Solid Supports and Methods for Depleting and/or Enriching Library Fragments Prepared from Biosamples

Information

  • Patent Application
  • 20230094911
  • Publication Number
    20230094911
  • Date Filed
    September 30, 2022
    2 years ago
  • Date Published
    March 30, 2023
    a year ago
Abstract
Described herein are solid supports and methods for depleting library fragments prepared from unwanted RNA sequences and/or enriching library fragments prepared from desired RNA sequences. These methods may incorporate microfluidics and flowcells for greater ease of use. Libraries enriched or depleted with the present methods may be used for sequencing. Also described are probes and methods for enzymatic depletion of ribosomal RNA from human microbiome samples.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Nov. 22, 2022, is named “2022-11-22_01243-0028-00US_ST26” and is 1,424,744 bytes in size.


DESCRIPTION
Field

This disclosure relates to solid supports and methods for depleting library fragments prepared from unwanted RNA sequences and/or enriching library fragments prepared from desired RNA sequences. Libraries enriched or depleted with the present methods may be used to generate sequencing data. Also described are probes and methods for enzymatic depletion of ribosomal RNA from human microbiome samples.


Background

Samples comprising RNA often have a high abundance of RNA that is not of interest to the user. For example, ribosomal RNA (rRNA) typically comprises most of the RNA molecules in total RNA (approximately 80%-95%). One challenge in RNA sequencing for gene expression analysis is that following RNA extraction most of the extracted material is dominated by a small number of highly abundant transcripts, such as the non-coding ribosomal ribonucleic acids (rRNAs). In a total RNA sample from human blood, globin messenger RNAs (mRNAs) can be present at a dominating level. Accordingly, sequencing RNA transcripts (RNA-Seq) is often inefficient and cost prohibitive for many users and applications. There is a need to deplete abundant transcripts, such as rRNAs and mRNAs, in a sample prior to RNA sequencing.


To circumvent the barrier of abundant unwanted RNA, several solutions have emerged including RNase H-mediated depletion. This method involves hybridizing DNA probes complementary to known rRNA sequences followed by DNA:RNA hybrid-specific cleavage by RNase H and subsequent removal via wash steps. This methodology is implemented as part of the current Illumina Total RNA Stranded Library Prep workflow and New England Biolabs NEBNext rRNA Depletion Kit and RNA depletion methods as described in U.S. Pat. Nos. 9,745,570 and 9,005,891. While these methods are effective, drawbacks include upfront depletion, increased costs, and increased hands-on time (HOT).


Improvements are needed for methods of RNA depletion from microbiome samples. The microbiome plays a critical role in human health and disease (Cho et al. Nat. Rev. Genet. 13:260-70 (2012)). Over the past decade, next-generation sequencing-based analyses have provided insights into the composition of the microbiome across body sites and life stages and have begun to uncover correlations between microbial taxa or microbial functions and disease states (see, for example, Gilbert, J. A. et al. Nat. Med. 24:392-400 (2018); Durack and Lynch J. Exp. Med. 216(1):20-40 (2019); Lloyd-Price et al. Genome Med. 8:51 (2016)). Beyond genomic analysis of microbiome composition, multi-omic data incorporate measurements of the microbiota-associated transcriptome, proteome, or metabolome providing further insights into microbiome activity and function. Although metagenomic and metatranscriptomic profiles tend to be generally consistent, microbial functional profiles derived from DNA sequencing are more conserved across donors than transcriptional profiles, which are highly donor specific (Franzosa, E. A. et al. Proc. Natl. Acad. Sci. U.S.A 111(22):E2329-38 (2014)). Importantly, many broadly encoded metagenomic pathways are expressed by a small number of organisms, highlighting the utility of metatranscriptomics to identify functional activities (Abu-Ali, G. S. et al. Nat. Microbiol. 3(3):356-366 (2018)). In particular, transcriptomic measurements of the human gut associated microbiome have been used to study microbial carbohydrate metabolism (Turnbaugh, P. J. et al. Proc. Natl. Acad. Sci. U.S.A 107:7503-7508 (2010)), have provided functional information about intestinal diseases, such as inflammatory bowel disease (IBD, Lloyd-Price, J. et al. Nature 569:655-662 (2019)), and mechanisms of drug metabolism (Haiser, H. J. et al. Science 341(6143):295-298 (2013)).


The microbiota that colonize the human gut and other tissues are dynamic, varying across individuals and over time, both in composition and functional state. In studying the function of the human microbiome and mechanisms of microbiota-mediated phenotypes, gene expression measurements provide additional insights to DNA-based measurements of microbiome composition. However, efficient, unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data, as rRNA typically accounts >90% of total RNA in microbial cells.


In particular, acquiring metatranscriptomic data is hindered by the fact that the vast majority of microbial-derived RNA molecules correspond to ribosomal RNA (rRNA, as described in Giannoukos, G. et al. Genome Biol. 13(3):R23 (2012)). In eukaryotes, non-ribosomal RNA can be easily and efficiently enriched through selective reverse transcription or pull-down approaches that target the poly-A tail or using probes to specifically bind rRNA molecules prior to removal by capture or enzymatic digestion (Hrdlickova et al. Wiley Interdiscip. Rev. RNA 8(1):10.1002/wma.1364 (2017) and Zhao et al. Sci. Rep. 8(1):4781 (2018)). Although poly-A polymerase was first isolated from Escherichia coli (August et al. J. Biol. Chem. 237:3786-3793 (1962) and Modak and Srinivasan J. Biol. Chem. 248(19):6904-6910 (1973)), bacterial mRNA transcripts are not, as a rule, poly-adenylated, and when poly-adenylation does occur it is associated with RNA degradation (Mohanty and Kushner Mol. Microbiol. 34:1094-1108 (1999) and O'Hara et al. Proc. Natl. Acad. Sci. U S. A. 92:1807-1811 (1995)). Thus, for bacterial samples, selective enrichment of mRNA is not easily achievable and the depletion of rRNA must be accomplished by other means.


While a large number of studies have developed efficient methods to deplete rRNA in individual bacterial species using probe-based capture (Culviner et al. MBio 11(2): e00010-20 (2020), enzymatic depletion (Huang et al. Nucleic Acids Res. 48(4):E20 (2020)), or CRISPR-based methods (Prezza, G. et al. RNA 26:1069-1078 (2020) and Gu et al. Genome Biol. 17:1-13 (2016)), depleting rRNA in in complex human microbiome samples that can contain hundreds of species presents a significant technical challenge. In addition, the composition of the microbiota varies substantially across body sites and throughout different life stages, further expanding the taxonomic coverage required for robust depletion of rRNA across human microbiome samples. Probe-based sequence capture methods, such as were employed with Illumina's RiboZero Gold kit can provide strong rRNA depletion across a variety of sample types, including human gut microbiome samples (Reck, M. et al. BMC Genomics 16(1):494 (2015)). However, such probes are costly, difficult to manufacture, and tend to perform best with high quality RNA samples. Moreover, capture-based rRNA depletion methods can yield variable results based on operator skill. These factors led to the discontinuation of the capture based bacterial RiboZero Gold depletion kit.


Described herein is the development of a pan-human microbiome probe set for efficient and consistent enzymatic (RNase H) microbial rRNA depletion. Through an iterative design process, probes were designed that effectively deplete rRNA found in human oral, vaginal and adult and infant gut microbiome samples, substantially improving mapping rates to coding microbial gene databases. Using defined spike-ins, the rRNA depletion process was shown to not introduce substantial bias in the metatranscriptomic profiles. In addition, the resulting metatranscriptomics data allows the user to refine informatic pipelines for rRNA and host mapping and to examine gene expression and functional pathways across human microbiome sites. Thus, the method described here circumvents the limitations of sequence capture methods and represents a highly effective rRNA depletion option for metatranscriptomics studies of human-associated microbial communities.


For example, a main limitation of metatranscriptomic studies (i.e., sequencing of microbial communities in specific environmental samples without culturing of microbes) is overcoming the dominating abundance of ribosomal RNA (rRNA). Highly abundant rRNA are often of limited interest to the user (i.e., unwanted transcripts), but can dramatically reduce the sequencing coverage of mRNA (i.e., desired transcripts). In metatranscriptomic sequencing, rRNA depletion is often performed by using hybridization with 16S and 23S rRNA probes followed by separation or by using depletion of rRNAs using a method based on binding of probes following by exonuclease treatment. After rRNA depletion, library preparation can be performed.


Described herein is an iterative probe design strategy that was used to develop a probe set for efficient enzymatic rRNA removal of human-associated microbiota. This strategy resulted in custom probe sets that efficiently deplete rRNA from a range of human microbiome samples, including adult gut, infant gut, oral, and vaginal communities. Successful rRNA depletion allows for characterization of taxonomic and functional changes during the development of the gut microbiome. Further, the rRNA depletion process does not introduce substantial quantitative error in the resulting transcriptomic profiles. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.


In some assays, methods of “upfront depletion,” including RNase depletion, can be problematic for users with limited total RNA material for input into the assay. For example, if insufficient RNA remains after upfront depletion methods, downstream biochemical reactions can be inefficient resulting in poor assay performance and results. Further, upfront depletion with RNase H includes wash steps (potentially causing loss of desired RNA) and high temperature incubations (potentially causing degradation of desired RNA), which may be a concern with certain samples.


Described herein is a differentiated solution using a solid support (such as a flowcell-like device) with immobilized oligonucleotides that can bind to library fragments prepared from unwanted RNA. For example, library fragments prepared from rRNA sequences can be captured by flowcell-tethered oligonucleotides, while library fragments lacking these sequences can be siphoned for collection. After collection of the non-depleted library fragments, only a quick quality control step checking the concentration and size of the non-rRNA sequencing library may be performed prior to standard sequencing. This approach is advantageous as rRNA can act as a “carrier molecule” for low abundance RNA molecules throughout the library preparation process, making for a robust, sensitive assay. In addition to removal of unwanted library fragments (such as those prepared from rRNA), this method can be expanded to substitute traditional PCR amplification via thermal cycler in favor of a bridge amplification-like process to further reduce HOT and demonstrate additional library preparation functionality via sequencer fluidics chemistry. Similar methods can also be used for other unwanted RNA, such as for depleting host-derived RNA transcripts when a user wants to specifically evaluate microbiome RNA from a host.


In addition, disclosed herein are methods with designed to enrich for library fragments prepared from desired RNA. Both depletion and enrichment methods can generate libraries that have fewer unwanted library fragments, allowing for less expensive and/or deeper sequencing of desired library fragments.


SUMMARY

In accordance with the description, described herein are methods of depleting library fragments prepared from unwanted RNA and methods of enriching library fragments prepared from desired RNA. These methods may be performed with standard lab equipment, such as flowcells comprised in sequencers. In some embodiments, standard sequencing consumables and platform (i.e., sequencer) can be used as a microfluidic device for enriching or depleting library fragments. In some embodiments, depletion or enrichment is performed after cDNA synthesis and amplification.


Also described are probes that may be used for enzymatic depletion of rRNA from human microbiome samples.


Embodiment 1. A method of depleting unwanted cDNA library fragments from a library of cDNA fragments prepared from RNA, wherein the unwanted library fragments comprise those prepared from unwanted RNA sequences, comprising (a) preparing a solid support comprising at least one immobilized oligonucleotide, wherein each immobilized oligonucleotide comprises a nucleic acid sequence corresponding to an unwanted RNA sequence or its complement, (b) adding the library of fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of unwanted library fragments to at least one immobilized oligonucleotide, and (c) collecting library fragments not bound to at least one immobilized oligonucleotide.


