SNP markers associated with polycystic ovary syndrome

Information

  • Patent Grant
  • 8685647
  • Patent Number
    8,685,647
  • Date Filed
    Monday, June 18, 2012
    12 years ago
  • Date Issued
    Tuesday, April 1, 2014
    10 years ago
Abstract
The present invention discloses SNP markers associated with PCOS and provides probes, chips, primers, kits and methods for detecting the SNP markers. Furthermore, the present invention relates to the use of SNPs in predicting or diagnosing the risk of PCOS.
Description
TECHNICAL FIELD

The present invention relates to SNP (Single Nucleotide Polymorphism) markers associated with Polycystic Ovary Syndrome (PCOS). The present invention further relates to probes, chips, primers and methods for detecting the SNPs. Also, the present invention relates to the use of SNPs in predicting and diagnosing the risk of PCOS.


BACKGROUND

PCOS is a clinical condition characterized by the presence of two or more of these features: chronic oligo-ovulation or anovulation, androgen excess and polycystic ovaries.1 As the most common cause of anovulatory infertility, PCOS affects 6-8% childbearing-aged women.2,3 Additionally, PCOS is associated with important endocrine-metabolic derangements and a broad range of adverse sequelae, including dyslipidemia, atherosclerosis, insulin resistance and type 2 diabetes.4-6 Insulin resistance is present in perhaps 50% of women with PCOS.7 Among women with impaired glucose tolerance (IGT) and diabetes mellitus, about 20% were recognized at younger age to have PCOS.8-10


The pathogenesis of PCOS is not fully understood. Heritable tendencies have long been recognized, but complex interactions exist between genetic and environmental factors. Association studies have been conducted on at least 70 candidate genes, principally related to reproductive hormones, insulin resistance, and chronic inflammation, e.g., follicle stimulating hormone receptor(FSHR), cytochrome P450, family 11A (CYP11A), insulin receptor (INSR) and interleukin 6 (IL-6)11-15; however, none correlates consistently with PCOS.16


SUMMARY

The present invention relates to SNPs associated with PCOS. Particularly, the present invention provides SNP markers associated with PCOS. Furthermore, the present invention provides probes, chips, primers and methods for detecting the SNPs. Also, the present invention relates to the use of them in predicting and diagnosing the risk of PCOS.


One aspect of the invention provides SNP markers, the nucleotide sequences of which are shown as: SEQ ID NO.1, wherein N is C or T; SEQ ID NO.2, wherein N is A or G; SEQ ID NO.3, wherein N is C or T; SEQ ID NO.4, wherein N is A or C; SEQ ID NO.5, wherein N is C or T; SEQ ID NO.6, wherein N is A or C; SEQ ID NO.7, wherein N is C or T; SEQ ID NO.8, wherein N is C or T; SEQ ID NO.9, wherein N is A or G; SEQ ID NO.10, wherein N is C or T; SEQ ID NO.11, wherein N is C or T; SEQ ID NO.12, wherein N is C or T; SEQ ID NO.13, wherein N is A or G; SEQ ID NO.14, wherein N is C or T; SEQ ID NO.15, wherein N is A or G; SEQ ID NO.16, wherein N is C or T; SEQ ID NO.17, wherein N is A or T; SEQ ID NO.18, wherein N is C or G; SEQ ID NO.19, wherein N is C or T; SEQ ID NO.20, wherein N is C or T; SEQ ID NO.21, wherein N is C or T; SEQ ID NO.22, wherein N is A or G; SEQ ID NO.23, wherein N is A or G; SEQ ID NO.24, wherein N is C or T; SEQ ID NO.25, wherein N is A or G; SEQ ID NO.26, wherein N is C or T; SEQ ID NO.27, wherein N is A or T; SEQ ID NO.28, wherein N is G or T; SEQ ID NO.29, wherein N is A or G; SEQ ID NO.30, wherein N is C or T; SEQ ID NO.31, wherein N is A or G; SEQ ID NO.32, wherein N is C or T; SEQ ID NO.33, wherein N is C or T; SEQ ID NO.34, wherein N is C or T; SEQ ID NO.35, wherein N is C or T; SEQ ID NO.36, wherein N is A or G; SEQ ID NO.37, wherein N is C or T; SEQ ID NO.38, wherein N is C or T; SEQ ID NO.39, wherein N is C or T; SEQ ID NO.40, wherein N is A or C; SEQ ID NO.41, wherein N is G or T; SEQ ID NO.42, wherein N is G or T; SEQ ID NO.43, wherein N is C or T; SEQ ID NO.44, wherein N is A or G; or SEQ ID NO.45, wherein N is C or T.


Another aspect of the invention provides probes for detecting the genotypes at the site N of the SNP markers of the present invention.


Still another aspect of the invention provides a chip for detecting the genotypes at the site N of the SNP markers of the present invention, wherein the chip comprises one or more probes of the present invention.


Still another aspect of the invention provides primers for determining the genotypes at the site N of the SNP markers of the present invention.


Still another aspect of the invention provides a kit comprising the probes, chip or primers of the present invention for detecting the genotypes at the site N of the SNP markers.


Still another aspect of the invention provides the use of the primers, probes, chip and kit of the present invention in the preparation of an agent for predicting or diagnosing PCOS.


Still another aspect of the invention provides the use of the primers, probes, chip and kit of the present invention in predicting or diagnosing PCOS.


Still another aspect of the invention provides a method of predicting or diagnosing PCOS based on the SNP markers, wherein the method comprises determining genotypes at the site N of the SNP markers of the present invention.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1. Genome-wide Manhattan plots for the GWAS meta-analysis. Negative log10 P-values are shown for SNP markers that passed quality control. The solid horizontal line indicates a P value of 10−5. Markers within 50 kb of an SNP associated with PCOS are marked in red for those identified in a previous GWAS and replicated here, and in green for those first identified in the current study.



FIG. 2. Regional plots of the 3 PCOS loci from GWAS I (2p16.3, 2p21, and 9q33.3). (a-c) Genotyped SNPs passing quality control measures in GWAS are plotted with the P values (as −log10 values) as a function of genomic position (hg18) (a) 2p16.3, (b) 2p21, and (c) 9q33.3. In each panel, the index association SNP is represented by a diamond. Estimated recombination rates (taken from HapMap) are plotted to reflect the local LD structure. Gene annotations were taken from the University of California Santa Cruz genome browser. LD blocks were obtained from the Hapmap project (release 22, CHB+JPT).



FIG. 3A-3H. Regional plots of the 8 newly discovered PCOS loci. Genotyped and imputed SNPs passing quality control are plotted with their meta-analysis P values (as −log10 values) as a function of genomic position (NCBI Build 37). In each panel, SNPs genotyped are plotted as circles, and SNPs imputed as crosses. The index association SNP is represented in purple, Pgwasmeta is for the combined results of the initial datasets, and PGWAS-REP-Meta is for the combined results of the initial and follow-up datasets, represented by the diamond (for the index SNP) or a square (for another independent SNP of this region). Estimated recombination rates (taken from 1000 Genome ASI) are plotted to reflect the local LD structure. Gene annotations were taken from the University of California Santa Cruz genome browser.



FIG. 4A-4B. PCR electrophoretograms for the 45 SNP markers.





DETAILED DESCRIPTION

As used herein, the terms “single nucleotide polymorphism” or “SNP” is a DNA sequence variation or a genetic variant that occurs when a nucleotide, e.g., adenine (A), thymine (T), cytosine (C), or guanine (G), in the genome sequence is altered to another nucleotide.


SNPs are identified herein using the rs identifier numbers in accordance with the NCBI dbSNP database.


The term “genotype” refers to a description of the alleles of a gene or genes contained in an individual or a sample. As used herein, no distinction is made between the genotype of an individual and the genotype of a sample originating from the individual. The term “odd ratio” or “OR” refers to the ratio of the odds of the disease for individuals with the marker (polymorphism) relative to the odds of the disease in individuals without the marker (polymorphism).


In the first aspect, the invention provides SNP markers, the nucleotide sequences of which are shown as: SEQ ID NO.1, wherein N is C or T; SEQ ID NO.2, wherein N is A or G; SEQ ID NO.3, wherein N is C or T; SEQ ID NO.4, wherein N is A or C; SEQ ID NO.5, wherein N is C or T; SEQ ID NO.6, wherein N is A or C; SEQ ID NO.7, wherein N is C or T; SEQ ID NO.8, wherein N is C or T; SEQ ID NO.9, wherein N is A or G; SEQ ID NO.10, wherein N is C or T; SEQ ID NO.11, wherein N is C or T; SEQ ID NO.12, wherein N is C or T; SEQ ID NO.13, wherein N is A or G; SEQ ID NO.14, wherein N is C or T; SEQ ID NO.15, wherein N is A or G; SEQ ID NO.16, wherein N is C or T; SEQ ID NO.17, wherein N is A or T; SEQ ID NO.18, wherein N is C or G; SEQ ID NO.19, wherein N is C or T; SEQ ID NO.20, wherein N is C or T; SEQ ID NO.21, wherein N is C or T; SEQ ID NO.22, wherein N is A or G; SEQ ID NO.23, wherein N is A or G; SEQ ID NO.24, wherein N is C or T; SEQ ID NO.25, wherein N is A or G; SEQ ID NO.26, wherein N is C or T; SEQ ID NO.27, wherein N is A or T; SEQ ID NO.28, wherein N is G or T; SEQ ID NO.29, wherein N is A or G; SEQ ID NO.30, wherein N is C or T; SEQ ID NO.31, wherein N is A or G; SEQ ID NO.32, wherein N is C or T; SEQ ID NO.33, wherein N is C or T; SEQ ID NO.34, wherein N is C or T; SEQ ID NO.35, wherein N is C or T; SEQ ID NO.36, wherein N is A or G; SEQ ID NO.37, wherein N is C or T; SEQ ID NO.38, wherein N is C or T; SEQ ID NO.39, wherein N is C or T; SEQ ID NO.40, wherein N is A or C; SEQ ID NO.41, wherein N is G or T; SEQ ID NO.42, wherein N is G or T; SEQ ID NO.43, wherein N is C or T; SEQ ID NO.44, wherein N is A or G; or SEQ ID NO.45, wherein N is C or T.


One embodiment of this aspect provides more than one, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 or 45 SNP markers selected from the ones above.


In the present invention, each SNP marker refers to a SNP which is found to be associated with PCOS. As used herein, SNP marker and corresponding SNP relate to the same site in the nucleotide fragment. Especially when referring to the detection of the genotype at the site N of SNP marker, it should be understood that it implies the detection of the genotype at the corresponding site of the corresponding SNP, vice versa. The SNP for each SNP marker is listed in Table 1 below.


In another aspect, the invention provides probes for detecting the genotypes at the site N of one or more SNP markers of the present invention.


One embodiment of this aspect provides probes for each SNP marker listed in Table 1.









