The present invention contains subject matter related to Japanese Patent Application JP 2007-044447 filed in the Japanese Patent Office on Feb. 23, 2007, the entire contents of which being incorporated herein by reference.
1. Field of the Invention
The present invention relates to a solid state imaging device and an imaging apparatus.
2. Description of the Related Art
Heretofore, a so-called vertical overflow drain solid state imaging device is proposed in which excess electrons in a light receiving part are drained to the substrate side and excess holes are evacuated to a ground part (GND) from a channel stop part provided around individual photosensors on the substrate surface through a P-type region disposed at a deep place in the substrate.
Moreover, a structure is disclosed in which excess holes are partially drained to GND out of a channel stop part around individual photosensors on the substrate surface (hereinafter, referred to as a route A), the remaining excess holes are moved in an overflow barrier area, the excess holes are transferred to the outer part of an solid state imaging device through the overflow barrier area and the holes are evacuated to the GND connected to the outer part (hereinafter, referred to as a route B) (for example, see Patent Reference 1 (JP-A-2001-15729)). In the case of this structure, since a voltage drop occurs in the place apart from the ground part, holes are delayed to migrate in the photosensor, and overflow barrier potential on the route B fluctuates in the surrounding area and the center part of an effective imaging area to cause shading in saturated signal electrons, which leads to degraded image quality of a taken image. In other words, in order to solve this problem, it is necessary that the resistance in the overflow barrier area on the route B that is the path of the excess holes is reduced to suppress the voltage drop caused by holes passing through the route B and to suppress the overflow barrier potential from fluctuating in the center part and the surrounding area of the image area.
In order to reduce the resistance in the overflow barrier area, it is considered that the impurity concentration in the overflow barrier area is increased. However, in this case, it is difficult to empty the overflow barrier area because the overflow barrier area is neutralized, which leads to a problem of blooming when a large light quantity enters.
On the other hand, in the case in which the impurity concentration in the overflow barrier area is decreased, the overflow barrier area can be emptied out because the potential in the overflow barrier area rises, and thus the problem of blooming when a large light quantity enters can be improved. However, this causes a problem that the resistance in the overflow barrier area is increased to cause shading when a large light quantity enters.
In other words, the invention described in the Patent Reference 1, since there are trade-offs between the overflow barrier area being emptied out and a reduced resistance, there is a problem that it is difficult to suppress both of the shading and blooming in saturated signal electrons.
On the other hand, in the solid state imaging device, with the scale down of the pixel size because of the advance in multipixel and miniaturization, the spacings between pixels in the vertical direction and in the horizontal direction are increasingly narrowed. On this account, in the structure of the channel stop areas formed only on the surface of a semiconductor substrate, it is difficult to efficiently prevent a phenomenon that photoelectrically converted electric charges are mixed into the adjacent pixels in the photosensor part (hereinafter, referred to as color mixture). Therefore, in order to prevent this color mixture, it is necessary to form a P-type region formed below the channel stop area between pixels and a vertical charge transfer part (in the vertical charge transfer part, the area deeper from the semiconductor substrate surface than the vertical charge transfer channel formed in an N-type region) to a deeper area in the semiconductor substrate in the depth direction.
Then, a method is disclosed in which a P-type impurity to form a channel stop area is formed by a plurality of times of ion injection with different injection energies (for example, see Patent Reference 2 (JP-A-2004-165462)). However, in the case of using this method, the impurity concentration becomes nonuniform in the depth direction, and it is difficult to form a channel stop area of uniform impurity concentration to a deeper area. In addition, when the pixel size is scaled down, a so-called narrow channel effect occurs in which a P+-diffusion layer configuring the channel stop area around each of the photosensors narrows the path of electric charges.
In the case of using the method described in Patent Reference 2, as described above, the impurity concentration of the channel stop area becomes nonuniform in the depth direction, and in addition to this, the narrow channel effect occurs to cause the potential in the area to drop, and the minimum point of the potential in the overflow barrier area is shifted to a position shallow from the substrate surface.
Therefore, in the case in which the pixel size is small, it is difficult to form the overflow barrier area to a position deep from the substrate surface. In addition, desirably, the overflow barrier area is formed in a position deep to some extent from the substrate surface in order to widen the area to be photoelectrically converted by the light incident into the photosensor for improved sensitivity. However, as described above, in the case in which the pixel size is small, it is difficult to form the overflow barrier area at a deep position, which leads to a problem that it is difficult to allow a solid state imaging device to have higher sensitivity.
