transwell insert system, and the splenocytes were treated with SMC and agonists of TLR 3, 4, 7 or 9. All of the tested TLR agonists were found to induce the bystander death of SMC treated EMT6 cells (FIG. 5A). The TLR4, 7, and 9 agonists LPS, imiquimod, and CpG, respectively, required splenocytes to induce bystander killing of EMT6 cells, presumably because their target TLR receptors are not expressed in EMT6 cells. However, the TLR3 agonist poly(I:C) led to EMT6 cell death directly in the presence of SMCs. Poly(I:C) and CpG were next tested in combination with SMC therapy in vivo. These agonists were chosen as they have proven to be safe in humans and are currently in numerous mid to late stage clinical trials for cancer. EMT6 tumors were established and treated as described above. While poly(I:C) treatment had no bearing on tumor growth as a single agent, combination with SMCs induced substantial tumor regression and, when delivered intraperitoneally, led to durable cures in 60% of the treated mice (FIGS. 5B and 5C). Similarly, CpG monotherapy had no bearing on tumor size or survival, but when combined with SMC therapy led to tumor regressions and durable cures in 88% of the treated mice (FIGS. 5D and 5E). Importantly, these combination therapies were well tolerated by the mice, and their body weight returned to pre-treatment levels shortly after the cessation of therapy (FIGS. 20B and 20C). Taken together with the oncolytic VSV results, the data demonstrate that a series of clinically advanced innate immune adjuvants strongly and safely synergize with SMC therapy in vivo, inducing tumor regression and durable cures in several treatment refractory, aggressive mouse models of cancer.


Example 2: Inactivated Viral Particles, Cancer Vaccines, and Stimulatory Cytokines Synergize with SMCs to Kill Tumors

The use of current cancer immunotherapies, such as BCG (Bacillus Calmette-Guerin), recombinant interferon (e.g. IFNα), and recombinant Tumor Necrosis Factor (e.g. TNFα used in isolated limb perfusion for example), and the recent clinical use of biologics (e.g. blocking antibodies) to immune checkpoint inhibitors that overcome tumor-mediated suppression of the immune system (such as anti-CTLA-4 and anti-PD-1 or PDL-1 monoclonal antibodies) highlight the potential of ‘cancer immunotherapy’ as an effective treatment modality. As shown in Example 1, we have demonstrated the robust potential of non-viral immune stimulants to synergize with SMCs (FIGS. 5A-5E). To expand on these studies, we also examined for the potential of SMCs to synergize with non-replicating rhabdovirus-derived particles (called NRRPs), which are UV-irradiated VSV particles that retain their infectious and immunostimulatory properties without the ability to replicate and spread. To assess if NRRPs directly synergize with SMCs, we co-treated various cancer cell lines, EMT6, DBT, and CT-2A, with SMCs and differing levels of NRRPs, and assessed cell viability by Alamar blue. We observed that NRRPs synergize with SMCs in these cancer cell lines (FIG. 25A). To assess if NRRPs can induce a potent proinflammatory response, we treated fractionated mouse splenocytes with NRRPs (or synthetic CpG ODN 2216 as a positive control), transferred the cell culture supernatants to EMT6 cells in culture in a dose-response fashion, and treated the cells with vehicle or SMC. We observed that the immunogenicity of NRRPs is at a similar level of CpG, as there was a considerable proinflammatory response, which led to a high degree of EMT6 cell death in the presence of SMCs (FIG. 25B). As the treatment of CpG and SMC in the EMT6 tumor model resulted in a 88% cure rate (FIG. 5D), these findings suggest that the combination of SMCs and NRRPs can be highly synergistic in vivo.


Our success in finding synergy between SMCs and live or inactivated single-stranded RNA oncolytic rhabdoviruses (e.g., VSVΔ51, Maraba-MG1, and NRRPs) suggested that a clinic approved attenuated vaccine may be able to synergize with SMCs. To test this possibility, we assessed the ability to synergize with SMCs of the cancer biologic, the vaccine for tuberculosis mycobacterium, BCG, which is typically used to treat bladder cancer in situ due to the high local production of TNFα. Indeed, the combination of SMC and BCG potently synergises to kill EMT6 cells in vitro (FIG. 26A). These findings were similarly extended in vivo; we observed significant tumor regression with combined treatment of an oral SMC and BCG administered locally or systemically (i.e., either given intratumorally or intraperitoneally, respectively) (FIG. 26B). These findings attest to the applicability of approved vaccines for combination cancer immunotherapies with SMCs.


