The present invention relates to solar concentrator systems and, more particularly, to an alignment and collection system for a solar concentrator system.
Solar power systems fall generally into two categories: fixed position flat panel systems, and tracking solar collection systems. Fixed position flat panel systems employ one or more stationary panels that are arranged in an area having an unobstructed view of the sun. As the earth rotates, the sun's rays move over the stationary panel(s) with varying degrees of intensity depending upon geographic location, the time of day and the time of the year. In contrast, tracking solar collection systems collect, and focus the sun's rays onto one or more solar panels. Tracking solar collectors employ a tracking system that follows the sun's path in order to enhance energy collection. Simply put, fixed position flat panels represent a passive solar collection system, while tracking solar concentrator systems represent a more active energy collection system.
Tracking systems for solar collectors take on a variety of forms, from complex computer and satellite (GPS) tracking to the use of photodiodes. GPS tracking relies on determining a particular location on the ground, and correlating that location to the location of the sun at a given, known, time of day. More conventional systems utilize an auxiliary alignment sensor that employs photodiodes. The photodiodes rely on differential sensing parameters to track the sun. That is, one or more photodiode cells are exposed to the sun's rays. The sun's rays impinge upon the photodiodes and a controller determines how much, for example, voltage is produced by each photodiode cell. The controller then orients the plurality of photodiode cells until voltage from each cell is substantially similar. At this point, an offset is calculated and a solar collector is oriented to a desired orientation. The offset represents a distance between a solar collector and the photodiodes. The need to calculate an offset increases tracking complexity and reduces collection efficiency.
According to one embodiment of the present invention, a solar concentration system includes at least two solar energy receivers having a central focal point, with each of the at least two solar energy receivers generating an energy output based on received light energy. An actuation system is operatively coupled to the at least two solar energy receivers. The actuation system is configured and disposed to shift the at least two solar energy receivers along at least one axis. A control system is operatively linked to the at least two solar receivers and the actuation system. The control system senses the energy output of each of the at least two solar energy receivers and shifts the actuation system along the at least one axis causing solar energy to be directed at the central focal point. When the solar energy is directed at the central focal point, the energy output of each of the at least two solar energy receivers is substantially identical.
A method and system for aligning solar receivers with the sun is also described and claimed herein.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with the advantages and the features, refer to the description and to the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The forgoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
With reference now to
Alignment controller 40 is operatively connected to each of the plurality of solar receivers 6-9 via signal lines 60-63 respectively. Alignment controller 40 is also electrically coupled to each actuator 24, 25 via corresponding control lines 65 and 66. With this arrangement, controller 40 determines an optimum position of solar receivers 6-9 relative to the sun to ensure optimal alignment of solar energy alignment and collection system 2. More specifically, alignment controller 40 ensures that radiation intensity from the sun focuses on a centroid of the array of solar receivers 6-9. Towards that end, alignment controller 40 monitors energy output from each of solar receiver 6-9.
The energy output from each solar receiver is evaluated to determine whether any one of the plurality of solar receivers 6-9 is outputting more energy than others of the solar receivers 6-9. In accordance with one aspect of an exemplary embodiment, a current sensing device employing a Hall effect sensor is employed to provide an electrically isolated voltage output that is proportional to current flow. The Hall effect sensor has a very low resistance and, as such, does not interfere with the current flow from solar receivers 6-9. That is, in the event that solar energy is focused on, for example, solar receiver 6 such as shown in
With this arrangement, the exemplary embodiments provide a system that accurately aligns solar receiving cells with solar energy from the sun in order to enhance energy production. In particular, when employing concentrated solar energy collection systems, precise alignment of the solar energy collectors with the solar rays enhances energy collection. Moreover, by combining solar energy tracking or alignment features with the same solar cells/receivers used for energy production, there is no need for an auxiliary sensor to compute alignment. In this manner, exemplary embodiments reduce overall system cost and eliminate the need to calculate offsets or other factors that contribute to alignment error.