TABLE 1







SNP and Probes for each SNP marker










SNP marker
SNP marker




NO. 
SEQ ID NO. 
SNP
Probes













1
1
rs11891936
ATATAATTTTTTTAAC[A/G]GAGAAATTGCATAACA





(SEQ ID NO. 46/SEQ ID NO. 47)





2
2
rs17030684
TTCAAGTCCACAGATA[C/T]AGCTTITCATATGTGA





(SEQ ID NO. 48/SEQ ID NO. 49)





3
3
rs4340576
TCCCTGGGGGAGGTGTGACGGCAGAG[C/T]TGCATTTT





TATGGTATGCCCCAACA (SEQ ID NO. 50/SEQ ID NO. 51)





4
4
rs12468394
CTGTTGTAAAGCAAAATAGAATCCTA[A/C]ACCAGAA





CTTCTGCAGTTAGCCACA (SEQ ID NO. 52/SEQ ID





NO. 53)





5
5
rs7567607
AAACTTTTACAACCAGAATTAATGTT[C/T]CCTTGTGC





TCTTTTAAAAAATCAAA (SEQ ID NO. 54/SEQ ID NO. 55)





6
6
rs13429458
GGGTATAGGTGTATGTAATCAGTTT[G/T]GTTTCATCT





TCTAACTTTGCACAGCA (SEQ ID NO. 56/SEQ ID NO. 57)





7
7
rs7568365
AGATGAAACAAAACTGATTACATACA[C/T]CTATACC





CTGCCACTAATTAAAAAT (SEQ ID NO. 58/SEQ ID





NO. 59)





8
8
rs7582497
TCTTTGTTCAGAAGCACGGTACATTA[C/T]TATACAGC





TGAAGCCCTCTAGCATT (SEQ ID NO. 60/SEQ ID NO. 61)





9
9
rs10176241
GATCCTCCCTATATAAGGCCTAAAAC[A/G]CCACCATT





AGAGTTTTACTGCTTTA (SEQ ID NO. 62/SEQ ID NO. 63)





10
10
rs6744642
AGGTATCCACACACACCCATTTCTTA[C/T]ACACACAT





CCCATATCATTCTCGAT (SEQ ID NO. 64/SEQ ID NO. 65)





11
11
rs12478601
AGTAAAGCCCGGGTCCTAACATTTTATTGA[A/G]TGGT





ACTAACCAAGACCAGCAGGAATGAAA (SEQ ID NO. 66/





SEQ ID NO. 67)





12
12
rs1038822
ACCTCTATAATTCCAGCTTCTTTTCTTCTT[G/A]GGTAG





CTAAATCACCAAAAAAAAATTTTTG (SEQ ID NO. 68/





SEQ ID NO. 69)





13
13
rs7559891
CTATGAACATTATTTTGCCTTGACACTTTT[T/C]ACATA





GCACCCAAATCTTATGTATTTAATT (SEQ ID NO. 70/





SEQ ID NO. 71)





14
14
rs1873555
CTCATTTCTAGGCAGAACTGAGTGTC[C/T]TTCCCTAA





ACTGCCTGTATCCATTA (SEQ ID NO. 72/SEQ ID NO. 73)





15
15
rs7596052
TGATGATGTGATGCAATACAAGTCTC[A/G]GAATTTGT





TGGTGAGAGTGTAATTT (SEQ ID NO. 74/SEQ ID NO. 75)





16
16
rs10165527
TCTTTTTCATGGCTGTTTCTACCATC[C/T]TGGAAATAA





TAATTTTTAACTCTCT (SEQ ID NO. 76/SEQ ID NO. 77)





17
17
rs6726014
TATATGTACTTATTCAACATAAATCC[A/T]CTGTTTAG





AAAAAAGTATTATAGCT (SEQ ID NO. 78/SEQ ID NO. 79)





18
18
rs2374551
TACCTTGTAAAAAATAATCCAGAAAG[C/G]AGTTCAA





GATCAGCCTAGGCAATAT (SEQ ID NO. 80/SEQ ID





NO. 81)





19
19
rs6731009
TGTTCAGTATTATCAAGCTGTATATA[C/T]GTTTCGAC





ATTTCATATACATGATC (SEQ ID NO. 82/SEQ ID NO. 83)





20
20
rs10179648
AAACACAAACAATGAGATGCTATTGT[C/T]TTCCAATC





AGCCTAGCAAAACCAGA (SEQ ID NO. 84/SEQ ID





NO. 85)





21
21
rs7558302
TAACTGCAACAACTCAGTGTGGATAC[C/T]ATCATCAT





GTGAAAGTCACCCATGAC (SEQ ID NO. 86/SEQ ID





NO. 87)





22
22
rs13405728
TGCTCTGGCAGAAGAGGCACATGTTG[A/G]ACAAATG





GCTGCATTATGGTGAGAT (SEQ ID NO. 88/SEQ ID





NO. 89)





23
23
rs10818854
ACACATCTTCTCCCCTATTATACTCA[A/G]CCAGCAAG





CATTCCCACCTTTAAGC (SEQ ID NO. 90/SEQ ID NO. 91)





24
24
rs7857605
TTATTGCCCTTATTTACTTCTCCAAACATT[A/G]ATCTG





GTCTCATCGTTTGCAAAGGTGTTGC (SEQ ID NO. 92/





SEQ ID NO. 93)





25
25
rs2479106
GGCAGAGATTCTGGGGACTGGAAAGA[A/G]CTAGTTA





TGATCAAGGAACCAAAAG (SEQ ID NO. 94/SEQ ID





NO. 95)





26
26
rs1778890
TTTATTTTCTATAGCAGGTTTATTGA[C/T]ACTTTTTTT





CTAGTAAAGTTTGAAA (SEQ ID NO. 96/SEQ ID NO. 97)





27
27
rs1627536
TGCTGAAAAAAATGATTGGATGATAG[A/T]TCGGATT





AAGAAGGGAAGAAATAGC (SEQ ID NO. 98/SEQ ID





NO. 99)





28
28
rs10986105
CTAAAAAGGAACAAAA[C/A]TATGTTGCATAACTCA





(SEQ ID NO. 100/SEQ ID NO. 101)





29
29
rs2268361
CTTTGATGCTGTGAGACGAAGGCATCTTGT[C/T]AGTG





CCCTGGGATTGAGATCTTTCATTGGT (SEQ ID NO. 102/





SEQ ID NO. 103)





30
30
rs2349415
AAAAACAGGTGTCAGGCTGGATTTGA[C/T]CCATTGG





CTGTAGTTCAGTGACACT (SEQ ID NO. 104/SEQ ID





NO. 105)





31
31
rs10865238
TCAATTCTGGAATTGGAAGGGAATCC[A/G]AGGAGAT





CTATACCAGGCAATGCAT (SEQ ID NO. 106/SEQ ID





NO. 107)





32
32
rs4744370
CCCACCAAAGACAGTTTTGCTTGGGT[C/T]CTCTCAAA





GCTATGCTGTTGGGTTT (SEQ ID NO. 108/SEQ ID





NO. 109)





33
33
rs4385527
GTGTGCTGTGTTGGGTGTGTGAACATTCCT[A/G]AGAC





GTCCATAAGCTGATTTATAAAAACTT (SEQ ID NO. 110/





SEQ ID NO. 111)





34
34
rs3802457
CTCCAGGAAGCAGCCATGCCTGATGTGTGC[A/G]ATG





AATATGCCTTATCCTCCCGAAACTGGC (SEQ ID





NO. 112/SEQ ID NO. 113)





35
35
rs1894116
GGATTGACCACTGTCAAGTCACAGAGTCAC[G/A]AAT





TGTCTAGAATCAATATTATGTAGACTA (SEQ ID





NO. 114/SEQ ID NO. 115)





36
36
rs2069408
CATATGTAATGTGCATTTATCCCCCC[A/G]GTGCATTA





CCTTACAATTGTCCGTA (SEQ ID NO. 116/SEQ ID





NO. 117)





37
37
rs705702
AGATAAACAGGGTAGTTGTAGTTGCAACAG[G/A]GTA





GATAGAGGTAGGTCTACCCTGGGTTTA (SEQ ID





NO. 118/SEQ ID NO. 119)





38
38
rs11171739
CAAGGAAACCAAGGAAGATTTTTCTC[C/T]TTCAGAAC





TCGGACCCTGAATACCA (SEQ ID NO. 120/SEQ ID





NO. 121)





39
39
rs877636
CTCAGGTCCCTGACTCAGCAGCCCACCAGG[G/A]CAG





ACCATTCCAGTCTCCTGGAATCTAAAC (SEQ ID





NO. 122/SEQ ID NO. 123)





40
40
rs2292239
CAACAAATAGTGAAGAGACTTTTGAATCTA[T/G]AGG





GCAGCACTTAAGGGATCTAGGGTGGCA (SEQ ID





NO. 124/SEQ ID NO. 125)





41
41
rs2272046
GGCCTTGGGACATTTG[C/A]AAACAAAGCTGTTGAT





(SEQ ID NO. 126/SEQ ID NO. 127)





42
42
rs4784165
GTTATTTTCCCTATTAAAGAACATCC[G/T]CTCATAGT





TTTTCAAGTTATTATGT (SEQ ID NO. 128/SEQ ID





NO. 129)





43
43
rs2059807
GCATTTTATACAACCTCACTGCATCAGCCT[G/A]TTAA





AAGCAAGAGGTCTGATTCACATACGA (SEQ ID NO. 130/





SEQ ID NO. 131)





44
44
rs6022786
ATTCGTTGACTATTTTAGCTGGTGAC[A/G]CAATGAAA





AAACAGAGTCTAAGCAA (SEQ ID NO. 132/SEQ ID





NO. 133)





45
45
rs11225161
AGGCCTGCCAGTTTTAGGGGCCATTTGGCT[C/T]CTGA





GAAGAACTGTTAATAAAAGTATTAAT (SEQ ID NO. 134/





SEQ ID NO. 135)









In still another aspect, the invention provides a chip for detecting the genotypes at the site N of one or more SNP markers of the present invention, wherein the chip comprises the probes of the present invention.


In one embodiment of this aspect, the chip is used to detect the genotypes at the site N of 45 SNP markers of the present invention. More preferably, the chip comprises the probes shown as SEQ ID NO. 46-135.


In another embodiment of this aspect, the chip is used to detect the genotypes at the site N of SNP markers shown as SEQ ID NO. 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44. More preferably, the chip comprises the probes shown as SEQ ID NO. 56, 57, 66, 67, 88, 89, 90, 91, 94, 95, 102, 103, 104, 105, 110, 111, 112, 113, 114, 115, 118, 119, 126, 127, 128, 129, 130, 131, 132 and 133.


In still another aspect, the invention provides primers for detecting the genotypes at the site N of one or more SNP markers of the present invention.


In one embodiment of this aspect, the primers for each SNP marker are listed in Table 2.









TABLE 2







Primers for 45 SNP markers









SNP marker

Product length (i.e.


NO. 
Primer Sequence (5′-3′)
SNP marker length)












1
CGGGTTCAAGTGGTTCTGCT (forward) (SEQ ID NO. 136)
452 bp



GTTGTTGTTGTTCCTATGGTTTCC (reverse) (SEQ ID NO. 137)






2
AGATAACAACTCTATGCTCTGGCTTC (forward) (SEQ ID NO. 138)
445 bp



AAGGCCCTTCAGTGCTGTTCT (reverse) (SEQ ID NO. 139)






3
ATCTGCCATTCCGATTTCCA (forward) (SEQ ID NO. 140)
318 bp



CAAGAAAGGCAGGATGGATGTT(reverse) (SEQ ID NO. 141)






4
TCTGCCTGGGAAGTGTAAGTCTC (forward) (SEQ ID NO. 142)
328 bp



ATACTCCAGTCACTTTCCTGTCTCC(reverse) (SEQ ID NO. 143)






5
TCTGTCTTGCTTTCTTAGCCTCC (forward) (SEQ ID NO. 144)
401 bp



TGTGCTATTGTTGTTCACTTCTATGG(reverse) (SEQ ID NO. 145)






6
CAGCGGTATGATTTCGTAGTG (forward) (SEQ ID NO. 146)
560 bp



GCTAAAATCTCATCACCTGGAC (reverse) (SEQ ID NO. 147)






7
CAGCGGTATGATTTCGTAGTG (forward) (SEQ ID NO. 146)
560 bp



GCTAAAATCTCATCACCTGGAC (reverse) (SEQ ID NO. 147)






8
CAGCGGTATGATTTCGTAGTG (forward) (SEQ ID NO. 146)
560 bp



GCTAAAATCTCATCACCTGGAC (reverse) (SEQ ID NO. 147)






9
AAGTAGCTGCCCAAACAATGTG (forward) (SEQ ID NO. 148)
266 bp



CAGGCTTGGGACCAGATTGT(reverse) (SEQ ID NO. 149)






10
TAAACCAAGCTCCAATTTCTCATAG (forward) (SEQ ID NO. 150)
342 bp



CACACCTTTACTACTGTTTCCTATGC(reverse) (SEQ ID NO. 151)






11
AGACTCAGATGAGATGCCACAT (forward) (SEQ ID NO. 152)
465 bp



TTACCTGTCCAACTCCAGAATG (reverse) (SEQ ID NO. 153)






12
AGGCTGAAGCAGGAGAATCG (forward) (SEQ ID NO. 154)
321 bp



GGAGACGACCTTAGACTGTAGCAT (reverse) (SEQ ID NO. 155)






13
TCATCGCTCATTCAGTCATCAGTT (forward) (SEQ ID NO. 156)
553 bp



GCCAACATCTTTGCTGAGGAAT(reverse) (SEQ ID NO. 157)






14
ATTAATATGGCCAACTCAAATGAACT (forward) (SEQ ID NO. 158)
460 bp



GCTGGAGAAGGGTAGAGGTGC(reverse) (SEQ ID NO. 159)






15
AAAGGACATCGACAGGCATTG(forward) (SEQ ID NO. 160)
542 bp



GCATCCGTAATCCAACACCTG(reverse) (SEQ ID NO. 161)






