The present embodiments relate to audio/video (A/V) recording and communication devices (e.g., A/V recording and communication doorbell systems, A/V recording and communication security systems, etc.).
Home security is a concern for many homeowners and renters. Those seeking to protect or monitor their homes often wish to have video and audio communications with visitors, for example, those visiting an external door or entryway. Audio/Video (A/V) recording and communication devices, such as doorbells and security cameras, provide this functionality, and can also aid in crime detection and prevention. For example, audio and/or video captured by an A/V recording and communication device can be uploaded to the cloud and recorded on a remote server. Subsequent review of the A/V footage can aid law enforcement in capturing perpetrators of home burglaries and other crimes. Further, the presence of one or more A/V recording and communication devices on the exterior of a home, such as a doorbell unit at the entrance to the home, acts as a powerful deterrent against would-be burglars.
The various embodiments of the present solar-charging mounting bracket for video doorbells have several features, no single one of which is solely responsible for their desirable attributes. Without limiting the scope of the present embodiments as expressed by the claims that follow, their more prominent features now will be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description,” one will understand how the features of the present embodiments provide the advantages described herein.
One aspect of the present embodiments includes the realization that recharging an A/V recording and communication device that is powered by a rechargeable battery can sometimes be a cumbersome process. For example, in some cases, when a video doorbell that is powered by a rechargeable battery runs out of power, the doorbell has to be unmounted (e.g., from an outside wall of a structure) and then connected to a power source, such as a USB port of a computer or a wall adapter (e.g., inside the structure), in order to be recharged. In some other cases, the rechargeable battery can be removed from the doorbell and charged separately (i.e., there is no need for unmounting the whole device from the wall). In both scenarios, however, during the charging period of the battery, the video doorbell may lose its functionality because it does not have a power source for powering its electronic components (e.g., when its battery is removed), or because it is moved from its original place (e.g., when the doorbell has to be unmounted and moved to another place).
It would be advantageous, therefore, if the video doorbell could retain its functionality during the charging period. That is, it would be advantageous if the rechargeable battery of a video doorbell, which is mounted (e.g., on a wall) using a mounting bracket, could be charged by the mounting bracket and without the need to remove the doorbell (or its battery) from the bracket. The present embodiments provide such an advantage by providing a mounting bracket with integrated solar panels. Such a mounting bracket automatically charges the rechargeable battery(ies) of an A/V recording and communication device using the electrical power generated by the solar panels.
In a first aspect, a mounting bracket for an audio/video (A/V) recording and communication device is provided, the mounting bracket comprising a rear surface configured to abut a mounting surface of a structure; a front surface including a receiving area configured to matingly receive the A/V recording and communication device; an upper surface adjacent an upper edge of the receiving area, the upper surface including an upper recess; left-side and right-side surfaces adjacent left-side and right-side edges, respectively, of the receiving area, the left-side and right-side surfaces including, respectively, a left-side recess and a right-side recess; an upper solar panel located within the upper recess; a left-side solar panel located within the left-side recess; a right-side solar panel located within the right-side recess; and a charging cable operatively connected to each of the upper solar panel, the left-side solar panel, and the right-side solar panel, wherein the charging cable includes a connector that is configured to mechanically and electrically couple the charging cable to the A/V recording and communication device.
In an embodiment of the first aspect, the receiving area includes a plurality of hooks configured to engage with a plurality of apertures on a rear surface of the A/V recording and communication device to mechanically couple the A/V recording and communication device to the mounting bracket.
In another embodiment of the first aspect, the receiving area includes a plurality of apertures configured to receive mounting hardware to secure the mounting bracket to the mounting surface of the structure.
In another embodiment of the first aspect, the receiving area includes a connector recess configured to accommodate the connector of the charging cable.
In another embodiment of the first aspect, the connector of the charging cable comprises a micro-USB connector.
