This application claims priority to Japanese Patent Application No. 2020-130777 filed on 31 Jul. 2020, the entire disclosure of which is incorporated by reference herein.
The present disclosure relates to a sole and a baseball spike shoe including the sole.
A pair of shoes has been proposed by Japanese Unexamined Patent Application No. 2014-124401, for example, as baseball spike shoes suitable for a pitching motion of a pitcher.
Japanese Unexamined Patent Application No. 2014-124401 discloses a pair of baseball spike shoes including a plurality of metal spikes arranged on a lower surface of an outsole at positions corresponding to a forefoot. The shape and arrangement of the spikes of the baseball spike shoes are determined in consideration of an engaging force between the pitcher's pivot foot and the ground with which the pivot foot is in contact.
In general, a grip force of the baseball spike shoes with respect to the ground is an important factor for improving a ball speed in the pitching motion. In particular, when a foot opposite to a pitching arm (hereinafter referred to as a “lead foot”) steps on the ground, it is desirable to increase the grip force of the shoe applied to the lead foot in consideration of the relationship between a region of the sole of the shoe corresponding to the forefoot of the lead foot and a shear component of a floor reaction force acting on the region in order to improve the ball speed.
However, in the baseball spike shoes of Japanese Unexamined Patent Application No. 2014-124401, as described above, the shape and arrangement of the plurality of spikes are merely determined in consideration of the engaging force between the pivot foot of the pitcher (the foot on the same side as the dominant arm pitching the ball) and the ground when the pivot foot steps on the ground. That is, the shoes have been made without any consideration of the relationship between the region of the sole of the shoe corresponding to the forefoot of the lead foot and the shear component of the floor reaction force acting on the region. For this reason, the above-described shoes were not able to obtain a sufficient grip force of the lead foot, and could not contribute to the improvement of the ball speed in the pitching motion.
The present disclosure has been made in view of the foregoing background, and an object of the present disclosure is to improve a ball speed in a pitching motion.
To achieve the object, a first aspect of the present disclosure is directed to a sole of a baseball spike shoe applicable to a foot opposite to a pitching arm. The sole includes: a sole body; and a plurality of first protrusions each of which is more rigid than the sole body and configured to protrude downward from the sole body. The plurality of first protrusions are arranged in a forefoot region of the sole body corresponding to a forefoot of a wearer's foot. Each of the first protrusions is formed such that its longitudinal direction extends along a foot width direction in a bottom view. When the plurality of first protrusions are projected on a virtual projection plane as viewed from a front side of the sole body, a sum of projection lengths of the plurality of first protrusions in the foot width direction is 85% or more and 100% or less of a distance of a straight line connecting in the foot width direction a side of the most medial one of the first protrusions to a side of the most lateral one of the first protrusions.
According to the first aspect, when the foot opposite to the dominant arm pitching the ball (lead foot) steps on the ground, the plurality of first protrusions arranged densely in the foot width direction receive most of the shear component of the floor reaction force acting on the sole applied to the lead foot. Thus, the shear component of the floor reaction force acting on the forefoot region increases in the sole applied to the lead foot. This can increase the grip force of the lead foot with respect to the ground. Thus, according to the first aspect, the ball speed in the pitching motion can be improved.
A second aspect of the disclosure is an embodiment of the first aspect. In the second aspect, each of the first protrusions is configured such that the longitudinal direction is inclined at an angle in a range of 80 degrees or more to 100 degrees or less with respect to a foot length direction in a bottom view.
In the second aspect, with the longitudinal direction of the first protrusions extending substantially along the foot width direction, the front surfaces of the first protrusions easily face toward the front side of the sole body. Therefore, when the lead foot steps on the ground, the plurality of first protrusions efficiently receive the shear component of the floor reaction force. As a result, the shear component of the floor reaction force acting on the forefoot region increases on the sole applied to the lead foot, which can further increase the grip force.
A third aspect of the disclosure is an embodiment of the first or second aspect. In the third aspect, the most medial first protrusion is arranged near a position corresponding to a thenar eminence of the wearer's foot in the forefoot region, and the most lateral first protrusion is arranged near a position corresponding to a hypothenar eminence of the wearer's foot in the forefoot region.
According to the third aspect, the grip force at the positions corresponding to the thenar eminence and hypothenar eminence of the wearer's foot in the forefoot region can be increased. In addition, when the lead foot steps on the ground, the sole can be stabilized in the foot width direction with the first protrusions located at the positions each corresponding to the thenar eminence and hypothenar eminence of the wearer's foot in the forefoot region serving as fulcrums.
A fourth aspect of the disclosure is an embodiment of any one of the first to third aspects. In the fourth aspect, each of the plurality of first protrusions is made of a metal material or a ceramic material.