Moreover, when the channel stop area becomes nonuniform in the depth direction, the potential becomes wavy in the depth direction, which is not preferable to drain excess holes out of the channel stop area to the front surface side of the substrate.
The problem of difficulty of higher sensitivity and the problem of a nonuniform channel stop area become particularly problematic when the pixel size is 2 μm or below.
In addition, the method described in Patent Reference 2 has a problem that the number of process steps is increased. Moreover, it is necessary to form a thicker ion injection mask formed of a resist because it is necessary to form the channel stop part by high energy ion implantation, which causes a difficulty of microprocessing a thick resist film, also leading to a problem that it is difficult to form pixels finer.
In addition, Patent Reference 1 discloses the invention in which such a structure is formed that the channel stop part is formed from the silicon substrate surface to a deeper position than the photosensor, whereby holes to be moved along the route B are partially drained from the channel stop part formed at a deeper part to the GND on the front surface side of the substrate (route C).
As described above, in the case in which the pixel size is scaled down, the sensitivity is also dropped even though the method described in Patent Reference 2 is used, and thus the sensitivity is dropped even though the method is adapted to the invention described in Patent Reference 1. Therefore, in this case, it is difficult to attain the prevention of color mixture as well as a higher sensitivity. Thus, in the case in which the method described in Patent Reference 2 is adapted to the invention described in Patent Reference 1, there is a problem that it is difficult to scale the pixel size down.
On the other hand, for a scheme of preventing the sensitivity from being dropped in the case in which the pixel size is scaled down, it can be considered that electric charges obtained by photoelectric conversion in the area other than the light receiving part, that is, electric charges obtained below the vertical transfer part are allowed for use as signal electric charges. In order to allow electric charges obtained by photoelectric conversion below the vertical transfer part for use as signal electric charges as well, for example, Patent Reference 3 (JP-A-2004-356157) discloses a structure in which a twin P-well structure is formed that a second P-well region is formed below the first P-well region through an N−-type impurity area and a channel stop part for pixel separation is formed deeper to the position of the second P-type well region and electrically connected to the P-type well region. Also in this case, it is necessary to form the channel stop part deeper. On this account, even though the method described in Patent Reference 3 is adapted, it has a problem similar to the case in which the method described in Patent Reference 2 is adapted to the invention described in Patent Reference 1 as described above.
It is desirable to solve a problem that in the case in which the pixel size is scaled down, it is difficult to prevent color mixture as well as to achieve a higher sensitivity.
It is also desirable to prevent color mixture, to achieve a higher sensitivity, and to scale the pixel size down.
A solid state imaging device according to an embodiment of the invention is a solid state imaging device having an image area in which a plurality of light receiving pixels is arranged on a semiconductor substrate of a first conductive type, the solid state imaging device including: a plurality of photosensor parts formed by providing on the semiconductor substrate a light receiving area and a photoelectric conversion area both configuring the light receiving pixel; a first well region formed on the opposite side of the light receiving area with the photoelectric conversion area of the photosensor part being interposed therebetween, having a second conductive type opposite to the first conductive type, and forming an overflow barrier; a second well region of the second conductive type formed in an area except a place corresponding to the photosensor part on the opposite side of the photoelectric conversion area with the first well region being interposed therebetween; and a first conductive region formed in an area corresponding to the photosensor part on the opposite side of the photoelectric conversion area with the first well region being interposed therebetween.
In the solid state imaging device according to the embodiment of the invention, since the second well region is formed in the area except the place corresponding to the photosensor part, the color mixture can be prevented even though the pixel size is scaled down. In addition, the dependency of sensitivity and spectral response on the voltage Vsub to apply can be improved. In other words, since the second well region exists at a position deeper than the first well region, even though the voltage Vsub is increased, the position of the minimum value of potential is in the first well region and is not shifted to the position near the photosensor part. Thus, a higher sensitivity can be implemented as well as an improved dependency of sensitivity and spectral response on the voltage Vsub to apply can be implemented. Accordingly, even though the pixel size is scaled down, the color mixture can be prevented, and a higher sensitivity can be implemented as well as an improved dependency of sensitivity and spectral response on the voltage Vsub to apply can be implemented.