Type I IFN Synergizes with SMCs In Vivo


The effects of viruses, and likely other TLR agonists and vaccines, appear to be mediated, in part, by type I IFN production, which is controlled by various signaling mechanism, including mRNA translation. Our findings raised the distinct possibility of combining SMC treatment with existing immunotherapies, such as recombinant IFN, as an effective approach to treat cancer. To explore the potential of this combination, we conducted two treatment regimens of SMC and either intraperitoneal or intratumoral injections of recombinant IFNα in the syngeneic orthotopic EMT6 mammary carcinoma model. While treatment of IFNα had no effect on EMT6 tumor growth or overall survival, SMC treatment slightly extended mouse survival and had a cure rate of 17% (FIG. 27A). However, the combined treatment of SMC and intraperitoneal or intratumoral injections of IFNα significantly delayed tumor growth and extended survival of tumor-bearing mice, resulting in cure rates of 57% and 86%, respectively (FIG. 27A) These results support the hypothesis that direct stimulation with type I IFN can synergize with SMCs to eradicate tumors in vivo.


Assessment of Additional Oncolytic Rhabdoviruses for the Potential of Synergy with SMCs


While VSVΔ51 is a preclinical candidate, the oncolytic rhabdoviruses VSV-IFNβ and Maraba-MG1 are currently undergoing clinical testing in cancer patients. As shown in Example 1, we have demonstrated that Maraba-MG1 synergizes with SMCs in vitro (FIG. 9A). We also confirmed that SMCs synergized with the clinical candidates, VSV-IFNβ and VSV-NIS-IFNβ (i.e. carrying the imaging gene, NIS, sodium iodide symporter), in EMT6 cells (FIG. 28). To assess whether these viruses can induce a profinflammatory state in vivo, we treated infected mice i.v. with 5×108 PFU of VSVΔ51, VSV-IFNβ, and Maraba-MG1 and measured the level of TNFα from the serum of infected mice. In all cases, there was a transient, but robust increase of TNFα from oncolytic virus infection at 12 hrs post-infection, which was barely detectable by 24 hr (FIG. 29). This makes sense as these infections are self-limiting in immunocompetent hosts. These results suggest that the clinical candidate oncolytic rhabdoviruses have the potential to synergize with SMCs in a fashion similar to VSVΔ51.


As shown in Example 1, we documented that a form of VSVΔ51 that was engineered to express full-length TNFα can enhance oncolytic virus induced death in the presence of SMC (FIGS. 15A and 15B). To expand on these findings, we also engineered VSVΔ51 to express a form of TNFα that had its intracellular and transmembrane components replaced with the secretory signal from human serum albumin (VSVΔ51-solTNFα). Compared to full-length TNFα (memTNFα), solTNFα is constitutively secreted from host cells, while the memTNFα form may be anchored on plasma membrane (and still capable of inducing cell death in a juxtacrine manner) or is released due to endogenous processing by metalloproteases (such as ADAM17) to kill cells in a paracrine fashion. We assessed whether either forms of TNFα from oncolytic VSV infected cells will synergize with SMC in the orthotopic syngeneic mammary cancer model, EMT6. As expected, treatment with SMC slightly delayed EMT6 tumor growth rates and slightly extended the survival of tumor bearing mice, and the combination of vehicle with either VSVΔ51-memTNFα or VSVΔ51-solTNFα had no impact on overall survival or tumor growth rates (FIGS. 30A and 30B). On the other hand, virally expressed TNFα significantly slowed tumor growth rates and led to increases in the survival rates of 30% and 70%, respectively. Notably, the 40% tumor cure rate from combined SMC and VSVΔ51 (FIG. 4A) required four treatments and a dose of 5×108 PFU of VSVΔ51. However, the combination of TNFα-expressing oncolytic VSV and SMC resulted in a higher cure rate and was accomplished with two treatment regimens at a virus dose of 1×108 PFU. To assess whether this treatment strategy can be applied to other refractory syngeneic models, we assessed whether VSVΔ51-solTNFα synergizes with SMCs in a subcutaneous model of the mouse colon carcinoma cell line, CT-26. As expected, we did not observe an impact of tumor growth rates or survival with VSVΔ51-solTNFα and observed a modest decrease of the tumor growth rate and a slight extension of survival (FIG. 30C). However, we were able to further delay tumor growth and extend survival of these tumor bearing mice with the combined treatment of SMC and VSVΔ51-solTNFα. Hence, the inclusion of a TNFα transgene within oncolytic viruses is a significant advantage for the combination of SMC. One could easily envisage the inclusion of other death ligand transgenes, such as TRAIL, FasL, or lymphotoxin, into viruses to synergize with SMCs.