Embodiment 2. The method of embodiment 1, wherein at least one unwanted RNA sequence has at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments.


Embodiment 3. The method of embodiment 2, wherein all unwanted sequences have at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments.


Embodiment 4. The method of embodiment 1, wherein the at least one unwanted RNA sequence is a high-abundance RNA sequence.


Embodiment 5. The method of any one of embodiments 2-4, wherein the high-abundance RNA sequence is a ribosomal RNA (rRNA) sequence.


Embodiment 6. The method of any one of embodiments 1-5, wherein the unwanted RNA sequence is comprised in a host transcriptome.


Embodiment 7. The method of any one of embodiments 1-6, wherein the unwanted RNA sequence is globin mRNA or 28S, 23S, 18S, 5.8S, 5S, 16S, 12S, HBA-A1, HBA-A2, HBB, HBB-B1, HBB-B2, HBG1, or HBG2 RNA, or a fragment thereof.


Embodiment 8. The method of any one of embodiments 1-7, wherein the unwanted RNA sequence is from human, rat, mouse, or bacteria.


Embodiment 9. The method of embodiment 8, wherein the unwanted RNA sequence is 28S, 18S, 5.8S, 5S, 16S, or 12S RNA from humans, or a fragment thereof.


Embodiment 10. The method of embodiment 8, wherein the unwanted RNA sequence is rat 16S, rat 28S, mouse 16S, or mouse 28S RNA.


Embodiment 11. The method of embodiment 8, wherein the bacteria are Archaea species, E. Coli, or B. subtilis.


Embodiment 12. The method of embodiment 8, wherein the unwanted RNA sequence is comprised in 23S, 16S, or 5S RNA from Gram-positive or Gram-negative bacteria.


Embodiment 13. The method of embodiment 8, wherein the unwanted RNA sequence is from an organism in the human microbiome.


Embodiment 14. The method of embodiment 13, wherein the at least one immobilized oligonucleotide comprises a sequence comprising any one or more of SEQ ID NOs: 1-1131 or its complement.


Embodiment 15. The method of any one of embodiments 1-14, wherein the at least one immobilized oligonucleotide comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement.


Embodiment 16. The method of embodiment 15, wherein the at least one immobilized oligonucleotide comprises 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement.


Embodiment 17. The method of any one of embodiments 14-16, wherein the at least one immobilized oligonucleotide comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement.


Embodiment 18. The method of embodiment 17, wherein the at least one immobilized oligonucleotide comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement.


Embodiment 19. The method of embodiment 18, wherein the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement.


Embodiment 20. The method of any one of embodiments 17-19, wherein the at least one immobilized oligonucleotide further comprises at least one sequence comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement.


Embodiment 21. The method of embodiment 20, wherein the pool of oligonucleotides comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement.


Embodiment 22. The method of embodiment 21, wherein the pool of oligonucleotides comprises a sequence comprising each of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement.


Embodiment 23. The method of any one of embodiments 14-16, wherein the pool of oligonucleotides comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131 or its complement.


Embodiment 24. The method of embodiment 23, wherein the pool of oligonucleotides comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131 or its complement.


Embodiment 25. The method of embodiment 24, wherein the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131 or its complement.


Embodiment 26. The method of any one of embodiments 17-25, wherein the at least one immobilized oligonucleotide further comprises at least one sequence comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127 or its complement.


Embodiment 27. The method of embodiment 26, wherein the at least one immobilized oligonucleotide comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127 or its complement.


Embodiment 28. The method of embodiment 27, wherein the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127 or its complement.


Embodiment 29. The method of any one of embodiments 1-28, wherein the unwanted RNA sequences are selected by determining the most abundant sequences in a sample comprising RNA.


Embodiment 30. The method of embodiment 29, wherein the most abundant sequences comprise the 100 most abundant sequences, the 1,000 most abundant sequences, or the 10,000 most abundant sequences.


Embodiment 31. The method of any one of embodiments 1-30, wherein the unwanted RNA sequence comprises a sequence with homology of at least 90%, at least 95%, or at least 99% to a most abundant sequence in a sample comprising RNA.


Embodiment 32. The method of any one of embodiments 1-31, wherein the collected library fragments comprise a library depleted of unwanted library fragments.


Embodiment 33. The method of any one of embodiments 32, wherein unwanted library fragments serve as carrier molecules for other library fragments.


Embodiment 34. The method of any one of embodiments 1-33, wherein the library of fragments added to the solid support is prepared from RNA using a stranded method of cDNA preparation.


Embodiment 35. The method of any one of embodiments 1-34, wherein the library fragments comprise library adapters and the solid support further comprises immobilized oligonucleotides comprising solid support adapter sequences that can bind to library adapters.


Embodiment 36. The method of embodiment 35, wherein the solid support adapter sequences comprise a P5 sequence (SEQ ID NO: 1132), a P7 sequence (SEQ ID NO: 1133), and/or their complements.


Embodiment 37. The method of embodiment 35 or embodiment 36, wherein adapter complements that are all or partially complementary to the solid support adapter sequences are bound to the solid support adapter sequences.


Embodiment 38. The method of embodiment 37, wherein the binding of the adapter complements to the solid support adapter sequences is reversible.


Embodiment 39. The method of embodiment 37 or embodiment 38, wherein adapter complements bound to the solid support adapter sequences generate double-stranded immobilized oligonucleotides.


Embodiment 40. The method of embodiment 39, wherein solid support adapter sequences bound to adapter complements cannot bind to library adapters.


Embodiment 41. The method of embodiment 39 or embodiment 40, further comprising denaturing library fragments and/or adapter complements hybridized to the immobilized oligonucleotides.


Embodiment 42. The method of embodiment 41, wherein the denaturing is performed with a denaturing agent and/or heat.


Embodiment 43. The method of embodiment 42, wherein the denaturing agent is NaOH, optionally wherein the NaOH concentration is 0.2 N.


Embodiment 44. The method of embodiment 42, wherein the heat is 95° C.-98° C.


Embodiment 45. The method of any one of embodiments 41-44, wherein the denatured library fragments and/or adapter complements are siphoned to a waste compartment.


Embodiment 46. The method of any one of embodiments 41-45, wherein the steps of adding a sample, collecting, and denaturing are repeated, wherein the collected library fragments are added back to the solid support after the denaturing.


Embodiment 47. The method of any one of embodiments 1-46, wherein the collected library fragments are collected in a reservoir comprised in a sequencer comprising the flowcell.


Embodiment 48. The method of any one of embodiments 1-47, wherein the library fragments that hybridize to immobilized oligonucleotides comprise library fragments prepared from rRNA.


Embodiment 49. The method of any one of embodiments 1-48, wherein the library depleted of unwanted library fragments comprises fewer library fragments prepared from unwanted RNA sequences, as compared to the same library before it was added to the solid support.


Embodiment 50. The method of any one of embodiments 1-49, wherein the unwanted library fragments that hybridize to immobilized oligonucleotides comprise library fragments prepared from host RNA comprised in a sample comprising host RNA and non-host nucleic RNA.


Embodiment 51. The method of embodiment 50, wherein the non-host RNA is microbial.


Embodiment 52. The method of embodiment 51, wherein microbe is a bacterium, a virus, and/or a fungus.


Embodiment 53. The method of embodiment 52, wherein the microbe is a pathogen.


Embodiment 54. The method of embodiment 52, wherein the microbe is an organism in the host microbiome.


Embodiment 55. The method of any one of embodiments 50-54, wherein the host is human.


Embodiment 56. The method of any one of embodiments 29-55, further comprising adding the collected library fragments to the solid support after denaturing the hybridized library fragments and/or adapter complements.


Embodiment 57. The method of embodiment 1-56, wherein sequences comprised in library fragments specifically bind to solid support adapter sequences comprising P5 (SEQ ID NO: 1132), P7 (SEQ ID NO: 1133), and/or their complements.


Embodiment 58. The method of embodiment 1-57, wherein library adapter sequences are added to collected library fragments.


Embodiment 59. The method of embodiment 58, wherein the library adapter sequences are added by ligation.


Embodiment 60. The method of any one of embodiments 1-59, wherein the library of fragments added to the solid support is prepared by a method comprising incorporating one or more library adapters that specifically bind to solid support adapter sequences comprising P5 (SEQ ID NO: 1132), P7 (SEQ ID NO: 1133), and/or their complements.


Embodiment 61. The method of embodiment 60, wherein the method comprising incorporating one or more library adapters is tagmentation or fragmentation followed by adapter ligation.


Embodiment 62. The method of any one of embodiments 1-61, wherein the method does not require degradation of RNA.


Embodiment 63. The method of any one of embodiments 1-62, wherein the library depleted of unwanted library fragments is assessed for library size and/or concentration.


Embodiment 64. The method of any one of embodiments 1-63, wherein the library depleted of unwanted library fragments is sequenced.


Embodiment 65. The method of any one of embodiments 1-64, further comprising amplifying the library depleted of unwanted library fragments before sequencing.


Embodiment 66. The method of embodiment 65, wherein the amplifying is by PCR amplification.


Embodiment 67. The method of embodiment 65, wherein the amplifying is by bridge amplification.


Embodiment 68. The method of embodiment 67, wherein bridge amplification is performed after adding the collected library fragments to the solid support and allowing the library adapters comprised in the collected library fragments to bind to the solid support adapter sequences, wherein the adding is performed after denaturing the hybridized library fragments and/or adapter complements.


Embodiment 69. The method of embodiment 64, 65, 67, or 68, wherein the sequencing is performed without PCR amplification.


Embodiment 70. The method of any one of embodiments 64, 65, or 67-69, wherein the amplifying does not require a thermocycler.


Embodiment 71. The method of any one of embodiments 1-70, wherein the method is fully performed in a sequencer.


Embodiment 72. A method of enriching desired cDNA library fragments from a library of cDNA fragments prepared from RNA, wherein the desired library fragments comprise those prepared from desired RNA sequences, comprising (a) preparing a solid support comprising at least one immobilized oligonucleotide, wherein each immobilized oligonucleotide comprises a nucleic acid sequence corresponding to a desired RNA sequence or its complement, (b) adding the library of fragments to the solid support and hybridizing the library fragments to the at least one immobilized oligonucleotide to allow binding of desired library fragments to the at least one immobilized oligonucleotide, and (c) collecting library fragments bound to the at least one immobilized oligonucleotide.


Embodiment 73. The method of embodiment 72, wherein the library of fragments has been subjected to a method of depleting unwanted cDNA library fragments of any one of embodiments 1-71 before the adding.


Embodiment 74. The method of embodiment 72 or 73, wherein at least one desired RNA sequence has at least 90%, at least 95%, or at least 99% homology to an RNA sequence of interest in a sample used to prepare the library of fragments.


Embodiment 75. The method of embodiment 74, wherein all desired RNA sequences have at least 90%, at least 95%, or at least 99% homology to an RNA sequence of interest in a sample used to prepare the library of fragments.


Embodiment 76. The method of any one of embodiments 72-75, wherein the at least one desired RNA sequence is an RNA sequence of interest.


Embodiment 77. The method of any one of embodiments 72-76, wherein the desired RNA sequence is an exome sequence.


Embodiment 78. The method of any one of embodiments 72-77, wherein the desired RNA sequence is from human, rat, mouse, and/or bacteria.


Embodiment 79. The method of embodiment 78, wherein the desired RNA sequence is from an organism in the human microbiome.