16
CCTATTCACCTCAATTGCAGTCC (forward) (SEQ ID NO. 162)
426 bp



CTTCCCAAATAGCCAGTTCCA(reverse) (SEQ ID NO. 163)






17
GGTTTTGGAACTGGCTATTTGG(forward) (SEQ ID NO. 164)
521 bp



CCGTCATCCTTGTCTGCCTACT(reverse) (SEQ ID NO. 165)






18
CCATGAGCCATTATTGTAAACTGAT (forward) (SEQ ID NO. 166)
297 bp



TAGCTGGGACTGTAGGTGTGTGT (reverse) (SEQ ID NO. 167)






19
TTAGAAATGCTGGTGGTTGTACAA(forward) (SEQ ID NO. 168)
382 bp



CTAATGTGATCCTCAAATGGCTACT(reverse) (SEQ ID NO. 169)






20
AACCCAGGCAAAAAGAGAAATAG (forward) (SEQ ID NO. 170)
446 bp



ACTGACTCTGGTTTTGCTAGGCT(reverse) (SEQ ID NO. 171)






21
CCAAGTGTCACCTCTGCCATC(forward) (SEQ ID NO. 172)
434 bp



CCACTGTTGCAAATTCATTCCA(reverse) (SEQ ID NO. 173)






22
GTGGTTCTTACTCTAGCACAATGAT (forward) (SEQ ID NO. 174)
341 bp



CCATCCACATACTCACTTCAATATC (reverse) (SEQ ID NO. 175)






23
CAAAACCAGGCTGATGACAAT (forward) (SEQ ID NO. 176)
842 bp



GTTTGAGAATCATAGACCAGCAC (reverse) (SEQ ID NO. 177)






24
CTCCAGGGACTGCCTCTTTCT(forward) (SEQ ID NO. 178)
472 bp



TGTTTATGCATGTAACTGTAGGTGG(reverse) (SEQ ID NO. 179)






25
GAGCAGCCACTCAAGAAACAG (forward) (SEQ ID NO. 180)
429 bp



AAGCCACCATCCAGTCTCAC (reverse) (SEQ ID NO. 181)






26
AAACAAGATAGGGCTAGGCTGATT(forward) (SEQ ID NO. 182)
648 bp



CATGATTGACTGCCTGGTACTCC(reverse) (SEQ ID NO. 183)






27
AGAGGCTATTCTCAGTGAGCTTCTC (forward) (SEQ ID NO. 184)
273 bp



GCACAGTGCATGGCAATAGTAAG(reverse) (SEQ ID NO. 185)






28
AGCATACCTCAAGCATGAACAGAT (forward) (SEQ ID NO. 186)
255 bp



AAGCAATGTAGAAACATGGCACA(reverse) (SEQ ID NO. 187)






29
GCTCCCTCCTTCAACATCCAC (forward) (SEQ ID NO. 188)
304 bp



GCAATGCCAACAAGAAGACAGA(reverse) (SEQ ID NO. 189)






30
CTGTGGCTCACCTTGGAGATTAT (forward) (SEQ ID NO. 190)
481 bp



TGGCTTTCTGTTCCTACGTTAGAC(reverse) (SEQ ID NO. 191)






31
TGTTATTTGATTGATGGTCCTAGAGG (forward) (SEQ ID NO. 192)
300 bp



CTTTAGGCTACTATCATTGCACCATT(reverse) (SEQ ID NO. 193)






32
AATCCTGTCCGTTTCCAACACT (forward) (SEQ ID NO. 194)
186 bp



GCACAAACCCAACAGCATAGC(reverse) (SEQ ID NO. 195)






33
ATCACAAGTTTGCCTTCTTAAATATG (forward) (SEQ ID NO. 196)
560 bp



GTGCCAGAAGATCGCAGAGTT(reverse) (SEQ ID NO. 197)






34
CCTCTTCACCCACAGCAACAT (forward) (SEQ ID NO. 198)
323 bp



AGACAGTGGAAGTGGTCCTCATT(reverse) (SEQ ID NO. 199)






35
TTTTCTGTTGTATGGGATGAATGG (forward) (SEQ ID NO. 200)
427 bp



TACAAGGATTGACCACTGTCAAGTC(reverse) (SEQ ID NO. 201)






36
TGCAGTAGGCTGTCTTCAAATCA (forward) (SEQ ID NO. 202)
284 bp



ACCTTGTGATGCAGCCACTTC(reverse) (SEQ ID NO. 203)






37
CGAGACAGGCAGGTTGCTAAG (forward) (SEQ ID NO. 204)
488 bp



AAAGACGGCTATTCAGTGTTGTTG(reverse) (SEQ ID NO. 205)






38
CAGGCTGAGGCAGGAGAATC (forward) (SEQ ID NO. 206)
418 bp



TGGCCTTACTTAGGATTTCTTACTG (reverse) (SEQ ID NO. 207)






39
GAGCCACTACGCCTGTCTGATT (forward) (SEQ ID NO. 208)
392 bp



CGAGATGCTGAGATAGTGGTGAAG(reverse) (SEQ ID NO. 209)






40
ACTTCTTACCATCTCCTACCCACC (forward) (SEQ ID NO. 210)
360 bp



GTCCTCCCATGACTTCAGCTATC(reverse) (SEQ ID N0,211)






41
GGTTTGAAATTGAAGTGATGGCT (forward) (SEQ ID NO. 212)
180 bp



TTGCTGCTTGGAGTTTCTTGAC(reverse) (SEQ ID NO. 213)






42
AGTCCCTACTCACTGATCCTCTGC (forward) (SEQ ID NO. 214)
202 bp



TGCCCATCTTAGCACTGATACTCT(reverse) (SEQ ID NO. 215)






43
ACAGTTGGACGGTGGTAGACATT (forward) (SEQ ID NO. 216)
848 bp



TCAAGTGGCTTGTTGCTACTGC(reverse) (SEQ ID NO. 217)






44
TGTGCCTAAATAAGATGGTTCTCTG (forward) (SEQ ID NO. 218)
314 bp



CACGAGAATCGCTTGAACCTG(reverse) (SEQ ID NO. 219)






45
GTAGTGCTAGAGGCCTGCCAGT (forward) (SEQ ID NO. 220)
527 bp



TAACTGTGTATCTTTCCCCTCATCTT (reverse) (SEQ ID NO. 221)









In still another aspect, the invention provides a kit for detecting the genotypes at the site N of one or more SNP markers of the present invention, wherein the kit comprises the probes, chip or the primers of the present invention.


In one embodiment of this aspect, the kit is used to detect the genotypes at the site N of at least 15 SNP markers of the present invention. Preferably, the kit is used to detect the genotypes at the site N of 45 SNPs of the present invention. More preferably, the kit comprises probes shown as SEQ ID NO. 46-135.


In another embodiment of this aspect, the kit is used to detect the genotypes at the site N of 15 SNP markers shown as SEQ ID NO. 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44. More preferably, the kit comprises the probes consisted of probes shown as SEQ ID NO. 56, 57, 66, 67, 88, 89, 90, 91, 94, 95, 102, 103, 104, 105, 110, 111, 112, 113, 114, 115, 118, 119, 126, 127, 128, 129, 130, 131, 132 and 133.


In another embodiment of this aspect, the kit comprises primers for detecting the genotypes at the site N of 45 SNP markers of the present invention. More preferably, the kit comprises primers consisted of the primers shown as SEQ ID NO. 136-221.


In still another embodiment of this aspect, the kit comprises primers for determining the genotypes at the site N of 15 SNP markers of the present invention, wherein the 15 SNP markers are shown as SEQ ID NO. 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44. Preferably, the kit comprises primers consisted of the primers shown as SEQ ID NO.146, 147, 152, 153, 174, 175, 176, 177, 180, 181, 188, 189, 190, 191, 196, 197, 198, 199, 200, 201, 204, 205, 212, 213, 214, 215, 216, 217, 218 and 219.


In still another aspect, the invention provides the use of the primers, probes, chip or kit of the present invention in the preparation of an agent for predicting or diagnosing PCOS, wherein the primers, probes, chip or kit is used to detect the genotypes at the site N of the SNP markers of the present invention. In one embodiment, the genotypes at the site N of at least 15 SNP markers, preferably all 45 SNP markers of the present invention are detected. In another embodiment, the genotypes at the site N of 15 SNP markers are detected, wherein the 15 SNPs are shown as SEQ ID NO. 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44.


In still another aspect, the invention provides the use of the primers, probes, chip or kit of the present invention in predicting or diagnosing PCOS, wherein the primers, probes, chip or kit is used to detect the genotypes at the site N of the SNP markers of the present invention.


Still another aspect of the invention provides a method of predicting or diagnosing PCOS, wherein the method comprises determining genotypes at the site N of one or more SNP markers of the present invention.


In one embodiment of this aspect, the method comprises determining genotypes at the site N of at least 15 SNP markers, preferably all 45 SNP markers of the present invention.


In another embodiment of this aspect, the method comprises determining genotypes at the site N of 15 SNP markers, wherein the 15 SNP markers are shown as SEQ ID NO. 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44.


In yet another embodiment of this aspect, determining genotypes at the site N of the SNP markers is performed by hybridization, for example, using the probes or chips of the present invention.


In yet another embodiment of this aspect, determining genotypes at the site N of the SNP markers is performed by sequencing, for example, PCR, Real-time Quantitative PCR, or MassARRAY (Sequenom), using primers of the present invention.


In yet another embodiment of this aspect, the present method comprises the following steps: extracting DNA from peripheral blood or saliva of a subject, determining genotypes at the site N of one or more SNP markers, and analyzing the results to predict the risk of PCOS or diagnose PCOS.


Embodiments

Subjects


All Han Chinese samples evaluated were obtained in multiple collaborating hospitals from China. The discovery sets (GWAS I and II) of 2254 Han Chinese PCOS samples and 3001 controls were recruited mainly from northern China. Subsequent replication samples (REP I and II) of 8226 cases and 7578 controls were collected from 29 provinces (Shandong, Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, Henan, Tianjin, Beijing, Shanxi, Shaanxi, Gansu, Ningxia, Jiangsu, Anhui, Shanghai, Guangdong, Guangxi, Fujian, Zhejiang, Hubei, Hunan, Jiangxi, Sichuan, Chongqing, Xinjiang, Yunnan, Guizhou and Hainan) throughout China. The PCOS patients were diagnosed according to the Rotterdam Consensus proposed in 200345. Clinical data of the patients were obtained from medical records. Oligo-/aovulation was assessed by menstrual cycles more than 35 days in length or a history of ≦8 menstrual cycles in a year. Polycystic ovarian morphology was determined when ≧12 follicles measuring 2-9 mm in diameter were scanned in either ovary or the ovarian volume was above 10 ml. Hyperandrogenism was confirmed if there were evidences about hyperandrogenemia and/or hirsutism. Patients with other causes of oligomenorrhea or hyperandrogenism were excluded. Clinical information was collected from the cases through a full clinical checkup by physician specialists. Additional demographic information was collected from both cases and controls through a structured questionnaire. All participants provided written informed consents. The study was approved by the Institutional Ethical Committee of each hospital and was conducted according to Declaration of Helsinki principles.


DNA Extraction


EDTA anti-coagulated venous blood samples were collected from all participants. Genomic DNA was extracted from peripheral blood lymphocytes by standard procedures using Flexi Gene DNA kits (Qiagen), and was diluted to working concentrations of 50 ng/μL for genome-wide genotyping and 15-20 ng/μL for the validation study.


GWAS Genotyping and Quality Control


Affymetrix Genome-Wide Arrays were used for discovery phase: GWAS Data Set 1 was performed using the Affymetrix Genome-Wide Human SNP Array 6.0, and Samples of GWAS Data Set 2 were genotyped using Axiom Genome-Wide Arrays. Quality control filtering of the GWAS data was performed as follows: for the SNP 6.0 arrays whose Contrast QC was 0.4 or greater being left out of further data analysis, and for the Axiom arrays, a Dish QC (DQC) of 0.82 or better is considered a pass. Genotype data were generated using the birdseed algorithm for SNP 6.0, and the Axiom GT1 algorithm for Axiom arrays. For sample filtering, array with generated genotypes of fewer than 95% of loci were excluded. For SNP filtering (after sample filtering), SNP with call rates <95% in either case or control samples were removed. SNPs whose MAF (minor allele frequency) was <1%, or deviated significantly from Hardy Weinberg Equilibrium (HWE, P≦1E-5) in controls were excluded.