In another embodiment of the first aspect, the receiving area includes a receiving area recess configured to accommodate a protrusion on a rear surface of the A/V recording and communication device.
In another embodiment of the first aspect, the protrusion comprises a reset button.
In another embodiment of the first aspect, the receiving area includes an electrically conductive contact plate.
In another embodiment of the first aspect, the electrically conductive contact plate is located within a contact plate recess in the receiving area.
In another embodiment of the first aspect, the contact plate is coupled to at least one of a plurality of pins located on a rear surface of the A/V recording and communication device to indicate to the A/V recording and communication device that electrical power is being received from the solar panels.
In another embodiment of the first aspect, the A/V recording and communication device is a doorbell.
In another embodiment of the first aspect, the A/V recording and communication device is a security camera.
In another embodiment of the first aspect, the structure is a dwelling.
In a second aspect, a mounting bracket for an audio/video (A/V) recording and communication device is provided, the mounting bracket comprising a rear surface configured to abut a mounting surface of a structure; a front surface including a receiving area configured to matingly receive the A/V recording and communication device; an upper surface adjacent an upper edge of the receiving area, the upper surface comprising an upper solar panel; left-side and right-side surfaces adjacent left-side and right-side edges, respectively, of the receiving area, the left-side and right-side surfaces comprising, respectively, a left-side solar panel and a right-side solar panel; and a charging cable operatively connected to each of the upper solar panel, the left-side solar panel, and the right-side solar panel, wherein the charging cable comprises a connector configured to mechanically and electrically couple the charging cable to the A/V recording and communication device.
In an embodiment of the second aspect, the upper surface comprises an upper recess that accommodates the upper solar panel.
In another embodiment of the second aspect, the left-side and right-side surfaces comprise left-side and right-side recesses that accommodate the left-side solar panel and the right-side solar panel, respectively.
In another embodiment of the second aspect, the receiving area includes a plurality of hooks configured to engage with a plurality of apertures on a rear surface of the A/V recording and communication device to mechanically couple the A/V recording and communication device to the mounting bracket.
In another embodiment of the second aspect, the receiving area includes a plurality of apertures configured to receive mounting hardware to secure the mounting bracket to the mounting surface of the structure.
In another embodiment of the second aspect, the receiving area includes a connector recess configured to accommodate the connector of the charging cable.
In another embodiment of the second aspect, the connector of the charging cable comprises a micro-USB connector.
In another embodiment of the second aspect, the receiving area includes a receiving area recess configured to accommodate a protrusion on a rear surface of the A/V recording and communication device.
In another embodiment of the second aspect, the protrusion comprises a reset button.
In another embodiment of the second aspect, the receiving area includes an electrically conductive contact plate.
In another embodiment of the second aspect, the electrically conductive contact plate is located within a contact plate recess in the receiving area.
In another embodiment of the second aspect, the contact plate is coupled to at least one of a plurality of pins located on a rear surface of the A/V recording and communication device to indicate to the A/V recording and communication device that electrical power is being received from the solar panels.
In another embodiment of the second aspect, the A/V recording and communication device is a doorbell.
In another embodiment of the second aspect, the A/V recording and communication device is a security camera.
In another embodiment of the second aspect, the structure is a dwelling.
In a third aspect, a mounting bracket for an audio/video (A/V) recording and communication device is provided, the mounting bracket comprising a rear surface configured to abut a mounting surface; a front surface comprising a receiving area configured to couple to the A/V recording and communication device; an upper surface comprising a first solar panel; left-side and right-side surfaces comprising, respectively, a left-side solar panel and a right-side solar panel; and a charging cable operatively connected to each of the upper solar panel, the left-side solar panel, and the right-side solar panel, wherein the solar panels provide power to the A/V recording and communication device through the charging cable.
In an embodiment of the third aspect, the mounting surface comprises one of a door and a wall of a structure.
In another embodiment of the third aspect, the structure comprises one of a residential building and a commercial building.