According to the fourth aspect, the first protrusions made of a metal material or a ceramic material ensure relatively high rigidity. Thus, when the lead foot steps on the ground, the plurality of first protrusions easily stick into the ground, and the sole can be stabilized with respect to the ground.
A fifth aspect of the disclosure is an embodiment of any one of the first to fourth aspects. In the fifth aspect, each of the plurality of first protrusions has a plate shape, and is configured such that its front surface faces toward the front side of the sole body.
According to the fifth aspect, when the lead foot steps on the ground, the plurality of first protrusions efficiently receive the shear component of the floor reaction force. This can increase the shear component of the floor reaction force acting on the forefoot region, and can further increase the grip force.
A sixth aspect of the disclosure is an embodiment of any one of the first to fifth aspects. In the sixth aspect, the foremost one of the first protrusions is arranged at a position corresponding to a tiptoe of the wearer's foot in the forefoot region.
According to the sixth aspect, the first protrusion arranged at a position corresponding to the tiptoe of the wearer's foot receives the shear component of the floor reaction force from a point of time when the lead foot starts to step on the ground. This can increase the shear component of the floor reaction force acting on the forefoot region, and can further increase the grip force.
A seventh aspect of the disclosure is directed to a baseball spike shoe including the sole of any one of the first to sixth aspects.
In the seventh aspect, a baseball spike shoe that exhibits the same advantages as those of the first to sixth aspects can be obtained.
As described above, the present disclosure can improve the ball speed in the pitching motion.
Embodiments of the present disclosure will be described in detail with reference to the drawings. The following description of the embodiments is merely exemplary in nature, and is not intended to limit the scope, applications, or use of the present disclosure.
In the embodiment of the present disclosure, the drawings show the sole 1 for the left shoe only. A sole for a right shoe is symmetrical to the sole 1 for the left shoe. Thus, only the sole 1 for the left shoe will be described in the following description, and the description of the sole for the right shoe will be omitted herein.
In the following description, the expressions “upper,” “upward,” “on a/the top of,” “lower,” and “downward,” represent the vertical positional relationship between respective components of the shoe S. The expressions “front,” “fore,” “forward,” “rear,” and “hind” represent the positional relationship in a foot length direction (front-rear direction) between respective components of the shoe S. The expressions “medial side” and “lateral side” represent the positional relationship in a foot width direction between respective components of the shoe S. The “foot length direction” refers to a direction parallel to a straight line connecting the front end and rear end of an outsole 4 together (see the chain line shown in
Further, in the following description, the term “forefoot” refers to a portion of the wearer's foot ranging from a tiptoe to distal heads of the first to second metatarsal bones MT1 to MT5 in the foot length direction (see
Further, a “forefoot region F” refers to a region of a sole body 2 described later corresponding to the forefoot of the wearer's foot. A “midfoot region M” refers to a region of the sole body 2 corresponding to the midfoot of the wearer's foot. A “hindfoot region H” refers to a region of the sole body 2 corresponding to the hindfoot of the wearer's foot.
(Sole Body)
As shown in
The midsole 3 is stacked on the top of the outsole 4 with, for example, an adhesive. The midsole 3 is made of a soft elastic material which is less rigid than the outsole 4. Specifically, non-limiting examples of the material suitable for the midsole 3 include thermoplastic synthetic resins such as an ethylene-vinyl acetate copolymer (EVA) and foams thereof, thermosetting resins such as polyurethane (PU) and foams thereof, and rubber materials such as butadiene rubber and chloroprene rubber and foams thereof. The midsole 3 preferably has hardness of, for example, 15C to 65C on the Asker C scale.
The outsole 4 is made of a hard elastic member having greater hardness than the midsole 3. Specifically, non-limiting suitable examples of the material for the outsole 4 include thermoplastic resins such as polyamide-based resins, resins such as polyurethane (PU) and nylon-based elastomers, and rubber materials such as synthetic rubber and natural rubber. The outsole 4 preferably has hardness of, for example, 50A to 80A on the Asker A scale.
As shown in
(Support Member)
As shown in
As shown in
As shown in
(First Protrusions)
As shown in
The first protrusions 7 are more rigid than the sole body 2. Specifically, examples of the material of the first protrusions 7 include metal materials such as steel materials, aluminum alloys, and titanium alloys, and ceramic materials.