Exploring the Potential of SMCs to Eradicate Brain Tumors

The combination of SMCs with immune stimulatory agents is applicable to many different types of cancer, including brain malignancies for which effective therapies are lacking and for which immunotherapies hold promise. As a first step, we determined whether SMCs can cross the blood-brain-barrier (BBB) in a mouse model of brain tumors, as the BBB is a significant barrier to drug entry into the brain. We observed the SMC-induced degradation of cIAP1/2 proteins in intracranial CT-2A tumors several hours after drug administration, indicative that SMCs are capable of crossing the BBB to antagonize cIAP1/2 and potentially XIAP within brain tumors (FIG. 31A). We also demonstrated that the direct injection of SMC (10 μL of a 100 μM solution) intracranially can result in the potent down-regulation of both cIAP1/2 and XIAP proteins (FIG. 31B), which is a direct consequence of SMC-induced autoubiquitination of the IAPs or the result of tumor cell death induction in the case of XIAP loss. As a second step, we wished to determine whether systemic stimulation of immune stimulants can led to a proinflammatory response in the brain of naïve mice. Indeed, we observed marked up-regulation of TNFα levels from the brain from mice that were intraperitoneally injected with the viral mimic, poly(I:C), a TLR3 agonist (FIG. 32A). We followed up this finding by extracting crude protein lysates from the brains of mice that were treated with poly(I:C) or with the clinical candidate oncolytic rhabdoviruses VSVΔ51, VSV-IFNβ, or Maraba-MG1, and then applied these lysates onto CT-2A or K1580 glioblastoma cells in the presence of SMCs. We observed that the stimulation of an innate immune response with these non-viral synthetic or biologic viral agents resulted in enhanced cell death in the presence of SMCs with these two glioblastoma cell lines (FIG. 32B). As a third step, we also confirmed that poly(I:C) could be directly administered intracranially without overt toxicities, which may provide an even increased cytokine induction at the site of tumors (FIG. 32C). Finally, we assessed whether the direct immune stimulation within the brain or systemic stimulation would lead to durable cures in SMC-treated mouse models of brain cancer. The combination of SMCs orally and poly(I:C) intracranially or VSVΔ51 i.v. results in the near complete survival of CT-2A bearing mouse gliomas (FIGS. 32D and 32E), with an expected survival rate of 86 and 100%, respectively. As a follow-up to the observed synergy between SMC and intracranial treatment of poly(I:C), we also assessed the potential for treatment of CT-2A gliomas with direct, simultaneous intracranial injections of SMC and recombinant human IFNα (B/D). Indeed, we observed a marked positive impact of mouse survival with the combined treatment, with a cure rate of 50% (FIG. 33). Importantly, the single or combined SMC or IFNα treatment did not result in any overt neurotoxicity in these tumor bearing mice. Overall, these results reveal that multiple modes of SMC treatment can synergize with a multitude of locally or systemically administered innate immunostimulants to kill cancer cell in vitro and to eradicate tumors in animal models of cancer.