In another embodiment of the third aspect, the upper surface is adjacent an upper edge of the receiving area.
In another embodiment of the third aspect, the upper surface comprises an upper recess that accommodates the upper solar panel.
In another embodiment of the third aspect, the left-side and right-side surfaces are adjacent, respectively, left-side and right-side edges of the receiving area.
In another embodiment of the third aspect, the left-side and right-side surfaces comprise left-side and right-side recesses that accommodate the left-side solar panel and the right-side solar panel, respectively.
In another embodiment of the third aspect, the charging cable comprises a connector configured to mechanically and electrically couple the charging cable to the A/V recording and communication device.
In another embodiment of the third aspect, the receiving area comprises a connector recess configured to accommodate the connector of the charging cable.
In another embodiment of the third aspect, the connector of the charging cable comprises a micro-USB connector.
In another embodiment of the third aspect, the receiving area comprises a plurality of hooks configured to engage with a plurality of apertures on a rear surface of the A/V recording and communication device to mechanically couple the A/V recording and communication device to the mounting bracket.
In another embodiment of the third aspect, the receiving area comprises a plurality of apertures configured to receive mounting hardware to secure the mounting bracket to the mounting surface.
In another embodiment of the third aspect, the receiving area includes a receiving area recess configured to accommodate a protrusion on a rear surface of the A/V recording and communication device.
In another embodiment of the third aspect, the protrusion comprises a reset button.
In another embodiment of the third aspect, the receiving area comprises an electrically conductive contact plate.
In another embodiment of the third aspect, the electrically conductive contact plate is located within a contact plate recess in the receiving area.
In another embodiment of the third aspect, the contact plate is coupled to at least one of a plurality of pins located on a rear surface of the A/V recording and communication device to indicate to the A/V recording and communication device that electrical power is being received from the solar panels.
In another embodiment of the third aspect, the A/V recording and communication device is a doorbell.
In another embodiment of the third aspect, the A/V recording and communication device is a security camera.
The various embodiments of the present solar-charging mounting bracket for video doorbells now will be discussed in detail with an emphasis on highlighting the advantageous features. These embodiments depict the novel and non-obvious solar-charging mounting bracket for video doorbells shown in the accompanying drawings, which are for illustrative purposes only. These drawings include the following figures, in which like numerals indicate like parts:
The following detailed description describes the present embodiments with reference to the drawings. In the drawings, reference numbers label elements of the present embodiments. These reference numbers are reproduced below in connection with the discussion of the corresponding drawing features.
The embodiments of the present solar-charging mounting bracket for audio/video (A/V) recording and communication devices (e.g., video doorbells and/or security cameras) are described below with reference to the figures. These figures, and their written descriptions, indicate that certain components of the apparatus are formed integrally, and certain other components are formed as separate pieces. Those of ordinary skill in the art will appreciate that components shown and described herein as being formed integrally may in alternative embodiments be formed as separate pieces. Those of ordinary skill in the art will further appreciate that components shown and described herein as being formed as separate pieces may in alternative embodiments be formed integrally. Further, as used herein the term integral describes a single unitary piece.
With reference to
The mounting bracket 101, in some embodiments, may include a substantially flat rear surface 175, such that an assembly comprising the mounting bracket and a doorbell may sit flush against the surface to which it is mounted. The mounting bracket 101 may be mounted to surfaces of various composition, including, without limitation, wood, concrete, stucco, brick, vinyl siding, aluminum siding, etc., with any suitable fasteners, such as screws (e.g., through the apertures 127), or other interference connections, adhesives, etc.