The method of aligning solar energy receivers with the sun described herein can also be practiced with a general-purpose computer such as illustrated at 400 in
ROM 420 contains the basic operating system for computer system 400. The operating system may alternatively reside in RAM 415 or elsewhere as is known in the art. Examples of removable data and/or program storage device 430 include magnetic media such as floppy drives and tape drives and optical media such as CD ROM drives. Examples of mass data and/or program storage device 435 include hard disk drives and non-volatile memory such as flash memory. In addition to keyboard 445 and mouse 450, other user input devices such as trackballs, writing tablets, pressure pads, microphones, light pens and position-sensing screen displays may be connected to user interface 440. Examples of display devices include cathode-ray tubes (CRT) and liquid crystal displays (LCD).
A computer program with an appropriate application interface may be created by one of skill in the art and stored on the system or a data and/or program storage device to simplify the practicing of this invention. In operation, information for or the computer program created to run the present invention is loaded on the appropriate removable data and/or program storage device 430, fed through data port 460 or typed in using keyboard 445.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one ore more other features, integers, steps, operations, element components, and/or groups thereof.
The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated
While preferred embodiments have been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.
Number | Name | Date | Kind |
---|---|---|---|
2604601 | Menzel | Jul 1952 | A |
3070699 | Lehmann et al. | Dec 1962 | A |
3293440 | Mueller | Dec 1966 | A |
3370293 | Green | Feb 1968 | A |
3984685 | Fletcher et al. | Oct 1976 | A |
3984686 | Fletcher et al. | Oct 1976 | A |
4045246 | Mlavsky et al. | Aug 1977 | A |
4081289 | Campbell, III | Mar 1978 | A |
4086485 | Kaplow et al. | Apr 1978 | A |
4107521 | Winders | Aug 1978 | A |
4146785 | Neale | Mar 1979 | A |
4200472 | Chappell et al. | Apr 1980 | A |
4223214 | Dorian et al. | Sep 1980 | A |
4225781 | Hammons | Sep 1980 | A |
4262195 | White et al. | Apr 1981 | A |
4278829 | Powell | Jul 1981 | A |
4586488 | Noto | May 1986 | A |
4687923 | Bauck | Aug 1987 | A |
4691075 | Murphy | Sep 1987 | A |
4730602 | Posnansky et al. | Mar 1988 | A |
4868379 | West | Sep 1989 | A |
5153778 | Sasian-Alvarado | Oct 1992 | A |
5483060 | Sugiura et al. | Jan 1996 | A |
5498297 | O'Neill et al. | Mar 1996 | A |
5593544 | Fahlgren et al. | Jan 1997 | A |
5593549 | Stirbl et al. | Jan 1997 | A |
6018122 | Hibino et al. | Jan 2000 | A |
6034319 | Falbel | Mar 2000 | A |
6127620 | Tange et al. | Oct 2000 | A |
6337129 | Watanabe et al. | Jan 2002 | B1 |
6399874 | Olah | Jun 2002 | B1 |
6465725 | Shibata et al. | Oct 2002 | B1 |
6583349 | Tanaka | Jun 2003 | B2 |
6617506 | Sasaki | Sep 2003 | B2 |
6686533 | Baum et al. | Feb 2004 | B2 |
6689949 | Ortabasi | Feb 2004 | B2 |
6696637 | Lawheed | Feb 2004 | B2 |
6897423 | Redler et al. | May 2005 | B2 |
6992276 | Blauvelt et al. | Jan 2006 | B2 |
