Snap-on battery heat shield

Information

  • Patent Grant
  • 5985482
  • Patent Number
    5,985,482
  • Date Filed
    Tuesday, April 28, 1998
    26 years ago
  • Date Issued
    Tuesday, November 16, 1999
    25 years ago
Abstract
A unitarily molded, snap-on heat shield for a standard automotive battery container having handle brackets extending from opposing side walls of the container, the heat shield having wedge-shaped coupling protrusions extending inwardly from cantilevered flaps in the heat shield side walls, the wedge-shaped protrusions riding along the handle brackets to cantilever the flaps away for the container side wall as the shield in moved downward over the container, the flaps snapping back inward toward the battery container as the protrusions pass the handle bracket to couple the heat shield to the battery container.
Description

FIELD OF THE INVENTION
The invention relates to storage batteries for motor vehicles, and more particularly to a heat shield enclosure for protecting such batteries from hot underhood temperatures.
BACKGROUND OF THE INVENTION
The underhood temperature of a motor vehicle can reach 200.degree. F. during operation, and even 230.degree. F. in extremely hot environmental conditions. Subjecting storage batteries to such excessive temperatures accelerates corrosion of the battery grids, which is a major factor in shortening of battery life. Consequently, the automotive industry has long recognized the need to protect the batteries in motor vehicles from the hot temperatures present in the engine compartment during operation.
Vehicle batteries are conventionally protected from underhood heating by the placement of an insulting shell or shield over the battery. Generally, the shield acts as an insulator. For example, U.S. Pat. No. 5,278,002 to Hiers discloses a box-like battery shield with attachable envelopes of plastic material containing insulation. The heat shield is coupled to the battery by a friction fit along the top and sides of the battery. U.S. Patent to Longardner et al. discloses the encapsulation of a battery with a phase change material. Alternately, the shield may be designed to provide an air gap between the sidewalls of the battery and the shield through which cooler outside air is circulated either by fan or as the result of vehicle motion.
Some insulating shells are designed to be mounted on the battery after it has been installed in the vehicle. For example, U.S. Pat. No. 5,086,860 to Francis et al. discloses a tray upon which the battery is disposed and over which a box placed. The box is secured to the tray by an L-shaped bracket, which extends over the top and one side of the box.
Other heat shields are designed to be assembled onto the battery prior to vehicle installation. It is generally recognized in the automotive industry that creating such a subassembly prior to the final assembly line can reduce overall costs.
For example, U.S. Pat. No. 5,212,025 to Osamu Shibata et al. discloses a storage battery for automobiles which includes a heat shield that is designed to be a part of the battery assembly, making it easier to mount the battery in an automobile. The heat shield is a box-like structure having a closed bottom and which is open at the top to permit the battery to be positioned within the heat shield. The arrangement requires a non-standard cover for the battery to define the air gap and a non-standard container to provide the latching recesses in its for securing the heat shield to the battery. Further, because the heat shield has a closed bottom, the battery must be lifted in order to position it within the heat shield. In addition, this arrangement requires modification of the battery hold down tray and hold down hardware.
U.S. Pat. No. 5,543,248 to Dougherty et al. discloses a clam shell type designs wherein front and rear section halves are coupled to a base by living hinges, or coupled to each other by living hinges. U.S. Pat. No. 5,536,595 to Inkmann et al. and U.S. Pat. No. 4,054,730 to Crifasi disclose a similar two part heat shields which slide onto the battery along its opposite sides to surround the four sides of the battery, the top and bottom being open. The halves are secured together by latches along opposite sides.
While such clam shell shields may be injection molded on a production scale, a number of disadvantages are associated with such clam shell designs. The battery must be assembled into the clamshell prior to assembly into the vehicle. Clamshell side latches are typically not robust enough to assure that shield will remain locked to the battery during installation into the vehicle. Additionally, it is difficult for one person to remove a clam shell heat shield. One person must hold the clamshell open while another removes the battery from the open shield. Further, clamshell designs do not generally lend themselves to easy manual or automated assembly. This results in excessive cost and/or effort to implement on a production basis. Also, clamshells do not typically cover the top of the battery. Covering the top of a battery, however, is critical in extreme operating conditions.
OBJECTS OF THE INVENTION
It is a primary object of the invention to provide a heat shield for an existing automotive battery that does not interfere with conventional holddown devices. Related objects of the invention are to provide a shield that may be easily assembled to and disassembled from the battery by one person and wherein the assembly may be readily automated.
It is a further object of the invention is to provide a heat shield that may be attached by a snap-fit to the battery.
