Solar support systems commonly use fixed posts and rail systems that require short spans and several mounting points, and are unable to move in any direction. Such systems do not obtain the maximum amount of sunlight available each day.
Originally, these solar support systems required several penetrations in roof structures and took several days to provide accurate alignment and location of stable mounting structures. However, customers objected since these systems introduced leak points and were supported in the middle of roof spans that were directly over interior living spaces. Also, customers were not able to maximize their solar potential because the systems were in a fixed and stationary orientation to the sun.
Therefore, solar support system manufacturers and contractors encouraged customers to install larger, more costly systems to increase their solar gathering potential. If a customer wanted the maximum solar potential the customer had to increase the number of mounting points resulting in increasing the leak potential and roof loads.
Finally, solar support systems are designed as static structures that are unable to adjust to new solar improvements. They are limited to the original footprint mounting points and structure because customers do not want to disturb the original penetration points. Also, if roof repair is necessary, several, if not all of the sections, mounts and rails must be removed which adds to the total cost of roof repair, reinstallation of the old solar support system without the benefit of a solar tracking platform.
a-b shows front and top views of an alternative fuel station kiosk at a station.
It is possible to provide a solar tracking platform to which solar panels are mounted. The solar tracking platform tracks the trajectory of the sun during the day, maximizing the solar ray collection and the efficiency of the system. The embodiments of the platform allow it to be mounted either in an East-West configuration or a North-South configuration, either on the top of a structure or on the ground.
An assembly 11 resides at each end of the A-frame configuration. In the example here, the assembly 11 consists of an actuator cam arm 10, an actuator 44, and a trunnion mount 46. This assembly attaches to an end frame chord such as 48, with a connection that rotates between a trunnion mount and a cam arm driven by an actuator 44. The actuator can be activated by several power sources such as electric, air or hydraulic.
In one embodiment, the power provided to the actuator may come from solar panels mounted on the platform. Excess power could be stored in batteries on or outside the platform, and then the stored power could be used to at least partially power the actuator or auxiliary equipment on or outside the platform.
The assembly 11 connects to a pillow block bearing plate 18 at each end of the platform that in turn is mounted atop the apex of web support 28 and end support legs 22. The top tube frame chord 24 passes through each pillow block bearing 20 with a radius bend to compensate for heavy loads or with no bend for lighter loads. The top tube frame chord may also pass through a top pillow block bearing mounted to a plate or a lower center of gravity center truss assembly as will be discussed with regard to
The basic structure of the platform has moveable feet, such as 30, extensible legs, such as 22, a truss frame such as the one shown here consisting of web supports, legs, and frame chords, and a center rail such as the top tube frame chord and the assemblies that can move to allow solar panels mounted on it to move. Various specific embodiments of components of this structure are discussed in the remaining figures, with the understanding that these are possible embodiments and implementations and are not intended to limit the scope of the claims.
In
Additional embodiments are shown in
In
In
As mentioned in the discussion of
In this manner, it is possible to provide a platform, which can span long distances without mid-span penetration points. The platform can track the sun and yield maximum sun gathering capabilities on a daily basis. The platform can adapt to new solar technology and reduces the number of solar panels required to obtain the maximum amount of sunlight produced each day.
The platform may include a controller to control the rate of rotation of the sun by controlling the actuator. The controller could be a simple as a pre-programmed timer, programmed with the sunrise and set times for a particular location. The timer would then control the time the platform begins to rotate, as well as when it stops and returns to its ‘morning’ position. More complex arrangements are also possible, including a light sensor located on the panels to provide illumination data to a microcontroller, the microcontroller to rotate the platform in accordance with the gathered information.
The platform may be pre-assembled eliminating timely installation and can easily mount to the most stable and structurally sound roof members with a minimum of disruption to roof penetrations, and can be easily removed and reinstalled for roof repair. The platform can be easily transported and installed at remote locations, reduces footprint size, hardware costs, and potential roof leaks. The platform may be supplied in pre-assembled and packaged kits, and may be installed in large arrays, reducing man-hour labor costs.
The platform can be mounted on both East-West and North-South facing roof structures, or may be ground mounted on extreme sloped hillsides, rough ground locations and orientated in a complete vertical position.
With the portability and ease of installation, these truss platforms allow solar power to be used in unique and creative ways. As the demand for energy alternatives to oil and gasoline increases, the ability to install roadside fueling stations that are self-powered using solar energy becomes significant. One such application is an alternative fuels delivery station that can provide several alternative fuels for vehicles such biodiesel, ethanol, compressed natural gas, liquid and compressed methane, hydrogen and electric power for electric vehicles.
The increased efficiency resulting from the movable mounting results is sufficient extra electricity to be available beyond the needs of the station itself. This enables the solar tracking system to provide its extra energy to electric vehicles.