Embodiment 80. The method of any one of embodiments 72-79, wherein the collected library fragments comprise a library enriched for desired library fragments.


Embodiment 81. The method of any one of embodiments 72-90, wherein the library of fragments added to the solid support is prepared from RNA using a stranded method of cDNA preparation.


Embodiment 82. The method of any one of embodiments 72-81, wherein the collecting comprises denaturing the library fragments hybridized to the at least one immobilized oligonucleotide and then collecting the library enriched for desired fragments in a reservoir comprised in a sequencer comprising the solid support.


Embodiment 83. The method of embodiment 82, wherein the denaturing is performed with a denaturing agent and/or heat.


Embodiment 84. The method of embodiment 83, wherein the heat is 95° C.-98° C.


Embodiment 85. The method of embodiment 83, wherein the denaturing agent is NaOH, optionally wherein the NaOH concentration is 0.2 N.


Embodiment 86. The method of any one of embodiments 82-85, wherein the steps of adding the library, denaturing, and collecting are repeated, wherein the collected library fragments are added to the solid support after the denaturing.


Embodiment 87. The method of any one of embodiments 82-86, wherein the library enriched for desired library fragments comprises a greater percentage of library fragments prepared from desired RNA sequences, as compared to the library before adding to the solid support.


Embodiment 88. The method of any one of embodiments 82-87, wherein the library enriched for desired library fragments is assessed for library size and/or concentration.


Embodiment 89. The method of any one of embodiments 82-88, wherein the library enriched for desired library fragments is sequenced.


Embodiment 90. The method of any one of embodiments 82-89, further comprising amplifying the library enriched for desired library fragments before sequencing.


Embodiment 91. The method of any one of embodiments 1-90, wherein the at least one immobilized oligonucleotide is 20-100 bases in length, optionally wherein the at least one immobilized oligonucleotides is 45-55 bases in length.


Embodiment 92. The method of any one of embodiments 1-91, wherein the at least one immobilized oligonucleotide is single-stranded.


Embodiment 93. The method of any one of embodiments 1-92, wherein single-stranded library fragments are prepared before adding the library of fragments to the solid support.


Embodiment 94. The method of any one of embodiments 1-93, wherein the solid support is a flowcell.


Embodiment 95. A solid support having two pools of immobilized oligonucleotides on its surface, wherein the first pool comprises immobilized oligonucleotides each comprising a nucleic acid sequence corresponding to an unwanted RNA sequence or its complement and the second pool comprises immobilized oligonucleotides each comprising a solid support adapter sequence that can bind to a library adapter comprised in library fragments.


Embodiment 96. The solid support of embodiment 95, wherein at least one unwanted RNA sequence has at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments.


Embodiment 97. The solid support of embodiment 96, wherein all unwanted sequences have at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments.


Embodiment 98. The solid support of any one of embodiments 95-97, wherein the at least one unwanted RNA sequence is a high-abundance RNA sequence.


Embodiment 99. The solid support of any one of embodiments 96-98, wherein the high-abundance RNA sequence is a ribosomal RNA (rRNA) sequence.


Embodiment 100. The solid support of any one of embodiments 95-99, wherein the unwanted RNA sequence is comprised in a host transcriptome.


Embodiment 101. The solid support of any one of embodiments 95-100, wherein the unwanted RNA sequence is globin mRNA or 28S, 23S, 18S, 5.8S, 5S, 16S, 12S, HBA-A1, HBA-A2, HBB, HBB-B1, HBB-B2, HBG1, or HBG2 RNA, or a fragment thereof.


Embodiment 102. The solid support of any one of embodiments 95-101, wherein the unwanted RNA sequence is from human, rat, mouse, or bacteria.


Embodiment 103. The solid support of embodiment 102, wherein the unwanted RNA sequence is 28S, 18S, 5.8S, 5S, 16S, or 12S RNA from humans, or a fragment thereof.


Embodiment 104. The solid support of embodiment 102, wherein the unwanted RNA sequence is comprised in rat 16S, rat 28S, mouse 16S, or mouse 28S RNA.


Embodiment 105. The solid support of embodiment 102, wherein the bacteria are Archaea species, E. Coli, or B. subtilis.


Embodiment 106. The solid support of embodiment 102, wherein the unwanted RNA sequence is comprised in 23S, 16S, or 5S RNA from Gram-positive or Gram-negative bacteria.


Embodiment 107. The solid support of embodiment 102, wherein the unwanted RNA sequence is from an organism comprised in the human microbiome.


Embodiment 108. The solid support of any one of embodiments 95-107, wherein the unwanted RNA sequence comprises any one or more of SEQ ID NOs: 1-1131.


Embodiment 109. The solid support of any one of embodiments 95-108, wherein the unwanted RNA sequence comprises a sequence with homology of at least 90%, at least 95%, or at least 99% to a most abundant sequence in a sample comprising RNA, wherein the most abundant sequences comprise the 100 most abundant sequences, the 1,000 most abundant sequences, or the 10,000 most abundant sequences.


Embodiment 110. The solid support of any one of embodiments 95-109, wherein the solid support adapter sequences comprise a P5 sequence (SEQ ID NO: 1132), a P7 sequence (SEQ ID NO: 1133), and/or their complements.


Embodiment 111. The solid support of any one of embodiments 95-110, wherein adapter complements that are all or partially complementary to the solid support adapter sequences are bound to the solid support adapter sequences.


Embodiment 112. The solid support of embodiment 111, wherein the binding of the adapter complements to the solid support adapter sequences is reversible.


Embodiment 113. The solid support of embodiment 111 or embodiment 112, wherein the solid support adapter sequences and adapter complements generate double-stranded immobilized oligonucleotides.


Embodiment 114. The solid support of any one of embodiments 95-113, wherein the at least one immobilized oligonucleotide is 20-100 bases in length, optionally wherein the at least one immobilized oligonucleotide is 45-55 bases in length.


Embodiment 115. The solid support of any one of embodiments 95-114, wherein the solid support is a flowcell.


Embodiment 116. The solid support of any one of embodiments 95-115, wherein the at least one immobilized oligonucleotide is single-stranded.


Embodiment 117. A composition comprising a single-stranded library fragment comprising cDNA prepared from a sample comprising RNA that is hybridized to the solid support of any one of embodiments 95-116.


Embodiment 118. The composition of embodiment 117, wherein the cDNA is complementary to RNA comprised in the sample.


Embodiment 119. A method for depleting unwanted RNA molecules comprised in a patient microbiome sample, wherein the patient microbiome sample comprises at least one target RNA or DNA sequence and at least one unwanted RNA molecule, comprising (a) sequencing a plurality of probe-development microbiome samples to determine at least one unwanted RNA molecule comprising a bacterial ribosomal RNA (rRNA) sequence from sequencing data; (b) preparing a probe set comprising at least one DNA probe complementary to the at least one unwanted RNA molecule; (c) contacting the patient microbiome sample with the probe set to prepare DNA:RNA hybrids; and (d) contacting the DNA:RNA hybrids with a ribonuclease that degrades the RNA from the DNA:RNA hybrids, thereby degrading the unwanted RNA molecules in the patient microbiome sample to form a degraded mixture.


Embodiment 120. A method for depleting unwanted RNA molecules comprised in a patient microbiome sample, wherein the patient microbiome sample comprises at least one target RNA or DNA sequence and at least one unwanted RNA molecule, comprising (a) contacting the patient microbiome sample with a probe set comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131 to prepare DNA:RNA hybrids; and


(b) contacting the DNA:RNA hybrids with a ribonuclease that degrades the RNA from the DNA:RNA hybrids, thereby degrading the unwanted RNA molecules in the patient microbiome sample to form a degraded mixture.


Embodiment 121. The method of embodiment 119 or embodiment 120, further comprising (a) degrading any remaining DNA probes by contacting the degraded mixture with a DNA digesting enzyme, optionally wherein the DNA digesting enzyme is DNase I, to form a DNA degraded mixture; and (b) separating the degraded RNA from the degraded mixture or the DNA degraded mixture.


Embodiment 122. The method of any one of embodiments 119-121, wherein the contacting with the probe set comprises treating the nucleic acid sample with a destabilizer.


Embodiment 123. The method of embodiment 122, wherein the destabilizer is heat and/or a nucleic acid destabilizing chemical.


Embodiment 124. The method of embodiment 123, wherein the nucleic acid destabilizing chemical comprises betaine, DMSO, formamide, glycerol, or a derivative thereof, or a mixture thereof.


Embodiment 125. The method of embodiment 124, wherein the nucleic acid destabilizing chemical comprises formamide.


Embodiment 126. The method of embodiment 125, wherein the formamide is present during the contacting with the probe set at a concentration of from about 10 to 45% by volume.


Embodiment 127. The method of any one of embodiments 123-126, wherein treating the sample with heat comprises applying heat above the melting temperature of the at least one DNA:RNA hybrid.


Embodiment 128. The method of any one of embodiments 119-127, wherein the ribonuclease is RNase H or hybridase.


Embodiment 129. The method of any one of embodiments 119-128, wherein the patient is human.


Embodiment 130. The method of any one of embodiments 119-129, wherein the microbiome sample is oral, vaginal, or from the gut.


Embodiment 131. The method of embodiment 119-130, wherein the sample from the gut is a stool sample.


Embodiment 132. The method of embodiment 131, wherein the oral sample is a sample from the tongue.


Embodiment 133. The method of any one of embodiments 119-132, wherein the at least one DNA probe comprise 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement.


Embodiment 134. The method of embodiment 133, wherein the at least one DNA probe comprises 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement.


Embodiment 135. The method of any one of embodiments 119-134, wherein the patient is at least 12 months of age, at least 15 months of age, at least 24 months of age, or at least 36 months of age.


Embodiment 136. The method of any one of embodiments 119-135, wherein the microbiome sample comprises at least one unwanted RNA molecule from Faecalibacterium, Lachnospiraceae, and/or Clostridium.


Embodiment 137. The method of any one of embodiments 119-136, wherein the microbiome sample is vaginal and comprises at least one unwanted RNA molecule from Gardnerella, Lactobacillus and/or Olsenella.


Embodiment 138. The method of any one of embodiments 119-136, wherein the microbiome sample is from tongue and comprises at least one unwanted RNA molecule from Veillonella, Rothia, Streptococcus, and/or Prevotella.


Embodiment 139. The method of any one of embodiments 120-138, wherein the at least one DNA probe comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 140. The method of embodiment 139, wherein the at least one DNA probe comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 141. The method of embodiment 140, wherein the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 142. The method of any one of embodiments 139-141, wherein the patient is 3 months of age or younger, 6 months of age of younger, 12 months of age or younger, 18 months of age or younger, 24 months of age or younger, or 36 months of age or younger.


Embodiment 143. The method of embodiment 142, wherein the microbiome sample comprises at least one unwanted RNA molecules from Bifidobacterium bifidum and/or Blautia.


Embodiment 144. The method of any one of embodiments 139-143, wherein the at least one DNA probe further comprises at least one sequence comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 145. The method of embodiment 144, wherein the at least one DNA probe comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 146. The method of embodiment 145, wherein the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 147. The method of any one of embodiments 120-138, wherein the at least one immobilized oligonucleotide comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 148. The method of embodiment 147, wherein the at least one immobilized oligonucleotide comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 149. The method of embodiment 148, wherein the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 150. The method of any one of embodiments 139-149, wherein the at least one DNA probe further comprises at least one sequence comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Embodiment 151. The method of embodiment 150, wherein the at least one DNA probe comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Embodiment 152. The method of embodiment 151, wherein the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Embodiment 153. The method of any one of embodiments 119-152, wherein the method depletes 70% or greater, 80% or greater, 90% or greater, or 95% or greater of bacterial rRNA comprised in the microbiome sample.