An imaging apparatus according to an embodiment of the invention is an imaging apparatus including a solid state imaging device as an imaging device, wherein the solid state imaging device has an image area in which a plurality of light receiving pixels is arranged on a semiconductor substrate of a first conductive type; a plurality of photosensor parts formed in which a light receiving area and a photoelectric conversion area both configuring the light receiving pixel are provided on the semiconductor substrate; a first well region formed on the opposite side of the light receiving area with the photoelectric conversion area of the photosensor part being interposed therebetween, having a second conductive type opposite to the first conductive type, and forming an overflow barrier; a second well region of the second conductive type formed in an area except a place corresponding to the photosensor part on the opposite side of the photoelectric conversion area with the first well region being interposed therebetween; and a first conductive region formed in an area corresponding to the photosensor part on the opposite side of the photoelectric conversion area with the first well region being interposed therebetween.
In the imaging apparatus according to the embodiment of the invention, the solid state imaging device according to the embodiment of the invention is used for the imaging device. Thus, even though the pixel size is scaled down, the color mixture can be prevented, and a higher sensitivity can be implemented as well as an improved dependency of sensitivity and spectral response on the voltage Vsub to apply can be intended.
In accordance with the solid state imaging device according to the embodiment of the invention, even though the pixel size is scaled down, the color mixture can be prevented, and a higher sensitivity can be implemented as well as an improved dependency of sensitivity and spectral response on the voltage Vsub to apply can be intended. Therefore, such advantages are provided that a higher definition and a higher image quality of taken images are possible.
In accordance with the imaging apparatus according to the embodiment of the invention, even though the pixel size of the solid state imaging device used for the imaging device is scaled down, the color mixture can be prevented, and a higher sensitivity can be implemented as well as an improved dependency of sensitivity and spectral response on the voltage Vsub to apply can be intended. Thus, such advantages are provided that a higher definition and a higher image quality of taken images are possible.
A solid state imaging device according to an embodiment (first embodiment) of the invention will be described with reference to cross sections shown in
In addition,
As shown in
In addition, in the epitaxial region 12, on the surface on the opposite side of the semiconductor substrate 11, a photosensor part 21 is formed that photoelectrically converts the light incident into the solid state imaging device 1. The photosensor part 21 is configured of a photoelectric conversion area 22 formed of an N-type region, and a light receiving area 23 that is a hole accumulation layer formed of a P+-type region formed on the front layer of the photoelectric conversion area 22.
On one side of the photosensor part 21 (in
On the semiconductor substrate 11, as apart from the first well region 13, a second well region 14 of the second conductive type (P-type) is formed that has a higher impurity concentration than that of the first well region 13. In other words, on the opposite side of the photoelectric conversion area 22 with the first well region 13 being interposed therebetween, the second well region 14 is formed. Therefore, between the first well region 13 and the second well region 14, a part of the epitaxial region 12 exists as the second conductive type region. The second well region 14 is formed by ion injection.
In addition to this, as shown in
Then, as shown in
Therefore, the second well region 14 is formed in a mesh in the area corresponding to the image area 5 in which a plurality of the photosensor parts 21 is formed in a matrix. It is sufficient that the second well region 14 is formed so as to leave out the places corresponding to the photosensor parts 21, and in the area in which the second well region 14 formed in a mesh is not provided, a first conductive region 15 is formed. For the shape of the area in which the first conductive region 15 is formed, various shapes can be adopted such as a rectangle, a circular shape, an oval, and an ellipse.
In addition, the size of the first conductive region 15 is not restricted to the size smaller than the size of the photosensor part 21. The size thereof may be the size of the area in which the area greater than the photosensor part 21 (for example, the area including the photosensor part 21 as well as parts of the readout part 31 and the channel stop area 51) is projected downward.
In addition, the second well region 14 may not be in a mesh. The second well region 14 may have the area in lines in which the second well region 14 is not formed so as to corresponds to the rows or columns of the photosensor parts 21 adjacent to each other in the row direction or in the column direction. Then, as shown in
In addition, holes generated below the photosensor part 21 and holes generated except below the photosensor part 21, for example, below the vertical charge transfer part 41, flow through the second well region 14. In other words, holes pass through the second well region 14 of the second conductive type (P-type) provided around the first conductive region 15 (between the pixels) arranged at the places corresponding to the photosensor parts 21, and the holes flow into the ground part 71 provided on the outer part of the image area 5.
Moreover, the second well region 14 is provided so as to form a path that the holes having overflowed beyond the first well region 13 are carried to the ground part 71 provided on the outer part of the image area 5. As described above, such a path is formed that the overflowed electric charges are partially carried so as to pass through the area that is the area on the opposite side of the photoelectric conversion area 22 with the first well region 13 being interposed therebetween except the places corresponding to the photosensor parts 21 and the overflowed electric charges are partially carried to the ground part 71.
