The present application hereby claims priority under 35 U.S.C. §119 on German patent application number DE 10 2005 027 220.7 filed Jun. 13, 2005, the entire contents of which is hereby incorporated herein by reference.
The invention generally relates to a solid state detector for recording X-ray images.
X-ray detectors designed as solid state detectors are known in digital X-ray imaging for recording X-ray images of an object to be studied, in which X-radiation is converted by a scintillator or a direct converter layer into electrical charge and subsequently read out electronically by way of active readout matrices. The image data representing the study results are subsequently transmitted to an evaluation and display device and further processed for the image compilation (article “Flachbilddetektoren in der Röntgendiagnostik” [flat image detectors in X-ray diagnosis] by M. Spahn, V. Heer, R. Freytag, published in Zeitschrift Radiologe 43, 2004, pages 340 to 350).
For example, DE 101 18 745 C2 discloses mobile wireless solid state detectors which have a power supply in the form of a battery or a rechargeable accumulator. In order to charge the accumulator, which is done via a plug connection or an inductive connection, the solid state detector has to be regularly fitted into a charging station and left there for a few hours.
It is an object of at least one embodiment of the present invention to simplify or improve the usability of such solid state detectors, in particular mobile wireless solid state detectors.
An object may be achieved by a solid state detector.
Owing to the structurally integrated photovoltaic power supply device, the solid state detector according to at least one embodiment of the invention, in particular a mobile and wireless solid state detector, receives a fully autonomized and position-independent power supply which is easy to use, long-lasting and also environmentally friendly. The solid state detector according to at least one embodiment of the invention is independent both of cable connections and battery replacement, or locally and temporally constrained recharging.
According to one refinement of at least one embodiment of the invention, the power supply device includes a rechargeable accumulator. In a way which is advantageous for a particularly simple and reliable independent power supply of the solid state detector, the accumulator is rechargeable by the power supply device. Expediently, the solid state detector includes at least one solar cell. According to a further refinement of at least one embodiment of the invention, a plurality of solar cells are combined to form a solar panel.
Embodiments of the invention and other example refinements according to features will be explained in more detail below with reference to schematically represented example embodiments in the drawings, without thereby restricting the invention to these example embodiments:
The photovoltaic power supply device also contains a unit for receiving, storing and supplying energy, particularly in the form of an accumulator 7, which in turn includes an electrical connection 8 to the solar panel 5. The solar panel 5 conventionally includes a sizeable number of solar cells connected together, which convert light energy into electrical energy. If the solid state detector 1 is not currently being used to record digital X-ray images, then it will be placed by the user so that scattered light, and in particular sunlight, strikes the solar panel 5. Conversion of the light into energy, and thereby charging of the accumulator 7, therefore takes place.
In order to ensure that regular charging takes place, the solid state detector advantageously includes a position sensor, particularly in the form of a gravitation sensor 9, for determining the position of the solid state detector 1 as shown in
As another embodiment of the invention,
As an alternative, it is also possible to arrange solar cells or further solar panels at other available positions on the solid state detector 1, for example laterally. It is possible to arrange a front-side solar panel 11 above the scintillator 1 since solar cells conventionally consist of materials which insignificantly attenuate X-radiation 12.
The photovoltaic power supply device according to at least one embodiment of the invention may act either alone or as one of a plurality of power supply devices integrated in the solid state detector 1. For example, the accumulator 7 may be chargeable both by a solar panel 5; 11 and by an inductive connection. The appropriate recharging option can be selected, so as to extend the operating time, according to where the solid state detector is located or how often it is used. The solid state detector may additionally be supplied by a battery as an auxiliary measure.
An embodiment of the invention can be briefly summarized as follows: in order to simplify the usability of solid state detectors, in particular mobile and wireless solid state detectors, a solid state detector 1 for recording X-ray images is provided with a structurally integrated photovoltaic power supply device. According to one configuration of at least one embodiment of the invention, the solid state detector 1 includes an accumulator 7 and the accumulator 7 is rechargeable by the photovoltaic power supply device, in particular by integrated solar cells.
Example embodiments being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 027 220 | Jun 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4280495 | Lampert | Jul 1981 | A |
4285052 | Bobbitt | Aug 1981 | A |
4310850 | Casler, Jr. | Jan 1982 | A |
4319258 | Harnagel et al. | Mar 1982 | A |
4596266 | Kinghorn et al. | Jun 1986 | A |
5729587 | Betz | Mar 1998 | A |
5969501 | Glidden et al. | Oct 1999 | A |
6064715 | Sklebitz et al. | May 2000 | A |
6069361 | Rubinstein | May 2000 | A |
6225711 | Gupta et al. | May 2001 | B1 |
6624350 | Nixon et al. | Sep 2003 | B2 |
6737573 | Yeh | May 2004 | B2 |
7069124 | Whittaker et al. | Jun 2006 | B1 |
20020150214 | Spahn | Oct 2002 | A1 |
20020180404 | Benn et al. | Dec 2002 | A1 |
20050225281 | Redl | Oct 2005 | A1 |
20070222410 | Lee | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
101 18 745 | Oct 2002 | DE |
Number | Date | Country | |
---|---|---|---|
20060284602 A1 | Dec 2006 | US |