The receiving area 129 of the front surface of the mounting bracket 101 is configured to be coupled with the video doorbell 130 as shown in
In some embodiments, the front surface/receiving area 129 includes a receiving area recess 125 to accommodate a reset button 159 (
The receiving area 129 of the mounting bracket 101, in some embodiments, also includes an electrically conductive contact plate 123 located within a contact plate recess 173. The contact plate 123 is configured to electrically couple to one or more spring pins (not shown) protruding from the rear surface of the doorbell 130. The contact plate 123 may comprise any suitable conductive material, including, without limitation, copper, and may protrude slightly from the contact plate recess 173 of the mounting bracket 101 so that it may mate with the spring pins of the doorbell 130. In some embodiments, electrical contact between at least one of the spring pins and the contact plate 123 may indicate to a power management module 162 (
The mounting bracket 101 also includes a charging cable 121 in some embodiments. The charging cable 121 includes, at a first end, a connector 115. At a second end opposite the first end, the charging cable 121 is connected to the solar panels that are located on upper, left, and right surfaces of the mounting bracket 101. The connector 115, in some embodiments, may comprise a micro-USB (Universal Serial Bus) connector that couples to a micro-USB port (not shown) of the video doorbell 130. Through this micro-USB port, the charging cable 121 recharges the battery 166 of the doorbell 130 with electrical power received from the solar panels located on the sides and upper surfaces of the mounting bracket 101. In some embodiments, in addition to providing power, other data can also be communicated to/from the video doorbell 130 through the micro-USB port of the doorbell 130. The charging cable 121 and connector 115 are accommodated in a connector recess 105 of the receiving area 129 such that they do not protrude from the receiving area 129.
As shown in
With reference to
In some embodiments, when the battery 166 of the doorbell 130 is recharged through a connection to AC mains power, the LEDs 156 may emit light to indicate that the battery 166 is being recharged. In the present embodiments, electrical contact between the contact plate 123 and at least one of the pins on the rear surface of the doorbell 130 may indicate to the power management module 162 (
With further reference to
With further reference to
As described below, the A/V recording and communication device 100 may communicate with the user's client device 114 via the user's network 110 and the network 112 (Internet/PSTN). The user's client device 114 may comprise, for example, a mobile telephone (may also be referred to as a cellular telephone), such as a smartphone, a personal digital assistant (PDA), or another communication device. The user's client device 114 comprises a display (not shown) and related components capable of displaying streaming and/or recorded video images. The user's client device 114 may also comprise a speaker and related components capable of broadcasting streaming and/or recorded audio, and may also comprise a microphone. The A/V recording and communication device 100 may also communicate with one or more remote storage device(s) 116 (may be referred to interchangeably as “cloud storage device(s)”), one or more servers 118, and/or a backend API (application programming interface) 120 via the user's network 110 and the network 112 (Internet/PSTN). While
The network 112 may be any wireless network or any wired network, or a combination thereof, configured to operatively couple the above mentioned modules, devices, and systems For example, the network 112 may include one or more of the following: a PSTN (public switched telephone network), the Internet, a local intranet, a PAN (Personal Area Network), a LAN (Local Area Network), a WAN (Wide Area Network), a MAN (Metropolitan Area Network), a virtual private network (VPN), a storage area network (SAN), a frame relay connection, an Advanced Intelligent Network (AIN) connection, a synchronous optical network (SONET) connection, a digital T1, T3, E1 or E3 line, a Digital Data Service (DDS) connection, a DSL (Digital Subscriber Line) connection, an Ethernet connection, an ISDN (Integrated Services Digital Network) line, a dial-up port such as a V.90, V.34, or V.34bis analog modem connection, a cable modem, an ATM (Asynchronous Transfer Mode) connection, or an FDDI (Fiber Distributed Data Interface) or CDDI (Copper Distributed Data Interface) connection. Furthermore, communications may also include links to any of a variety of wireless networks, including WAP (Wireless Application Protocol), GPRS (General Packet Radio Service), GSM (Global System for Mobile Communication), LTE, VoLTE, LoRaWAN, LPWAN, RPMA, LTE Cat-“X” (e.g. LTE Cat 1, LTE Cat 0, LTE CatM1, LTE Cat NB1), CDMA (Code Division Multiple Access), TDMA (Time Division Multiple Access), FDMA (Frequency Division Multiple Access), and/or OFDMA (Orthogonal Frequency Division Multiple Access) cellular phone networks, GPS, CDPD (cellular digital packet data), RIM (Research in Motion, Limited) duplex paging network, Bluetooth radio, or an IEEE 802.11-based radio frequency network. The network can further include or interface with any one or more of the following: RS-232 serial connection, IEEE-1394 (Firewire) connection, Fibre Channel connection, IrDA (infrared) port, SCSI (Small Computer Systems Interface) connection, USB (Universal Serial Bus) connection, or other wired or wireless, digital or analog, interface or connection, mesh or Digi® networking.