As shown in
The upper portion 10 extends along the lower surface of the outsole 4. In the upper portion 10, a region ranging from a midpoint to front end thereof is integrated with the mount 5, and a region ranging from the midpoint to a rear end thereof is exposed to the outside of the support member 6 (see
The lower portion 11 is formed with an upper end thereof continuous with the front end of the upper portion 10 when viewed in section. The lower portion 11 extends downward from the front end of the upper portion 10. In the lower portion 11, a region ranging from the upper end to midpoint thereof is integrated with the mount 5, and a region ranging from the midpoint to a lower end thereof is exposed to the outside of the support member 6 (see
With the support member 6 embedded in the mount 5, the region of the lower portion 11 ranging from the midpoint to the lower end protrudes downward from the lower surface of the outsole 4. The lower portion 11 is arranged with its front surface 12 facing toward the front side of the sole body 2. The lower portion 11 is formed in a substantially rectangular shape in a front view (see
As shown in
The first protrusion 7a is arranged at the foremost position in the forefoot region F. Specifically, the first protrusion 7a is arranged at a position corresponding to the tiptoe of the wearer's foot (the second distal phalanx DP2 in the illustrated example) in the forefoot region F.
The first protrusion 7b is arranged at a position corresponding to the big toe of the wearer's foot. Specifically, the first protrusion 7b is arranged at a position corresponding to the first proximal phalanx PP1 of the wearer's foot in the forefoot region F.
The first protrusion 7c is arranged at a position corresponding to the third toe of the wearer's foot. Specifically, the first protrusion 7c is arranged at a position corresponding to the third distal phalanx DP3 and/or the third middle phalanx IP3 of the wearer's foot in the forefoot region F.
The first protrusion 7d is arranged substantially at the center of the forefoot region F in the foot width direction. Specifically, the first protrusion 7d is arranged at a position corresponding to the distal head of the second metatarsal bone MT2 and/or the distal head of the third metatarsal bone MT3 of the wearer's foot in the forefoot region F.
The first protrusion 7e is arranged at a position corresponding to the fourth toe and/or fifth toe of the wearer's foot. Specifically, the first protrusion 7e is arranged at a position corresponding to the fourth proximal phalanx PP4 and/or fifth middle phalanx IP5 of the wearer's foot in the forefoot region F.
The first protrusion 7f is arranged at the most medial position in the forefoot region F. Specifically, the first protrusion 7f is arranged at a position corresponding to the distal head of the first metatarsal bone MT1 of the wearer's foot (i.e., near a position corresponding to the thenar eminence of the foot) in the forefoot region F.
The first protrusion 7g is arranged at the most lateral position in the forefoot region F. Specifically, the first protrusion 7g is arranged at a position corresponding to the distal head of the fifth metatarsal MT5 of the wearer's foot (i.e., near a position corresponding to the hypothenar eminence of the foot) in the forefoot region F.
As shown in
Here, the lateral width dimension of the first protrusions 7 is preferably 10 mm or more, and more preferably 13 mm or more. This can particularly improve the grip force of the sole 1 with respect to the ground. The lateral width dimension of the first protrusions 7 is preferably 20 mm or less, and more preferably 16 mm or less. This allows the first protrusions 7 to easily stick into the ground.
The number of the first protrusions 7 provided on the sole 1 is preferably five or more, more preferably six or more. This can improve the grip force and the stability of the wearer's foot stepping forward. The number of the first protrusions 7 provided on the sole 1 is preferably nine or less, and more preferably eight or less. This can block the weight of the sole 1 including the plurality of first protrusions 7 from excessively increasing.
(Second Protrusions)
As shown in
Similarly to the first protrusions 7, each of the second protrusions 8 is configured as a plate member made of a metal material or a ceramic material, and includes an upper portion 10 and a lower portion 11 (see
As shown in
(Characteristic Configuration)
As a characteristic configuration of the embodiment of the present disclosure, when the plurality of first protrusions 7 are projected on a virtual projection plane P (see
For example, suppose that the linear distance L is 82 mm, and the sum of gaps (g1, g2, and g3 shown in
In general, a grip force of the baseball spike shoes with respect to the ground is an important factor for improving a ball speed in the pitching motion. In particular, when the foot opposite to the pitching arm (hereinafter referred to as a “lead foot”) steps on the ground, it is desirable to increase the grip force of the shoe applied to the lead foot in consideration of the relationship between a region of the sole of the shoe corresponding to the forefoot of the lead foot and a shear component of a floor reaction force acting on the region in order to improve the ball speed. The “floor reaction force” is a general concept indicating a reaction force generated from a contact portion between the body (mainly the sole) and the floor (ground).