Methods
Reagents

Novartis provided LCL161 (Houghton, P. J. et al. Initial testing (stage 1) of LCL161, a SMAC mimetic, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 58: 636-639 (2012); Chen, K. F. et al. Inhibition of Bcl-2 improves effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma cells. Biochemical Pharmacology 84: 268-277 (2012)). SM-122 and SM-164 were provided by Dr. Shaomeng Wang (University of Michigan, USA) (Sun, H. et al. Design, synthesis, and characterization of a potent, nonpeptide, cellpermeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc 129: 15279-15294 (2007)). AEG40730 (Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689-700 (2008)) was synthesized by Vibrant Pharma Inc (Brantford, Canada). OICR720 was synthesized by the Ontario Institute for Cancer Research (Toronto, Canada) (Enwere, E. K. et al. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-kappaB signalling pathway. Sci Signal 5: ra75 (2013)). IFNα, IFNβ, IL28 and IL29 were obtained from PBL Interferonsource (Piscataway, USA). All siRNAs were obtained from Dharmacon (Ottawa, Canada; ON TARGETplus SMARTpool). CpG-ODN 2216 was synthesized by IDT (5′-gggGGACGATCGTCgggggg-3′ (SEQ ID NO: 1), lowercase indicates phosphorothioate linkages between these nucleotides, while italics identify three CpG motifs with phosphodiester linkages). Imiquimod was purchased from BioVision Inc. (Milpitas, USA). poly(I:C) was obtained from InvivoGen (San Diego, USA). LPS was from Sigma (Oakville, Canada).


Cell Culture

Cells were maintained at 37° C. and 5% CO2 in DMEM media supplemented with 10% heat inactivated fetal calf serum, penicillin, streptomycin, and 1% non-essential amino acids (Invitrogen, Burlington, USA). All of the cell lines were obtained from ATCC, with the following exceptions: SNB75 (Dr. D. Stojdl, Children's Hospital of Eastern Ontario Research Institute) and SF539 (UCSF Brain Tumor Bank). Cell lines were regularly tested for mycoplasma contamination. For siRNA transfections, cells were reverse transfected with Lipofectamine RNAiMAX (Invitrogen) or DharmaFECT I (Dharmacon) for 48 hours as per the manufacturer's protocol.


Viruses

The Indiana serotype of VSVΔ51 (Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4(4), 263-275 (2003)) was used in this study and was propagated in Vero cells. VSVΔ51-GFP is a recombinant derivative of VSVΔ51 expressing jellyfish green fluorescent protein. VSVΔ51-Fluc expresses firefly luciferase. VSVΔ51 with the deletion of the gene encoding for glycoprotein (VSVΔ51ΔG) was propagated in HEK293T cells that were transfected with pMD2-G using Lipofectamine2000 (Invitrogen). To generate the VSVΔ51-TNFα construct, full-length human TNFα gene was inserted between the G and L viral genes. All VSVΔ51 viruses were purified on a sucrose cushion. Maraba-MG1, VVDD-B18R-, Reovirus and HSV1 ICP34.5 were generated as previously described (Brun, J. et al. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol Ther 18, 1440-1449 (2010); Le Boeuf, F. et al. Synergistic interaction between oncolytic viruses augments tumor killing. Mol Ther 18, 888-895 (2011); Lun, X. et al. Efficacy and safety/toxicity study of recombinant vaccinia virus JX-594 in two immunocompetent animal models of glioma. Mol Ther 18, 1927-1936 (2010)). Generation of adenoviral vectors expressing GFP or co-expressing GFP and dominant negative IKKβ was as previously described 16.


In Vitro Viability Assay

Cell lines were seeded in 96-well plates and incubated overnight. Cells were treated with vehicle (0.05% DMSO) or 5 μM LCL161 and infected with the indicated MOI of OV or treated with 250 U/mL IFNβ, 500 U/mL IFNα, 500 U/mL IFNγ, 10 ng/mL IL28, or 10 ng/mL IL29 for 48 hours. Cell viability was determined by Alamar blue (Resazurin sodium salt (Sigma)) and data was normalized to vehicle treatment. The chosen sample size is consistent with previous reports that used similar analyses for viability assays. For combination indices, cells were seeded overnight, treated with serial dilutions of a fixed combination mixture of VSVΔ51 and LCL161 (5000:1, 1000:1 and 400:1 ratios of PFU VSVΔ51: μM LCL161) for 48 hours and cell viability was assessed by Alamar blue. Combination indices (CI) were calculated according to the method of Chou and Talalay using Calcusyn (Chou, T. C. & Talaly, P. A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems. J Biol Chem 252, 6438-6442 (1977)). An n=3 of biological replicates was used to determine statistical measures (mean with standard deviation or standard error).


