The present disclosure relates to a solid-state image sensor, a manufacturing method, and a radiation imaging device. The present disclosure particularly relates to a solid-state image sensor that can suppress deterioration of noise characteristics and dark characteristics when capturing an image of radiation, a manufacturing method, and a radiation imaging device.
An X-ray CMOS image sensor is known as a radiation imaging device that captures images of radiation. The X-ray CMOS image sensor, for example, guides visible light to a CMOS image sensor with a fiber optical plate (FOP) in which lead-glass fibers that completely block X-rays are bundled, after X-rays have been converted into the visible light with a scintillator (refer to, for example, Patent Document 1).
However, if the FOP is placed at an upper layer of an X-ray CMOS image sensor, sensitivity of the X-ray CMOS image sensor decreases because the amount of light is decreased by the FOP. Also, mixture of color deteriorates because an upper layer film of the X-ray CMOS image sensor thickens.
Accordingly, an X-ray CMOS image sensor in which the FOP is not placed at the upper layer has been designed (refer to, for example, Patent Document 2).
Patent Document 1: WO 09/139209
Patent Document 2: Japanese Patent Application Laid-Open No. 2012-159483
However, if the FOP is not placed, the X-rays leak on the CMOS image sensor. As a result, the threshold potential characteristics of a pixel transistor change, and the noise characteristics such as white spots and the dark characteristics deteriorate.
The present disclosure has been made in view of the above situations, and can suppress deterioration of the noise characteristics and the dark characteristics when capturing an image of radiation.
Solutions to Problems
A solid-state image sensor of a first aspect of the present disclosure includes: a radiation converting unit that converts radiation to visible light; and a substrate on which a pixel is formed, the pixel including a photoelectric conversion unit that photoelectrically converts the visible light that has been converted by the radiation converting unit, wherein only an oxide film or a negative fixed charge film is formed on the substrate in an element isolation area of the pixel.
In the first aspect of the present disclosure, a radiation converting unit that converts radiation to visible light and a substrate on which a pixel is formed, the pixel including a photoelectric conversion unit that photoelectrically converts the visible light that has been converted by the radiation converting unit are included, and only an oxide film or a negative fixed charge film is formed on the substrate in an element isolation area of the pixel.
A manufacturing method of a second aspect of the present disclosure is a manufacturing method for a solid-state image sensor. The solid-state image sensor includes: a radiation converting unit that converts radiation to visible light; and a substrate on which a pixel is formed, the pixel including a photoelectric conversion unit that photoelectrically converts the visible light that has been converted by the radiation converting unit, wherein only an oxide film or a negative fixed charge film is formed on the substrate in an element isolation area of the pixel.
In the second aspect of the present invention, a solid-state image sensor is formed. The solid-state image sensor includes: a radiation converting unit that converts radiation to visible light; and a substrate on which a pixel is formed, the pixel including a photoelectric conversion unit that photoelectrically converts the visible light that has been converted by the radiation converting unit, wherein only an oxide film or a negative fixed charge film is formed on the substrate in an element isolation area of the pixel.
A radiation imaging device of a third aspect of the present disclosure includes: a radiation converting unit that converts radiation to visible light; and a substrate on which a pixel is formed, the pixel including a photoelectric conversion unit that photoelectrically converts the visible light that has been converted by the radiation converting unit, wherein only an oxide film or a negative fixed charge film is formed on the substrate in an element isolation area of the pixel.
In the third aspect of the present disclosure, a radiation converting unit that converts radiation to visible light and a substrate on which a pixel is formed, the pixel including a photoelectric conversion unit that photoelectrically converts the visible light that has been converted by the radiation converting unit are included, and only an oxide film or a negative fixed charge film is formed on the substrate in an element isolation area of the pixel.
According to the first and third aspects of the present disclosure, an image of radiation can be captured. Also, according to the first and third aspects of the present disclosure, deterioration of noise characteristics and dark characteristics can be suppressed when an image of radiation is captured.
According to the second aspect of the present disclosure, a solid-state image sensor can be manufactured. Also, according to the second aspect of the present disclosure, a solid-state image sensor that can suppress deterioration of the noise characteristics and the dark characteristics when capturing an image of radiation can be manufactured.
Note that the effects described herein are not necessarily limited. The effect may be any effect described in this disclosure.