Specifically, as an ideal motion of the foot during the pitching motion, the lead foot (e.g., the left foot shown in
Based on the above findings, the sole 1 is configured such that, when the plurality of first protrusions 7 are projected on the virtual projection plane P as viewed from the front side of the sole body 2, the sum of the projection lengths of the first protrusions 7 in the foot width direction is 85% or more and 100% or less of the linear distance L. According to this configuration, when the foot opposite to the pitching arm (lead foot) steps on the ground, the plurality of first protrusions 7 arranged densely in the foot width direction receive most of the shear component of the floor reaction force acting on the sole 1 applied to the lead foot. That is, the first protrusions 7 are configured to absorb the whole shear component of the floor reaction force toward the direction opposite to the pitching direction. Thus, the shear component of the floor reaction force acting on the forefoot region F increases in the sole 1 applied to the lead foot. This can increase the grip force of the lead foot with respect to the ground. Therefore, the sole 1 according to the embodiment of the present disclosure and the baseball spike shoes S including the sole 1 can improve the ball speed in the pitching motion.
For example, if the ball speed of a baseball pitcher wearing the baseball spike shoes S constantly increases even at 1.0 km/h, it is clear that the impact on the batter will be enhanced. Thus, it can be said that the above-described advantages are sufficiently exerted.
In addition, each of the first protrusions 7 is configured such that its longitudinal direction is inclined at an angle in a range of 80 degrees or more to 100 degrees or less with respect to the foot length direction in a bottom view. In this configuration, with the longitudinal direction of the first protrusions 7 extending substantially along the foot width direction, the front surfaces 12 of the first protrusions 7 easily face toward the front side of the sole body 2. Therefore, when the lead foot steps on the ground, the plurality of first protrusions 7 efficiently receive the shear component of the floor reaction force. This can increase the shear component of the floor reaction force acting on the forefoot region F on the sole 1 applied to the lead foot, and can further increase the grip force.
In addition, the most medial first protrusion 7f is arranged near a position corresponding to the thenar eminence of the wearer's foot in the forefoot region F, and the most lateral first protrusion 7g is arranged near a position corresponding to the hypothenar eminence of the wearer's foot in the forefoot region F. This can increase the grip force at the positions corresponding to the thenar eminence and hypothenar eminence of the wearer's foot in the forefoot region F. Further, when the lead foot steps on the ground, the sole 1 can be stabilized in the foot width direction with the first protrusions 7f and 7g serving as fulcrums.
Moreover, the first protrusions 7 made of a metal material or a ceramic material ensure relatively high rigidity. Thus, when the lead foot steps on the ground, the plurality of first protrusions 7 easily stick into the ground, and the sole 1 can be stabilized with respect to the ground.
Each of the first protrusions 7 has a plate shape, and is configured such that the front surface 12 faces toward the front side of the sole body 2. This allows the plurality of first protrusions 7 to efficiently receive the shear component of the floor reaction force when the lead foot steps on the ground. This can increase the shear component of the floor reaction force acting on the forefoot region F, and can further increase the grip force.
The first protrusion 7a is arranged at a position corresponding to the tiptoe of the wearer's foot in the forefoot region F. Thus, the first protrusion 7a receives the shear component of the floor reaction force from a point of time when the lead foot starts to step on the ground. This can increase the shear component of the floor reaction force acting on the forefoot region F, and can further increase the grip force.
It has been described in the above embodiment that the sole body 2 includes the midsole 3 and the outsole 4, but the present disclosure is not limited to this configuration. For example, the sole body 2 may be comprised of the outsole 4.
Although the support members 6 are provided in the above embodiment, the present disclosure is not limited to this configuration. That is, the first protrusions 7 may be integrated with the mounts 5 of the outsole 4 without providing the support members 6. The same applies to the second protrusions 8.
It has been described in the above embodiment that the lower portion 11 of each of the first and second protrusions 7 and 8 has a flat plate shape, but the present disclosure is not limited thereto. For example, the lower portion 11 may be slightly curved or bent forward or backward at its substantial center in the foot width direction in a bottom view.
It has been described in the above embodiment that the lower portion 11 of each of the first and second protrusions 7 and 8 has a substantially rectangular shape in a front view, but the present disclosure is not limited thereto. For example, as shown in
It has been described in the above embodiment that the lower portion 11 has a constant thickness from the upper end to the lower end, but the present disclosure is not limited thereto. For example, the lower portion 11 may be formed such that a region ranging from the midpoint to the lower end is thicker than a region ranging from the upper end to the midpoint.
In the above-described embodiment, the plurality of first protrusions 7 are arranged in the forefoot region F of the sole body 2, and the plurality of second protrusions 8 are arranged in the hindfoot region H of the sole body 2. However, the present disclosure is not limited thereto. For example, third protrusions (not shown) having the same configuration as the first protrusions 7 may be arranged in the midfoot region M (see
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various modifications can be made within the scope of the present disclosure.
The present disclosure is industrially usable as a baseball spike shoe applicable to a foot opposite to a pitching arm.
Number | Date | Country | Kind |
---|---|---|---|
2020-130777 | Jul 2020 | JP | national |