Imputation Analysis of Untyped SNPs


To conduct meta-analysis across array types, imputations were conducted for both GWAS date sets using MACH17,18, separately. Phased haplotypes for 90 CHB+JPT subjects (180 haplotypes) were used as the reference for imputing genotypes. Any SNP imputed with information content r2<0.3 was excluded from association analysis because of lack of power. In addition, a second imputation step was performed using IMPUTEv219,20 for the 8 new identified regions (0.5 MB either side of any SNP achieved a PGWAS-META<10−5), using the 1,000 Genomes haplotypes Phase I interim release (June 2011) as reference. Any SNPs imputed with proper info <0.4 were treated as poor imputation. The criteria for SNP QC filtering were the same as the genotyped ones.


Analysis of Population Substructure


Population substructure was evaluated using principal components analysis (PCA) as implemented in the software EIGENSTRAT21. Twenty principal components (PCs) were generated for each subject. PCA were conducted twice, and the first one was for the analysis of study data (1,510 cases and 2,106 controls) combined with HapMap data. The first two principal components were plotted, and, 43 cases and 9 controls were excluded. The second one was conducted for the remaining test samples. The PCs were generated for association analysis.


Association Analysis


Logistic regression was used to determine whether there was a significant difference in PC scores between cases and controls; significant PCs were used as covariates in the association analysis to correct for population stratification. After adjustment, little stratification was observed (λ=1.07, λ1000=1.04, standardized to a sample size of 100022).


Meta-Analysis of GWAS Data Sets


The GWAS data sets were combined using meta-analysis. The meta-analysis was conducted using PLINK23. The heterogeneity across the three stages was evaluated using Q-statistic P-value. The Mantel-Haenszel method is used to calculate the fixed effect estimate.


SNP Selection and Replication


The following criteria were used for the selection of SNPs for validation: Strong significant SNPs (PGWAS-META≦10−5) from the GWAS-meta analysis were selected for Replication I. Generally, those SNPs showed nominal significance (P<0.05) in Replication I or were not significant in Replication I but with a GWAS-REP1 meta-analysis P value less than 5×10−6 were also kept for Replication II. The Sequenom MassARRAY system was used for most of the replication studies, except for rs2059807, which was genotyped using TaqMan assays (Applied Biosystems).


Statistical Analysis


Genome-wide association analysis at the single marker level and the HWE analysis in the case-control samples were performed using PLINK23; R package was used for the genome wide P value plot. The regional plots were generated using LocusZoom24. In the replication studies, allelic association analysis was conducted using SHEsis25. The GWAS and replication data were also combined using meta-analysis using PLINK23. Conditional logistic regression was used to test for independent effects of an individual SNP26,27.


Results


Totally, 45 SNPs were found to be associated with PCOS. The detailed analysis information is listed in Tables 3-5.


In fact, the SNPs represent regions, which associate with PCOS and may comprise many SNPs. Among these regions, significant evidence was found for the first identified loci, 2p16.3, 2p21, and 9q33.326, and the SNPs representing these regions are rs13405728 (2p16.3; PGWAS-meta=3.77×10−9), rs13429458 (2p21, PGWAS-meta=4.17×10−13), rs12478601 (2p21, PGWAS-meta=3.37×10−10), rs2479106 (9q33.3, PGWAS-meta=5.14×10−10) and rs10818854 (9q33.3, PGWAS-meta=2.50E-04). SNPs in 19 other regions beyond the reported 3 showed association at PGWAS-meta value<10−5 with PCOS susceptibility in the GWAS-meta analysis.


However, variants in the FSHR gene, which locates in 2p16.3 but not directly supported in the previous GWAS, also show PGWAS-meta values<10−5. And conditional logistic analysis supports that signals in FSHR is independent from the previous report. Therefore, the inventor selected the most significant SNPs from totally 20 regions for validation (the Replication I study).


Among these 20 regions, 7 were validated in the Replication I stage (P<0.05 with the same allelic odds ratio direction), and other 3 regions had SNPs with P<5×10−6 in the GWAS-REP1 meta-analysis. SNPs from these 10 regions were genotyped again in an independent sample set (Replication II). As a result, common variants in 8 regions, 9q22.32, 11q22.1, 12q13.2, 12q14.3, 16q12.1, 19p13.3, 20q13.2 and the FSHR gene (2p16.3), showed overall combined evidence of association at P value<5×10−8, by a meta-analysis of all stages under fixed-effects model. The results strongly support the associations between those regions and PCOS.


On 9q22.32, the most significant SNP is rs3802457 (PGWAS-REP-Meta=5.28×10−14, ORGWAS-REP-Meta=0.77), which locates in the intron region of the C9orf3 gene (FIG. 3). Controlling for rs3802457, rs4385527 (PGWAS-REP-Meta=5.87×10−9, ORGWAS-REP-Meta=0.84) shows independent association in conditional logistic regression analysis, and it also locates in C9orf3. C9orf3 is a member of the M1 zinc aminopeptidase family. It is a zinc-dependent metallopeptidase that catalyzes the removal of an amino acid from the amino terminus of a protein or peptide, and may play a role in the generation of angiotensin IV. SNP rs3802458 within C9orf3 is reported associated with the development of erectile dysfunction (ED) in African-American men following radiotherapy for prostate cancer28. ED in men and PCOS in women occurred when people develop conditions with inadequate or excessive amounts of sexual hormones. Interestingly, FSHR gene (rs2268363) has been identified as the most significantly associated with ED28, and strong association evidence between FSHR and PCOS was also identified (discussed below).


On 11q22.1, rs1894116 (PGWAS-REP-Meta=1.08×10−22, ORGWAS-REP-Meta=1.27) locates in the intron region of YAP1 (MIM: 606608) (FIG. 3). Controlling for rs1894116, conditional logistic regression analysis reveals that there is no additional association signal. YAP1, containing a WW domain, is a transcriptional regulator which can act both as a coactivator and a corepressor and is the critical downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. YAP overexpression alters the expression of genes associated with cell proliferation, apoptosis, migration, adhesion, and epithelial-to-mesenchymal transition29. Mice embryos with Yap1 null mutation die between embryonic days E9.5 and E10.5 due to yolk sac avasculogenesis and failure of attachment between the allantois and the chorion30.


On 12q13.2, the most significant SNP rs705702 (PGWAS-REP-Meta=8.64×10−26, ORGWAS-REP-Meta=1.27) locates in the intergenic region between RAB5B (MIM: 179514) and SUOX (MIM: 606887) (FIG. 3). Controlling for rs705702, conditional logistic regression analysis reveals that there is no additional association signal. RAB5B is a member of the RAS superfamily, and it is associated with the plasma membrane and early endosomes. SUOX encodes a homodimeric protein localized to the intermembrane space of mitochondria. There are several SNPs showing evidence of association with PCOS risk. Of them, rs2292239 (PGWAS-REP-Meta=2.72×10−22, ORGWAS-REP-Meta=1.25) appears to be a most interesting one, which is reported associated with Type 1 diabetes31-33 and Type 1 diabetes autoantibodies34. Rs2292239 locates in intron 7 of ERBB3. ERBB3, an activator of the phosphatidylinositol-3-kinase/Akt pathway, is a member of the epidermal growth factor tyrosine kinase receptor family which regulates cell survival and vesicle trafficking. ERBB3 plays a critical role in determining antigen presenting cells function35.


On 12q14.3, rs2272046 (PGWAS-REP-Meta=1.95×10−21, ORGWAS-REP-Meta0.70) locates in an intronic region of HMGA2 (MIM: 600698), which encodes a protein with structural DNA-binding domains and acts as a transcriptional regulating factor (FIG. 3). Controlling for rs2272046, there is no additional association signals in this region. HMGA2 has previously been identified to be associated with adult stature36, vascular tumors including angiomyxomas and pulmonary hamartomas37, and Type 2 Diabetes38. Interestingly, a mutation in the gene can result in the “pygmy” mouse, with a significant reduction in body weight, reduced amounts of fat tissue, and infertility in both sexes39, which suggests its vital role in growth and reproduction.


On 16q12.1, the most significant SNP is rs4784165 (PGWAS-REP-Meta3.64×10−11, ORGWAS-REP-Meta=1.15) (FIG. 3). Controlling for rs4784165, conditional logistic regression analysis reveals that there is no additional association signal. TOX3 (MIM: 611416) is the nearest gene to this top signal. TOX3 belongs to the large and diverse family of HMG-box proteins that function as architectural factors in the modification of chromatin structure by bending and unwinding DNA40.


On 19p13.3, rs2059807 (PGWAS-REP-Meta=1.09×10−8, ORGWAS-REP-meta=1.14) locates in the intron region of the INSR gene (MIM: 147670) (FIG. 3). Controlling for rs2059807, conditional logistic regression analysis reveals that there is no additional association signals. INSR plays an important role in insulin metabolism. The tyrosine kinase domain mutations of the insulin receptor have been shown to cause severe hyperinsulinemia and insulin resistance41-43. In previous studies, common SNP in INSR gene has been reported to be associated with PCOS in Han Chinese and Caucasian44,45. Insr null mice grow slowly and die by 7 days of age with ketoacidosis, high serum insulin and triglycerides, low glycogen stores and fatty livers46.


On 20q13.2, the top signal is rs6022786 (PGWAS-REP-Meta=1.83×10−9, ORGWAS-REP-Meta=1.13), locates in an intergenic region between genes SUMO1P1 and ZNF217 (MIM: 602967) (FIG. 3). Controlling for rs6022786, conditional logistic regression analysis reveals that there is no additional association signals. SUMO1P1 is the SUMO1 pseudogene 1. ZNF217, zinc finger protein 217, can attenuate apoptotic signals resulting from telomere dysfunction as well as from doxorubicin-induced DNA damage, may promote neoplastic transformation by increasing cell survival during telomeric crisis, and may promote later stages of malignancy by increasing cell survival during chemotherapy47.


And, 2p16.3 has been reported in the previous GWAS of PCOS26. In that study, global significant findings in this region only locates in the LHCGR gene (MIM: 152790), and the top signal was not directly linked with the FSHR gene (MIM: 136435), mainly due to a recombination hot spot. However, FSHR has been considered to be one of the most compelling candidate genes for PCOS for a long time48. FSHR null mutant females are sterile with small ovaries, blocked follicular development, atrophic uterus and imperforate vagina, and null mutant males are fertile despite reduction in testis weight, oligozoospermia and reduced testosterone levels49 In the current study, SNPs in the FSHR gene meet the selection criteria for validation in the initial stage, and global significant findings were obtained in the combined analysis (top signal is rs2268361, PGWAS-REP-Meta=9.89×10−13, ORGWAS-REP-Meta=0.87) (FIG. 3). Conditional logistical regression analysis supports that the association of FSHR is independent from those previous signals in LHCGR.


Finally, independent 15 SNPs are selected to represent these regions, which are most associated with PCOS. The 15 SNPs refer to SNP marker Nos. 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44.