As shown in
The second well region 14 and the first conductive region 15 may have different depths from the substrate surface. Preferably, as shown in
In addition, on the epitaxial region 12 in the readout part 31 and the vertical charge transfer part 41, an electrode (a transfer electrode and a readout electrode) 61 is formed through an insulating film (not shown). Moreover, a light shielding film 62 is formed trough an insulating film (not shown), and on the photosensor part 21, an opening 63 is formed in the light shielding film 62.
Next, a method of fabricating the solid state imaging device 1 will be described below.
First, the epitaxial region 12 of the second conductive type is formed on the surface of the semiconductor substrate 11 of the first conductive type by epitaxial growth such as CVD. Subsequently, the first well region 13, the second well region 14 and the area 15 of the first conductive type are formed at the positions in the desired depth in the epitaxial region 12 by ion injection. Then, the readout part 31, the photoelectric conversion area 22, the light receiving area 23, the P-type region 43, the N-type region 42, and the channel stop area 51 are formed near the surface of the epitaxial region 12 by ion injection. Subsequently, the insulating film, the electrode 61, and the light shielding film 62 are formed.
The second well region 14 is formed to have an impurity concentration equal to or greater than 1×1016 cm−3. The second well region 14 is formed to have such a high impurity concentration, whereby the second well region 14 is formed to be an area having a low potential, and holes having passed beyond the first well region 13 and flowed into the second well region 14 are allowed to flow through the second well region 14. Therefore, the holes having flowed into the second well region 14 are allowed to flow to the ground part 71, and the holes are allowed to evacuate to outside the solid state imaging device 1 through the ground part 71. Moreover, since the second well region 14 has a high impurity concentration and a low resistance, a voltage drop can be suppressed that is caused by the excess holes flowing through the area. Therefore, since the overflow barrier potential can be prevented from fluctuating in the center part and the surrounding area of the image area 5, shading in the saturated signal electrons can be suppressed.
In addition, desirably, the second well region 14 has an impurity concentration one digit greater than that of the first well region 13. Thus, the potential difference between the first well region 13 and the second well region 14 can be formed moderately, and it can be conducted more effectively that the excess holes pass over the first well region 13, flow through the second well region 14 and evacuate from the ground part 71 in the outer part of the image area to outside.
Preferably, the first well region 13 has an impurity concentration of about 1×1015 cm−3. In the case in which the first well region 13 is formed to have this impurity concentration, the holes in the first well region 13 are emptied out and the first well region 13 effectively operates as the overflow barrier, whereby the excess electric charges generated in the photosensor part 21 are allowed to effectively evacuate to the semiconductor substrate side through the places corresponding to the photosensor parts 21, that is, through the first conductive region 15. Accordingly, blooming can be suppressed.
Preferably, the first conductive region 15 has almost the same impurity concentration as that of the second well region 14.
As described above, since the P-type region (the second well region 14) with a high impurity concentration and the N-type region (the first conductive region 15) with a high impurity concentration are both provided, the first well region 13 that is the overflow barrier area can be emptied out, blooming can be suppressed, the second well region 14 through which excess holes are carried can be an area having a low resistance, and shading in the saturated signal electrons can be suppressed.
Therefore, as described later, excess ones among photoelectrically converted electrons are carried into the semiconductor substrate 11 through the first conductive region 15. However, in the case in which the impurity concentration of the semiconductor substrate 11 is high enough, excess electrons can be carried to the semiconductor substrate 11 through the area in which the second well regions 14 formed in a mesh are not provided, without forming the first conductive region 15 by ion injection. Therefore, in the case in which the impurity concentration of the semiconductor substrate 11 is high enough, the area in which the second well region 14 is not formed may have the same conductive type and impurity concentration as those of the semiconductor substrate 11.
Moreover, the first well region 13 is formed as well as the second well region 14 is formed, whereby the dependency of sensitivity and spectral response on the voltage Vsub applied to the substrate can be improved. In other words, in the case of this structure in which the first well region 13 does not exist, when the voltage Vsub is increased, the position of the minimum value of potential is shifted to the position in shallower depth. On this account, the color of a taken image changes, and the red color sensitivity particularly drops. However, as in the embodiment, the first well region 13 is formed as well as the second well region 14 is formed, whereby the dependency of the red color sensitivity on the voltage Vsub can be particularly improved.