Embodiment 154. A composition comprising a probe set comprising (a) at least one DNA probe comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131; and (b) a ribonuclease capable of degrading RNA in an DNA:RNA hybrid.


Embodiment 155. The composition of embodiment 154, wherein the ribonuclease is RNase H.


Embodiment 156. A kit comprising a probe set comprising (a) at least one DNA probe comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131; and (b) a ribonuclease capable of degrading RNA in an DNA:RNA hybrid.


Embodiment 157. The kit of embodiment 156, comprising (a) a probe set comprising at least one DNA probe comprising at least one of SEQ ID NOs: 1-1131; (b) a ribonuclease; (c) a DNase; and (d) RNA purification beads.


Embodiment 158. The kit of embodiment 157, wherein the ribonuclease is RNase H.


Embodiment 159. The kit of embodiment 157 or 158, further comprising an RNA depletion buffer, a probe depletion buffer, and a probe removal buffer.


Embodiment 160. The kit of any one of embodiments 157-160, further comprising a nucleic acid destabilizing chemical.


Embodiment 161. The kit of embodiment 160, wherein the nucleic acid destabilizing chemical comprises betaine, DMSO, formamide, glycerol, or a derivative thereof, or a mixture thereof.


Embodiment 162. The kit of embodiment 161, wherein the nucleic acid destabilizing chemical comprises formamide.


Embodiment 163. The composition or kit of any one of embodiments 154-162, wherein the at least one DNA probe comprise 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131.


Embodiment 164. The composition or kit of embodiment 163, wherein the at least one DNA probe comprises 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131.


Embodiment 165. The composition or kit of any one of embodiments 154-164, wherein the at least one DNA probe comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 166. The composition or kit of embodiment 165, wherein the at least one DNA probe comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 167. The composition or kit of embodiment 166, wherein the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 168. The composition or kit of any one of embodiments 165-167, wherein the at least one DNA probe further comprises at least one sequence comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 169. The composition or kit of embodiment 168, wherein the at least one DNA probe comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 170. The composition or kit of embodiment 169, wherein the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 171. The composition or kit of any one of embodiments 154-164, wherein the at least one immobilized oligonucleotide comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 172. The composition or kit of embodiment 171, wherein the at least one immobilized oligonucleotide comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 173. The composition or kit of embodiment 172, wherein the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 174. The composition or kit of any one of embodiments 165-173, wherein the at least one DNA probe further comprises at least one sequence comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Embodiment 175. The composition or kit of embodiment 174, wherein the at least one DNA probe comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Embodiment 176. The composition or kit of embodiment 175, wherein the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Embodiment 177. A method of selecting cDNA library fragments from a library of cDNA fragments prepared from RNA, comprising (a) preparing a solid support comprising a pool of immobilized oligonucleotides, wherein each immobilized oligonucleotide in the pool comprises a nucleic acid sequence corresponding to an RNA sequence or its complement, (b) adding the library of fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of library fragments to at least one immobilized oligonucleotide, and (c) collecting library fragments either bound or not bound to at least one immobilized oligonucleotide.


Embodiment 178. The method of embodiment 177, wherein (a) the selecting is depleting unwanted cDNA library fragments, wherein the RNA sequence comprises an unwanted RNA sequence, the unwanted library fragments comprise those prepared from unwanted RNA sequences, and the collecting comprises collecting library fragment not bound to at least one immobilized oligonucleotide; or (b) the selecting is enriching desired cDNA library fragments, wherein the RNA sequence comprises a desired RNA sequence, the desired library fragments comprise those prepared from desired RNA sequences, and the collecting comprises collecting library fragment bound to at least one immobilized oligonucleotide.


Embodiment 179. The method of embodiment 178, wherein the library of fragments is subjected to depleting unwanted cDNA library fragments and the collected library fragments not bound to at least one immobilized oligonucleotides are then subjected to enriching desired cDNA library fragments.


Embodiment 180. A solid support having two pools of immobilized oligonucleotides on its surface, wherein the first pool of oligonucleotides comprises immobilized oligonucleotides each comprising a nucleic acid sequence corresponding to an unwanted RNA sequence or its complement and the second pool of oligonucleotides comprises immobilized oligonucleotides each comprising a solid support adapter sequence that can bind to a library adapter comprised in library fragments.


Embodiment 181. The method of any one of embodiments 177-179 or the solid support of embodiment 180, wherein at least one unwanted RNA sequence has at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments.


Embodiment 182. The method or solid support of embodiment 181, wherein the high-abundance RNA sequence is a ribosomal RNA (rRNA) sequence.


Embodiment 183. The method or solid support of embodiment 182, wherein the unwanted RNA sequence is globin mRNA or 28S, 23S, 18S, 5.8S, 5S, 16S, 12S, HBA-A1, HBA-A2, HBB, HBB-B1, HBB-B2, HBG1, or HBG2 RNA, or a fragment thereof.


Embodiment 184. The method or solid support of any one of embodiments 177-183, wherein each pool of immobilized oligonucleotides comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, or 1100 or more oligonucleotides.


Embodiment 185. The solid support of any one of embodiments 180-184, wherein adapter complements that are all or partially complementary to the solid support adapter sequences are bound to the solid support adapter sequences of the second pool and wherein the binding of the adapter complements to the solid support adapter sequences is reversible.


Embodiment 186. A method of amplifying desired cDNA library fragments from a library of cDNA fragments prepared from RNA, comprising (a) providing the solid support of embodiment 185; (b) adding the library of fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of unwanted library fragments to the first pool of oligonucleotides; (c) collecting library fragments not bound to the first pool of oligonucleotides to prepare collected library fragments; (d) denaturing and removing library fragments bound to the first pool of oligonucleotides and adapter complements bound to the adapter sequences of the second pool of oligonucleotides; (e) adding the collected library fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of desired library fragments to the second pool of oligonucleotides; and (f) amplifying the bound desired library fragments by bridge amplification on the solid support.


Embodiment 187. A method for depleting unwanted RNA molecules comprised in a patient microbiome sample, wherein the patient microbiome sample comprises at least one target RNA or DNA sequence and at least one unwanted RNA molecule, comprising (a) sequencing a plurality of probe-development microbiome samples to determine at least one unwanted RNA molecule comprising a bacterial ribosomal RNA (rRNA) sequence from sequencing data; (b) preparing a probe set comprising at least one DNA probe complementary to the at least one unwanted RNA molecule; (c) contacting the patient microbiome sample with the probe set to prepare DNA:RNA hybrids; and (d) contacting the DNA:RNA hybrids with a ribonuclease that degrades the RNA from the DNA:RNA hybrids, thereby degrading the unwanted RNA molecules in the patient microbiome sample to form a degraded mixture.


Embodiment 188. A method for depleting unwanted RNA molecules comprised in a patient microbiome sample, wherein the patient microbiome sample comprises at least one target RNA or DNA sequence and at least one unwanted RNA molecule, comprising (a) contacting the patient microbiome sample with a probe set comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131 to prepare DNA:RNA hybrids; and (b) contacting the DNA:RNA hybrids with a ribonuclease that degrades the RNA from the DNA:RNA hybrids, thereby degrading the unwanted RNA molecules in the patient microbiome sample to form a degraded mixture.


Embodiment 189. The method of embodiment 187 or embodiment 188, further comprising (a) degrading any remaining DNA probes by contacting the degraded mixture with a DNA digesting enzyme, optionally wherein the DNA digesting enzyme is DNase I, to form a DNA degraded mixture; and (b) separating the degraded RNA from the degraded mixture or the DNA degraded mixture.


Embodiment 190. A composition comprising a probe set comprising (a) at least one DNA probe comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131; and (b) a ribonuclease capable of degrading RNA in an DNA:RNA hybrid.


Embodiment 191. A kit comprising a probe set comprising (a) at least one DNA probe comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131; and (b) a ribonuclease capable of degrading RNA in an DNA:RNA hybrid.


Embodiment 192. The kit of embodiment 191, comprising (a) a probe set comprising at least one DNA probe comprising at least one of SEQ ID NOs: 1-1131; (b) a ribonuclease; (c) a DNase; and (d) RNA purification beads.


Embodiment 193. The method of any one of embodiments 177-179, 181 or 186-189, the solid support of any one of embodiments 180-185, the composition of embodiment 190, or the kit of embodiment 191 or 192, wherein the pool of oligonucleotides or the probe set comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131.


Embodiment 194. The method of any one of embodiments 177-179, 181-184, or 186-189, the solid support of any one of embodiments 180-185, the composition of embodiment 190, or the kit of embodiment 191 or 192, wherein the pool of oligonucleotides or the probe set comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 195. The method, solid support, composition, or kit of embodiment 194, wherein the pool of oligonucleotides or the probe set comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 196. The method, solid support, composition, or kit of embodiment 195, wherein the pool of oligonucleotides or the probe set comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


Embodiment 197. The method, solid support, composition, or kit of any one of embodiments 194-196, wherein the pool of oligonucleotides or the probe set further comprises at least one sequence comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 198. The method, solid support, composition, or kit of embodiment 197, wherein the pool of oligonucleotides or the probe set comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 199. The method, solid support, composition, or kit of embodiment 198, wherein the pool of oligonucleotides or the probe set comprises a sequence comprising each of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


Embodiment 200. The method of any one of embodiments 177-179, 181-184, or 186-189, the solid support of any one of embodiments 180-185, the composition of embodiment 190, or the kit of embodiment 191 or 192, wherein pool of oligonucleotides or the probe set comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 201. The method, solid support, composition, or kit of embodiment 200, wherein the pool of oligonucleotides or the probe set comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 202. The method, solid support, composition, or kit of embodiment 201, wherein the pool of oligonucleotides or the probe set comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


Embodiment 203. The method, solid support, composition, or kit of any one of embodiments 194-202, wherein the pool of oligonucleotides or the probe set further comprises at least one sequence comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Embodiment 204. The method, solid support, composition, or kit of embodiment 203, wherein the pool of oligonucleotides or the probe set comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Embodiment 205. The method, solid support, composition, or kit of embodiment 204, wherein the pool of oligonucleotides or the probe set comprises a sequence comprising each of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Additional objects and advantages will be set forth in part in the description which follows, and in part will be understood from the description, or may be learned by practice. The objects and advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claims.


The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one (several) embodiment(s) and together with the description, serve to explain the principles described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 provides an overview of a method of depleting unwanted library fragments derived from rRNA transcripts. A solid support, such as a flowcell, comprises at least one immobilized oligonucleotide comprising a tether to attach the oligonucleotide to the solid support. The immobilized oligonucleotide could comprise the complement of a sequence that would be comprised in a library fragment comprising an insert of cDNA prepared from the rRNA (as labeled as “rRNA complement”).