TABLE 3





Analysis results for the No. 1-28 SNP markers in GWAS-I




















GWAS
Replication 1


SNP

744 cases, 895 controls
2840 cases, 5012 controls












marker

MAF

MAF

















No.
Allelea
Case
Control
OR
pb
Case
Control
OR
p





1
A/G
0.130
0.216
0.54
2.93 × 10−09
0.151
0.203
0.70
2.22 × 10−16


2
T/C
0.159
0.232
0.62
3.46 × 10−07
0.158
0.211
0.70
3.11 × 10−15


3
G/A
0.244
0.329
0.66
2.71 × 10−07
0.242
0.291
0.78
1.96 × 10−09


4
A/C
0.207
0.305
0.60
1.20 × 10−09
0.230
0.281
0.76
7.42 × 10−11


5
A/G
0.233
0.329
0.62
1.06 × 10−08
0.249
0.304
0.76
1.61 × 10−12


6
C/A
0.132
0.207
0.59
1.05 × 10−07
0.134
0.186
0.68
5.55 × 10−16


7
T/C
0.234
0.322
0.64
3.02 × 10−08
0.250
0.300
0.78
1.09 × 10−10


8
G/A
0.237
0.325
0.64
6.07 × 10−08
0.250
0.303
0.77
2.98 × 10−11


9
G/A
0.241
0.321
0.67
1.08 × 10−06
0.254
0.308
0.77
3.51 × 10−12


10
T/C
0.151
0.223
0.62
1.24 × 10−06
0.165
0.213
0.73
3.61 × 10−12


11
T/C
0.220
0.314
0.61
5.55 × 10−09
0.235
0.291
0.75
2.80 × 10−13


12
C/T
0.229
0.323
0.62
1.89 × 10−08
0.239
0.296
0.75
2.08 × 10−13


13
A/G
0.226
0.312
0.64
1.92 × 10−07
0.238
0.296
0.74
1.50 × 10−13


14
G/A
0.175
0.254
0.62
3.95 × 10−07
0.191
0.233
0.77
4.85 × 10−09


15
A/G
0.176
0.251
0.64
1.23 × 10−06
0.178
0.229
0.73
5.23 × 10−13


16
A/G
0.177
0.251
0.64
1.90 × 10−06
0.187
0.232
0.76
1.15 × 10−10


17
T/A
0.175
0.251
0.63
1.00 × 10−06
0.180
0.226
0.75
3.92 × 10−11


18
G/C
0.174
0.247
0.64
2.06 × 10−06
0.182
0.220
0.79
6.54 × 10−08


19
C/T
0.177
0.256
0.63
4.94 × 10−07
0.187
0.235
0.74
5.92 × 10−11


20
T/C
0.232
0.324
0.63
4.19 × 10−08
0.250
0.302
0.77
3.77 × 10−11


21
T/C
0.265
0.357
0.65
6.11 × 10−08
0.290
0.333
0.82
1.18 × 10−07


22
G/A
0.188
0.274
0.61
2.54 × 10−07
0.192
0.237
0.76
3.11 × 10−10


23
A/G
0.135
0.079
1.80
1.20 × 10−06
0.123
0.087
1.46
8.08 × 10−12


24
C/T
0.132
0.073
1.94
1.33 × 10−07
0.110
0.080
1.43
5.75 × 10−10


25
G/A
0.294
0.216
1.51
5.09 × 10−07
0.276
0.223
1.33
4.59 × 10−13


26
C/T
0.222
0.139
1.76
2.79 × 10−09
0.173
0.135
1.34
4.37 × 10−10


27
A/T
0.295
0.214
1.53
3.27 × 10−07
0.267
0.225
1.26
9.11 × 10−09


28
C/A
0.134
0.069
2.08
6.13 × 10−09
0.112
0.083
1.39
8.20 × 10−09















Replication 2




SNP
498 cases, 780 controls
Meta-analysis













marker
MAF

OR
















No.
Case
Control
OR
p
[95% CI]
p






 1
0.184
0.225
0.78
0.029
0.66 [0.61-0.72]
5.80 × 10−23



 2
0.176
0.223
0.74
0.0046
0.69 [0.64-0.75]
2.17 × 10−22



 3
0.265
0.308
0.81
0.046
0.74 [0.69-0.80]
1.78 × 10−15



 4
0.209
0.274
0.70
0.00042
0.72 [0.68-0.78]
1.59 × 10−20



 5
0.240
0.303
0.73
0.00077
0.73 [0.68-0.78]
1.95 × 10−21



 6
0.153
0.196
0.74
0.0073
0.67 [0.62-0.72]
1.73 × 10−23



 7
0.238
0.299
0.73
0.0012
0.75 [0.70-0.80]
1.15 × 10−18



 8
0.271
0.302
0.86
0.10
0.75 [0.71-0.81]
3.14 × 10−17



 9
0.245
0.302
0.75
0.0080
0.73 [0.68-0.79]
4.21 × 10−17



10
0.185
0.212
0.84
0.12
0.72 [0.67-0.78]
2.77 × 10−17



11
0.228
0.298
0.69
0.00014
0.72 [0.67-0.77]
3.48 × 10−23



12
0.252
0.314
0.74
0.0011
0.72 [0.68-0.77]
2.87 × 10−22



13
0.247
0.303
0.76
0.0038
0.73 [0.68-0.78]
2.83 × 10−21



14
0.189
0.246
0.72
0.0015
0.74 [0.69-0.79]
1.71 × 10−16



15
0.186
0.240
0.72
0.0019
0.71 [0.66-0.77]
2.74 × 10−20



16
0.197
0.245
0.76
0.022
0.71 [0.65-0.77]
9.88 × 10−17



17
0.186
0.241
0.72
0.0015
0.73 [0.68-0.78]
1.32 × 10−18



18
0.185
0.242
0.71
0.00082
0.75 [0.70-0.81]
7.49 × 10−15



19
0.202
0.252
0.75
0.0063
0.72 [0.67-0.78]
4.31 × 10−18



20
0.236
0.301
0.72
0.00054
0.74 [0.69-0.79]
1.14 × 10−19



21
0.291
0.324
0.86
0.098
0.79 [0.74-0.84]
2.36 × 10−13



22
0.181
0.269
0.60
7.93 × 10−07
0.71 [0.67-0.77]
7.55 × 10−21



23
0.097
0.073
1.36
0.042
1.51 [1.37-1.65]
9.40 × 10−18



24
0.085
0.072
1.21
0.22
1.48 [1.34-1.63]
1.39 × 10−15



25
0.252
0.219
1.21
0.059
1.34 [1.26-1.43]
8.12 × 10−19



26
0.143
0.139
1.03
0.79
1.37 [1.27-1.48]
2.09 × 10−15



27
0.237
0.218
1.11
0.29
1.28 [1.20-1.37]
1.42 × 10−13



28
0.085
0.073
1.17
0.31
1.47 [1.33-1.61]
6.90 × 10−15






aMinor allele/major allele.




bPCA adjusted P values. MAF, minor allele frequency














TABLE 4





Analysis results for the No. 29-44 SNP markers in GWAS-II






















GWAS I
GWAS II

REP I


SNP

(744 cases VS 895 controls)
(1510 cases VS2106 controls)

(1908 cases VS 1913 controls)


















mark-

MAF


MAF


GWAS
MAF




er

cases/
OR

cases/
OR

META
cases/
OR




















No.
Allelea
controls
[95% CI]
P
controls
[95% CI]
P
OR
P
controls
[95% CI]
P





29
T/Cb
0.44/0.49
0.83
6.68E−03
0.45/0.49
0.84
4.19E−04
0.84
8.82E−06
0.47/0.49
0.91
3.31E−02





[0.72-0.95]


[0.76-0.93]




[0.83-0.99]



30


C
/T

 0.1/0.09
1.18
1.60E−01
0.23/0.17
1.37
3.72E−07
1.33
2.56E−07
0.22/0.18
1.32
2.51E−06





[0.94-1.49]


[1.22-1.55]




[1.18-1.47]



31


A
/G

 0.2/0.18
1.14
1.51E−01
0.21/0.17
1.34
3.01E−06
1.27
3.33E−06
0.24/0.2 
1.25
8.09E−05





[0.95-1.36]


[1.19-1.52]




[1.12-1.39]



32
C/T
0.39/0.43
0.85
1.92E−02
0.38/0.43
0.83
1.55E−04
0.83
8.95E−06
0.41/0.43
0.9 
2.56E−02





[0.73-0.97]


[0.75-0.91]




[0.82-0.99]



33
G/A
0.15/0.17
0.82
4.35E−02
0.15/0.19
0.77
6.77E−05
0.78
9.62E−06
0.19/0.2 
0.9 
2.32E−02





[0.68-0.99]


[0.67-0.87]




[0.82-0.99]



34
G/A
0.06/0.09
0.68
4.28E−03
0.06/0.08
0.7 
2.65E−04
0.69
3.81E−06
0.08/0.09
0.88
1.17E−01





[0.52-0.89]


[0.57-0.85]




[0.75-1.03]



35


G
/A

0.25/0.19
1.45
1.36E−05
0.23/0.19
1.23
5.91E−04
1.3
1.11E−07
0.24/0.2 
1.21
6.29E−04





[1.23-1.72]


[1.09-1.39]




[1.09-1.35]



36


A
/G

0.29/0.23
1.42
1.18E−05
0.07/0.06
1.21
6.16E−02
1.34
4.53E−06
0.29/0.26
1.18
2.07E−03





[1.21-1.67]


[0.99-1.48]




[1.06-1.30]



37


G
/A

0.29/0.22
1.41
1.93E−05
 0.3/0.26
1.28
7.92E−06
1.32
1.09E−09
0.29/0.25
1.21
2.27E−04





[1.21-1.66]


[1.15-1.43]




[1.09-1.34]



38


C
/T

 0.3/0.24
1.39
3.43E−05
 0.3/0.25
1.28
1.02E−05
1.32
2.11E−09
0.29/0.25
1.23
8.77E−05





[1.19-1.62]


[1.15-1.44]




[1.11-1.36]



39


G
/A

0.13/0.11
1.23
6.22E−02
 0.3/0.25
1.29
7.36E−06
1.27
1.28E−06
0.29/0.25
1.19
9.75E−04





[0.99-1.52]


[1.15-1.44]




[1.07-1.32]



40


T
/G

0.09/0.08
1.14
3.03E−01
 0.3/0.25
1.29
6.02E−06
1.26
5.22E−06
0.28/0.23
1.27
5.16E−06





[0.89-1.47]


[1.15-1.44]




[1.15-1.41]



41
C/A
0.07/0.1 
0.71
6.78E−03
0.07/0.09
0.65
5.38E−06
0.67
1.43E−07
0.07/0.09
0.8 
1.07E−02





[0.55-0.91]


[0.54-0.78]




[0.68-0.95]



42


G
/T

0.07/0.06
1.09
5.55E−01
0.39/0.33
1.28
1.95E−06
1.26
2.82E−06
0.36/0.34
1.09
7.24E−02





[0.82-1.45]


[1.16-1.42]




[0.99-1.20]



43


G
/A

0.34/0.28
1.34
1.16E−04
0.34/0.29
1.19
1.66E−03
1.24
1.58E−06
0.31/0.28
1.16
4.40E−03





[1.16-1.56]


[1.07-1.33]




[1.05-1.28]



44


A
/G

0.38/0.32
1.32
1.72E−04
0.37/0.33
1.21
3.76E−04
1.24
4.05E−07
0.35/0.33
1.11
3.77E−02





[1.14-1.53]


[1.09-1.34]




[1.01-1.22]













REP II




(6318 cases VS 5665 controls)















SNP
GWAS-REP I
MAF


GWAS-REPs



marker
META
cases/
OR

META
















No.
OR
P
controls
[95% CI]
P
OR
P






29
0.87
2.07E−06
0.47/0.5 
0.87
1.05E−07
0.87
9.89E−13







[0.83-0.92]






30
1.32
3.02E−12
0.22/0.2 
1.11
6.93E−04
1.19
2.35E−12







[1.05-1.19]






31
1.26
1.13E−09
0.21/0.19
1.14
5.74E−05
1.19
2.19E−12







[1.07-1.22]






32
0.86
1.53E−06
 0.4/0.43
0.87
2.26E−07
0.87
1.63E−12







[0.83-0.92]






33
0.85
4.29E−06
0.15/0.17
0.86
4.64E−05
0.84
5.87E−09







[0.81-0.93]






34
0.77
9.88E−06
0.08/0.1 
0.76
1.07E−09
0.77
5.28E−14







[0.69-0.83]






35
1.26
4.38E−10
0.23/0.19
1.27
4.45E−14
1.27
1.08E−22







[1.20-1.36]






36
1.24
1.21E−07
0.28/0.25
1.22
5.77E−11
1.22
3.73E−17







[1.15-1.28]






37
1.27
2.34E−12
0.29/0.24
1.26
7.44E−15
1.27
8.64E−26







[1.19-1.34]






38
1.28
1.36E−12








39
1.23
7.46E−09
0.28/0.24
1.24
9.78E−13
1.24
3.90E−20







[1.17-1.31]






40
1.27
1.17E−10
0.28/0.23
1.25
3.87E−13
1.25
2.72E−22







[1.17-1.32]






41
0.73
1.89E−08
0.07/0.09
0.69
9.10E−15
0.7 
1.95E−21







[0.63-0.76]






42
1.17
4.55E−06
0.39/0.36
1.14
1.57E−06
1.15
3.64E−11







[1.08-1.21]






43
1.2
4.11E−08
0.33/0.31
1.09
6.61E−03
1.14
1.09E−08







[1.02-1.15]






44
1.18
2.30E−07
0.37/0.35
1.1 
4.82E−04
1.13
1.83E−09







[1.04-1.16]






aMinor allele/major allele.




b

N
represents the nucleotide more correlative to PCOS in the site.