According to one or more aspects of the present embodiments, when a person (may be referred to interchangeably as “visitor”) arrives at the A/V recording and communication device 100, the A/V recording and communication device 100 detects the visitor's presence and begins capturing video images within a field of view of the camera 102. The A/V communication device 100 may also capture audio through the microphone 104. The A/V recording and communication device 100 may detect the visitor's presence by detecting motion using the camera 102 and/or a motion sensor, and/or by detecting that the visitor has pressed a front button of the A/V recording and communication device 100 (if the A/V recording and communication device 100 is a doorbell).
In response to the detection of the visitor, the A/V recording and communication device 100 sends an alert to the user's client device 114 (
The video images captured by the camera 102 of the A/V recording and communication device 100 (and the audio captured by the microphone 104) may be uploaded to the cloud and recorded on the remote storage device 116 (
With further reference to
The backend API 120 illustrated
The backend API 120 illustrated in
At block B202, a communication module of the A/V recording and communication device 100 sends a connection request, via the user's network 110 and the network 112, to a device in the network 112. For example, the network device to which the request is sent may be a server such as the server 118. The server 118 may comprise a computer program and/or a machine that waits for requests from other machines or software (clients) and responds to them. A server typically processes data. One purpose of a server is to share data and/or hardware and/or software resources among clients. This architecture is called the client-server model. The clients may run on the same computer or may connect to the server over a network. Examples of computing servers include database servers, file servers, mail servers, print servers, web servers, game servers, and application servers. The term server may be construed broadly to include any computerized process that shares a resource to one or more client processes. In another example, the network device to which the request is sent may be an API such as the backend API 120, which is described above.
In response to the request, at block B204 the network device may connect the A/V recording and communication device 100 to the user's client device 114 through the user's network 110 and the network 112. At block B206, the A/V recording and communication device 100 may record available audio and/or video data using the camera 102, the microphone 104, and/or any other device/sensor available. At block B208, the audio and/or video data is transmitted (streamed) from the A/V recording and communication device 100 to the user's client device 114 via the user's network 110 and the network 112. At block B210, the user may receive a notification on his or her client device 114 with a prompt to either accept or deny the call.
At block B212, the process determines whether the user has accepted or denied the call. If the user denies the notification, then the process advances to block B214, where the audio and/or video data is recorded and stored at a cloud server. The session then ends at block B216 and the connection between the A/V recording and communication device 100 and the user's client device 114 is terminated. If, however, the user accepts the notification, then at block B218 the user communicates with the visitor through the user's client device 114 while audio and/or video data captured by the camera 102, the microphone 104, and/or other devices/sensors is streamed to the user's client device 114. At the end of the call, the user may terminate the connection between the user's client device 114 and the A/V recording and communication device 100 and the session ends at block B216. In some embodiments, the audio and/or video data may be recorded and stored at a cloud server (block B214) even if the user accepts the notification and communicates with the visitor through the user's client device 114.