The library fragments can be flowed over the solid support, with fragment prepared from rRNA (i.e., library fragments comprising “rRNA library” sequence) hybridizing to immobilized oligonucleotides each comprising an rRNA complement. Library fragments that do not bind to the immobilized oligonucleotides can be siphoned for collection, and hybridized library fragments (i.e., unwanted library fragments) can then be denatured and siphoned to a waste container. The library fragments siphoned for collection can then be flowed over the solid support again to allow for binding of any additional unwanted library fragments, and steps of


(1) hybridizing unwanted library fragments, (2) collecting unbound library fragments, and (3) denaturing hybridized library fragment can be repeated, until a final set of collected unbound library fragments are collected that represent a library depleted of unwanted library fragments prepared from rRNA. Similar methods can be used for enrichment, wherein desired library fragments are bound to immobilized oligonucleotides comprising complementary sequences to these desired library fragments, except in the similar method the bound library fragments are used for sequencing and the library fragments that do not bind are siphoned for waste.



FIG. 2 shows an overview of a method for depleting unwanted library fragments and performing bridge amplification on the same solid support. The solid support used for this method would comprise immobilized oligonucleotides each comprising an rRNA complement, as well as immobilized oligonucleotides comprising adapter sequences that can bind to adapters comprised in library fragments. Such adapters comprised in immobilized oligonucleotides may be termed “solid support adapter sequences” and library fragments may comprise “library adapter sequences” that are all or partially complementary to the solid support adapter sequences. Solid support adapters may comprise as a P5 adapter sequence (SEQ ID NO: 1132) or a P7 adapter sequence (SEQ ID NO: 1133), and/or their complements.


Immobilized oligonucleotides comprising solid support adapter sequences may be bound to adapter complements that are all or partially complementary to the solid support adapter sequences, wherein the adapter complements hybridize to form double-stranded nucleic acid with the solid support adapter sequences. This hybridization inhibits binding of immobilized oligonucleotides comprising adapter sequences to library fragments (i.e., inhibits binding of solid support adapter sequences to library adapter sequences).


The fragments prepared from rRNA can bind to immobilized oligonucleotides each comprising an rRNA complement, as described in the legend for FIG. 1. After collecting desired library fragments (unbound to immobilized oligonucleotides each comprising an rRNA complement), unwanted library fragments and adapter complements can be denatured and siphoned to waste. The collected library fragments (comprising desired library fragments) can then be flowed over the flowcell and bound to the immobilized oligonucleotides comprising solid support adapter sequences by hybridization of library adapter sequences to solid support adapter sequences. Bridge amplification of bound library fragments can then be performed. The resulting amplified, depleted library could be sequenced, optionally after quantification and quality control.



FIG. 3 shows results on human gut microbiome rRNA depletion using the RiboZero method with RNase and standard probes (DP1) or human microbiome probes as described herein (HM, comprising HMv1 and HMv2 probes). Significantly more rRNA depletion was seen with the HM probes.



FIG. 4 shows results on rRNA depletion from wastewater samples for RiboZero depletion with HM probes or “Mock” depletion that did not include probes. Significantly more rRNA depletion was seen with the HM probes. Bac=bacterial rRNA; Arc=archaea rRNA; Euk=eukaryotic rRNA; Rfam=non-coding RNA as defined by Rfam database.



FIG. 5 shows results with a skin microbiome whole cell mix (ATCC MSA-2005™). The experiment compared results with the RiboZero RNase protocol (either with standard DP1 probes or with human microbiome HM probes) to those with the RiboZero-Bact that uses a probe-based hybridization approach to capture and deplete bacterial rRNAs from E. coli and B. subtilis.


DESCRIPTION OF THE SEQUENCES

Table 1 provides a listing of certain sequences referenced herein.









TABLE 1







Description of the Sequences











SEQ


Description
Sequences
ID NO





Representative
As shown in Table 2
1-


sequences comprised

1131


in immobilized




oligonucleotides







P5
AATGATACGGCGACCACCGAGA
1132



UCTACAC






P7
CAAGCAGAAGACGGCATACGAG
1133



AT






A14
TCGTCGGCAGCGTC
1134





B15
GTCTCGTGGGCTCGG
1135









DESCRIPTION OF THE EMBODIMENTS
I. Solid Supports for Enriching or Depleting

In some embodiments, solid supports can be prepared for enriching desired library fragments or depleting unwanted library fragments, wherein at least oligonucleotide is immobilized to the solid support. In some embodiments, the solid support is a flowcell.


In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising any one or more of SEQ ID NOs: 1-1131.


In some embodiments, the at least one immobilized oligonucleotide comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement. In some embodiments, the at least one immobilized oligonucleotide comprises 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises at least one sequence from a bacterial ribosomal RNA (rRNA) or its complement. In some embodiments, the at least one immobilized oligonucleotide comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement. In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises at least one sequences of B. Bifidum rRNA or its complement. In some embodiments, the at least one immobilized oligonucleotide further comprises at least one sequence comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement. In some embodiments, the at least one immobilized oligonucleotide comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement. In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: or its complement. In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: or its complement.


In some embodiments, the at least one immobilized oligonucleotide further comprises at least one sequence comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127. In some embodiments, the at least one immobilized oligonucleotide comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127 In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


Also disclosed herein are compositions comprising a library fragment bound to an immobilized oligonucleotide on a solid support. In some embodiments, a single-stranded library fragment comprising cDNA prepared from a sample comprising RNA is hybridized to a solid support comprising immobilized oligonucleotides. In some embodiments, the cDNA comprised in the composition is complementary to RNA comprised in the sample.


Disclosed herein are also kits for depleting or enriching libraries. In some embodiments, the kit comprises a solid support disclosed herein and instructions for using the solid support. Such a kit may further comprise reagents for preparing a cDNA library from RNA, such as reagents for a stranded method of cDNA preparation from a sample comprising RNA, as described below.


A. Types of Solid Supports


A wide variety of solid supports may be used to immobilize oligonucleotides for depleting or enriching as described herein, including those described in WO 2014/108810, which is incorporated in its entirety herein.


The composition and geometry of the solid support can vary with its use. In some embodiments, the solid support is a planar structure such as a slide, chip, microchip and/or array. As such, the surface of a substrate can be in the form of a planar layer. In some embodiments, the solid support comprises one or more surfaces of a flowcell. The term “flowcell” as used herein refers to a chamber comprising a solid surface across which one or more fluid reagents can be flowed. Examples of flowcells and related fluidic systems and detection platforms that can be readily used in the methods of the present disclosure are described, for example, in Bentley et al., Nature 456:53-59 (2008), WO 04/018497; U.S. Pat. No. 7,057,026; WO 91/06678; WO 07/123744; U.S. Pat. Nos. 7,329,492; 7,211,414; 7,315,019; 7,405,281, and US 2008/0108082, each of which is incorporated herein by reference.


In some embodiments, a flowcell is comprised within an apparatus or device for sequencing nucleic acids, which may be referred to as a sequencer. In some embodiments, a sequence may also comprise reservoirs for collection of samples or tubing (such as for collecting samples in a reservoir of for exiting of waste). In some embodiments, one or more reservoirs are separate from the flowcell and are comprised in the sequencer. In some embodiments, modifications are made to standard sequencers to improve fluidics system recipes and/or hardware for use of reservoirs in the present methods.


As used herein, a “flowcell” may comprise a flowcell-like device that is not intended to be imaged. While standard flowcells used for imaging may be employed in the present methods, flowcells can also be engineered differently than flowcells intended for imaging. In some embodiments, a flowcell may have a high density of immobilized oligonucleotides, wherein imaging infrastructure would have difficulty separating out into different bridge-amplified clusters associated with different immobilized oligonucleotides. In some embodiments, a high density of immobilized oligonucleotides improves hybridization efficiency. In some embodiments, standard clear glass may be used in a flowcell. In other embodiments, hard plastic may be used in the flowcell. Use of glass in a flowcell may allow use of a standard flowcell without further optimization, whereas use of hard plastic may reduce the cost of manufacturing the flowcell and/or improve stability of a flowcell. Depending on the advantages desired, different materials may be used. In some embodiments, immobilized oligonucleotides are embedded in a substrate other than that of a standard flowcell (i.e., embedded in a substrate other than PAZAM) to improve immobilization of oligonucleotides of longer length.


B. Unwanted RNA


As used herein, “unwanted RNA” or “an unwanted RNA sequence” refers to any RNA that a user does not wish to analyze. As used herein, an unwanted RNA includes the complement of an unwanted RNA sequence. When RNA is converted into cDNA and this cDNA is prepared into a library, a user would sequence library fragments that were prepared from all RNA transcripts in the absence of enrichment or depletion. Methods described herein for depleting library fragments prepared from unwanted RNA can thus save the user time and consumables related to sequencing and analyzing sequencing data prepared from unwanted RNA.


As used herein, “unwanted RNA” or “unwanted RNA sequence” also includes fragments of such RNA. For example, an unwanted RNA may comprise part of the sequence of an unwanted RNA. In some embodiments, unwanted RNA sequence is from human, rat, mouse, or bacteria. In some embodiments, the bacteria are Archaea species, E. Coli, or B. subtilis.


As used herein, “unwanted library fragments” refers to library fragments prepared from cDNA prepared from unwanted RNA.


In some embodiments, the unwanted RNA sequence comprises any one or more of SEQ ID NOs: 1-1131.


In some embodiments, unwanted RNA sequences (or their complements) are immobilized to a solid support. A range of different types of RNA may be unwanted.


1. High-Abundance RNA


In some embodiments, the unwanted RNA is high-abundance RNA. High-abundance RNA is RNA that is very abundant in many samples and which users do not wish to sequence, but it may or may not be present in a given sample. In some embodiments, the high-abundance RNA sequence is a ribosomal RNA (rRNA) sequence. Exemplary high-abundance RNA are disclosed in WO2021/127191 and WO 2020/132304, each of which is incorporated by reference herein in its entirety.


In some embodiments, the high-abundance RNA sequences are the most abundant RNA sequences determined to be in a sample. In some embodiments, the high-abundance RNA sequences are the most abundant RNA sequences across a plurality of samples even though they may not be the most abundant in a given sample. In some embodiments, a user utilizes a method of determining the most abundant RNA sequences in a sample, as described herein.


In a given sample, the most abundant sequences are the 100 most abundant sequences. In some embodiments, the in addition to depleting the 100 most abundant sequences, the method also is capable of depleting the 1,000 most abundant sequences, or the 10,000 most abundant sequences in a sample. In some embodiments, the unwanted RNA sequence comprises a sequence with homology of at least 90%, at least 95%, or at least 99% to a most abundant sequence in a sample comprising RNA. In some embodiments, the unwanted RNA sequence comprises a sequence with homology of at least 90%, at least 95%, or at least 99% to a most abundant sequence in a sample comprising RNA, wherein the most abundant sequences comprise the 100 most abundant sequences. In some embodiments, homology is measured against the 1,000 most abundant sequences, or the 10,000 most abundant sequences.


In some embodiments, the high-abundance RNA sequences are comprised in RNA known to be highly abundant in a range of samples.


In some embodiments, the unwanted RNA sequence is globin mRNA or 28S, 23S, 18S, 5.8S, 5S, 16S, 12S, HBA-A1, HBA-A2, HBB, HBB-B1, HBB-B2, HBG1, or HBG2 RNA, or a fragment thereof.


In some embodiments, the unwanted RNA sequence is 28S, 18S, 5.8S, 5S, 16S, or 12S RNA from humans, or a fragment thereof. In some embodiments, the unwanted RNA sequence is rat 16S, rat 28S, mouse 16S, or mouse 28S RNA.