The power needs of the station would include any electricity needed to power motors or structures that move the solar panel mountings, any pumps to move or dispense fuels, as well as any illumination provided and to possibly power other accessories such as a point of sale system to authorize credit card transactions.
An example of the base configuration that provides for a solar-powered alternative fuel station is shown in
The alternative fuel stand 80 shown in
In most states, biodiesel is not classified as a dangerous substance and can be ‘self-served’ allowing these alternative fuel stations to be created just about anywhere. As will be discussed in more detail later, a typical highway rest stop with dual lanes for trucks and cars may make an ideal location. The presence of the solar tracking platforms makes these stations self-sufficient. The solar tracking platforms are mounted atop 82 and 84 on canopy structure 86. Solar panels 89, not shown in detail here, are mounted on the solar tracking platform 88 and provide power to the alternative fuels station.
The pump/control module 98 may provide several services in addition to pumping the liquid or vapor alternative fuels. It may act as a wireless point of sale to allow customers to perform credit card transactions, control the flow of liquid or vapor alternative fuels between tanks if more than one tank is present at each kiosk, send notifications to service company that one or more tanks are low, etc. It may also meter the electricity power points and charge the customer accordingly depending upon the power taken. The pump/control module 98 may also monitor the solar panel system and ensure that the panels remain functional. The pump/control module may also include a battery bank and may include monitoring of the battery bank to ensure that the station will remain functional during the dark hours or heavy usage.
a and 13b show front and top views of a possible alternative fuels kiosk. The alternative fuels station, such as that shown in
In
In addition to the ability to dispense alternative fuels and provide recharging services, the kiosk may also allow battery exchange and battery recharging by electric utility grid during non-peak load periods.
An elevated drive conveyor track, such as one made of flexible steel, positions the battery on the hydraulic platform. An in-ground alignment sensor and vehicle authorizing code pad 112 communicates with the control room or module 98 shown previously and activates the arm 106 and the track 110. Solar panels, such as those shown previously, reside on the solar tracking platform in turn residing on the canopy 86. These panels provide power to the exchange station and the batteries undergoing charging.
As mentioned above, the self-sufficiency of these kiosks makes possible the ability to ‘drop’ them just about anywhere. In many freeway rest stops, for example, there are two lanes, one for trucks and one for cars. One could easily imagine placing one of these kiosks in between the two lanes such that the ‘truck’ lane would become a fueling lane for liquid or vapor alternative vehicles and the ‘car’ lane would become a recharging lane for electric vehicles.
The ability to place them anywhere comes largely from the ability of the platform to track the sun. The unique composition of movable and fixed frame chords allows for this tracking to be oriented either north/south or east/west. Alternative arrangements of the chords are also possible, an example of which is shown in
Further improvements and modifications may be made. For example, attaching the canopy to the containers may present problems with wind lifting the canopy and containers, depending upon the weight of the containers. An alternative, free-standing canopy 120 is shown in
The structures themselves embody several desirable aspects of environmentally friendly goals. This can be even further improved by other modifications.
In this manner, a solar-powered, highly efficient, alternative fuels kiosk or station may come into existence. This not only furthers the goals of environmentally sound powering technologies, but furthers the goals of liquid or vapor alternative and electric vehicle usage. These vehicles have some difficulties in that they are not currently easily fueled without finding a specialized station, or having to get off the freeway and locate a charging station or electrical outlet that is available for use.
In addition, the tracking platform may be more efficient in certain locations if mounted to allow solar altitude adjustment. Solar altitude is the season's sun height from the horizon.
A screw column 14 connects to the top of frame chord 24 of the rotating truss of
Another possible modification is to connect multiple solar tracking platform arrays together.
The solar array platform 120 would have mounted upon it the solar arrays, not shown, and would track the sun in conjunction of the movement of the rotating center chord 24. The drive shaft 124 connects multiple platforms together, allowing coordinated tracking of the sun by all of the connected platforms simultaneously. The actuator 122 in this embodiment consists of a 12 V DC linear actuator. The multi-array drive shaft allows the solar tracking platform to scale up to as many arrays as desired within the limitations of the actuators selected.
In the above discussions, different modifications and alternatives were given in specific examples. It must be noted that any of the modifications and alternatives may be combined with any other modifications and alternatives with no limitation as to the combination or applicability of the modifications and alternatives to any given embodiment.
While particular embodiments have been described, alternatives, modifications, variations, improvements, and substantial equivalents that are or may be presently unforeseen may arise to applicants and others skilled in the art.
This application claims priority to and is a continuation of U.S. Provisional Patent Application No. 61/176,037, filed May 6, 2009.
Number | Date | Country | |
---|---|---|---|
61176037 | May 2009 | US |