(Exemplary Configuration of One Embodiment of Radiation Imaging Device)
The radiation imaging device 10 in
To be specific, the arm 11 of the radiation imaging device 10 includes a micro processing unit (MPU) not illustrated and various processing circuits inside. The arm 11 controls the multi-point parallel X-ray source 13. Also, the arm 11 holds the radiographic stand 12, the multi-point parallel X-ray source 13, the shielding plate 14, and the imaging unit 15. The radiographic stand 12 is a stand on which the object O is placed.
The multi-point parallel X-ray source 13 includes, for example, a plurality of X-ray guides and a plurality of collimators. The multi-point parallel X-ray source 13 emits parallel beams of X-rays to the radiographic stand 12 under the control of the arm 11.
The shielding plate 14 includes a metal such as lead or iron that can block X-rays, and is placed between the multi-point parallel X-ray source 13 and the radiographic stand 12. The object O is placed between the radiographic stand 12 and the shielding plate 14.
An opening 14A is provided at the shielding plate 14. The X-rays that have been emitted from the multi-point parallel X-ray source 13 irradiate the object O via the opening 14A. Therefore, the object O is placed on the radiographic stand 12, such that the position of the opening 14A corresponds to the position of the object to be radiographed.
The photographing unit 15 includes an X-ray CMOS image sensor, and captures an image by converting X-rays that have been emitted from the multi-point parallel X-ray source 13 via the opening 14A into visible light. The photographing unit 15 holds the resultant image, and transmits the image to another device via a network not illustrated.
(Exemplary Configuration of X-ray CMOS Image Sensor)
As illustrated in
The scintillator 31 of the X-ray CMOS image sensor 30 functions as a radiation converting unit, and converts X-rays emitted from the multi-point parallel X-ray source 13 via the opening 14A to visible light, and emits the visible light to the CMOS image sensor 32. The CMOS image sensor 32 captures an image of the visible light incident from the scintillator 31, and generates an image.
(Exemplary Configuration of CMOS Image Sensor)
The CMOS image sensor 32 includes a semiconductor substrate (chip) not illustrated such as a silicon substrate. A pixel area 51, pixel drive lines 52, vertical signal lines 53, a vertical driving unit 54, a column processing unit 55, a horizontal driving unit 56, a system control unit 57, a signal processing unit 58, and a memory unit 59 are formed on the semiconductor substrate.
Pixels are two-dimensionally arranged in a matrix at the pixel area 51 of the CMOS image sensor 32. The pixels include photoelectric conversion elements. The photoelectric conversion elements generate electrical charges corresponding to the amount of incident visible light that has come from the scintillator 31 in
The vertical driving unit 54, the column processing unit 55, the horizontal driving unit 56, and the system control unit 57 are formed. Reading of pixel signals obtained by an image being captured is controlled at each of the pixels.
To be specific, the vertical driving unit 54 includes a shift register, an address decoder, and the like, and drives each pixel of the pixel area 51, for example, row by row. One terminal of each of the pixel drive lines 52 is connected to an output terminal not illustrated corresponding to each row of the vertical driving unit 54. Illustration of a specific configuration of the vertical driving unit 54 is omitted.
The vertical driving unit 54 includes two scanning systems, i.e., a read scanning system and a sweep scanning system.
The read scanning system selects each row in order so as to sequentially read the pixel signal from each pixel row by row, and outputs a transfer signal, a selection signal, and other signals from the output terminal connected to the pixel drive line 52 of the selected row.
In order to sweep (reset) unwanted charge from the photoelectric conversion element, the sweep scanning system outputs a reset signal from the output terminal connected to the pixel drive line 52 of each row, prior to the scanning of the read system by the time of shutter speed. A so-called electronic shutter operation is performed in order row by row by the scanning by this sweep scanning system. Here, the electronic shutter operation is an operation to discard charge of the photoelectric conversion element and start exposure anew (start accumulation of the charge).
The pixel signals output from each of the pixels of the row selected by the read scanning system of the vertical driving unit 54 are supplied to the column processing unit 55 through each of the vertical signal lines 53.
The column processing unit 55 includes a signal processing circuit for each column of the pixel area 51. Each signal processing circuit of the column processing unit 55 performs noise elimination processing such as correlated double sampling (CDS) processing and signal processing such as A/D conversion processing with respect to the pixel signals output through the vertical signal lines 53 from each of the pixels of the selected row. The column processing unit 55 temporarily holds the processed pixel signal.
The horizontal driving unit 56 includes a shift register, an address decoder, and the like, and sequentially selects the signal processing circuits of the column processing unit 55. The selection scanning by this horizontal driving unit 56 enables the pixel signals, subjected to the signal processing at each signal processing circuit of the column processing unit 55, to be sequentially output to the signal processing unit 58.