Spreading Assay

A confluent monolayer of 786-0 cells was overlaid with 0.7% agarose in complete media. A small hole was made with a pipette in the agarose overlay in the middle of the well where 5×103 PFU of VSVΔ51-GFP was administered. Media containing vehicle or 5 μM LCL161 was added on top of the overlay, cells were incubated for 4 days, fluorescent images were acquired, and cells were stained with crystal violet.


Splenocyte Co-Culture

EMT6 cells were cultured in multiwell plates and overlaid with cell culture inserts containing unfractionated splenocytes. Briefly, single-cell suspensions were obtained by passing mouse spleens through 70 μm nylon mesh and red blood cells were lysed with ACK lysis buffer. Splenocytes were treated for 24 hr with either 0.1 MOI of VSVΔ51ΔG, 1 μg/mL poly(I:C), 1 μg/mL LPS, 2 μM imiquimod, or 0.25 μM CpG prior in the presence of 1 μM LCL161. EMT6 cell viability was determined by crystal violet staining. An n=3 of biological replicates was used to determine statistical measures (mean, standard deviation).


Cytokine Responsiveness Bioassay

Cells were infected with the indicated MOI of VSVΔ51 for 24 hours and the cell culture supernatant was exposed to UV light for 1 hour to inactive VSVΔ51 particles. Subsequently, the UV-inactivated supernatant was applied to naive cells in the presence of 5 μM LCL161 for 48 hours. Cell viability was assessed by Alamar blue. An n=3 of biological replicates was used to determine statistical measures (mean, standard deviation).


Microscopy

To measure caspase-3/7 activation, 5 μM LCL161, the indicated MOI of VSVΔ51, and 5 μM CellPlayer Apoptosis Caspase-3/7 reagent (Essen Bioscience, Ann Arbor, USA) were added to the cells. Cells were placed in an incubator outfitted with an IncuCyte Zoom microscope with a 10× objective and phase-contrast and fluorescence images were acquired over a span of 48 hours. Alternatively, cells were treated with 5 μM LCL161 and 0.1 MOI of VSVΔ51-GFP and SMC for 36 hours and labeled with the Magic Red Caspase-3/7 Assay Kit (ImmunoChemsitry Technologies, Bloomington, USA). To measure the proportion of apoptotic cells, 1 μg/mL Annexin V-CF594 (Biotium, Hayward, USA) and 0.2 μM YOYO-1 (Invitrogen) was added to SMC and VSVΔ51 treated cells. Images were acquired 24 hours post-treatment using the IncuCyte Zoom. Enumeration of fluorescence signals was processed using the integrated object counting algorithm within the IncuCyte Zoom software. An n=12 (caspase-3/7) or n=9 (Annexin V, YOYO-1) of biological replicates was used to determine statistical measures (mean, standard deviation).


Multiple Step Growth Curves

Cells were treated with vehicle or 5 μM LCL161 for 2 hours and subsequently infected at the indicated MOI of VSVΔ51 for 1 hour. Cells were washed with PBS, and cells were replenished with vehicle or 5 μM LCL161 and incubated at 37° C. Aliquots were obtained at the indicated times and viral titers assessed by a standard plaque assay using African green monkey VERO cells.


Western Immunoblotting

Cells were scraped, collected by centrifugation and lysed in RIPA lysis buffer containing a protease inhibitor cocktail (Roche, Laval, Canada). Equal amounts of soluble protein were separated on polyacrylamide gels followed by transfer to nitrocellulose membranes. Individual proteins were detected by western immunoblotting using the following antibodies: pSTAT1 (9171), caspase-3 (9661), caspase-8 (9746), caspase-9 (9508), DR5 (3696), TNF-R1 (3736), cFLIP (3210), and PARP (9541) from Cell Signalling Technology (Danvers, USA); caspase-8 (1612) from Enzo Life Sciences (Farmingdale, USA); IFNAR1 (EP899) and TNF-R1 (19139) from Abcam (Cambridge, USA); caspase-8 (AHZ0502) from Invitrogen; cFLIP (clone NF6) from Alexis Biochemicals (Lausen, Switzerland); RIP1 (clone 38) from BD Biosciences (Franklin Lakes, USA); and E7 from Developmental Studies Hybridoma Bank (Iowa City, USA). Our rabbit anti-rat IAP1 and IAP3 polyclonal antibodies were used to detect human and mouse cIAP1/2 and XIAP, respectively. AlexaFluor680 (Invitrogen) or IRDye800 (Li-Cor, Lincoln, USA) were used to detect the primary antibodies, and infrared fluorescent signals were detected using the Odyssey Infrared Imaging System (Li-Cor).