TABLE 5







Analysis result for the No. 45 SNP marker.










SNP marker

Allele frequency comparison
Meta-analysis

















No.
MAF
PCOS
CTRL
χ2
P
OR
P
P(R)
OR
Q





45
A
0.24
0.19
14.51
0.00014
1.32
3.98E−09
3.98E−09
1.393
0.3853








(1.144-1.523)





MAF, minor allele frequency.


In meta-analysis, the P is calculated by fixed effect model and P(R) is calculated by random effect model.






Based on the study above and practice use, detecting genotypes at the site N of at least 15 SNP markers, for example, all 45 SNP markers in the present invention, is useful for predicting or diagnosing PCOS. However, detecting genotypes at the site N of 15 independent SNP markers of 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44 can also work, with less expense.


Detecting Genotypes at the Site N of the SNP Markers


There are many processes for detecting genotypes at the site N of the SNP markers, for example, by hybridization or sequencing.


As to hybridization, probes are designed to specifically hybridize with the locus of SNP, and then the hybridization is analyzed whether SNP is present. An example of probes for all 45 SNPs is given just for the purpose of exemplifying, which is not intended to limit the scope of the invention. A person skilled in the art could easily design similar probes to hybridize with the SNPs, which all fall into the scope of the invention.


Generally, probes are presented in a carrier, for example, a chip, so that more than one SNP markers can be detected at a time. The present invention also provides a chip comprising probes detecting the SNP markers shown as SEQ ID NO. 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44 (i.e. SNPs of rs13429458, rs12478601, rs13405728, rs10818854, rs2479106, rs2268361, rs2349415, rs4385527, rs3802457, rs1894116, rs705702, rs2272046, rs4784165, rs2059807 and rs6022786). A person skilled in the art well knows how to produce such chip when the probes are selected.


As to sequencing, primers should be designed forward and afterward the interested locus. An example of primers for all 45 SNPs (listed in Table 2) is given just for the purpose of exemplifying, which is not intended to limit the scope of the invention. A person skilled in the art can easily design similar primers to sequence the SNP markers, which also fall into the scope of the present invention. Furthermore, the process and agents used in the sequencing are also well known in the art.


Another useful method for genotyping SNP markers uses iPLEX of Sequenom platform (Sequenom, Inc., San Diego, Calif.). Polymerase chain reaction (PCR) and extension primers for the SNPs were designed using the MassARRAY Assay Design 3.0 software. PCR and extension reactions are performed according to the manufacturer's instructions, and extension product sizes were determined by mass spectrometry using the Sequenom iPLEX system.


Method of Predicting or Diagnosing PCOS


The 45 SNP markers based on the present invention can be used to predict or diagnose PCOS. Firstly, the DNA from peripheral blood or saliva of a subject is extracted, and then, the genotypes at the site N of the SNPs are detected, for example, by hybridization with probes or chips above, or by sequencing. At last, the results will be analyzed to predict the risk of PCOS.


EXAMPLES

The following examples are just for the purpose of exemplifying and should not be considered to limit the scope of the present invention.


Example 1

All the 45 SNP markers are amplified by PCR using the primers listed in Table 2. The following processes are followed for the PCR reaction.


A. Reaction System
















Reagent
Volume (μL)



















ddH2O
1.8



10* buffer
0.5



Mg2+
0.4



dNTP
0.1



Hotstar
0.2



F Primer/R Primer
1



DNA sample
1



Total
5











B. Reaction Process



















Pre-denaturation
95° C.
 2 min



45 cycles of
95° C.
30 s




60° C.
30 s




72° C.
60 s



Extension
72° C.
 5 min




25° C.











The products are tested by electrophoresis and sequencing and are confirmed. FIG. 4 shows the electrophoretogram for all the 45 SNP markers.


Example 2

1. Extracting DNA from peripheral blood or saliva of a subject, purifying DNA and adjusting DNA concentration to 20 ng/mL.


2. Detecting genotypes at the site N of 15 SNP markers by sequencing and the 15 SNP markers are shown as SEQ ID NO. 6, 11, 22, 23, 25, 29, 30, 33, 34, 35, 37, 41, 42, 43 and 44. The primers used are listed in Table 2.


3. Method:


I. PCR Reaction


A. Reaction System
















Reagent
Volume (μL)



















ddH2O
1.8



10* buffer
0.5



Mg2+
0.4



dNTP
0.1



Hotstar
0.2



F Primer/R Primer
1



DNA sample
1



Total
5











B. Reaction Process



















Pre-denaturation
95° C.
 2 min



45 cycles of
95° C.
30 s




60° C.
30 s




72° C.
60 s



Extension
72° C.
 5 min




25° C.












C. Purification of PCR Product


The PCR product is precipitated by 25 μL PEG (22%, w/v) and 2 μL NaCl (5 M) at room temperature. Then the plate is stored at 4° C. for 30 minutes. The left-over PEG was washed by 80 μL of 75% ethanol three times by centrifugation at 4° C.


D. Cycle Sequencing of Purified PCR Product


The purified DNA was dissolved in 5 μL ddH2O.
















Reagent
Volume (μL)



















ddH2O
3.7



BigDye Terminator 3.1 Sequencing Buffer (ABI)
1.125



Primer
0.675



Total
5.5










Then, the plates are mixed well and spun shortly. The initial denaturation procedure is performed by a rapid thermal ramp to 96° C. and lasts for 1 minute. 25 cycles of reactions are performed with denaturation for 10 seconds over 96° C., annealing for 5 seconds over 50° C. and extension for 4 minutes over 60° C. Rapid thermal ramp to 4° C. is performed. And the product is hold until ready to purify.


E. Ethanol/EDTA/Sodium Acetate Precipitation


2 μL of 125 mM EDTA and 2 μL of 3 M sodium acetate are added to each well. And then 50 μL 100% ethanol is added to each well. The plate is sealed and mixed by inverting 4 times. The plate is incubated at room temperature for 15 minutes. Then the precipitated DNA is washed with 75% ethanol for 3 times.


F. Capillary Electrophoresis on ABI 3730 XL Genetic Analyzer


Each well is added 10 μL formamide and denatured at 95° C. for 5 minutes. The precipitated DNA is loaded on ABI 3730 XL genetic analyzer for capillary electrophoresis.


II. MassARRAY


A. Main Apparatus and Reagent


1) Amplification: ABI GeneAmp® 9700 384 Dual;


2) Mechanical arm: MassARRAY Nanodispenser RS 1000;


3) Analyze: MassARRAY Compact System;


4) Reagent: Complete Genotyping Reagent Kit for MassARRAY® Compact 384


B. Procedure


Perform 384 PCR reactions (same multiplexed assays, different DNA). These instructions cover performing PCR for a whole 384-well microtiter plate of reactions in which the same assay will be applied to different DNA.


Prepare a PCR Cocktail as Described in the Following Table


1) Add the reagents in the order in which they appear in the table for multiplexed PCR cocktail, without DNA, for 384 reactions (same multiplexed assays, different DNA).
















Component
Volume (μL)



















ddH2O
1.8



10* buffer
0.5



Mg2+
0.4



dNTP
0.1



Hotstar
0.2



F Primer/R Primer
1



DNA
1



Total
5










2) To each well of a 384-well microtiter plate (Marsh Biomedical Products, Inc. #SP 0401 Sequen), add 1 μL of the appropriate genomic DNA (5-10 ng/μL).


3) Dispense 44 of the PCR cocktail into each well of the 384-well plate.


4) Centrifuge the microtiter plate at 1,000 RPM for 1 minute.


5) Gently mix or vortex the plate, and spin down before thermocycling.


6) Thermocycle the 384-well microtiter plate as follows:



















94° C.
 4 minutes




94° C.
20 seconds
45 cycles



56° C.
30 seconds



72° C.
 1 minute



72° C.
 3 minutes



 4° C.
forever











Prepare the SAP Enzyme Solution


1) Add the reagents in the order in which they appear in the following table into a 1.5 mL tube to prepare the SAP enzyme solution.


SAP Enzyme Solution Volume
















Component
Volume (μL)



















SAP*Buffer
0.17



SAP Enzyme
0.3



ddH2O
1.53



Total
2










2) Hold the 1.5 mL tube, containing the SAP enzyme solution, to a vortex for five seconds to mix the solution.


3) Centrifuge the 1.5 mL tube of SAP enzyme solution for ten seconds at 5000 RPM.


4) 2 μL of SAP enzyme solution is added to each well in the 384-well sample microtiter plate.


5) Seal the 384-well sample microtiter plate with plate sealing film.


6) Centrifuge the 384-well sample microtiter plate at 1000 RPM for 1 minute.


7) Incubate the 384-well sample microtiter plate as follows:


















37° C.
40 minutes



85° C.
 5 minutes



 4° C.
forever











Prepare the High Plex iPLEX Gold Reaction Cocktail (Same Multiplexed Assays, Different DNA)


1) Prepare the high plex iPLEX Gold reaction cocktail, as described in the following table in a 1.5 mL tube. Add the reagents in the order in which they appear in the table. Multiplexed high plex iPLEX Gold reaction cocktail (same assays, different DNA)
















Component
Volume (μL)



















ddH2O
0.619



Primer mix
0.94



Gold*Buffer (10x)
0.2



Termination mix
0.2



Enzyme
0.041



Total
2










2) Centrifuge the cocktail microtiter plate at 1000 RPM for one minute.


3) Add 2 μL the High Plex iLEX Gold reaction into 384-well sample microtiter plate.


4) Seal the 384-well sample microtiter plate with plate sealing film.


5) Centrifuge the 384-well sample microtiter plate at 1000 RPM for one minute.


6) Thermocycle the 384-well sample microtiter plate as follows:




















94° C.
30 seconds





94° C.
 5 seconds

For 40 cycles



52° C.
 5 seconds
For 5 cycles



80° C.
 5 seconds



72° C.
 3 minutes



 4° C.
 forever










Clean up the High Ple iPLEX Gold Reaction Products. The cleanup of high plex iPLEX Gold reaction products involves adding water and then Clean Resin to the sample microtiter plate. Spread Clean Resin onto the 384-well dimple plate. Add nanopure water to each well of the 384-well sample microtiter plate. Add Clean Resin to the 384-well sample microtiter plate. Rotate and centrifuge the 384-well sample microtiter plate.


Acquiring Spectra


The ACQUIRE module controls the MassARRAY Analyzer Compact (Compact) to acquire spectra from SpectroCHIPs. As each SpectroCHIP is processed by the Compact, the spectral data is automatically processed and saved to the MassARRAY database.


The method involves 15 SNP markers which are most associated with PCOS and the credibility thereof is higher. The detecting process can be more easily carried out with less expense.


REFERENCES



  • 1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group: Revised 2003 consensus on diagnostic criteria and longterm health risks related to polycystic ovary syndrome. Fertil Steril 2004; 81: 19-25.

  • 2. Goodarzi M O, Azziz R. Diagnosis, epidemiology, and genetics of the polycystic ovary syndrome. Best Prac Res Clin Endocrinol Metab 2006; 20: 193-200.

  • 3. Ehrmann D A, Barnes R B, Rosenfield R L, Cavaghan M K, Imperial J. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 1999; 22: 141-6.

  • 4. Carmina E. Cardiovascular risk and events in polycystic ovary syndrome. Climacteric 2009; 12 Suppl 1:22-5.

  • 5. Kandaraki E, Christakou C, Diamanti-Kandarakis E. Metabolic syndrome and polycystic ovary syndrome . . . and vice versa. Arq Bras Endocrinol Metabol 2009; 53:227-37.

  • 6. Wild S, Pierpoint T, Jacobs H, McKeigue P. Long-term consequences of polycystic ovary syndrome: results of a 31 year follow-up study. Hum Fertil(Camb) 2000; 3:101-5.

  • 7. Legro R S, Castracane V D, Kauffman R P. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls. Obstet Gynecol Sury 2004; 59:141-54.

  • 8. Espinós-Gómez J J, Corcoy R, Calaf J. Prevalence and predictors of abnormal glucose metabolism in Mediterranean women with polycystic ovary syndrome. Gynecol Endocrinol 2009; 25:199-204.

  • 9. Kulshreshtha B, Ganie M A, Praveen E P, et al. Insulin response to oral glucose in healthy, lean young women and patients with polycystic ovary syndrome. Gynecol Endocrinol 2008; 24: 637-43.

  • 10. Shi Y, Guo M, Yan J, et al. Analysis of clinical characteristics in large-scale Chinese women with polycystic ovary syndrome. Neuro Endocrinol Lett 2007; 28: 807-10.