It is another object of the invention is to provide a battery shield that may be assembled to a battery to create a subassembly prior to assembly into the engine of a vehicle or that may be assembled onto a battery already assembled into the engine of a vehicle.
It is yet another object of the invention to provide a heat shield that provides thermal stability and acts as a splash shield against possible acid expulsion from the battery under extreme operating conditions.
SUMMARY OF THE INVENTION
In accomplishing these and other objectives of the invention, the invention provides a unitarily molded heat shield that may be used with a standard automotive battery container having handle brackets extending from opposing sidewalls or end walls of the container. For the purposes of this disclosure, the term "sidewall" will be used as a generic term for side walls and end walls both with regard to the battery and the enclosure or heat shield. The sidewalls of the heat shield and preferably, the top wall of the heat shield are spaced away from the sidewalls and top wall of the battery container to provide an insulating air gap. To couple the heat shield to the battery container, the heat shield includes wedge-shaped coupling protrusions extending inwardly from opposed sidewalls of the heat shield. The opposed sidewalls further comprise cantilevered flaps upon which the protrusions are disposed. Preferably, the protrusions are wedge shaped, so that the wedge rides along the handle brackets to cantilever the flaps away for the container side wall as the shield in moved downward over the container. When the protrusions pass beyond the handle brackets, the flaps snap back inward toward the battery container to position the protrusions subjacent the handle bracket to couple the heat shield to the battery container. To remove the heat shield from the battery container, the flaps are flexed outward from the battery to disengage the protrusions from the handle bracket. Then the heat shield may be easily lifted from the battery container.
Spacing protrusions may be provided, extending inwardly from the sidewalls of the battery to keep the heat shield from shifting once in place on the battery. The top wall of the heat shield may additionally include openings for receiving the battery terminals and for viewing a state of charge indicator. The top wall may also include a raised or protruding portion for receiving the battery vents.





DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a heat shield constructed in accordance with teachings of the invention assembled onto a battery container.
FIG. 2 is an enlarged perspective view of the heat shield of FIG. 1 showing the top of the heat shield.
FIG. 3 is an enlarged perspective view of the heat shield of FIG. 2 showing the inside of the heat shield.
FIG. 4 is an elevated top view of the heat shield of FIG. 2.
FIG. 5 is a side view of the heat shield of FIG. 2, partially broken away to show the inside of the battery cover.
FIG. 6 is an end view of the heat shield of FIG. 2, partially broken away to show the inside of the battery cover.
FIG. 7 is a cross-sectional view of the heat shield assembled onto the battery taken along line 7--7 of FIG. 4.
FIG. 8 is an enlarged fragmentary view of the corner of the battery and the heat shield coupling of FIG. 2.
FIG. 9 is the heat shield of FIG. 1 with the heat shield coupling flaps flexed outward from the battery container end.





DESCRIPTION OF THE PREFERRED EMBODIMENT
Turning now to the drawings, in FIG. 1, there is shown a battery heat shield or enclosure 10 assembled onto a conventional battery container 12. In accordance with the invention, the heat shield 10 is a unitarily molded structure that surrounds the sides 14, 16, which are commonly referred to as the ends 14 and sides 16, and top 18 of the battery container 12 and snaps into its final assembled position on the battery container 12. A handle (not illustrated) may extend from the sides 16 of the battery 12 from the ends 14 of the battery 12. For the purposes of this disclosure, the terms "side" and "sidewall" will be used as generic terms for both sides and ends and sidewalls and end walls, respectively. The heat shield 10 includes a top portion 20, and sidewalls 22, 23, 24, 25 (see also FIG. 3).
According to an important feature of the invention, the lower edges 26 of the sidewalls 24, 25 include sufficient clearance for the use of conventional hold down hardware (not shown). As shown in the drawings, the sidewalls 24, 25 preferably include a cutout portion or are sufficiently short to expose the hold down shoulders 28 of a conventional battery design. In this way, when the battery container 12 is assembled into a vehicle engine, conventional mounting or hold down hardware may be utilized to bear directly against the battery 12 container itself, rather than against the heat shield, as in some prior art designs. It will thus be appreciated by those skilled in the art that the battery/heat shield subassembly need not be completely removed from the engine in order to remove the heat shield 10 from the battery container 12. The sidewalls 22, 23, 24, 25 may include strengthening ribs. In the embodiment illustrated, sidewalls 24, 25 are provided with strengthening ribs 29 (see FIGS. 2 and 3).
