This invention relates to a solid electrolytic capacitor with a conductive polymer layer as solid electrolytic layer.
Solid electrolytic capacitors that utilize a solid electrolytic layer are widely used in electronic devices since, in addition to their small size and large storage capacity, their equivalent serial resistance is small. Especially, solid electrolytic capacitors that utilize a conductive polymer layer as the solid electrolytic layer are characterized in that they have low equivalent serial resistance compared to the ones that utilize manganese dioxide or TCNQ complex as the solid electrolytic layer, and their production is increasing in recent years.
Solid electrolytic capacitors are usually formed by accommodating a capacitor element inside an exterior case for protection, and the shape of the exterior case is formed to be suitable for mounting onto a circuit board.
A lid-shaped floor board (14) is fastened on one end of the metal container (11). The floor board (14) is made of an insulating plastic, for example. The anode lead wire (41) and the cathode lead wire (42) both penetrate the seal rubber (12) and the floor board (14). In the places where these lead wires (41) and (42) protrude from the floor board (14), they are plastically formed to respectively make an anode electrode terminal (61) and a cathode electrode terminal (62). The electrodes (61) and (62) have a flat plate shape and are disposed on the surface of the floor board (14).
Solid electrolytic capacitors are used in various electronic devices and are installed on the circuit boards of these electronic devices. For the electronic devices that are steadily becoming smaller and thinner such as notebook PCs and mobile information terminals (PDA), there is a need for denser and thinner circuit boards, and accordingly, there is also a need for smaller and thinner solid electrolytic capacitors. Therefore, to fulfill this need, it is conceivable to make the thickness of the seal rubber (12) and the floor board (14) of the conventional solid electrolytic capacitor smaller. It should be noted that it is difficult to make the size of the capacitor element (1) itself smaller. Since the shape of the capacitor element (1) is directly related to the electrical properties of the solid electrolytic capacitor, it is difficult to change the shape while still keeping predetermined electrical properties.
But, for the above-described solid electrolytic capacitor, the seal rubber (12) needs to have a thickness of a certain value or more to prevent the moisture of the atmosphere from reaching the capacitor element (1). The floor board (14) too needs to have a thickness of a certain value or more to obtain a desired durability to withstand an impact. Therefore, there is a limit in trying to make the solid electrolytic capacitor smaller and thinner by reducing the thickness of the seal rubber (12) and the floor board (14). In addition, the curled portion (13) must be formed in the metal container (11) to fasten the seal rubber (12) in the metal container (11). But the height of the solid electrolytic capacitor increases by the height of the curled portion (13).
As the lengths of the lead wires (41) and (42) from the winding portion (2) to the electrode terminals (61) and (62) become shorter, the equivalent serial resistance of the solid electrolytic capacitor becomes smaller. It is however not possible to shorten the lead wires (41) and (42) to lower the equivalent serial resistance, since the seal rubber (12) and the floor board (14) need to have at least a certain thickness. It is desirable to minimize the contribution that these lead wires (41) and (42) have on the equivalent serial resistance, since the advantage of the solid electrolytic capacitor is small equivalent serial resistance.
The present invention was made in order to solve these problems and to provide a smaller and thinner solid electrolytic capacitor in which the contribution on the equivalent serial resistance by the lead wires is small.
The solid electrolytic capacitor of the present invention comprises a capacitor element and an outer shell that is made of an insulating resin and that covers the capacitor element, wherein the capacitor element comprises a winding portion that is formed by rolling together an anode foil with a dielectric oxidized film formed on its surface, a cathode foil, and a separator that is sandwiched between the anode foil and the cathode foil; a conductive polymer layer is formed between the anode foil and the cathode foil; and an anode lead wire electrically connected to the anode foil, and a cathode lead wire electrically connected to a cathode foil extend from the winding portion, penetrate the outer shell, and are respectively connected to an anode terminal and the cathode terminal that are arranged on a surface of the outer shell.
Furthermore, the solid electrolytic capacitor of the present invention, in addition to the configuration described above, may have a metal layer that covers the winding portion without electrically connecting the anode lead wire and the cathode lead wire or a coating layer that is made of a water repelling resin, such as flouroresin and silicon resin, that covers the winding portion.
Furthermore, in the solid electrolytic capacitor of the present invention, auxiliary junctions made of metal that are fastened to the circuit board may be provided on the surface of the outer shell where the anode electrode terminal board and the cathode electrode terminal board are arranged.
By covering the winding portion with an outer shell which is made of resin, the seal rubber, the curled portion, and the floor board that were used in the conventional solid electrolytic capacitor become unnecessary. Since the thickness of these do not add to the thickness of resin, the thickness of the solid electrolytic capacitor on the side where the anode lead wire and the cathode lead wire are arranged can be made thinner. Furthermore, because the length of the lead wire shortens, the contribution that the lead wires make to the equivalent serial resistance becomes smaller.