The system control unit 57 includes, for example, a timing generator that generates various kinds of timing signals. The system control unit 57 controls the vertical driving unit 54, the column processing unit 55, and the horizontal driving unit 56 on the basis of the various kinds of the timing signals generated by the timing generator.
The signal processing unit 58 includes at least an addition processing function. The signal processing unit 58 performs various signal processing, for example, addition processing with respect to the pixel signal output from the column processing unit 55. Here, the signal processing unit 58 causes the memory unit 59 to store, for example, a result of the signal still in process as needed, and refers to the result at necessary timing. The signal processing unit 58 outputs processed pixel signals.
The memory unit 59 includes, for example, a dynamic random access memory (DRAM) or a static random access memory (SRAM).
As illustrated in
The X-rays that irradiate the X-ray CMOS image sensor 30 are converted to the visible light by the scintillator 31 and then enter the CMOS image sensor 32. However, some of the X-rays leak and may enter the CMOS image sensor 32 as they are.
Therefore, interconnections made of a metallic element such as copper or tungsten that generates a high-energy fluorescent X-ray are used as interconnections of the pixel area 51. As a result, an adverse effect on the interconnections of the pixel area 51, caused by the X-rays, can be suppressed. In contrast, dark characteristics deteriorate when interconnections made of, for example, Al or AlCu that generates a low-energy (for example, 1 to 2 keV) fluorescent X-ray are used as the interconnections of the pixel area 51.
In addition, the logic circuit 91 on the side of the scintillator 31 is covered with a metal, such as lead that blocks X-rays, because characteristics of transistors included in the logic circuit 91 largely change when X-rays are emitted thereon.
(Exemplary Configuration of Pixels)
In the example of
The photodiode 121 is a photoelectric conversion element in which the incident visible light is photoelectrically converted to charges (here, electrons) corresponding to the amount of light. The transfer transistor 122 transfers, to the floating diffusion 123, the electrons that have been photoelectrically converted at the photodiode 121. The electrons are transferred in response to the transfer signals supplied via the pixel drive lines 52 in
The reset transistor 112 resets the potential of the floating diffusion 123 in response to the reset signals supplied via the pixel drive lines 52.
The amplification transistor 113 amplifies the potential of the floating diffusion 123, and supplies the selection transistor 114 with voltage corresponding to the potential. The selection transistor 114 supplies the vertical signal lines 53 in
As illustrated in
A FLAT pixel isolation method is used as a method for element isolation of the pixels 111. To be specific, only a silicon oxide film 141, not any oxide element isolation area, is placed on the surface to be irradiated of the semiconductor substrate 90 of an element isolation area 140 placed around the photodiode 121. The details of the FLAT pixel isolation method are described in Japanese Patent Application Laid-Open No. 2007-158031. The thickness of the silicon oxide film 141 is 10 nm or less.
Note that the silicon oxide film 141 is formed not only on the element isolation area 140, but on the whole area of the surface to be irradiated of the semiconductor substrate 90. Here, the thickness of the oxide film is the same at the element isolation area 140 and at an area other than the element isolation area 140. However, the thickness of the oxide film may be different as long as the thickness is 10 nm or less.
As described above, in the CMOS image sensor 32, the method for the element isolation is the FLAT pixel isolation method, and the thickness of the silicon oxide film 141 is 10 nm or less. Therefore, generation of positive fixed charge in the silicon oxide film 141 and generation of an interface state, caused by the irradiation of the X-rays, at the interface between the silicon oxide film 141 and the semiconductor substrate 90 can be suppressed. As a result, for example, reduction in element isolation withstand voltage and deterioration of the noise characteristics and the dark characteristics can be suppressed.
Note that the CMOS image sensor 32 here satisfies both of the conditions, i.e., the method for the element isolation is the FLAT pixel isolation method, and the thickness of the silicon oxide film 141 is 10 nm or less. However, the CMOS image sensor 32 may satisfy only one of the conditions. Even in this case, the CMOS image sensor 32 can suppress, for example, reduction in element isolation withstand voltage and deterioration of the noise characteristics and the dark characteristics.
In addition, a relatively shallow highly concentrated semiconductor area 142 is formed on the side of the surface to be irradiated of the semiconductor substrate 90 of the element isolation area 140. A semiconductor area 143 which is deep enough for the element isolation is formed continuously from the semiconductor area 142.