  • 11. Sudo S, Kudo M, Wada S, Sato O, Hsueh A J, Fujimoto S. Genetic and functional analyses of polymorphisms in the human FSH receptor gene. Mol Hum Reprod 2002; 8:893-9.

  • 12. Gaasenbeek M, Powell B L, Sovio U, et al. Large-scale analysis of the relationship between CYP11A promoter variation, polycystic ovarian syndrome, and serum testosterone. J Clin Endocrinol Metab 2004; 89:2408-13.

  • 13. Wang Y, Wu X, Cao Y, Yi L, Chen J. A microsatellite polymorphism (tttta)n in the promoter of the CYP11a gene in Chinese women with polycystic ovary syndrome. Fertil Steril 2006; 86: 223-6.

  • 14. Chen Z J, Shi Y H, Zhao Y R, et al. Correlation between single nucleotide polymorphism of insulin receptor gene with polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi 2004; 39: 582-5.

  • 15. Villuendas G, San Millán J L, Sancho J, Escobar-Morreale H F. The -597 G-->A and -174 G-->C polymorphisms in the promoter of the IL-6 gene are associated with hyperandrogenism. J Clin Endocrinol Metab 2002; 87: 1134-41.

  • 16. Simoni M, Tempfer C B, Destenaves B, Fauser B C. Functional genetic polymorphisms and female reproductive disorders: Part I: Polycystic ovary syndrome and ovarian response. Hum Reprod Update 2008; 14: 459-84.

  • 17. Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic epidemiology 34, 816-834 (2010).

  • 18. Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annual review of genomics and human genetics 10, 387-406 (2009).

  • 19. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nature genetics 39, 906-913 (2007).

  • 20. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS genetics 5, e1000529 (2009).

  • 21. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature genetics 38, 904-909 (2006).

  • 22. Lindgren, C. M. et al. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS genetics 5, e1000508 (2009).

  • 23. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81, 559-575 (2007).

  • 24. Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336-2337 (2010).

  • 25. Yong, Y. & Lin, H. E. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell research 15, 97-98 (2005).

  • 26. Chen, Z. J. et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16. 3, 2p21 and 9q33. 3. Nature genetics 43, 55-59 (2011).

  • 27. Petukhova, L. et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466, 113-117 (2010).

  • 28. Kerns, S. L. et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. International Journal of Radiation Oncology* Biology* Physics 78, 1292-1300 (2010).

  • 29. Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. Journal of Biological Chemistry 283, 5496-5509 (2008).

  • 30. Morin-Kensicki, E. M. et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Molecular and cellular biology 26, 77-87 (2006).

  • 31. Barrett, J. C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nature genetics 41, 703-707 (2009).

  • 32. Cooper, J. D. et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nature genetics 40, 1399-1401 (2008).

  • 33. Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature genetics 39, 857-864 (2007).

  • 34. Plagnol, V. et al. Genome-Wide Association Analysis of Autoantibody Positivity in Type 1 Diabetes Cases. PLoS Genetics 7, e1002216 (2011).

  • 35. Wang, H. et al. Genetically dependent ERBB3 expression modulates antigen presenting cell function and type 1 diabetes risk. PloS one 5, e11789 (2010).

  • 36. Weedon, M. N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nature genetics 39, 1245-1250 (2007).

  • 37. Kazmierczak, B. et al. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. The American journal of pathology 152, 431-435 (1998).

  • 38. Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature genetics 42, 579-589 (2010).

  • 39. Asher, H. R. et al. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 82, 57-65 (1995).

  • 40. O'Flaherty, E. & Kaye, J. TOX defines a conserved subfamily of HMG-box proteins. BMC genomics 4, 13 (2003).

  • 41. Moller, D. E. & Flier, J. S. Detection of an alteration in the insulin-receptor gene in a patient with insulin resistance, acanthosis nigricans, and the polycystic ovary syndrome (type A insulin resistance). New England Journal of Medicine 319, 1526-1529 (1988).

  • 42. Moller, D. E., Yokota, A., White, M. F., Pazianos, A. G. & Flier, J. S. A naturally occurring mutation of insulin receptor alanine 1134 impairs tyrosine kinase function and is associated with dominantly inherited insulin resistance. Journal of Biological Chemistry 265, 14979-14985 (1990).

  • 43. Taylor, S. I. et al. Mutations in insulin-receptor gene in insulin-resistant patients. Diabetes Care 13, 257-279 (1990).

  • 44. Chen, Z. J. et al. Correlation between single nucleotide polymorphism of insulin receptor gene with polycystic ovary syndrome). Zhonghua fu chan ke za zhi 39, 582-585 (2004).

  • 45. Siegel, S. et al. AC/T single nucleotide polymorphism at the tyrosine kinase domain of the insulin receptor gene is associated with polycystic ovary syndrome. Fertility and sterility 78, 1240-1243 (2002).

  • 46. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature genetics 12, 106-109 (1996).

  • 47. Huang, G. et al. ZNF217 suppresses cell death associated with chemotherapy and telomere dysfunction. Human molecular genetics 14, 3219-3225 (2005).

  • 48. Simoni, M., Tempfer, C. B., Destenaves, B. & Fauser, B. Functional genetic polymorphisms and female reproductive disorders: Part I: polycystic ovary syndrome and ovarian response. Human reproduction update 14, 459-484 (2008).

  • 49. Sun, L. et al. FSH directly regulates bone mass. cell 125, 247-260 (2006).


Claims
  • 1. A method of detecting a predisposition of an individual to develop polycystic ovary syndrome or at least one pathology or risk factor associated with polycystic ovary syndrome (PCOS), the method comprising: providing DNA of the individual;providing a plurality of probes chosen from among SEQ ID NO. 46-77, 82-97 and 100-135, or a plurality of primers chosen from among SEQ ID NO. 136-163, 168-183 and 186-221;detecting a presence of a genotype at the site N of at least one single nucleotide polymorphism (SNP) marker of the DNA using the plurality of probes or the plurality of primers, wherein a nucleotide sequence of the at least one SNP marker is shown as: SEQ ID NO.1, wherein N is C or T; SEQ ID NO.2, wherein N is A or G; SEQ ID NO.3, wherein N is C or T; SEQ ID NO.4, wherein N is A or C; SEQ ID NO.5, wherein N is C or T; SEQ ID NO.6, wherein N is A or C; SEQ ID NO.7, wherein N is C or T; SEQ ID NO.8, wherein N is C or T; SEQ ID NO.9, wherein N is A or G; SEQ ID NO.10, wherein N is C or T; SEQ ID NO.11, wherein N is C or T; SEQ ID NO.12, wherein N is C or T; SEQ ID NO.13, wherein N is A or G; SEQ ID NO.14, wherein N is C or T; SEQ ID NO.15, wherein N is A or G; SEQ ID NO.16, wherein N is C or T; SEQ ID NO.19, wherein N is C or T; SEQ ID NO.20, wherein N is C or T; SEQ ID NO.21, wherein N is C or T; SEQ ID NO.22, wherein N is A or G; SEQ ID NO.23, wherein N is A or G; SEQ ID NO.24, wherein N is C or T; SEQ ID NO.25, wherein N is A or G; SEQ ID NO.26, wherein N is C or T; SEQ ID NO.28, wherein N is G or T; SEQ ID NO.29, wherein N is A or G; SEQ ID NO.30, wherein N is C or T; SEQ ID NO.31, wherein N is A or G; SEQ ID NO.32, wherein N is C or T; SEQ ID NO.33, wherein N is C or T; SEQ ID NO.34, wherein N is C or T; SEQ ID NO.35, wherein N is C or T; SEQ ID NO.36, wherein N is A or G; SEQ ID NO.37, wherein N is C or T; SEQ ID NO.38, wherein N is C or T; SEQ ID NO.39, wherein N is C or T; SEQ ID NO.40, wherein N is A or C; SEQ ID NO.41, wherein N is G or T; SEQ ID NO.42, wherein N is G or T; SEQ ID NO.43, wherein N is C or T; SEQ ID NO.44, wherein N is A or G; or SEQ ID NO.45, wherein N is C or T; anddetermining, based on the genotype of said SNP marker, that the individual has a predisposition to develop polycystic ovary syndrome or at least one pathology or risk factor associated with polycystic ovary syndrome.
  • 2. The method of claim 1, wherein the detecting the presence of the genotype at the site N of the at least one SNP marker is carried out using the plurality of probes.
  • 3. The method of claim 2, wherein the probes are chosen from SEQ ID NO. 46 and 47 for SNP marker NO.1; SEQ ID NO. 48 and 49 for SNP marker NO.2; SEQ ID NO. 50 and 51 for SNP marker NO.3; SEQ ID NO. 52 and 53 for SNP marker NO.4; SEQ ID NO. 54 and 55 for SNP marker NO.5; SEQ ID NO. 56 and 57 for SNP marker NO.6; SEQ ID NO. 58 and 59 for SNP marker NO.7; SEQ ID NO. 60 and 61 for SNP marker NO.8; SEQ ID NO. 62 and 63 for SNP marker NO.9; SEQ ID NO. 64 and 65 for SNP marker NO.10; SEQ ID NO. 66 and 67 for SNP marker NO.11; SEQ ID NO. 68 and 69 for SNP marker NO.12; SEQ ID NO. 70 and 71 for SNP marker NO.13; SEQ ID NO. 72 and 73 for SNP marker NO.14; SEQ ID NO. 74 and 75 for SNP marker NO.15; SEQ ID NO. 76 and 77 for SNP marker NO.16; SEQ ID NO. 82 and 83 for SNP marker NO.19; SEQ ID NO. 84 and 85 for SNP marker NO.20; SEQ ID NO. 86 and 87 for SNP marker NO.21; SEQ ID NO. 88 and 89 for SNP marker NO.22; SEQ ID NO. 90 and 91 for SNP marker NO.23; SEQ ID NO. 92 and 93 for SNP marker NO.24; SEQ ID NO. 94 and 95 for SNP marker NO.25; SEQ ID NO. 96 and 97 for SNP marker NO.26; SEQ ID NO. 100 and 101 for SNP marker NO.28; SEQ ID NO. 102 and 103 for SNP marker NO.29; SEQ ID NO. 104 and 105 for SNP marker NO.30; SEQ ID NO. 106 and 107 for SNP marker NO.31; SEQ ID NO. 108 and 109 for SNP marker NO.32; SEQ ID NO. 110 and 111 for SNP marker NO.33; SEQ ID NO. 112 and 113 for SNP marker NO.34; SEQ ID NO. 114 and 115 for SNP marker NO.35; SEQ ID NO. 116 and 117 for SNP marker NO.36; SEQ ID NO. 118 and 119 for SNP marker NO.37; SEQ ID NO. 120 and 121 for SNP marker NO.38; SEQ ID NO. 122 and 123 for SNP marker NO.39; SEQ ID NO. 124 and 125 for SNP marker NO.40; SEQ ID NO. 126 and 127 for SNP marker NO.41; SEQ ID NO. 128 and 129 for SNP marker NO.42; SEQ ID NO. 130 and 131 for SNP marker NO.43; SEQ ID NO. 132 and 133 for SNP marker NO.44; and/or SEQ ID NO. 134 and 135 for SNP marker NO.45.
  • 4. The method of claim 2, wherein the detecting the presence of the genotype at the site N of the at least one SNP marker is carried out with a chip comprising the plurality of probes.
  • 5. The method of claim 4, wherein the probes are shown as SEQ ID NO. 56, 57, 66, 67, 88, 89, 90, 91, 94, 95, 102, 103, 104, 105, 110, 111, 112, 113, 114, 115, 118, 119, 126, 127, 128, 129, 130, 131, 132 and 133.
  • 6. The method of claim 1, wherein the detecting the presence of the genotype at the site N of the at least one SNP marker is carried out using the plurality of primers.
  • 7. The method of claim 6, wherein the primers are chosen from SEQ ID NO. 136 and 137 for SNP marker NO.1; SEQ ID NO. 138 and 139 for SNP marker NO.2; SEQ ID NO. 140 and 141 for SNP marker NO.3; SEQ ID NO. 142 and 143 for SNP marker NO.4; SEQ ID NO. 144 and 145 for SNP marker NO.5; SEQ ID NO. 146 and 147 for SNP marker NO.6, 7 or 8; SEQ ID NO. 148 and 149 for SNP marker NO.9; SEQ ID NO. 150 and 151 for SNP marker NO.10; SEQ ID NO. 152 and 153 for SNP marker NO.11; SEQ ID NO. 154 and 155 for SNP marker NO.12; SEQ ID NO. 156 and 157 for SNP marker NO.13; SEQ ID NO. 158 and 159 for SNP marker NO.14; SEQ ID NO. 160 and 161 for SNP marker NO.15; SEQ ID NO. 162 and 163 for SNP marker NO.16; SEQ ID NO. 168 and 169 for SNP marker NO.19; SEQ ID NO. 170 and 171 for SNP marker NO.20; SEQ ID NO. 172 and 173 for SNP marker NO.21; SEQ ID NO. 174 and 175 for SNP marker NO.22; SEQ ID NO. 176 and 177 for SNP marker NO.23; SEQ ID NO. 178 and 179 for SNP marker NO.24; SEQ ID NO. 180 and 181 for SNP marker NO.25; SEQ ID NO. 182 and 183 for SNP marker NO.26; SEQ ID NO. 186 and 187 for SNP marker NO.28; SEQ ID NO. 188 and 189 for SNP marker NO.29; SEQ ID NO. 190 and 191 for SNP marker NO.30; SEQ ID NO. 192 and 193 for SNP marker NO.31; SEQ ID NO. 194 and 195 for SNP marker NO.32; SEQ ID NO. 196 and 197 for SNP marker NO.33; SEQ ID NO. 198 and 199 for SNP marker NO.34; SEQ ID NO. 200 and 201 for SNP marker NO.35; SEQ ID NO. 202 and 203 for SNP marker NO.36; SEQ ID NO. 204 and 205 for SNP marker NO.37; SEQ ID NO. 206 and 207 for SNP marker NO.38; SEQ ID NO. 208 and 209 for SNP marker NO.39; SEQ ID NO. 210 and 211 for SNP marker NO.40; SEQ ID NO. 212 and 213 for SNP marker NO.41; SEQ ID NO. 214 and 215 for SNP marker NO.42; SEQ ID NO. 216 and 217 for SNP marker NO.43; SEQ ID NO. 218 and 219 for SNP marker NO.44; and/or SEQ ID NO. 220 and 221 for SNP marker NO.45.
  • 8. The method of claim 1, wherein the detecting is carried out by hybridization.
  • 9. The method of claim 1, wherein the detecting is performed using sequencing.
  • 10. The method of claim 9, wherein said sequencing is chosen from PCR, Real-time Quantitative PCR, and MassARRAY.
Parent Case Info

