The present application claims the benefit of European Patent Application No. 20184808.2, filed Jul. 8, 2020, and to European Patent Application No. 21169170.4, filed Apr. 19, 2021. The entireties of European Patent Application No. 20184808.2 and European Patent Application No. 21169170.4 are incorporated herein by reference.
The present disclosure relates to a soldering nozzle and in particular, but not exclusively, a nozzle for directing a stream of solder during a soldering operation. The present invention also relates to a method of soldering with the nozzle and a soldering system including the nozzle.
Selective soldering can be used in many soldering applications, for example soldering components of a Printed Circuit Board (PCB). Selective soldering can, in general, be differentiated into two methods: multi-wave dip soldering and point-to-point soldering.
In multi-wave dip soldering processes, typically a large solder pot, or soldering assembly 100 is used (as shown in
In point-to-point soldering processes, typically a small solder pot, or soldering assembly, generally containing only one nozzle, is used. The nozzle comprises a body portion having an inlet at its lower end and an outlet for dispensing liquidus solder. In contrast to multi-wave soldering where the connectors pins are dipped into the nozzle, solder overflows from the outlet and a pin is dragged through or dipped into the flowing solder (or conversely the nozzle may be moved relative to the pin).
As noted above, multi-wave dip soldering processes suffer from the problem of bridging of solder between soldered pins or connectors, or between a soldered pin an another part of the PCB or other apparatus not being soldered. This can cause short circuiting. The known use of a nozzle screen, such as is illustrated in
In addition, current methods of manufacturing the soldering components are limited with regards to the nozzle geometry that can be produced. This can lead to sub-optimal nozzles. The trend in the industry is that components are getting smaller. This miniaturization result in a smaller pitch between the pins. For pitches smaller than 2.00 mm it is not physically possible to make a screen because the distance has become too small, owing to it not being feasible to laser cut screens with smaller than 0.3 mm dimensions. It is a known problem of screens that flux residue from a PCB can clog a screen with small holes. During cleaning the screen may be damaged owing to its fragility. For these small pitches another de-bridging technology is required.
As used herein, when referring to ‘solder’ in use within a nozzle, it is to be understood that the solder is in a liquid state.
It would be advantageous to produce a soldering system that helps overcome the above described problems. Particularly, it would be advantageous to reduce occurrences of bridging during multi-wave dip soldering processes. It would be advantageous to provide a nozzle for multi-wave dip soldering processes that is more robust, less fragile and less sensitive for contamination and clogging. It would be advantageous to provide a nozzle for multi-wave dip soldering processes that is better able to accommodate different pins or components to be soldered.
According to a first aspect of the present disclosure there is provided a soldering nozzle for directing solder during a multi-wave soldering operation, the soldering nozzle comprising: a solder outlet for dispensing solder therefrom and to receive a plurality of parts to be soldered; and a de-bridging gas outlet arranged to direct de-bridging gas between a plurality of soldered parts after they exit the solder outlet.
According to a second aspect of the present disclosure there is provided a solder pot comprising: a solder plate; and at least one nozzle as described above, the at least one nozzle being provided on the solder plate such that liquidus solder and de-bridging gas can be supplied to the nozzle.
According to a third aspect of the present disclosure there is provided a solder pot comprising: a soldering nozzle for directing solder during a multi-wave soldering operation, the soldering nozzle comprising a solder outlet for dispensing solder therefrom and to receive a plurality of parts to be soldered; and a de-bridging gas outlet located relative to the soldering nozzle such that de-bridging gas is directed between a plurality of soldered parts after they exit the solder outlet.
According to a fourth aspect of the present disclosure there is provided a system for soldering a component, comprising: a supply of liquid solder; a solder pot as described above; and a pump configured to pump solder from the solder supply to the at least one nozzle of the soldering assembly.
According to a fifth aspect of the present disclosure there is provided the use of a soldering pot in a multi-wave soldering operation, the soldering pot comprising a nozzle including a solder outlet for dispensing solder therefrom and a de-bridging gas outlet arranged to direct de-bridging gas between a plurality of soldered parts after they exit the solder outlet.
For the avoidance of doubt, any of the features described herein apply equally to any aspect of the disclosure.
Embodiments of the disclosure are further described hereinafter with reference to the accompanying drawings, in which:
In the drawings like reference numerals refer to like parts.
In its most general form, a soldering assembly is disclosed including at least one nozzle for directing solder during a soldering operation. The soldering assembly may be a soldering assembly for use in multi-wave soldering process (typically including more than one nozzle).
Referring to
The de-bridging gas may comprise nitrogen blown between soldered parts or leads to remove the solder when it is still liquidus. Other inert gases may also be used, and suitable inert de-bridging gases will be known to the skilled person. Other gases such as carbon dioxide may be suitable in some situations. The de-bridging gas may be heated to above the solder liquidus temperature. In some situations heating may not be required if solder adhering to the PCB is expected to remain above the liquidus temperature for long enough. After the PCB of other part being soldered is dipped in the solder, the de-bridging gas is blown underneath the board.