In addition, for example, the first well region 13 is formed to have a depth of 3 μm or greater, preferably 4 μm or greater, from the surface of the epitaxial region 12. As described above, the first well region 13 that is the overflow barrier is formed at a deep position, whereby the solid state imaging device 1 can be formed with higher sensitivity.
In addition, for example, the second well region 14 and the first conductive region 15 are formed to have a depth of 4 μm or greater, preferably 5 μm or greater from the surface of the epitaxial region 12.
In addition, preferably, the second well region 14 is formed at a deeper position about 1 μm than the first well region 13 from the substrate surface. In this case, it can be more effectively conducted that the excess holes are carried to the second well region 14 and drained from the ground part 71 in the outer part of the image area 5 to outside.
With this structure, even though the pixel size is scaled down, the influence of the narrow channel effect can be suppressed, and the minimum value of overflow barrier potential can be maintained at a deeper position from the photoelectric conversion area 22. Therefore, even in the case a finer pixel size, the solid state imaging device of high sensitivity can be implemented.
Here, potentials on line A-A′ and line B-B′ in
As shown in
In addition, as shown in
In addition, as shown in
On the other hand, electrons photoelectrically converted below the vertical charge transfer part 41 and below the channel stop area 51 between the photosensor parts 21 in the vertical direction do not go to the semiconductor substrate 11 side, and the electrons flow into each of the vertical charge transfer parts 41 and a single photosensor part 21 corresponding to each of the channel stop areas 51 between the photosensor parts 21 in the vertical direction. Thus, the sensitivity of the solid state imaging device 1 is improved correspondingly. In addition, excess electrons pass through the first conductive region 15 and flow into the semiconductor substrate 11. Therefore, the blooming phenomenon can be suppressed in which excess electric charges leak into the vertical charge transfer part 41. Here, the first well region 13 having a higher impurity concentration than that of the epitaxial region 12 becomes the overflow barrier.
In accordance with the solid state imaging device 1 according to the embodiment of the invention, the first well region 13 can be emptied out and the excess electrons can be drained from the semiconductor substrate 11 side through the first conductive region 15, and thus blooming can be suppressed. Moreover, the excess holes are allowed to evacuate from the front surface side of the substrate outside the image area 5 through the channel stop area 51 formed on the front surface side of the substrate, or from the front surface side of the substrate outside the image area 5 through the second well region 14. In addition to this, the second well region 14 is formed at a deeper position than the first well region 13 and the impurity concentration in the second well region 14 is made higher than that in the epitaxial region 12 and in the first well region 13, whereby the voltage drop is suppressed as well as the excess holes are allowed to partially flow into the outer part of the image area 5 through the second well region 14. Therefore, image quality variations (shading in the saturated signal electrons) can be suppressed, which are caused by potential fluctuations between the center part and the surrounding area in the image area 5.
Moreover, in accordance with the solid state imaging device 1 according to the embodiment of the invention, since the sensitivity can be improved, the pixel size can be more scaled down. In addition, since the excess holes generated in the deeper part of the substrate are allowed to evacuate from the front surface side of the substrate outside the image area 5 through the second well region 14, it is unnecessary to drain the excess holes generated in the deeper part of the substrate from the front surface side of the substrate outside the image area 5 through the channel stop area 51 formed on the front surface side of the substrate. Thus, it is unnecessary to form the P-type region 43 deeper from the substrate surface, the P-type region 43 being formed below the channel stop area 51 between the photosensor parts 21 in the vertical direction and below the vertical charge transfer part 41 (in the vertical charge transfer part 41, the area deeper than the vertical charge transfer channel formed in the N-type region 42 from the semiconductor substrate surface). Therefore, the narrow channel effect can be reduced, and the problem of using the method described in Patent Reference 2 does not occur. Accordingly, the pixel size can be more scaled down.
Next, a solid state imaging device according to a second embodiment of the invention will be described with reference to a cross section depicting the schematic configuration shown in
As shown in
In the epitaxial region 12, by ion injection, for example, a first well region 13 of a second conductive type (P-type) is formed to be an overflow barrier with a higher impurity concentration than that of the epitaxial region 12. In addition, in the epitaxial region 12, on the surface on the opposite side of the semiconductor substrate 11, a photosensor part 21 is formed that photoelectrically converts the light incident into the solid state imaging device 2. The photosensor part 21 is configured of a photoelectric conversion area 22 formed of an N-type region and a light receiving area 23 that is a hole accumulation layer formed of a P+-type region formed on the front layer of the photoelectric conversion area 22.