This application is a continuation-in-part of International Application PCT/CN2010/073387 filed May 31, 2010 and published in the English language, the disclosure of which is incorporated herein by reference in its entirety.

Foreign Referenced Citations (3)
Number Date Country
10-2004-0074800 Aug 2004 KR
2006125513 Nov 2006 WO
WO 2008112898 Sep 2008 WO
Non-Patent Literature Citations (49)
Entry
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group, “Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome”, Fertility and Sterility, vol. 81, No. 1, Jan. 2004; pp. 19-25.
Goodarzi, “Diagnosis, epidemiology, and genetics of the polycystic ovary syndrome”, Best Practice & Research Clinical Endocrinology & Metabolism, vol. 20, No. 2, 2006, pp. 193-205.
Ehrmann et al., “Prevalence of Impaired Glucose Tolerance and Diabetes in Women With Polycystic Ovary Syndrome”, Diabetes Care, vol. 22, No. 1, Jan. 1999, pp. 141-146.
Carmina, “Cardiovascular risk and events in polycystic ovary syndrome”, Climacteric, 2009; 12 (Suppl 1), pp. 22-25.
Kandaraki et al., “Metabolic syndrome and polycystic ovary syndrome . . . and vice versa”, Arq Bras Endocrinol Metabol, 2009; 53/2, pp. 227-237.
Wild et al., “Long-term consequences of polycystic ovary syndrome: results of a 31 year follow-up study”, Human Fertility, 3, 2000, pp. 101-105.
Legro et al., “Detecting Insulin Resistance in Polycystic Ovary Syndrome: Purposes and Pitfalls”, Obstetrical and Gynecological Survey, vol. 59, No. 2, 2004, pp. 141-154.
Espinós-Gómez et al., “Prevalence and predictors of abnormal glucose metabolism in Mediterranean women with polycystic ovary syndrome”, Gynecological Endocrinology, 25(3), Mar. 2009; pp. 199-204.
Kulshreshtha et al., “Insulin response to oral glucose in healthy, lean young women and patients with polycystic ovary syndrome”, Gynecological Endocrinology, 24(11), Nov. 2008, pp. 637-643.
Shi et al., “Analysis of clinical characteristics in large-scale Chinese women with polycystic ovary syndrome”, Neuroendocrinology Letters, vol. 28, No. 6, 2007, pp. 807-810.
Sudo et al., “Genetic and functional analyses of polymorphisms in the human FSH receptor gene”, Molecular Human Reproduction, vol. 8, No. 10, 2002, pp. 893-899.
Gaasenbeek et al., “Large-Scale Analysis of the Relationship between CYP11A Promoter Variation, Polycystic Ovarian Syndrome, and Serum Testosterone”, The Journal of Clinical Endocrinology & Metabolism, 89(5), 2004, pp. 2408-2413.
Wang et al., A microsatellite polymorphism (tttta)n in the promoter of the CYP11a gene in Chinese women with polycystic ovary syndrome, Fertility and Sterility, vol. 86, No. 1, Jul. 2006, pp. 223-226.
Chen et al., “Correlation between single nucleotide polymorphism of insulin receptor gene with polycystic ovary syndrome”, China J Obstet Gynecol, vol. 39, No. 9, Sep. 2004, pp. 582-585 with English translation.
Villuendas et al., “The -597 G→A and-174 G→C Polymorphisms in the Promoter of the IL-6 Gene Are Associated with Hyperandrogenism”, The Journal of Clinical Endocrinology & Metabolism, 87(3), Mar. 2002, pp. 1134-1141.
Simoni et al., Functional genetic polymorphisms and female reproductive disorders: Part I: Polycystic ovary syndrome and ovarian response, Human Reproduction Update, vol. 14, No. 5, Jul. 2008, pp. 459-484.
Li et al., “MaCH: Using Sequence and Genotype Data to Estimate Haplotypes and Unobserved Genotypes”, Genet Epidemiol., 34(8), Dec. 2010, pp. 816-834.
Li et al., “Genotype Imputation”, Annual Review of Genomics and Human Genetics, 10, 2009, pp. 387-406.
Marchini et al., “A new multipoint method for genome-wide association studies by imputation of genotypes”, Nature genetics, vol. 39, No. 7, Jul. 2007, pp. 906-913.
Howie et al., “A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies”, PLoS Genetics, vol. 5, Issue 6, e1000529, Jun. 2009, 15 pages.
Price et al., “Principal components analysis corrects for stratification in genome-wide association studies”, Nature genetics, vol. 38, Vo. 8, Aug. 2006, pp. 904-909.
Lindgren et al., Genome-Wide Association Scan Meta-Analysis Identifies Three Loci Influencing Adiposity and Fat Distribution, PLoS Genetics, Vo. 5, Issue 6, e1000508, Jun. 2009, 13 pages.
Purcell et al., “PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses”, The American Journal of Human Genetics, vol. 81, Sep. 2007, pp. 559-575.
Pruim et al., “LocusZoom: regional visualization of genome-wide association scan results”, Bioinformatics Applications Note, vol. 26, No. 18, 2010, pp. 2336-2337.
Shi et al., SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci, Cell Research, 15(2), Feb. 2005, pp. 97-98.
Chen et al., “Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3”, Nature Genetics, vol. 43, No. 1, Jan. 2011, pp. 55-59.
Petukhova et al., “Genome-wide association study in alopecia areata implicates both innate and adaptive immunity”, Nature, 466(7302), Jul. 1, 2010, pp. 113-117.
Kerns et al., “Genome Wide Association Study to Identify Single Nucleotide Polymorphisms (SNPs) Associated with the Development of Erectile Dysfunction in African-American Men Following Radiotherapy for Prostate Cancer”, International Journal of Radiation Oncology Biology Physics, 78(5), Dec. 1, 2010, pp. 1292-1300.
Hao et al., “Tumor Suppressor LATS1 is a Negative Regulator of Oncogene YAP”, Journal of Biological Chemistry, vol. 283, No. 9, Feb. 29, 2008, pp. 5496-5509.
Morin-Kensicki et al., “Defects in Yolk Sac Vasculogenesis, Chorioallantoic Fusion, and Embryonic Axis Elongation in Mice with Targeted Disruption of Yap65”, Molecular and Cellular Biology, vol. 26, No. 1, Jan. 2006, pp. 77-87.
Barrett et al., “Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes”, Nature Genetics, 41(6), Jun. 2009, pp. 703-707.
Cooper et al., “Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci”, Nature Genetics, 40(12), Dec. 2009, pp. 1399-1401.
Todd et al., “Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes”, Nature Genetics, 39(7), Jul. 2007, pp. 857-864.
Plagnol et al., “Genome-Wide Association Analysis of Autoantibody Positivity in Type 1 Diabetes Cases”, PLoS Genetics, vol. 7, Issue 8, Aug. 2001, e1002216, 9 pages.
Wang et al., Genetically Dependent ERBB3 Expression Modulates Antigen Presenting Cell Function and Type 1 Diabetes Risk, PloS One, vol. 5, Issue 7, Jul. 2010, e11789, 11 pages.
Weedon et al., “A common variant of HMGA2 is associated with adult and childhood height in the general population”, Nature Genetics, 39(10), Oct. 2007, pp. 1245-1250.
Kazmierczak et al., “Cloning and Molecular Characterization of Part of a New Gene Fused to HMGIC in Mesenchymal Tumors”, American Journal of Pathology, vol. 152, No. 2, Feb. 1998, pp. 431-435.
Voight et al., “Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis”, Nature Genetics, 42(7), Jul. 2010, pp. 579-589.
Asher et al., “Disruption of the Architectural Factor HMGI-C: DNA-Binding AT Hook Motifs Fused in Lipomas to Distinct Transcriptional Regulatory Domains”, Cell, vol. 82, Jul. 14, 1995, pp. 57-65.
O'Flaherty et al., “TOX defines a conserved subfamily of HMG-box proteins”, BioMed Central, 4, 13, Apr. 2, 2003, 10 pages.
Moller et al., “Detection of an alteration in the insulin-receptor gene in a patient with insulin resistance, acanthosis nigricans, and the polycystic ovary syndrome (type A insulin resistance)”, The New England Journal of Medicine, vol. 319, No. 23, Dec. 8, 1988, pp. 1526-1529.
Moller et al., “A Naturally Occurring Mutation of Insulin Receptor Alanine 1134 Impairs Tyrosine Kinase Function and is Associated with Dominantly Inherited Insulin Resistance”, The Journal of Biological Chemistry, vol. 265, No. 25, Sep. 1990, pp. 14979-14985.
Taylor et al., “Mutations in Insulin-Receptor Gene in Insulin-Resistant Patients”, Diabetes Care, vol. 13, No. 3, Mar. 1990, pp. 257-279.
Siegel et al., “A C/T single nucleotide polymorphism at the tyrosine kinase domain of the insulin receptor gene is associated with polycystic ovary syndrome”, Fertility and Sterility, vol. 78, No. 6, Dec. 2002, pp. 1240-1243.
Accili et al., “Early neonatal death in mice homozygous for a null allele of the insulin receptor gene”, Nature Genetics, vol. 12, Jan. 1996, pp. 106-109.
Huang et al., “ZNF217 suppresses cell death associated with chemotherapy and telomere dysfunction”, Human Molecular Genetics, vol. 14, No. 21, 2005, pp. 3219-3225.
Sun et al., “FSH Directly Regulates Bone Mass”, Cell 125, Apr. 21, 2006, pp. 247-260.
International Search Report for copending Application No. PCT/CN2010/073387 mailed Feb. 24, 2011.
Jin et al., “Association between CYP19 gene SNP rs2414096 Polymorphism and polycystic ovary syndrome in Chinese women”, BMC Medical Genetics, vol. 10, Article No. 139, Dec. 16, 2009, pp. 1471-2350.
Related Publications (1)
Number Date Country
20120309642 A1 Dec 2012 US
Continuation in Parts (1)
Number Date Country
Parent PCT/CN2010/073387 May 2010 US
Child 13525774 US