1. Field of the Invention
The present invention relates to a solid-state image sensing device producing method and a solid-state image sensing device provided with a photodiode which can be formed deeply.
2. Description of the Invention
As a solid-state image sensing device, there has been heretofore known a solid-state image sensing device including photo acceptance areas and vertical and horizontal scanning circuits for driving the photo acceptance areas and extracting an image signal as described in JP-A-3-169076.
At present, there is a demand for improvement in sensitivity of the solid-state image sensing device. As measures to attain the improvement in sensitivity of the solid-state image sensing device, there are a method for forming a micro lens on the solid-state image sensing device and a method for forming an intralayer lens to improve light-condensing efficiency. There is however a problem that these methods cannot cope with reduction in size because lowering of light intensity cannot be avoided.
It is therefore conceived that sensitivity of the solid-state image sensing device 100 is improved not by improvement in the light-condensing efficiency but by formation of a photodiode 106 deeply in the direction of the thickness (vertical direction in
The invention is achieved under such circumstances. An object of the invention is to provide a solid-state image sensing device producing method and a solid-state image sensing device provided with a photodiode which can be formed deeply.
The object of the invention is achieved by a method of producing a solid-state image sensing device comprising a photoelectric conversion layer, the method comprising: laminating a first epitaxial layer on a semiconductor substrate; forming a part of the photoelectric conversion layer in the first epitaxial layer; forming a second epitaxial layer by epitaxial growth on the first epitaxial layer; and forming the remaining part of the photoelectric conversion layer in the second epitaxial layer to connect the remaining part of the photoelectric conversion layer to the part of the photoelectric conversion layer in the first epitaxial layer.
A plurality of epitaxial layers such as a third epitaxial layer, a fourth epitaxial layer, etc. may be formed. In this case, the object is achieved by a method of producing a solid-state image sensing device comprising a photoelectric conversion layer, the method comprising: laminating a plurality of epitaxial layers on a semiconductor substrate; and forming the photoelectric conversion layer in the plurality of epitaxial layers so as to be continuous in a direction of lamination of the plurality of epitaxial layers.
The object of the invention is also achieved by a solid-state image sensing device comprising: a semiconductor substrate; a photoelectric conversion layer; a first epitaxial layer laminated on the semiconductor substrate; and a second epitaxial layer formed by epitaxial growth on the first epitaxial layer, wherein at least a part of the photoelectric conversion layer is formed in the first epitaxial layer; and the remaining part of the photoelectric conversion layer is formed in the second epitaxial layer so as to be connected to the part of the photoelectric conversion layer.
A plurality of epitaxial layers such as a third epitaxial layer, a fourth epitaxial layer, etc. may be formed. In this case, the object is achieved by a solid-state image sensing device comprising: a semiconductor substrate; a plurality of epitaxial layers laminated by epitaxial growth on the semiconductor substrate; and a photoelectric conversion layer formed so as to be continuous in a direction of lamination of the plurality of epitaxial layers.
According to the invention, the photoelectric conversion layer is formed in both the first epitaxial layer and the second epitaxial layer laminated on the first epitaxial layer. When the remaining part of the photoelectric conversion layer is formed in the second epitaxial layer after a part of the photoelectric conversion layer is formed in the first epitaxial layer, the photoelectric conversion layer having a sufficient depth in the laminating direction can be formed without necessity of using any high acceleration voltage for injecting ions into a single layer to form such a photoelectric conversion layer. As long as each of the thicknesses of the first epitaxial layer and the second epitaxial layer is set at a value allowed to be used by an ordinary acceleration voltage for ion injection, it is not necessary to increase the film thickness of each photoresist.
Moreover, once deep formation of the photoelectric conversion layer can be avoided when the photoelectric conversion layer is formed. Accordingly, a light absorption region of the photoelectric conversion layer can be prevented from being spread in the planar direction of the substrate, so that reduction in size can be prevented from being hindered.
Embodiments of the invention will be described below in detail with reference to the drawings.
First, a first embodiment of a solid-state image sensing device producing method according to the invention will be described with reference to FIGS. 1 to 7.
For example, a semiconductor substrate 11 is an n-type silicon substrate. As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
In the solid-state image sensing device producing method according to this embodiment, the photoelectric conversion layer (composed of the photodiodes 15 and 33) is formed in both the first epitaxial layer 13 and the second epitaxial layer 16 laminated on the first epitaxial layer 13. Because the remaining part (photodiode 33) of the photoelectric conversion layer is formed in the second epitaxial layer 16 after a part (photodiode 15) of the photoelectric conversion layer is formed in the first epitaxial layer 13, the photoelectric conversion layer having a sufficient depth in the laminating direction can be formed without necessity of using any high acceleration voltage for injecting ions into a single layer to form such a photoelectric conversion layer. As long as each of the thicknesses of the first epitaxial layer 13 and the second epitaxial layer 16 is set at a value allowed to be used by an ordinary acceleration voltage for ion injection, it is not necessary to increase the film thickness of each photoresist.