In some embodiments, the unwanted RNA sequence is comprised in mRNA related to one or more “housekeeping” genes. For example, a housekeeping gene may be one that is commonly expressed in a sample from a tumor or other oncology-related sample, but that is not implicated in tumor genesis or progression


In some embodiments, the unwanted RNA sequence is comprised in 23S, 16S, or 5S RNA from Gram-positive or Gram-negative bacteria. In some embodiments, the unwanted RNA sequence is from an organism in the human microbiome.


2. Host RNA


In some embodiments, the unwanted RNA sequence is comprised in a host transcriptome. For example, a user may wish to study library fragments prepared from RNA from organisms comprised in the human microbiome, without analyzing library fragments prepared from human RNA.


C. Desired RNA


As used herein, “desired RNA” or “a desired RNA sequence” refers to any RNA that a user wants to analyze. As used herein, a desired RNA includes the complement of a desired RNA sequence. Desired RNA may be RNA from which a user would like to collect sequencing data, after cDNA and library preparation. In some instances, the desired RNA is mRNA (or messenger RNA). In some instances, the desired RNA is a portion of the mRNA in a sample. For example, a user may want to analyze RNA transcribed from cancer-related genes, and thus this is the desired RNA. In another example, a user may wish to analyze RNA from organisms comprised in a human microbiome, and thus RNA from organisms comprised in the human microbiome is the desired RNA and human RNA is the unwanted RNA.


As used herein, “desired library fragments” refers to library fragments prepared from cDNA prepared from desired RNA.


In some embodiments, the desired RNA sequence is an exome sequence. In some embodiments, the present methods are for exome enrichment.


In some embodiments, the desired RNA sequence is from human, rat, mouse, and/or bacteria. In some embodiments, the desired RNA sequence is from an organism in the human microbiome.


D. Immobilized Oligonucleotides for Enriching or Depleting


In some embodiments, oligonucleotides for enriching or depleting are immobilized to a solid support. Such immobilized oligonucleotides may be referred to as tethered to the solid support. In some embodiments, the oligonucleotide may be immobilized to the solid support via a linker molecule. When referring to immobilization of oligonucleotides to a solid support, the terms “immobilized” and “attached” are used interchangeably herein and both terms are intended to encompass direct or indirect, covalent or non-covalent attachment, unless indicated otherwise, either explicitly or by context. In certain embodiments of the invention covalent attachment may be preferred, but generally all that is required is that the at least one immobilized oligonucleotide remains immobilized or attached to the support under the conditions in which it is intended to use the support, for example for enriching or depleting.


As used herein, a “tether” refers to any means of immobilizing an oligonucleotide to a solid support. In some embodiments, a solid support, such as a flowcell, is coated with a covalently attached polymer. In some embodiments, a flowcell contains a polymer coating. In some embodiments, the covalently attached polymer is PAZAM. In some embodiments, the polymer coating comprises reactive sites for reacting with oligonucleotides, such as oligonucleotides described herein. Such covalently attached polymers are described in WO 2013/184796, which is incorporated by reference in its entirety herein. In some embodiments, a polymer such as PAZAM is crosslinked using ultraviolet light.


In some embodiments, immobilized oligonucleotides may be designed to comprise a cleavage site. In some embodiments, a method may comprise a step to cleave immobilized oligonucleotides to remove them from the solid support. In some embodiments, after cleavage of the immobilized oligonucleotides, the resulting fragments from the immobilized oligonucleotides are collected in a waste container comprised in a sequencer. In some embodiments, a tether may comprise a cleavage site. In this way, some or all of the immobilized oligonucleotides on a solid surface can be removed at the user's discretion, potentially avoiding a requirement to transfer a sample to a different solid support.


In some embodiments, immobilized oligonucleotides described herein are single-stranded. In this way, the immobilized oligonucleotides are available to hybridize to single-stranded library fragments that are all of partially complementary to a sequence comprised in the immobilized oligonucleotides. One skilled in the art could design the length of immobilized oligonucleotides to allow for their preferred level of affinity for the interaction between immobilized oligonucleotides and library fragments that are all or partially complementary (i.e., longer immobilized oligonucleotides would be expected to exhibit higher affinity binding to single-stranded library fragments that are all or partially complementary).


In some embodiments, a sequence comprised in an immobilized oligonucleotide can be partly or completely complementary to the sequence of a library fragment prepared from an unwanted RNA for depletion. In some embodiments, a sequence comprised in an immobilized oligonucleotide can be partly or completely complementary to the sequence of a library fragment prepared from a desired RNA for enrichment.


In some embodiments, each immobilized oligonucleotide is from 10 to 100 nucleotides long, from 20 to 100 nucleotides long, from 20 to 80 nucleotides long, from 40 to 60 nucleotides long, from 45 to 55 nucleotides long, or 50 nucleotides long. In some embodiments, the at least one immobilized oligonucleotide is 45-55 bases in length, optionally wherein the at least one immobilized oligonucleotide is 50 bases in length. In some embodiments, an immobilized oligonucleotide has a molecular weight (M.W.) of 15,000 to 15,500 Daltons.


In some embodiments, multiple different oligonucleotides comprising a sequence all or partially complementary to an unwanted or desired RNA may be immobilized on a solid support. In some embodiments, these multiple different oligonucleotides are all or partially complementary to different sequences comprised in an unwanted or desired RNA. For example, if a user wants to deplete a given rRNA, the user may prepare multiple oligonucleotides with overlapping or non-overlapping sequences corresponding to this rRNA. In some embodiments, having multiple immobilized oligonucleotides corresponding to different sequences from a given unwanted RNA can improve efficiency of depleting of library fragments prepared from this RNA. In some embodiments, having multiple immobilized oligonucleotides corresponding to different sequences from a given desired RNA can improve efficiency of enrichment of library fragments prepared from this RNA. In part, this improved efficiency may be because library fragments may be generated randomly from cDNA prepared from a given RNA, and a user cannot predict the specific insert sequence of cDNA comprised in a given fragment.


In some embodiments, a sequence comprised in an immobilized oligonucleotide can be completely or partially complementary to a particular location on the RNA to be depleted or enriched (i.e., a target location), for example the sequence comprised in an immobilized oligonucleotide can be at least 80%, 85%, 90%, 95%, or 100% complementary, or any range in between, to a target location on an RNA transcript to be depleted or enriched.


In some embodiments, immobilized oligonucleotides may bind to a set of different sequences comprised in an RNA to be depleted. In some embodiments, multiple immobilized oligonucleotides may be designed that tile an RNA sequence intended for depletion, such as the tiling described in WO 2020132304, which is incorporated herein in its entirety. In some embodiments, multiple immobilized oligonucleotides designed against a target sequence can increase the likelihood of binding of a fragment generated from the target sequence to at least one immobilized oligonucleotide. For example, library inserts comprised in library fragments may comprise approximately 150 bp, and the immobilized oligonucleotides described herein may comprise 50-80 nucleotides. In such a scenario, if a fragmentation event occurs within the target sequence and disrupts binding of a given immobilized oligonucleotide to the fragment (such as if the fragmentation occurs within a sequence that can bind to a given immobilized oligonucleotide), an immobilized oligonucleotide designed to bind an adjacent target sequence may likely be able to hybridize to the fragment. In this way, tiling of sequences can increase the likelihood of successful depletion or enrichment of fragments prepared from an RNA sequence.


In some embodiments, the present oligonucleotides comprise modified or unmodified nucleic acid.


As used herein, a “modified nucleic acid” refers to any substitution from a naturally occurring nucleic acid. For example, a modified nucleic acid may comprise one or more modifications to the sugar-phosphate backbone or the pendant base groups. Such modifications can improve stability of immobilized oligonucleotides.


In some embodiments, one, at least one, or each of the one or more immobilized nucleic acids comprises RNA, deoxyribonucleic acid (DNA), xeno nucleic acid (XNA), or a combination thereof. The XNA can comprise 1,5-anhydrohexitol nucleic acid (HNA), cyclohexene nucleic acid (CeNA), threose nucleic acid (TNA), glycol nucleic acid (GNA), locked nucleic acid (LNA), peptide nucleic acid (PNA), Fluoro Arabino nucleic acid (FANA), or a combination thereof.


In some embodiments, an immobilized nucleic acid consists of modified nucleic acids. In some embodiments, a certain percentage of the nucleic acids comprised in an immobilized nucleic acid are modified nucleic acids, for example every third nucleotide may be a modified nucleic acid.


In some embodiments, the at least one immobilized oligonucleotide comprises the sequence or complementary sequence of an unwanted RNA. Solid supports with such immobilized oligonucleotides comprising the sequence or complementary sequence of unwanted RNA may be used for depleting library fragments prepared from unwanted RNA using methods described herein.


In some embodiments, the at least one immobilized oligonucleotide comprises the sequence or complementary sequence of a desired RNA. Solid supports with such immobilized oligonucleotides comprising the sequence or complementary sequence of desired RNA may be used for enriching library fragments prepared from desired RNA using methods described herein.


1. Immobilized Oligonucleotides for Depleting


In some embodiments, oligonucleotides for depleting comprise one or more unwanted RNA sequence.


In some embodiments, immobilized oligonucleotides are designed to deplete unwanted library fragments from a library. In some embodiments, the unwanted library fragments comprise library fragments prepared from unwanted RNA. A representative example of a solid support with immobilized oligonucleotides for depleting unwanted library fragments is shown in FIG. 1.


In some embodiments, immobilized oligonucleotides are designed to deplete each of most abundant species that are determined from a sample.


Various unwanted types of unwanted RNA (such as rRNA) are well-known in the literature. The RiboZero+probes and nuclease-based depletion of abundant transcripts using the RiboZero+probes have been described in WO 2020/132304A1, the content of which is incorporated by reference in its entirety.


In some embodiments, immobilized oligonucleotides are designed for depleting abundant transcripts described in WO 2020/132304A1.


In some embodiments, unwanted RNA sequences are determined by assessing sequencing results to determine abundant sequences in a sample comprising RNA. In some embodiments, the unwanted RNA sequences are selected by determining the most abundant sequences in a sample comprising RNA. In some embodiments, the most abundant sequences comprise the 100 most abundant sequences, the 1,000 most abundant sequences, or the 10,000 most abundant sequences. In some embodiments, the unwanted RNA sequence comprises a sequence with homology of at least 90%, at least 95%, or at least 99% to a most abundant sequence in a sample comprising RNA. In some embodiments, the unwanted RNA sequence comprises a sequence with homology of at least 90%, at least 95%, or at least 99% to a most abundant sequence in a sample comprising RNA, wherein the most abundant sequences comprise the 100 most abundant sequences, the 1,000 most abundant sequences, or the 10,000 most abundant sequences.


WO 2021/127191, which is incorporated herein in its entirety, describes methods of selecting abundant regions from a sample comprising RNA. Immobilized oligonucleotides can be designed using methods from WO 2021/127191 of identifying abundant regions using standard publicly available software. In some embodiments, methods of identifying abundant regions can avoid bias towards known samples within an environmental sample.


An exemplary type of immobilized oligonucleotides for use in depleting library fragments prepared from unwanted RNA (i.e., unwanted library fragments), is shown in FIG. 1. In some embodiments, the unwanted library fragments are prepared from rRNA and may be termed an “rRNA library.” In some embodiments, the rRNA library comprises library fragments prepared from a first strand of cDNA prepared from RNA. When the unwanted library fragments are an rRNA library, an immobilized oligonucleotides may be an “rRNA complement” that can bind to the rRNA library. Immobilized oligonucleotides comprising an rRNA complement are one representative type of immobilized oligonucleotide for use in depleting, and one skilled in the art could design such oligonucleotides for depleting library fragments prepared from any type of unwanted RNA. In some embodiments, unwanted RNA may be comprised in some immobilized oligonucleotides, and the complement of unwanted RNA may be comprised in other immobilized oligonucleotides.