The top portion 20 of the heat shield 10 includes openings 30, 32, 34 to accommodate the battery terminals 36, 38, and substantially adjacent the battery state of charge indicator 40. It will be appreciated that one or more larger openings may be provided to accommodate the terminals 36, 38 and/or the state of charge indicator 40. For example, a single large rectangular opening may be provided through which each of the elements may be accessed. This or a separate opening might likewise permit viewing of a label or printed text on the top 18 of the battery container 12. In this way, the heat shield 10 does not obstruct access to the terminals 36, 38. Similarly, the heat shield 10 does not obstruct visual monitoring of the current state of charge of the battery 12.
Additionally, the top portion 20 preferably includes a raised portion 42 disposed adjacent the battery vents (not visible). The raised portion 42 includes a plurality of bores 44 for the escape of gases from the interior of the battery via the cell vents. It will be appreciated that the bores 44 permit the escape of gases, while the raised portion acts as a splash shield against possible acid expulsion from the battery under extreme operating conditions.
According to an important feature of the invention, an insulating layer of air is provided in spaces between the battery container 12 sidewalls 14, 16 and the heat shield 10 sidewalls 22-25. To space the heat shield 10 from the battery container 12 surface, ribs 50, 52, 54, 56 extend inward from the inside surfaces of the sidewalls 22, 23 of the heat shield 10. As may be seen in FIGS. 3-5 and 7, the ribs 50, 52, 54, 56 are disposed substantially adjacent the ends or sides 14 of the battery container 12 to limit the side to side movement of the shield 10 relative to the battery container 12. The ribs 29 on 24 likewise limit side-to-side movement in the opposite direction.
Preferably, spaces for insulating layers of air are provided around all sides 14, 16 of the battery container 12. It will be appreciated, however, that such spaces may be provided around less than all sides of the battery container 12 and still provide cooling of the battery.
Accordingly to another important feature of the invention, the heat shield 10 snaps into place over the battery container 12. In order to so couple the heat shield 10 to the battery container 12, inwardly extending protrusions 60, 62, 64, 66 are provided along the inner surfaces of the heat shield sidewalls 22, 23. When assembled to the battery container 12, as shown in FIGS. 7 and 8, the protrusions 60, 62, 64, 66 are disposed below the standard handle bracket 70, 72 of the battery container 12. It will be appreciated that the protrusions 60, 62, 64, 66 engage the brackets 70, 72 to prevent the heat shield 10 from being lifted upward off of the battery container 12.
In the preferred embodiment, each protrusion 60, 62, 64, 66 is actually a series of parallelly disposed, thin ribs. It will be appreciated by those skilled in the art that this structure provides certain molding advantages.
In order to permit the heat shield 10 to slide downward over the battery container 12, resilient, cantilevered end flaps 74, 76 are provided in the heat shield sides 22, 23. Preferably, the protrusions 60, 62, 64, 66 are of a ramped structure. As the heat shield 10 is moved downward, the ramped protrusions 60, 62, 64, 66 ride along the handle brackets 70, 72 to cause the end flaps 74, 76 flex outward from the planer surface of the heat shield sides 22, 23. Once the ramped protrusions 60, 62, 64, 66 pass the handle brackets 70, 72, the resilient end flaps 74, 76 snap back into their original position, as shown in FIGS. 7 and 8 to couple the heat shield 10 to the battery container 12. In this position, at least a portion of the top portion 20 of the heat shield 10 is preferably disposed adjacent the top 18 of the battery container 12. In this way, the abutment of the top portion 20 of the heat shield 10 with the top 18 of the battery container 12, and the abutment of the protrusions 60, 62, 64, 66 with the handle brackets 70, 72, minimize upward and downward movement of the heat shield 10 relative to the battery container 12. Thus in order to assemble the heat shield 10 to the battery container 12, the user need only slide the heat shield 10 downward over the battery container 10 until the protrusions 60, 62, 64, 66 snap into place to couple the shield 10 to the battery container 12. The heat shield 10 is a single unit, and there are no latches required to couple the heat shield 10 to the battery container 12.
In order to remove the heat shield 10 from the battery container 12, the user need only flex the end flaps 74, 76 away from the battery container 12 to provide clearance for the heat shield 10 to be lifted upward. It will thus be appreciated by those skilled in the art that only a single user is required to disassemble the heat shield 10 from the battery container 12.
The heat shield 10 may be injection molded as a unitary structure by conventional molding techniques. The heat shield 10 is preferably made of a relatively rigid thermoplastic material, such as polypropylene, though other materials may be utilized.