The photodiode 121 has a hole accumulation diode (HAD) structure. A pinning area 144 having an impurity concentration of 1019 atoms/cm3 or more is formed on the side of the surface to be irradiated (outside surface) in the semiconductor substrate 90, with respect to the photodiode 121. A dark current can be suppressed by the pinning area 144 having an impurity concentration of 1019 atoms/cm3 or more.
As illustrated in
Note that the silicon oxide film 141 is formed on the whole area of the surface to be irradiated of the semiconductor substrate 90 in the examples in
As illustrated in
As illustrated in
As illustrated in
As mentioned above, the negative fixed charge generated in the negative fixed charge film 161 by irradiation of the X-rays can be increased when the negative fixed charge film 161 is formed on the semiconductor substrate 90. As a result, the pinning is enhanced and the dark current can be suppressed.
Note that, although the illustrations are omitted, the reset transistor 112 and the selection transistor 114 are configured similarly to the amplification transistor 113.
Whether to form the silicon oxide film 141 or the negative fixed charge film 161 at the part below the side wall of each of the transistors is determined, for example, according to the demanded characteristic of the transistor.
As illustrated in
In addition, when LDDs 181 are formed in the semiconductor substrate 90 at the part below the side wall 113B as illustrated in
(Description of Manufacturing Method for CMOS Image Sensor)
As illustrated in A in
Next, as illustrated in B in
Next, as illustrated in D in
Next, as illustrated in F in
Thereafter, as illustrated in G in
A planarized film is formed on a surface of the CMOS image sensor 32 after manufacturing of the CMOS image sensor 32. The surface is where the transfer transistor 122 and the like are placed. The CMOS image sensor 32 is connected to the scintillator 31 via the planarized film.
A to F in
Thereafter, as illustrated in H in
The planarized film is formed on a surface of the CMOS image sensor 32 after manufacturing of the CMOS image sensor 32. The surface is where the transfer transistor 122 and the like are placed. The CMOS image sensor 32 is connected to the scintillator 31 via the planarized film.
A to C in
Thereafter, as illustrated in E in
Thereafter, as illustrated in G in
A planarized film is formed on a surface of the CMOS image sensor 32 after manufacturing of the CMOS image sensor 32. The surface is where the transfer transistor 122 and the like are placed. The CMOS image sensor 32 is connected to the scintillator 31 via the planarized film.
Note that although the illustrations are omitted in the above descriptions, in fact, the SiN film is formed on the silicon oxide film 141 so as to cover the upper parts of the gate electrodes of the reset transistor 112, the amplification transistor 113, the selection transistor 114, and the transfer transistor 122. The thickness of the SiN film is 20 nm or more and 200 nm or less. A SiO2 film is formed as the planarized film on this SiN film.
The effects described herein are just examples, and are not limited to these examples and may include different effects.
Note that the present disclosed embodiment is not limited to the embodiment mentioned above, and various modifications can be applied thereto as long as they do not depart from the gist of the present disclosure.
The present disclosure can be applied to, for example, a radiation imaging device that captures an image of radiation other than an X-ray.
Note that LDDs may be formed similarly to the amplification transistor 113, on the semiconductor substrate 90 at the part below the side wall 122B of the transfer transistor 122.
Note that the present disclosure can also be configured as follows.
(1)
A solid-state image sensor including:
(2)
The solid-state image sensor according to (1), wherein the oxide film has a thickness of 10 nanometers or less.
(3)
The solid-state image sensor according (2), wherein the oxide film is formed on the whole area of the substrate.
(4)
The solid-state image sensor according to any of (1) to (3), wherein an impurity concentration of a surface corresponding to the photoelectric conversion unit in the substrate is 1019 atoms/cm3 or more.
(5)
The solid-state image sensor according to any of (1) to (4), wherein an interconnection of the pixel is formed of copper or tungsten.
(6)
The solid-state image sensor according to any of (1) to (5), wherein
(7)
The solid-state image sensor according to any of (1) to (5), wherein
(8)
The solid-state image sensor according to any of (1) to (7), wherein the negative fixed charge film is HfO2, AL2O3 or TaO2.
(9)
The solid-state image sensor according to any of (1) to (8), further including:
(10)
A manufacturing method for a solid-state image sensor including:
(11)
A radiation imaging device including:
10 Radiation imaging device
31 Scintillator
90 Semiconductor substrate
111 Pixel
121 Photodiode
122 Transfer transistor
122A Gate electrode
122B Side wall
140 Element isolation area
141 Silicon oxide film
161 Negative fixed charge film
301 SiN film
Number | Date | Country | Kind |
---|---|---|---|
2014-168205 | Aug 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/072723 | 8/11/2015 | WO | 00 |