2. Representative Sequences Comprising in Immobilized Oligonucleotides for Depleting


Table 1 describes a set of sequences that may comprised in immobilized oligonucleotides. Immobilized oligonucleotides or their complements listed in Table 2 may have particular use in studies of microbiome samples.


The immobilized oligonucleotides listed in Table 2 were designed by sequencing total RNA derived from human fecal matter to identify abundant rRNA sequences that were detected using the publicly available rRNA classifier SortMeRNA (as described in Kopylova et al., Bioinformatics 28(24):3211-3217 (2012)). The most abundant transcripts were identified, and DNA probes were designed against these transcripts. The depletion has been tested with fecal, skin, oral and vaginal samples using the Total RNA stranded kit as well as with samples derived from various soil types with much better results in comparison to a standard depletion probe panel (data not shown). The oligonucleotides listed in Table 2 are designed to remove rRNA sequences from metatranscriptomics samples, such as stool, and are antisense to the rRNA sequence that they target. In some embodiments, the at least one immobilized nucleotide comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement. In some embodiments, the at least one immobilized nucleotide comprises 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises at least one sequence comprised in the HMv1 sequences and comprising SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130 or its complement.


In some embodiments, the at least one immobilized oligonucleotide further comprises at least one sequence comprised in the HMv2 sequences and comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide further comprises at least one sequence comprised in the HM sequences (comprising both HMv1 and HMv2 probes) and comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131 or its complement.


In some embodiments, the at least one immobilized oligonucleotide further comprises at least one sequence comprised in the DP1 sequences and comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127 or its complement.


In some embodiments, the at least one immobilized oligonucleotide comprises a sequence comprising each of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127 or its complement.









TABLE 2







Representative immobilized oligonucleotides













Calc.




SEQ

Molecular
M.W.
M.W.