Claims
  • 1. An enclosure for thermally insulating a storage battery for a motor vehicle from underhood heat, the battery including a casing having casing sidewalls, a casing top wall, and a casing bottom wall, and at least one handle bracket protruding from a casing sidewall, said enclosure comprising
  • an enclosure top wall, and
  • enclosure sidewalls having inner surfaces, said enclosure being dimensioned to slide downward over the battery casing to dispose the enclosure sidewalls substantially parallel to the casing sidewalls, and the enclosure top wall substantially parallel the casing top wall, at least one air space being created between at least one casing sidewall and one said inner surface of an enclosure sidewall to provide a thermal barrier, at least one enclosure sidewall comprising a coupling protrusion extending from an inner surface of at least one said enclosure sidewall, the enclosure coupling protrusion being disposed at least partially subjacent the handle bracket when the enclosure is disposed over the battery casing, the enclosure coupling protrusion engaging the handle bracket when an upward force is exerted on the enclosure to prevent the enclosure from being lifted off of the battery casing.
  • 2. The enclosure of claim 1 wherein the at least one said enclosure sidewall further comprises a wall flap, the wall flap being coupled to the sidewall from its lower edge and cantilevering from the sidewall, the enclosure coupling protrusion protruding from the wall flap such that the wall flap cantilevers away from the casing sidewall as the enclosure is slid downward over the battery casing.
  • 3. The enclosure of claim 2 wherein the coupling protrusion is a ramped structure, such that the coupling protrusion rides along the handle bracket as the enclosure is slid down over the battery casing, cantilevering the wall flap away from the battery casing sidewall, the coupling protrusion snapping in position subjacent the handle bracket to couple the enclosure to the battery casing once the coupling protrusion passes the handle bracket.
  • 4. The enclosure of claim 3 wherein the coupling protrusion comprises a plurality of ribs.
  • 5. The enclosure of claim 1 wherein the coupling protrusion is a ramped structure, such that the coupling protrusion rides along the handle bracket as the enclosure is slid down over the battery casing, cantilevering the wall flap away from the battery casing sidewall, the coupling protrusion snapping in position subjacent the handle bracket to couple the enclosure to the battery casing once the coupling protrusion passes the handle bracket.
  • 6. The enclosure of claim 1 further comprising at least spacing protrusion extending from the inner surfaces of at least one of the enclosure sidewalls to create said air space.
  • 7. The enclosure of claim 1 further comprising a plurality of spacing protrusions extending from the inner surfaces of opposed enclosure sidewalls to create said air spaces.
  • 8. The enclosure of claim 2 further comprising a plurality of spacing protrusions extending from the inner surfaces of opposed enclosure sidewalls to create said air spaces.
  • 9. The enclosure of claim 3 further comprising a plurality of spacing protrusions extending from the inner surfaces of opposed enclosure sidewalls to create said air spaces.
  • 10. The enclosure of claim 1 wherein the battery casing further comprises at least two battery terminals, and the enclosure further comprising at least one bore for receiving said terminals.
  • 11. The enclosure of claim 10 wherein the battery casing further comprises a state of charge indicator, and the enclosure further comprises a bore disposed substantially adjacent the state of charge indicator when the enclosure is disposed on the battery casing.
  • 12. The enclosure of claim 1 wherein an airflow space is provided between the battery casing top wall and the enclosure top wall.
  • 13. The enclosure of claim 1 wherein the battery casing top wall includes a plurality of vents, and the enclosure top wall includes a protrusion for receiving the vents when the enclosure is disposed on the battery casing.
  • 14. The enclosure of claim 2 wherein the wall flap may be flexed outward from the casing sidewall to decouple the coupling protrusion from the handle bracket so the enclosure may be slid upward off of the battery casing.
  • 15. The enclosure of claim 3 wherein the wall flap may be flexed outward from the casing sidewall to decouple the coupling protrusion from the handle bracket so the enclosure may be slid upward off of the battery casing.
  • 16. The enclosure of claim 2 wherein the battery casing further comprises at least two battery terminals, and the enclosure further comprising at least one bore for receiving said terminals.
  • 17. The enclosure of claim 16 wherein the battery casing further comprises a state of charge indicator, and the enclosure further comprises a bore disposed substantially adjacent the state of charge indicator when the enclosure is disposed on the battery casing.
  • 18. The enclosure of claim 2 wherein the battery casing top wall includes a plurality of vents, and the enclosure top wall includes a protrusion for receiving the vents when the enclosure is disposed on the battery casing.
  • 19. The enclosure of claim 2 wherein an airflow space is provided between the battery casing top wall and the enclosure top wall.
  • 20. The enclosure of claim 4 wherein an airflow space is provided between the battery casing top wall and the enclosure top wall.