7109461 | Lasich | Sep 2006 | B2 |
7148465 | Blauvelt et al. | Dec 2006 | B2 |
7177140 | Clarke et al. | Feb 2007 | B2 |
7202457 | Janus et al. | Apr 2007 | B2 |
7208674 | Aylaian | Apr 2007 | B2 |
7476832 | Vendig et al. | Jan 2009 | B2 |
7847228 | Lin | Dec 2010 | B2 |
8119962 | Lam | Feb 2012 | B2 |
8129668 | Chang et al. | Mar 2012 | B2 |
8153944 | Hines et al. | Apr 2012 | B2 |
8178775 | Taylor et al. | May 2012 | B2 |
8188413 | Kats et al. | May 2012 | B2 |
8188414 | Linke | May 2012 | B2 |
8188415 | Kats et al. | May 2012 | B2 |
20010006066 | Cherney et al. | Jul 2001 | A1 |
20040011395 | Nicolette et al. | Jan 2004 | A1 |
20040216777 | Pan | Nov 2004 | A1 |
20050103378 | Pu et al. | May 2005 | A1 |
20050161581 | Michiyama et al. | Jul 2005 | A1 |
20060041345 | Metcalf | Feb 2006 | A1 |
20060090747 | Harrington | May 2006 | A1 |
20060225778 | Brabec et al. | Oct 2006 | A1 |
20070033828 | Hartkop et al. | Feb 2007 | A1 |
20070051360 | Rhee | Mar 2007 | A1 |
20070144574 | Yada | Jun 2007 | A1 |
20070215199 | Dold et al. | Sep 2007 | A1 |
20080017784 | Hoot et al. | Jan 2008 | A1 |
20080087274 | Chen | Apr 2008 | A1 |
20080128586 | Johnson et al. | Jun 2008 | A1 |
20080138634 | Morris et al. | Jun 2008 | A1 |
20080164135 | Slook | Jul 2008 | A1 |
20080172256 | Yekutiely | Jul 2008 | A1 |
20080276929 | Gerwing et al. | Nov 2008 | A1 |
20080283121 | Guerra | Nov 2008 | A1 |
20080308152 | Grip | Dec 2008 | A1 |
20080314438 | Tran et al. | Dec 2008 | A1 |
20090043253 | Podaima | Feb 2009 | A1 |
20090084435 | Guha et al. | Apr 2009 | A1 |
20090095342 | Lin et al. | Apr 2009 | A1 |
20090188488 | Kraft et al. | Jul 2009 | A1 |
20090199846 | Collins et al. | Aug 2009 | A1 |
20090229794 | Schon | Sep 2009 | A1 |
20090308377 | Kleinwaechter | Dec 2009 | A1 |
20100000518 | Chen et al. | Jan 2010 | A1 |
20100023138 | McDonald et al. | Jan 2010 | A1 |
20100031991 | Mochizuki et al. | Feb 2010 | A1 |
20100095955 | Carrasco Martinez | Apr 2010 | A1 |
20100101560 | Olsson et al. | Apr 2010 | A1 |
20100180886 | Chang | Jul 2010 | A1 |
20100192940 | Yoon | Aug 2010 | A1 |
20100326427 | Chen | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2749992 | May 1979 | DE |
4116894 | Nov 1992 | DE |
19801213 | Jul 1999 | DE |
405678 | Jan 1991 | EP |
2105683 | Sep 2009 | EP |
58018059 | Feb 1983 | JP |
02291912 | Dec 1990 | JP |
3-256580 | Nov 1991 | JP |
05052702 | Mar 1993 | JP |
08095641 | Apr 1996 | JP |
2008034423 | Mar 2008 | WO |
Entry |
---|
Merriam Webster's Collegiate Dictionary, 10th ed., 1997, p. 451. |
Merriam Webster's Collegiate Dictionary, 10th ed., 1997, p. 1250. |
Chia-Yen Lee et al., “Sun Tracking Systems: A Review,” Sensors 2009, 9, 3875-3890. |
International Search Report; International Application No. PCT/US2011/020654; International Filing Date: Jan. 10, 2011; Date of Mailing: Mar. 9, 2011. |
International Search Report—Written Opinion; International Application No. PCT/US2011/020654; International Filing Date: Jan. 10, 2011; Date of Mailing: Mar. 9, 2011. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2011/020654, dated Jul. 26, 2012, pp. 1-7. |
Number | Date | Country | |
---|---|---|---|
20100218758 A1 | Sep 2010 | US |