With further reference to
With further reference to
The speakers 157 and the microphone 158 may be coupled to the camera processor 170 through an audio CODEC 161. For example, the transfer of digital audio from the user's client device 114 and the speakers 157 and the microphone 158 may be compressed and decompressed using the audio CODEC 161, coupled to the camera processor 170. Once compressed by audio CODEC 161, digital audio data may be sent through the communication module 164 to the network 112, routed by one or more servers 118, and delivered to the user's client device 114. When the user speaks, after being transferred through the network 112, digital audio data is decompressed by audio CODEC 161 and emitted to the visitor via the speakers 157.
With further reference to
With further reference to
With further reference to
With further reference to
The features of the present embodiments described herein may be implemented in digital electronic circuitry, and/or in computer hardware, firmware, software, and/or in combinations thereof. Features of the present embodiments may be implemented in a computer program product tangibly embodied in an information carrier, such as a machine-readable storage device, and/or in a propagated signal, for execution by a programmable processor. Embodiments of the present method steps may be performed by a programmable processor executing a program of instructions to perform functions of the described implementations by operating on input data and generating output.
The features of the present embodiments described herein may be implemented in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and/or instructions from, and to transmit data and/or instructions to, a data storage system, at least one input device, and at least one output device. A computer program may include a set of instructions that may be used, directly or indirectly, in a computer to perform a certain activity or bring about a certain result. A computer program may be written in any form of programming language, including compiled or interpreted languages, and it may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
Suitable processors for the execution of a program of instructions may include, for example, both general and special purpose processors, and/or the sole processor or one of multiple processors of any kind of computer. Generally, a processor may receive instructions and/or data from a read only memory (ROM), or a random access memory (RAM), or both. Such a computer may include a processor for executing instructions and one or more memories for storing instructions and/or data.
Generally, a computer may also include, or be operatively coupled to communicate with, one or more mass storage devices for storing data files. Such devices include magnetic disks, such as internal hard disks and/or removable disks, magneto-optical disks, and/or optical disks. Storage devices suitable for tangibly embodying computer program instructions and/or data may include all forms of non-volatile memory, including for example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices, magnetic disks such as internal hard disks and removable disks, magneto-optical disks, and CD-ROM and DVD-ROM disks. The processor and the memory may be supplemented by, or incorporated in, one or more ASICs (application-specific integrated circuits).
To provide for interaction with a user, the features of the present embodiments may be implemented on a computer having a display device, such as an LCD (liquid crystal display) monitor, for displaying information to the user. The computer may further include a keyboard, a pointing device, such as a mouse or a trackball, and/or a touchscreen by which the user may provide input to the computer.
The features of the present embodiments may be implemented in a computer system that includes a back-end component, such as a data server, and/or that includes a middleware component, such as an application server or an Internet server, and/or that includes a front-end component, such as a client computer having a graphical user interface (GUI) and/or an Internet browser, or any combination of these. The components of the system may be connected by any form or medium of digital data communication, such as a communication network. Examples of communication networks may include, for example, a LAN (local area network), a WAN (wide area network), and/or the computers and networks forming the Internet.
The computer system may include clients and servers. A client and server may be remote from each other and interact through a network, such as those described herein. The relationship of client and server may arise by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
The above description presents the best mode contemplated for carrying out the present embodiments, and of the manner and process of practicing them, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which they pertain to practice these embodiments. The present embodiments are, however, susceptible to modifications and alternate constructions from those discussed above that are fully equivalent. Consequently, the present invention is not limited to the particular embodiments disclosed. On the contrary, the present invention covers all modifications and alternate constructions coming within the spirit and scope of the present disclosure. For example, the steps in the processes described herein need not be performed in the same order as they have been presented, and may be performed in any order(s). Further, steps that have been presented as being performed separately may in alternative embodiments be performed concurrently. Likewise, steps that have been presented as being performed concurrently may in alternative embodiments be performed separately.