RT-qPCR

Total RNA was isolated from cells using the RNAEasy Mini Plus kit (Qiagen, Toronto, Canada). Two-step RT-qPCR was performed using Superscript III (Invitrogen) and SsoAdvanced SYBR Green supermix (BioRad, Mississauga, Canada) on a Mastercycler ep realplex (Eppendorf, Mississauga, Canada). All primers were obtained from realtimeprimers.com. An n=3 of biological replicates was used to determine statistical measures (mean, standard deviation).


ELISA

Cells were infected with virus at the indicated MOI or treated with IFNβ for 24 hours and clarified cell culture supernatants were concentrated using Amicon Ultra filtration units. Cytokines were measured with the TNFα Quantikine high sensitivity, TNFα DuoSet, TRAIL DuoSet (R&D Systems, Minneapolis, USA) and VeriKine IFNβ (PBL Interferonsource) assay kits. An n=3 of biological replicates was used to determine statistical analysis.


EMT6 Mammary Tumor Model

Mammary tumors were established by injecting 1×105 wild-type EMT6 or firefly luciferase-tagged EMT6 (EMT6-Fluc) cells in the mammary fat pad of 6-week old female BALB/c mice. Mice with palpable tumors (˜100 mm3) were co-treated with either vehicle (30% 0.1 M HCl, 70% 0.1 M NaOAc pH 4.63) or 50 mg/kg LCL161 per os and either i.v. injections of either PBS or 5×108 PFU of VSVΔ51 twice weekly for two weeks. For poly(I:C) 25 and SMC treatments, animals were treated with LCL161 twice a week and either BSA (i.t.), 20 ug poly(I:C) i.t. or 2.5 mg/kg poly(I:C) i.p. four times a week. The SMC and CpG group was injected with 2 mg/kg CpG (i.p.) and the next day was followed with CpG and SMC treatments. The CpG and SMC treatments were repeated 4 days later. Treatment groups were assigned by cages and each group had min n=4-8 for statistical measures (mean, standard error; Kaplan-Meier with log rank analysis). The sample size is consistent with previous reports that examined tumor growth and mouse survival following cancer treatment. Blinding was not possible. Animals were euthanized when tumors metastasized intraperitoneally or when the tumor burden exceeded 2000 mm3. Tumor volume was calculated using (π)(W)2(L)/4 where W=tumor width and L=tumor length. Tumor bioluminescence imaging was captured with a Xenogen2000 IVIS CCD-camera system (Caliper Life Sciences Massachusetts, USA) following i.p. injection of 4 mg luciferin (Gold Biotechnology, St. Louis, USA).


HT-29 Subcutaneous Tumor Model

Subcutaneous tumors were established by injecting 3×106 HT-29 cells in the right flank of 6-week old female CD-1 nude mice. Palpable tumors (˜200 mm3) were treated with five intratumoral injections (i.t.) of PBS or 1×108 PFU of VSVΔ51. Four hours later, mice were administered vehicle or 50 mg/kg LCL161 per os. Treatment groups were assigned by cages and each group had min n=5-7 for statistical measures (mean, standard error; Kaplan-Meier with log rank analysis). The sample size is consistent with previous reports that examined tumor growth and mouse survival following cancer treatment. Blinding was not possible. Animals were euthanized when tumor burden exceeded 2000 mm3. Tumor volume was calculated using (π)(W)2(L)/4 where W=tumor width and L=tumor length.


All animal experiments were conducted with the approval of the University of Ottawa Animal Care and Veterinary Service in concordance with guidelines established by the Canadian Council on Animal Care.