Moreover, once deep formation of the photoelectric conversion layer can be avoided when the photoelectric conversion layer is formed. Accordingly, the photoelectric conversion layer can be prevented from being spread in the planar direction of the substrate, so that reduction in size of an image region in the solid-state image sensing device 10 can be prevented from being hindered.
Although the solid-state image sensing device 10 according to this embodiment and the method for production thereof are configured so that the first epitaxial layer 13 and the second epitaxial layer 16 are laminated as two layers on the semiconductor substrate 11, configuration may be made so that three or more layers are laminated. That is, the solid-state image sensing device according to the invention and the method for production thereof may be configured so that a plurality of epitaxial layers (e.g. a third epitaxial layer, a fourth epitaxial layer, etc.) are laminated, and that a photoelectric conversion layer is formed so that parts of a photoelectric conversion layer are connected to one another in the direction of lamination of the plurality of epitaxial layers.
Next, a second embodiment of a solid-state image sensing device producing method according to the invention will be described with reference to
First, a high density impurity (n-type) epitaxial layer 12 and a low density impurity (n-type) epitaxial layer 13 serving as a first epitaxial layer are laminated successively on an n-type semiconductor substrate 11 in the same manner as in the first embodiment and in the same procedure as that of
In this embodiment, p-type crystal of a conduction type opposite to that of the first epitaxial layer 13 is then grown on the first epitaxial layer 13 to thereby form a p-type epitaxial layer 41 which serves as a second epitaxial layer.
In this embodiment in which the second epitaxial layer 41 of a conduction type different from that of the first epitaxial layer 13 is formed on the first epitaxial layer 13, as shown in
In the solid-state image sensing device producing method according to this embodiment, the photoelectric conversion layer is formed continuously in the two layers 13 and 41 regardless of whether the conduction types of the first epitaxial layer 13 and the second epitaxial layer 41 are the same or not. Accordingly, it is possible to form the photoelectric conversion layer with a sufficient depth in the laminating direction in the same manner as in the first embodiment. In addition, reduction in size of an image region in the solid-state image sensing device 10 can be prevented from being hindered.
Next, a third embodiment of a solid-state image sensing device producing method according to the invention will be described with reference to FIGS. 10 to 15.
In this embodiment, as shown in
As shown in
Then, n-type impurities of the same conduction type as that of the first epitaxial layer 53 are epitaxially grown on the first epitaxial layer 53 to thereby form a second epitaxial layer 56.
After the second epitaxial layer 56 is formed, as shown in
As shown in
After a photoresist R6 serving as a mask is then formed on the transfer electrode 62, a photodiode 63 is formed by injection of high density impurity n+ ions. On this occasion, the photodiode 63 is formed so that the photodiode 63 comes into contact with the photodiode 55 formed in the first epitaxial layer 53, that is, the photodiode 63 is connected to the photodiode 55 at the bottom of the second epitaxial layer 56.
As shown in
According to this embodiment, after a part (photodiode 55) of the photoelectric conversion layer is formed in the first epitaxial layer 53, the remaining part (photodiode 63) of the photoelectric conversion layer is formed in the second epitaxial layer 56. Accordingly, a photoelectric conversion layer having a sufficient depth in the laminating direction can be formed without necessity of using any high acceleration voltage for injecting ions into a single layer to form such a photoelectric conversion layer. As long as each of the thicknesses of the first epitaxial layer 53 and the second epitaxial layer 56 is set at a value enough to inject ions with an ordinary acceleration voltage, it is not necessary to increase the film thickness of each photoresist.
Moreover, once deep formation of the photoelectric conversion layer can be avoided when the photoelectric conversion layer is formed. Accordingly, a light absorption region of the photoelectric conversion layer can be prevented from being spread in the planar direction of the substrate, so that reduction in size of an image region in the solid-state image sensing device 10 can be prevented from being hindered.
Although this embodiment has been described on the case where the second epitaxial layer 56 is formed by epitaxial growth with the same conduction type as that of the first eptixial layer 53, an n+ type photodiode may be formed by injection of ions after a second epitaxial layer is formed by epitaxial growth with a conduction type (i.e. p-type) different from that of the first epitaxial layer 53 in the same manner as in the second embodiment.
According to the invention, it is possible to provide a solid-state image sensing device producing method and a solid-state image sensing device provided with a photodiode which can be formed deeply.
The entire disclosure of each and every foreign patent application from which the benefit of foreign priority has been claimed in the present application is incorporated herein by reference, as if fully set forth.
Number | Date | Country | Kind |
---|---|---|---|
P2005-219217 | Jul 2005 | JP | national |