This application claims priority to provisional application Ser. No. 62/466,623, filed on Mar. 3, 2017, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4764953 | Chern et al. | Aug 1988 | A |
5428388 | von Bauer et al. | Jun 1995 | A |
5760848 | Cho | Jun 1998 | A |
6072402 | Kniffin et al. | Jun 2000 | A |
6192257 | Ray | Feb 2001 | B1 |
6271752 | Vaios | Aug 2001 | B1 |
6429893 | Xin | Aug 2002 | B1 |
6456322 | Marinacci | Sep 2002 | B1 |
6476858 | Ramirez Diaz et al. | Nov 2002 | B1 |
6633231 | Okamoto et al. | Oct 2003 | B1 |
6658091 | Naidoo et al. | Dec 2003 | B1 |
6753774 | Pan et al. | Jun 2004 | B2 |
6970183 | Monroe | Nov 2005 | B1 |
7062291 | Ryley et al. | Jun 2006 | B2 |
7065196 | Lee | Jun 2006 | B2 |
7085361 | Thomas | Aug 2006 | B2 |
7109860 | Wang | Sep 2006 | B2 |
7193644 | Carter | Mar 2007 | B2 |
7304572 | Sheynman et al. | Dec 2007 | B2 |
7382249 | Fancella | Jun 2008 | B2 |
7450638 | Iwamura | Nov 2008 | B2 |
7643056 | Silsby | Jan 2010 | B2 |
7683924 | Oh et al. | Mar 2010 | B2 |
7683929 | Elazar et al. | Mar 2010 | B2 |
7738917 | Ryley et al. | Jun 2010 | B2 |
8139098 | Carter | Mar 2012 | B2 |
8144183 | Carter | Mar 2012 | B2 |
8154581 | Carter | Apr 2012 | B2 |
8619136 | Howarter et al. | Dec 2013 | B2 |
8872915 | Scalisi et al. | May 2014 | B1 |
8780201 | Scalisi et al. | Jul 2014 | B1 |
8823795 | Scalisi et al. | Sep 2014 | B1 |
8842180 | Kasmir et al. | Sep 2014 | B1 |
8937659 | Scalisi et al. | Jan 2015 | B1 |
8941736 | Scalisi | Jan 2015 | B1 |
8947530 | Scalisi | Feb 2015 | B1 |
8953040 | Scalisi et al. | Feb 2015 | B1 |
9013575 | Scalisi | Apr 2015 | B2 |
9049352 | Scalisi et al. | Jun 2015 | B2 |
9053622 | Scalisi | Jun 2015 | B2 |
9058738 | Scalisi | Jun 2015 | B1 |
9060103 | Scalisi | Jun 2015 | B2 |
9060104 | Scalisi | Jun 2015 | B2 |
9065987 | Scalisi | Jun 2015 | B2 |
9094584 | Scalisi et al. | Jul 2015 | B2 |
9113051 | Scalisi | Aug 2015 | B1 |
9113052 | Scalisi et al. | Aug 2015 | B1 |
9118819 | Scalisi et al. | Aug 2015 | B1 |
9142214 | Scalisi | Sep 2015 | B2 |
9160987 | Kasmir et al. | Oct 2015 | B1 |
9165444 | Scalisi | Oct 2015 | B2 |
9172920 | Kasmir et al. | Oct 2015 | B1 |
9172921 | Scalisi et al. | Oct 2015 | B1 |
9172922 | Kasmir et al. | Oct 2015 | B1 |
9179107 | Scalisi | Nov 2015 | B1 |
9179108 | Scalisi | Nov 2015 | B1 |
9179109 | Kasmir et al. | Nov 2015 | B1 |
9196133 | Scalisi et al. | Nov 2015 | B2 |
9197867 | Scalisi et al. | Nov 2015 | B1 |
9230424 | Scalisi et al. | Jan 2016 | B1 |
9237318 | Kasmir et al. | Jan 2016 | B2 |
9247219 | Kasmir et al. | Jan 2016 | B2 |
9253455 | Harrison et al. | Feb 2016 | B1 |
9342936 | Scalisi | May 2016 | B2 |