By covering the winding portion with the coating layer that is made of metal or water repelling resin, the amount of moisture that penetrates the outer shell and reaches the winding portion is dramatically reduced and the change of the capacitor properties due to moisture can be made very small.
The solid electrolytic capacitor can be fastened more firmly to the circuit board by providing the auxiliary junctions, in addition to the anode electrode terminal and the cathode electrode terminal, on the surface of the outer shell, and by joining the auxiliary junctions as well as these terminals to the circuit board by soldering, for example, in the electronic equipments mounted in automobile, for which vibration resistance is desired.
Below, a working example of the present invention is explained with reference to the drawings. Structural elements that are the same or similar to the conventional solid electrolytic capacitor are shown with the same symbols.
The solid electrolytic capacitor according to the present invention is fabricated as follows. First, the capacitor element (1) as shown in
Next, as shown in
In this working example, the outer shell (5) that covers the capacitor element (1) is made after the anode electrode terminal (61) and the cathode electrode terminal (62) have been formed. But it is also possible to form the outer shell (5) first, and then press work the anode lead wire (41) and the cathode lead wire (42) to form the anode electrode terminal (61) and the cathode electrode terminal (62), and subsequently bend these terminals (61) and (62). It is also possible to form an anode electrode terminal (61) and a cathode electrode terminal (62) separate from the anode lead wire (41) and the cathode lead wire (42), and to connect these terminals (61) and (62) to the respective anode lead wire (41) and cathode lead wire (42) by welding.
Another way to form the metal layer (7), for example, is by applying a metal paste on the surface of the capacitor element (1), or by adhering a metal foil on the surface of the capacitor element (1).
It is also possible to form the metal layer (7) only on either the lateral face of the winding portion (2) of the capacitor element (1) or on the face opposite to the face where the tab terminals (31) and (32) protrude. The metal layer (7) can be formed on the face where the tab terminals (31) and (32) protrude, but, in this case, the metal layer (7) and the tab terminals (31) and (32) need to be electrically insulated.
Below, working examples of the solid electrolytic capacitor of the present invention are explained more specifically. A conventional solid electrolytic capacitor as well as solid electrolytic capacitors according to the first and the third working example described above was made and the result of a performance test is shown in the table below. All of the solid electrolytic capacitor made had a rated voltage of 4V and a static capacitance of 150 μF. The diameter of the capacitor element (1) is 6.3 mm. Furthermore, the thicknesses (h1 to h9) of the structural elements of the solid electrolytic capacitor that are listed in the leftmost column of the table below are as shown in the FIGS. 2 to 4, and 8.
As the table shows, the height of the solid electrolytic capacitor is 5.7 mm for the conventional capacitor, but only 3.7 mm in the working examples of the present invention. In other words, by using the present invention, the height of the solid capacitor becomes 30% or more thinner than conventionally. Since the thickness of the resin coating layer (8) is much thinner than the thickness of the structural elements listed in the table, it is ignored when measuring the height of the solid electrolytic capacitor of the third working example.
The moisture resistance characteristics were tested by subjecting the solid electrolytic capacitors of the conventional form as well as those of the working examples to an atmosphere of 60° C. and 90% humidity for 1000 hours. The rate of change of the static capacitance before and after the test was determined. As the table shows, the static capacitance of the solid electrolytic capacitor of the first working example increased by 10% after the test as the moisture penetrates the outer shell (5) and reaches the capacitor element (1). On the other hand, in the solid electrolytic capacitors of the second and the third working example, because there is aluminum metal layer (7) or fluororesin coating (8) between the capacitor element (1) and the outer shell (5), the rate of change of the static capacitance attains a value (+2%) that is hardly inferior to that of the conventional capacitor (+0.5%).
The explanation of the above mentioned working examples is merely an illustration of the present invention, and is not meant to limit the invention as described in the claims, or to reduce the scope of the claims. In addition, the configuration of the various parts of the present invention is not limited to the above-described working example, and various modifications are, of course, possible within the technological scope described in the claims.
Since the capacitor element is surrounded by the outer shell made of insulating resin, the solid electrolytic capacitor of the present invention is small and thin. The contribution of the lead wires to the equivalent serial resistance is also small. Furthermore, since the coating, made of metal layer or water-repelling resin, surrounds the winding portion of the capacitor element, it decreases the moisture that penetrates the outer shell and seeps into the winding portion.
Number | Date | Country | Kind |
---|---|---|---|
2002069740 | Mar 2002 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP03/03032 | 3/13/2003 | WO |