US Referenced Citations (106)
Number Name Date Kind
3110633 Bachmann Nov 1963
3408234 Ririe, Jr. Oct 1968
3825447 Kraals Jul 1974
4006280 Walker et al. Feb 1977
4007315 Brinkmann et al. Feb 1977
4054730 Crifasi Oct 1977
4107402 Dougherty et al. Aug 1978
4126734 Walters Nov 1978
4169918 Moore Oct 1979
4237202 Karpal Dec 1980
4255502 Taylor, III Mar 1981
4275131 Richards Jun 1981
4278742 Oxenreider et al. Jul 1981
4314008 Blake Feb 1982
4371591 Oxenreider et al. Feb 1983
4409051 Ciliberti, Jr. Oct 1983
4444853 Halsall et al. Apr 1984
4486515 Chern Dec 1984
4517263 Reiss et al. May 1985
4522898 Esrom Jun 1985
4523658 Maki Jun 1985
4562128 Humphreys et al. Dec 1985
4563402 Kobayashi et al. Jan 1986
4572878 Daugherty Feb 1986
4579790 Humphreys et al. Apr 1986
4600665 Sanders Jul 1986
4634642 Lopez-Doriga Jan 1987
4666800 Bechtold et al. May 1987
4693949 Kellett et al. Sep 1987
4699855 Abraham et al. Oct 1987
4724190 Siga et al. Feb 1988
4752543 Anderson et al. Jun 1988
4756978 Nitcher et al. Jul 1988
4770957 Miyagawa Sep 1988
4770958 Newman et al. Sep 1988
4778074 Kelly Oct 1988
4808495 Goldstein Feb 1989
4830937 Clerici May 1989
4840855 Foti et al. Jun 1989
4857422 Stocchiero Aug 1989
4865928 Richter Sep 1989
4873159 Ciriello Oct 1989
4892783 Brazel Jan 1990
4894295 Cheiky Jan 1990
4897322 Jessen Jan 1990
4942963 Gibellini Jul 1990
4952468 Abraham et al. Aug 1990
4966346 Karna et al. Oct 1990
4976327 Abujudom, II et al. Dec 1990
5015545 Brooks May 1991
5031712 Karolek et al. Jul 1991
5039927 Centafanti Aug 1991
5051322 Hasenauer Sep 1991
5082075 Karolek et al. Jan 1992
5086860 Francis et al. Feb 1992
5131559 Ariyoshi et al. Jul 1992
5141826 Bohm et al. Aug 1992
5187031 Heiman et al. Feb 1993
5202200 McMillan, Jr. et al. Apr 1993
5209991 Stocchiero May 1993
5212025 Shibata et al. May 1993
5215834 Reher et al. Jun 1993
5227266 Shaffer et al. Jul 1993
5246793 Scott Sep 1993
5278002 Hiers Jan 1994
5278003 Francisco Jan 1994
5281492 Lin Jan 1994
5283137 Ching Feb 1994
5293951 Scott Mar 1994
5320190 Naumann et al. Jun 1994
5324597 Leadbetter et al. Jun 1994
5356735 Meadows et al. Oct 1994
5376479 Gerner Dec 1994
5415956 Ching May 1995
5424146 Lin Jun 1995
5437939 Beckley Aug 1995
5441123 Beckley Aug 1995
5443926 Holland et al. Aug 1995
5449571 Longardner et al. Sep 1995
5460900 Rao et al. Oct 1995
5484667 Sahli et al. Jan 1996
5492779 Ronning Feb 1996
5516600 Cherng May 1996
5518806 Eder et al. May 1996
5536595 Inkmann et al. Jul 1996
5542489 Allison et al. Aug 1996
5543248 Dougherty et al. Aug 1996
5547036 Gawaskar et al. Aug 1996
5549986 Heiman et al. Aug 1996
5569552 Rao et al. Oct 1996
5578393 Haskins Nov 1996
5585204 Oshida et al. Dec 1996
5620057 Kleman et al. Apr 1997
5626982 Kawai et al. May 1997
5641589 Grivel et al. Jun 1997
5645954 Tamaru Jul 1997
5645957 Misra et al. Jul 1997
5663007 Ikoma et al. Sep 1997
5673794 Kuipers et al. Oct 1997
5681668 Reed et al. Oct 1997
5683830 Fritts et al. Nov 1997
5686202 Hooke et al. Nov 1997
5691076 Poe Nov 1997
5709967 Larsen Jan 1998
5731100 Fritts et al. Mar 1998
5736272 Veenstra et al. Apr 1998