9508239 | Harrison et al. | Nov 2016 | B1 |
9736284 | Scalisi et al. | Aug 2017 | B2 |
9743049 | Scalisi et al. | Aug 2017 | B2 |
9769435 | Scalisi et al. | Sep 2017 | B2 |
9786133 | Harrison et al. | Oct 2017 | B2 |
9799183 | Harrison et al. | Oct 2017 | B2 |
9819305 | Blick | Nov 2017 | B2 |
20020094111 | Puchek et al. | Jul 2002 | A1 |
20020147982 | Naidoo et al. | Oct 2002 | A1 |
20030043047 | Braun | Mar 2003 | A1 |
20040085205 | Yeh | May 2004 | A1 |
20040085450 | Stuart | May 2004 | A1 |
20040086093 | Schranz | May 2004 | A1 |
20040095254 | Maruszczak | May 2004 | A1 |
20040135686 | Parker | Jul 2004 | A1 |
20050111660 | Hosoda | May 2005 | A1 |
20060010199 | Brailean et al. | Jan 2006 | A1 |
20060022816 | Yukawa | Feb 2006 | A1 |
20060139449 | Cheng et al. | Jun 2006 | A1 |
20060156361 | Wang et al. | Jul 2006 | A1 |
20070008081 | Tylicki et al. | Jan 2007 | A1 |
20070183595 | Liu | Aug 2007 | A1 |
20080123287 | Rossell | May 2008 | A1 |
20100225455 | Claiborne et al. | Sep 2010 | A1 |
20120286947 | Hsu | Nov 2012 | A1 |
20130057695 | Huisking | Mar 2013 | A1 |
20140090694 | Bolanos | Apr 2014 | A1 |
20140267716 | Child et al. | Sep 2014 | A1 |
20150124090 | Laceky et al. | May 2015 | A1 |
20150163463 | Hwang et al. | Jun 2015 | A1 |
20160330403 | Siminoff | Nov 2016 | A1 |
20160376004 | Claridge | Dec 2016 | A1 |
20170025886 | Rohmer | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2585521 | Nov 2003 | CN |
2792061 | Jun 2006 | CN |
1480462 | Nov 2004 | EP |
2286283 | Aug 1995 | GB |
2354394 | Mar 2001 | GB |
2357387 | Jun 2001 | GB |
2400958 | Oct 2004 | GB |
2001-103463 | Apr 2001 | JP |
2002-033839 | Jan 2002 | JP |
2002-125059 | Apr 2002 | JP |
2002-342863 | Nov 2002 | JP |
2002-344640 | Nov 2002 | JP |
2002-354137 | Dec 2002 | JP |
2002-368890 | Dec 2002 | JP |
2003-283696 | Oct 2003 | JP |
2004-128835 | Apr 2004 | JP |
2005-341040 | Dec 2005 | JP |
2006-147650 | Jun 2006 | JP |
2006-262342 | Sep 2006 | JP |
2009-008925 | Jan 2009 | JP |
2011-030121 | Feb 2011 | JP |
0944883 | Jun 1998 | WO |
199839894 | Sep 1998 | WO |
200113638 | Feb 2001 | WO |
200193220 | Dec 2001 | WO |
2002085019 | Oct 2002 | WO |
2003028375 | Apr 2003 | WO |
2003096696 | Nov 2003 | WO |
2006038760 | Apr 2006 | WO |
2006067782 | Jun 2006 | WO |
2007125143 | Aug 2007 | WO |
Entry |
---|
Kang, Hee Gok, International Search Report and Written Opinion of the International Searching Authority for PCT/US/2018/019783, dated Jun. 1, 2018, International Application Division, Korean Intellectual Property Office, Republic of Korea. |
Number | Date | Country | |
---|---|---|---|
20180255216 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62466623 | Mar 2017 | US |