As de-bridging is performed by blowing de-bridging gas towards a PCB after parts to be soldered have been dipped in the solder outlet, there is no requirement for a screen across the solder outlet to perform de-bridging. The de-bridging gas may be blown continuously (at least during a particular soldering operation). In some alternatives, the de-bridging gas may be jetted intermittently when the PCB is located relative to the gas outlets 204 such that a location for which de-bridging is required is presented to a gas outlet 204. In some examples each of a plurality of gas outlets may be blowing de-bridging gas at the same time, or they may be separately controlled.
Referring now to
The shuttle 306 then aligns the PCB 304 with solder pot 310 (and nozzle 200, though not visible in
The flow rate, direction and temperature of the de-bridging gas defines if a bridge will be removed or not. Typically, the de-bridging gas is blown in between two leads. A flow rate will be configured to remove the solder bridge, and the flow rate may depend on the pitch between leads. For instance, to remove a bridge the flow rate may be 2-10 litres/minute. The flow rate may be proportional to the size of the nozzle, and in particular the size of the or each gas outlet 204. The gas temperature may be well above the melting point of the solder. However, in some examples the solder is expected to remain above the solder liquidus temperature at the time it is exposed to the de-bridging gas flow and so lower temperature gases may be used. Furthermore, where an array of de-bridging gas outlets are provided, it may be that all operate simultaneously to jet de-bridging gas towards a PCB to remove solder bridges across the whole PCB. Alternatively, in some examples the de-bridging gas outlets may be separately controlled to adjust or stop the flow of de-bridging gas.
Referring now to
The nozzle incorporating the de-bridging gas outlets may be integrally formed. Suitably, it may be manufactured by 3D printing the nozzle. However, the present disclosure is not limited to the use of 3D printing. This makes it possible that provide substantially any required shape to define the channels for solder and de-bridging gas within the body of the nozzle itself. The nozzle will have a connection (nipple or threaded tube) to connect tubing for de-bridging gas supply, as well as a connection to a source of solder.
To 3D print the nozzle, the nozzle may include a plurality of stacked layers, for instance of stainless steel or titanium, provided so as to at least partially define the required channels. In this example, the stacked layers are deposited during an additive manufacturing, or 3D printing, process. That is, during construction, successive layers of stainless steel or titanium are deposited to build up the nozzle structure.
As an example of an additive manufacturing or 3D printing process, a thin layer (for example, of 20 to 100 microns thickness) of metal powder (for example stainless steel or titanium) is laid down on top of a build-plate. The powder is melted or welded together in predetermined positions, for example by a laser or welding means. The predetermined positions may be defined by a 3D CAD model, for example. The build-plate is lowered by a distance substantially corresponding to the thickness of the thin layer and these steps are repeated. Once the required number of layers have been added, the non-melted/welded powder is removed to reveal the component inside. The component may be heat treated to improve the mechanical properties or post-processed (for example turning, milling, tumbling or shot peening).
The construction of a nozzle in this way allows different shapes and models to be produced that would generally not be possible with milling, drilling or casting processes. As such, nozzles with improved functionality may be produced. In addition, the use of materials within the printed nozzles may be more efficient.
Previously, it would have been expected that a 3D printed component, such as the nozzle of this disclosure, would have a rough surface (as a result of the addition of successive layers). As such, there would be an expectation that the roughened surface of the nozzle (in particular, the surface defining the channel) may affect the nozzles ability to produce a consistent, laminar flow of solder. However, surprisingly, this has found to not be an issue for the 3D printed nozzle.
In a further example, the entire solder pot assembly may be 3D printed. That is, the solder pot may include a plurality of stacked layers of stainless steel or titanium.
The multi-wave soldering nozzles of
Referring now to
It will be clear to a person skilled in the art that features described in relation to any of the embodiments described above can be applicable interchangeably between the different embodiments. The embodiments described above are examples to illustrate various features of the disclosure.
For the avoidance of doubt, the terms “may”, “and/or”, “e.g.”, “for example” and any similar term as used herein should be interpreted as non-limiting such that any feature so described need not be present. Indeed, any combination of optional features is expressly envisaged without departing from the scope of the disclosure, whether or not these are expressly claimed. The applicant reserves the right to change any originally filed claim or file any new claim, accordingly, including the right to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner.
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of them mean “including but not limited to”, and they are not intended to (and do not) exclude other components, integers or steps. Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
It will be appreciated by those skilled in the art that several variations to the aforementioned embodiments are envisaged without departing from the scope of the disclosure. It will also be appreciated by those skilled in the art that any number of combinations of the aforementioned features and/or those shown in the appended drawings provide clear advantages over the prior art and are therefore within the scope of the disclosure described herein.
The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
20184808.2 | Jul 2020 | EP | regional |
21169170.4 | Apr 2021 | EP | regional |