Antibody-Mediated Cytokine Neutralization

For neutralizing TNFα signaling in vitro, 25 μg/mL of α-TNFα (XT3.11) or isotype control (HRPN) was added to EMT6 cells for 1 hour prior to LCL161 and VSVΔ51 or IFNβ co-treatment for 48 hours. Viability was assessed by Alamar blue. For neutralizing TNFα in the EMT6-Fluc tumor model, 0.5 mg of α-TNFα or α-HRPN was administered 8, 10 and 12 days post-implantation. Mice were treated with 50 mg/kg LCL161 (p.o.) on 8, 10 and 12 days post-implantation and were infected with 5×108 PFU VSVΔ51 i.v. on days 9, 11 and 13. For neutralization of type I IFN signalling, 2.5 mg of α-IFNAR1 (MAR1-5A3) or isotype control (MOPC-21) were injected into EMT6-tumor bearing mice and treated with 50 mg/kg LCL161 (p.o.) for 20 hours. Mice were infected with 5×108 PFU VSVΔ51 (i.v.) for 18-20 hours and tumors were processed for Western blotting. All antibodies were from BioXCell (West Lebanon, USA).


Flow Cytometry and Sorting

EMT6 cells were co-treated with 0.1 MOI of VSVΔ51-GFP and 5 μM LCL161 for 20 hours. Cells were trypsinized, permeabilized with the CytoFix/CytoPerm kit (BD Biosciences) and stained with APC-TNFα (MP6-XT22) (BD Biosciences). Cells were analyzed on a Cyan ADP 9 flow cytometer (Beckman Coulter, Mississauga, Canada) and data was analyzed with FlowJo (Tree Star, Ashland, USA).


Splenocytes were enriched for CD11b using the EasySep CD11b positive selection kit (StemCell Technologies, Vancouver, Canada). CD49+ cells were enriched using the EasySep CD49b positive selection kit (StemCell Technologies) from the CD11b− fraction. CD11b+ cells were stained with F4/80-PE-Cy5 (BM8, eBioscience) and Gr1-FITC (RB6-8C5, BD Biosciences) and further sorted with MoFlo Astrios (Beckman Coulter). Flow cytometry data was analyzed using Kaluza (Beckman Coulter). Isolated cells were infected with VSVΔ51 for 24 hours and clarified cell culture supernatants were applied to EMT6 cells for 24 hours in the presence of 5 μM LCL161.


Bone Marrow Derived Macrophages

Mouse femurs and radius were removed and flushed to remove bone marrow. Cells were cultured in RPMI with 8% FBS and 5 ng/ml of M-CSF for 7 days. Flow cytometry was used to confirm the purity of macrophages (F4/80+ CD11b+).


Immunohistochemistry

Excised tumors were fixed in 4% PFA, embedded in a 1:1 mixture of OCT compound and 30% sucrose, and sectioned on a cryostat at 12 μm. Sections were permeablized with 0.1% Triton X-100 in blocking solution (50 mM Tris-HCl pH 7.4, 100 mM L-lysine, 145 mM NaCl and 1% BSA, 10% goat serum). α-cleaved caspase 3 (C92-605, BD Pharmingen, Mississauga, Canada) and polyclonal antiserum VSV (Dr. Earl Brown, University of Ottawa, Canada) were incubated overnight followed by secondary incubation with AlexaFluor-coupled secondary antibodies (Invitrogen).


Statistical Analysis

Comparison of Kaplan-Meier survival plots was conducted by log-rank analysis and subsequent pairwise multiple comparisons were performed using the Holm-Sidak method (SigmaPlot, San Jose, USA). Calculation of EC50 values was performed in GraphPad Prism using normalized nonlinear regression analysis. The EC50 shift was calculated by subtracting the log10 EC50 of SMC-treated and VSVΔ51-infected cells from log10 EC50 of vehicle treated cells infected by VSVΔ51. To normalize the degree of SMC synergy, the EC50 value was normalized to 100% to compensate for cell death induced by SMC treatment alone.


OTHER EMBODIMENTS

All publications, patent applications, and patents mentioned in this specification are herein incorporated by reference.


While the invention has been described in connection with the specific embodiments, it will be understood that it is capable of further modifications. Therefore, this application is intended to cover any variations, uses, or adaptations of the invention that follow, in general, the principles of the invention, including departures from the present disclosure that come within known or customary practice within the art.