On one side of the photosensor part 21, a vertical charge transfer part 41 is formed through a readout part 31. The vertical charge transfer part 41 is formed of an N-type region 42, and a P-type region 43 is formed thereunder. Moreover, on one side of the vertical charge transfer part 41 opposite to the readout part 31, a channel stop area 51 formed of a P-type region is formed. In addition, a channel stop part (not shown) is also formed on the other side of the photosensor part 21.
Moreover, as apart from the first well region 13, a second well region 14 of a second conductive type (P-type) is formed that has a higher impurity concentration than that of the first well region 13. In other words, on the opposite side of the photoelectric conversion area 22 with the first well region 13 being interposed therebetween, the second well region 14 is formed. Therefore, between the first well region 13 and the second well region 14, the epitaxial region 12 partially exists as the second conductive type region.
In addition to this, in the solid state imaging device 2, an image area is provided in which the photosensor parts 21 are formed in a matrix, and a ground part 71 is provided in the outer part of the image area.
The second well region 14 is formed so as to leave out the places corresponding to the photosensor parts 21. In other words, the second well region 14 is formed so as to leave out the areas in which the area functioning as the photosensor part 21 (for example, the light incident area of the light receiving area 23) is projected downward.
Therefore, the second well region 14 is formed in a mesh in the are a corresponding to the image area 5 in which a plurality of the photosensor parts 21 is formed in a matrix. It is sufficient that the second well region 14 is formed so as to leave out the places corresponding to the photosensor parts 21. In the area in which the second well region 14 formed in a mesh is not provided, a first conductive region 15 is formed.
In addition, on the epitaxial region 12 in the readout part 31 and the vertical charge transfer part 41, an electrode (a transfer electrode and a readout electrode) 61 is formed through an insulating film (not shown). Moreover, a light shielding film 62 is formed through an insulating film (not shown), and on the photosensor part 21, an opening 63 is formed in the light shielding film 62.
Next, an imaging apparatus according to the embodiment of the invention will be described with reference to a block diagram shown in
An imaging apparatus 101 has a solid state imaging device 111. On the light collecting side of the solid state imaging device 111, an image forming optical system 121 is provided, and to the solid state imaging device 111, a drive circuit 131 that drives the optical system 121 is connected. In addition, to the solid state imaging device 111, a signal processing circuit 141 is connected that generates image signals from the signals photoelectrically converted in the solid state imaging device 111. The image signals generated by the signal processing circuit 141 are stored in an image storage part 151. In the imaging apparatus 101, the solid state imaging device 1 or the solid state imaging device 2 according to the embodiment of the invention can be used for the solid state imaging device 111.
Since the imaging apparatus 101 according to the embodiment of the invention uses the solid state imaging device 1 or the solid state imaging device 2 according to the embodiment of the invention for the imaging device, the apparatus 101 can obtain images of high sensitivity. Moreover, since the solid state imaging device 1 or the solid state imaging device 2 according to the embodiment of the invention is excellent in the dependency of sensitivity and spectral response on the voltage Vsub, the imaging apparatus 101 using the same can obtain stable images. In addition, in accordance with the solid state imaging device 1 according to the embodiment of the invention, since the pixel can be more scaled down, the imaging apparatus 101 using the same can obtain images of higher definition than using a solid state imaging device before in the same size. Similarly, in the solid state imaging device 1 or the solid state imaging device 2 according to the embodiment of the invention, in the case of using the same pixel number, a solid state imaging device before can be reduced in size as well. Therefore, the imaging apparatus 101 using the solid state imaging device 1 or the solid state imaging device 2 according to the embodiment of the invention can be reduced in size than before.
Moreover, the imaging apparatus 101 according to the embodiment of the invention is not restricted to the configurations above, which can be adapted to any configurations of imaging apparatuses as long as those using a solid state imaging device.
The solid state imaging devices 1 and 2 may be formed as one chip, or may be a module with the imaging function, in which the imaging part, the signal processing part and/or the optical system are combined in a package. In addition, the embodiment of the invention can be adapted not only to the solid state imaging device but also to any imaging apparatuses. In this case, as the imaging apparatus, the effect of higher image quality can be obtained. Here, the imaging apparatus means a camera and a cellular telephone having the imaging function, for example. In addition, the term “imaging” includes capturing images in general camera shooting as well as includes fingerprint detection in a broad sense.
It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors in so far as they are within the scope of the appended claims or the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2007-044447 | Feb 2007 | JP | national |