Claims
  • 1. A composition comprising an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, wherein said SMC and said immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.
  • 2. A method for treating a patient diagnosed with cancer, said method comprising administering to the patient an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, wherein said SMC and said immunostimulatory agent are administered simultaneously or within 28 days, 14 days, 10 days, 5 days, 24 hours, or 6 hours of each other in amounts that together are sufficient to treat said cancer.
  • 3-8. (canceled)
  • 9. The method of claim 2, wherein said SMC is a monovalent SMC.
  • 10. The method of claim 9, wherein said SMC is LCL161, GDC-0152/RG7419, GDC-0917/CUDC-427, or SM-406/AT-406/Debio1143.
  • 11-12. (canceled)
  • 13. The method of claim 2, wherein said SMC is a bivalent SMC.
  • 14. The method of claim 13, wherein said SMC is AEG40826/HGS1049, OICR720, TL32711/Birinapant, or SM-1387/APG-1387.
  • 15-17. (canceled)
  • 18. The method of claim 2, wherein said immunostimulatory agent is a TLR agonist from Table 2, a lipopolysaccharide, a peptidoglycan, a lipopeptide, a CpG oligodeoxynucleotide, or a virus from Table 3.
  • 19-20. (canceled)
  • 21. The method of claim 18, wherein said CpG oligodeoxynucleotide is CpG-ODN 2216.
  • 22. The method of claim 18, wherein said immunostimulatory agent is imiquimod, poly(I:C), or BCG.
  • 23-24. (canceled)
  • 25. The method of any one of claim 2, wherein said immunostimulatory agent is a virus from Table 3.
  • 26. The method of claim 25, wherein said virus is a vesicular stomatitis virus (VSV), adenovirus, maraba vesiculovirus, reovirus, rhabdovirus, vaccinia virus or a variant thereof, or Talimogene laherparepvec.
  • 27. The method of claim 26, wherein said VSV virus is VSV-M51R, VSV-MΔ51, VSV-IFNβ, or VSV-IFNβ-NIS.
  • 28-29. (canceled)
  • 30. The method of claim 2, wherein said cancer is refractory to treatment by an SMC in the absence of an immunostimulatory agent
  • 31. The method of claim 2, wherein said treatment further comprises administration of a therapeutic agent comprising an interferon.
  • 32. The method of claim 31, wherein said interferon is a type 1 interferon.
  • 33. The method of claim 2, wherein said cancer is selected from adrenal cancer, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, colorectal cancer, connective tissue cancer, cancer of the digestive system, endometrial cancer, epipharyngeal carcinoma, esophageal cancer, eye cancer, gallbladder cancer, gastric cancer, cancer of the head and neck, hepatocellular carcinoma, intra-epithelial neoplasm, kidney cancer, laryngeal cancer, leukemia, liver cancer, liver metastases, lung cancer, lymphoma, melanoma, myeloma, multiple myeloma, neuroblastoma, mesothelioma, neuroglioma, myelodysplastic syndrome, multiple myeloma, oral cavity cancer, ovarian cancer, paediatric cancer, pancreatic cancer, pancreatic endocrine tumors, penile cancer, plasma cell tumors, pituitary adenoma, thymoma, prostate cancer, renal cell carcinoma, cancer of the respiratory system, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer, small bowel cancer, stomach cancer, testicular cancer, thyroid cancer, ureteral cancer, and cancer of the urinary system.
  • 34. A composition comprising an SMC from Table 1 and an immunostimulatory agent, said immunostimulatory agent comprising: (a) a killed virus, an inactivated virus, or a viral vaccine; or(b) a first agent that primes an immune response and at least a second agent that boosts said immune response,wherein said SMC and said immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.
  • 35. The composition of claim 34, wherein said immunostimulatory agent is an NRRP or a rabies vaccine.
  • 36. (canceled)
  • 37. The composition of claim 36, wherein one or both of said first agent and said second agent is an oncolytic virus vaccine, or wherein said first agent is an adenovirus carrying a tumor antigen and said second agent is a vesiculovirus.
  • 38. (canceled)
  • 39. The composition of claim 37, wherein said vesiculovirus is selected from Maraba-MG1 carrying the same tumor antigen as said adenovirus and Maraba-MG1 that does not carry a tumor antigen.
Provisional Applications (1)
Number Date Country
61931321 Jan 2014 US
Continuations (1)
Number Date Country
Parent 15113634 Jul 2016 US
Child 16598900 US