ID NO
Sequence
Weight
Lower Limit
Upper Limit














   1
CTCATCCCCACCCTTTTCAACGGATGTGGGTTCGGTCCTCCACTGCCTCT
15127
15111.873
15142.127





   2
AGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTTTCTTCCCTGCTGATAG
15316
15300.684
15331.316





   3
TAGATGATCAACCTACCGGGTTAGAGTAGCCATCACACAAGGGTAGTATC
15427
15411.573
15442.427





   4
CAGATGGCGGCATTGTCACTGCTCCGTCTCCACGTCACTCCTGAAGGTAG
15314
15298.686
15329.314





   5
GGGAAGCAGGGTGGACCACCACCCAAGGCTAAATACTACCTGATGACCGA
15432
15416.568
15447.432





   6
ACTAAACTTCACTCCGCATCACGTCTTCCCATTGCCGCACGGTTTTTCCA
15103
15087.897
15118.103





   7
GTTCCTCCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCACCGTTG
15229
15213.771
15244.229





   8
GCCCCAGACAACCATCGCTGGGGTTGAGCTACCTCACTGCGTCCCTCCGC
15205
15189.795
15220.205





   9
CTTTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGA
15377
15361.623
15392.377





  10
CAGGCGTCAGCTCGTATACGTCATCTTTCGATTTAGCACAAACCTGTGTT
15302
15286.698
15317.302





  11
GGCTTCATGCTTAGATGCTTTCAGCACTTATCCCGTCCGCACATAGCTAC
15223
15207.777
15238.223





  12
ATTACCGCGGCTGCTGGCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTAC
15425
15409.575
15440.425





  13
TTCACGCAAGATTTCTCGTGTCCCGCGCTACTCAGGATACCACTACGCTT
15208
15192.792
15223.208





  14
ATCTAAAGTCTTCTCGTTTAAAATACTGGGCTGTTACCATCTGTGGCGGA
15381
15365.619
15396.381





  15
GGGCTCTGACTTCTTGTAGGCATACGGTTTCAGGTTCTCTTTCACTCCGC
15292
15276.708
15307.292





  16
GCTATGGATCGTCGGTTTGGTGGGCCGTTACCCCGCCAACTGCCTAATCC
15321
15305.679
15336.321





  17
ATGACTTCAGCATGGGCGGTCATAACGCGGTACCAGAATATCAACTGGTT
15434
15418.566
15449.434





  18
TTTCAGTTCAGGCGGTTCCCCTCATATACCTATGTATTCAGTATATGATG
15307
15291.693
15322.307





  19
CGAAAGGGGAGACGGCACGGGCCCGGAGGTTAGCGCCCCAGGCCTCGGTT
15529
15513.471
15544.529





  20
TTTCGTCCCTGCTCGACTTGTAGGTCTCGCAGTCAAGCTCCCTTGTGCCT
15213
15197.787
15228.213





  21
CTCTTATCGATGACATCTCCTCTTAACCTTCCAGCACCGGGCAGGTGTCA
15208
15192.792
15223.208





  22
TCGTCCCTGACAACAGAGCTTTACGATCCGAAAACCTTCTTCACTCACGC
15170
15154.83
15185.17





  23
ACCCAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCAC
15152
15136.848
15167.152





  24
GTCCTCTCGTACTAAGGACAGAGCTCCTCAAATATCCTGCGCCCACGACA
15220
15204.78
15235.22





  25
TTATAGTTACGGCCGCCGTTTACCGGGGCTTCAATTCAGAGCTCTCACTC
15279
15263.721
15294.279





  26
CGTTTCTACGAGTTAGAACTCAAATAATCAAAGGGCCGTATTTCAACAGC
15361
15345.639
15376.361





  27
CACCAGTGTCGGTTTAGGGTACGGGCGGACCCGCCACCTCGCTCACGAAG
15374
15358.626
15389.374





  28
CGTCCATCCCGGTCCTCTCGTACTAGGGACAGCTCCTCTCAAATATCCTG
15169
15153.831
15184.169





  29
AGCTGACGCTCATGTTTCCAAGTCTCCCGCCTATCCTGTACATAGATTTC
15198
15182.802
15213.198





  30
CTCTTTTAATGAGTGGCTGCTTCTAAGCCAACATCCTGGTTGTCTAAGCA
15317
15301.683
15332.317





  31
ACAGCTTTTCTCGCCATCTTCCATCCCAGACTTCGGTACTAACTTCCCTC
15054
15038.946
15069.054





  32
CATAGACCTGTGTTTTTGCTAAACAGTTGCTTGAGCCTATTCTCTGCGGC
15324
15308.676
15339.324





  33
TCACGGTACTGGTTCACTATCGCTCACTCGTTTATATTTAGCCTTGGCGG
15300
15284.7
15315.3





  34
ACTCACCCTGCCCCGATTAACGTTGGACAGGAACCCTTGGTCTTCCGGCG
15259
15243.741
15274.259





  35
GGCTACAGTAAAGCTCCATGGGGTCTTTCCGTCTTGTCGCGGGTAACCGG
15425
15409.575
15440.425





  36
GTACGATTTGATGTTACCTGATGCTTAGAGGCTTTTCCTGGAAGCAGGGC
15478
15462.522
15493.478





  37
AAGTCATTGGCATTCGGAGTTTGACTGAATTCGGTAACCCGGTAGGGGCC
15497
15481.503
15512.497





  38
GGTTACCTTGTTACGACTTCACCCCAGTCATGAATCACAAAGTGGTAAGT
15344
15328.656
15359.344





  39
CCCTTCTCCCGTTGGCCTTAGAATCTTCTTCCTACCTACCTGTGTCGGTT
15123
15107.877
15138.123





  40
TACCTTCACTAAGGTTCTTTCCGACGCTAGCCCTAAAGCTATTTCGGGGA
15287
15271.713
15302.287





  41
CCCCCCTGCTTCCCACAGGGTTTCACGTGTCCCGTGGTACTCTGGATCAC
15177
15161.823
15192.177





  42
GACCGGCCTTCCCATGCCGTTCGGTTAACAGATTAAGTCTTAAAAGCAGT
15345
15329.655
15360.345





  43
TTCCTTTGACCCCCCCCCCCCCCCTCCCTATCCCCCCCCGCCCCCCCCCA
14669
14654.331
14683.669





  44
CCCCCTCAGTTCTCCAGCGCCCACGGCAGATAGGGACCGAACTGTCTCAC
15198
15182.802
15213.198





  45
CTTTGGGAGGCAACCGCCCCAGTTAAACTACCCGCCAGGCACTCTCCCCG
15198
15182.802
15213.198





  46
ACATGATCGGTTCACACACTCACCACCACACAAGACCTCAAAGAGACCCC
15160
15144.84
15175.16





  47
CCAGCACCGGGCAGGTGTCACCCCCTATACTTCGTCTTGCGACTTCGCAG
15235
15219.765
15250.235





  48
GTACCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACTGACTACAGCCC
15301
15285.699
15316.301





  49
CCATTGCGGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTCTGGGCCGTG
15346
15330.654
15361.346





  50
TTCTCTGCGGCTCATGTTTCCATGAGCACCCCTTATCCCTAAGTTACGGG
15230
15214.77
15245.23





  51
TTTGACTCATATCACACCTCACTGCTTAGACGTGCACTTCCAATCGCACG
15176
15160.824
15191.176





  52
CCGGTTTGCCCTCTTCCGCGTTCGCTCGCCACTACTTACGGAATCTCGTT
15158
15142.842
15173.158





  53
TACCTGATCGACTTGTCAGTCTCCCAGTCAAGCGCCCTTATGCCATTACA
15192
15176.808
15207.192





  54
TCCCAAGCTTCGGTGTATGATTTAGCCCCGTTAAATTTTCGGCGCAGGGT
15374
15358.626
15389.374





  55
CCTAGTCTTTTCAGTGCTCTACAAGCCGTGGTCATGGTTCGAGGCTGTAC
15350
15334.65
15365.35





  56
TCGGGGTGCTTTTCACCTTTCCTTCACAGTACTCGTACGCTATCGGTCTC
15212
15196.788
15227.212





  57
GGTCTGGGCTCTTTCCCTTTCGACTGCCCAACTTATCTCGTGCAGTCTGA
15237
15221.763
15252.237





  58
GCACTCCACAGCTCCTTCCGGTACTGCTTCTTCGCGTTAAGAATGCTCCT
15175
15159.825
15190.175





  59
GACTGCGAACCGTGAGCATTCGGAGTTCGTCAGGACTCGATAGGCGGTGA
15532
15516.468
15547.532





  60
GTAAACAGTCGCTTGGGTCTATTCTCTGCGGCCCATTCCTGGGCACTCCT
15271
15255.729
15286.271





  61
CCCACTTTCGTGCCTGCTCGACGTGTCTGTCTCGCAGTCAAGCCACCTTG
15192
15176.808
15207.192





  62
TTTCCCTGCGGCTCCGGGACTTTATCCCTTAACCTTGCCAGTATGCACAA
15199
15183.801
15214.199





  63
GGGCGCCTTCGCTTCGTAGCAGCTTTTCTCGCCAGCGTGAATTCAGCAGC
15321
15305.679
15336.321





  64
TTCCGCCTGACCTTAGCTCCCGACTAACCCTGAGCGGACGAACCTTCCTC
15139
15123.861
15154.139





  65
CTCTCAGGTCGGCTACTGATCGTCGGCTTGGTAGGCCGTTACCCCACCAA
15290
15274.71
15305.29





  66
CTTCCTCCGGCTACTTAGATGTTTCAGTTCACCGGGTTCCCCTCCATACG
15166
15150.834
15181.166





  67
TACCTGATCGACTTGTTAGTCTCCCAGTCAAGCGCCCTTATGCCATTACA
15207
15191.793
15222.207





  68
GCAACCGCCCCAGTTAAACTACCCGCCAGGCACTGTCCCTGAACAGGATG
15255
15239.745
15270.255





  69
TTCCTCGTGTCTCGCCGTACTCAGGATCCCATTAGGCTTCGATCGGATTT
15261
15245.739
15276.261





  70
ACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAACTAGCTAATGCACC
15227
15211.773
15242.227





  71
TGTCGGTTTGGGGTACGGGCGGCAACGCGCCTGACGCCGGGGCTTTTCTC
15474
15458.526
15489.474





  72
CGGTTTCCGTTCGCGCTGAGGGAACCTTTGGGCGCCTCCGTTACATTTTG
15358
15342.642
15373.358





  73
TTATAGTTACGGCCGCCGTTTACTGGGGCTTCAATTCAATGCTCTCACAT
15293
15277.707
15308.293





  74
TGTAGCATGCGTGAAGCCCTGGACGTAAGGGGCATGATGATCTGACGTCA
15531.1
15515.5689
15546.6311





  75
AGCACCGGGCAGGTGTCAGCACCTATACGTCAGCTCTCGCTTTCGCAGAT
15323
15307.677
15338.323





  76
GCTGATAGGACGCGACCCCATCCCACGCCGATAGAATCTTTCCCACAATC
15204.9
15189.6951
15220.1049





  77
GTTTCAGGTTCTATTTCACTCCCCTCCCGGGGTGCTTTTCACCTTTCCCT
15114
15098.886
15129.114





  78
CGGCTCCCATTCCGTGTCACCCCTGCGCTCACCTACCACGGCTACGCTCC
15052
15036.948
15067.052





  79
TAGAGGCTTTTCTTGGCAGTGTGGAATCAGGAACTTCGCTACTATATTTC
15412
15396.588
15427.412





  80
GGGGAATCTCGGTTGATTTCTTTTCCTCGGGGTACTTAGATGTTTCAGTT
15441
15425.559
15456.441





  81
CATACCAGAGGTTCGTCCACCCAGGTCCTCTCGTACTATGGGCAGGCCTC
15259
15243.741
15274.259





  82
CGCGGGTCCATCTTATACCACCGGAGTTTTTCACACTGAGCCATGCAGCT
15273
15257.727
15288.273





  83
CTCCCGCAACCCCGGCCACGCAACCCCCGACGGGTATCGCGCGCGGCCGG
15211
15195.789
15226.211





  84
TTCTCTGCGGCTCCATCTCTGGAGCACCCCTTCTCCCGAAGTTACGGGGT
15232
15216.768
15247.232





  85
GAACATCCGGCATTACCACCCGTTTCCAGGAGCTATTCCGGAGCATGGGG
15372
15356.628
15387.372





  86
AGGTCCCGGGGTCTTTTCGTCCTTCTGCGCTTAACGAGCATCTTTACTCG
15277
15261.723
15292.277





  87
GCTTCGGTGGCATGTTTTAGCCCCGGACATTTTCGGCGCAGGACCTCTCG
15352
15336.648
15367.352





  88
GCTTCAAAGCCTCCGACCTATCCTACACATCACGTGCCCAGATTCAATGA
15179
15163.821
15194.179





  89
TACTTTATTTCGCTCCACATCACGGCTTCGTCTCATGCACAGCGGATTTG
15229
15213.771
15244.229





  90
CATGGGGTCTTTCCGTCCTGTCGCGGGTAACCTGCATCTTCACAGGTACT
15311
15295.689
15326.311





  91
GACCTTCCTCTCAGAACCCCTACTGATCGTTGCCTTGGTGGGCCGTTACC
15216
15200.784
15231.216





  92
ATGTTTCAGTTCCCCGGGTTCCCCTCCATACGTTATGGATTGGCGTATGG
15341
15325.659
15356.341





  93
TTAACGCTTTCGCTTGGCCGCTTACTGTATATCGCAAACAGCGAGTATTC
15302
15286.698
15317.302





  94
CCACGGAAAACCACCTCCGCGGCCGGCTCCCATTCCGTGTCACCCCTGCG
15135
15119.865
15150.135





  95
TCGTAACTCGCCGGTTCATTCTACAAAAGGCACGCTCTCACCCATTAACG
15210
15194.79
15225.21





  96
AGGATGCGACGAGCCGACATCGAGGTGCCAAACCTCCCCGCCGATATGGA
15400
15384.6
15415.4





  97
TCCCCGGAGTACCTTTTATCCTTTGAGCGATGTCCCTTCCATACGGAAAC
15223
15207.777
15238.223





  98
CGGCTTCCCTACTTTAATTTCGGTCCCTTACGCCCGGGTCAACCAACGCC
15145
15129.855
15160.145





  99
CTGCTTCCAAGCCAACATCCTAGCTGTCTTAGCAGTCAGACTTCGTTAGT
15247
15231.753
15262.247





 100
GCTACTCATACCGGCATTCTCACTTCTATGCGTTCCAGCGCTCCTCACGG
15160
15144.84
15175.16





 101
GCCTTCGGTGTCTGCCTTATACCCGATTATTATCCATGCCCGGACCCTCG
15191
15175.809
15206.191





 102
CCGGCTTTCCCAAAACCGTTCCACTAACATTGCAGAATCTTAAATGCAGT
15233
15217.767
15248.233





 103
TACCTGTGTCGGTTTGCGGTACGGGCACCTTAGTATACACATAAGCTTTT
15373
15357.627
15388.373





 104
TGTTACGCACTCTTTCAAGGGTGGCTGCTTCTGAGCCAACCTCCTGGCTG
15310.9
15295.5891
15326.2109





 105
CTGGAGACCTTGGATATTCGGCCACAAGGATTCTCACCTTGTTCTCGCTA
15303
15287.697
15318.303





 106
CAGTAACCCGCAAGGCTGCACCTAAATGCATTTCGGGGAGTACGAGCTAT
15404
15388.596
15419.404





 107
AAACCTTGGATATTCGGCCTAGAGGATTCTCACCTCTATCTCGCTACTCA
15231
15215.769
15246.231





 108
CGCTTGTGCGGGCCCCCGTCAATTTCTTTGAGTTTTAGCCTTGCGACCGT
15292.9
15277.6071
15308.1929





 109
ACCGGGACACGTGATCCCACAACACCGGCAACGCAACCCCCGACGGGTAT
15274
15258.726
15289.274





 110
GCTTTTCTCGCCTTCAGCCAAGTGTGCTTCCCTACTCTAATTTCGGTCCC
15132
15116.868
15147.132





 111
CACTACTCACGGAGTATCCCTTCCTGCAGGTACTGAGATGTTTCACTTCC
15223
15207.777
15238.223





 112
GATTGGAATTTCTCCGCTACCCACAGTTCATCCGCTACCATTTCAACGGG
15232
15216.768
15247.232





 113
TTCCACGAGTCCCGCGCTACTCGGGAGACACCATCCATGGTGCACGCGCA
15278
15262.722
15293.278





 114
GTCTTTTCGTCCCATCGCGGGTAATCGGCATCTTCACCGATACTACAATT
15238
15222.762
15253.238





 115
CCGTACATCATCTCGATGGCATTCGGAGTTTGATATTCTTTGGTAAGCTT
15363
15347.637
15378.363





 116
GGGCTTGGCTACCCGGCTATAGACTTGGCAGTCTAACCGGTGCACCAGCG
15404
15388.596
15419.404





 117
ACTTTCGTTACTGCTCGACCCGTCAGTCTCGCAGTTAGGCTCGCTTCTGC
15222
15206.778
15237.222





 118
CTACTGTTTCTCCGCGTATACAACGCTCCCCTACCCAATCCATTACTGGA
15112
15096.888
15127.112





 119
ACTTATAGTCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAG
15289
15273.711
15304.289





 120
CTTCCAAGCCAACATCCTAGCTGTCTTAGCAATCTGACTTCGTTAGTTCA
15206
15190.794
15221.206





 121
CCTCGGCAACTGGCGTTACCGATTCTCAGCCTCCCACCTATCCTGTACAT
15129
15113.871
15144.129





 122
CCATAACGGCTCCCATCATCACACCTCGCCATGCATGCCATGCGGATTTG
15187
15171.813
15202.187





 123
CGTGCAGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAGGACCGT
15371
15355.629
15386.371





 124
CATCCAAACACTTTTCAACGTGTCCTGGTTCGGTCCTCCAGTGCGTTTTA
15229
15213.771
15244.229





 125
GCCCTAAAGCTATTTCGGGGAGAACCAGCTATATCCGGGTTCGATTGGAA
15450
15434.55
15465.45





 126
CAGTAAAGCTCTACGGGGTCTCTCCGTCCAGTCGCGGGTAATGGGCATCT
15394
15378.606
15409.394





 127
GGAACCTTTGGGCGCCTCCGTTACGCTTTAGGAGGCGACCGCCCCAGTCA
15340
15324.66
15355.34





 128
CCCGCCGTGTGTCTCCCGTGATAACATTCTCCGGTATTCGCAGTTTGCAT
15246
15230.754
15261.246





 129
CAGGTGTCAGCCCCTATACTTCATCTTTCGATTTGGCAGAGACCTGTGTT
15309
15293.691
15324.309





 130
GACTCTTCCCAGAGTCTTCTTCTATTCCCTTGGCTGCTTTATCGCAGTCC
15147
15131.853
15162.147





 131
GGCAACCCAACAACCCACACACCATCATCTTCAGCTACAGGACTATCACC
15111
15095.889
15126.111





 132
AGCACCGGGCAGGTGTCAGGCTATATACCTCATGTTTCCATTTCGCATAG
15352
15336.648
15367.352





 133
TTGCATACTATTAAGTTCAGCTCGGAAGGTGGATTTGCCTGCCTTCCTCA
15333
15317.667
15348.333





 134
CCGGCGGATTTGCCAACCGGACACCCTACACCCTTGGACCAGGTCAATTC
15237
15221.763
15252.237





 135
GCCGGTTATAACGGTTCATATCACCTTACCGACGCTTATCGCAGATTAGC
15296
15280.704
15311.296





 136
CTGATACAACCAGTATCGCTCCGTCCATTTGCGCAGCACCAGTAATCATG
15250
15234.75
15265.25





 137
TCTTTGAATGTATGGCTGCTTCTGAGCCAACATCCTAGTTGTCTTCGAGA
15348
15332.652
15363.348





 138
TGGATTCTCGCCCTCTTGTACTCATTTCGACTACGGGACTGTTACCCTCT
15196
15180.804
15211.196





 139
CAGTATCAACTGCAATTTTACGGTTGAGCCGCAAACTTTCACAACTGACT
15288
15272.712
15303.288





 140
TTCTCTGCGGCTTACCTTCGTAAGCACCCCTTCTCCCGAAGTTACGGGGT
15231
15215.769
15246.231





 141
ATTACTAGCGATTCCAGCTTCACGCAGTCGAGTTGCAGACTGCGATCCGA
15346
15330.654
15361.346





 142
CATAGACCTGTGTTTTTGCTAAACAGTTGCTTGAGCCTATTCTCTGCGGC
15324
15308.676
15339.324





 143
TATAAGTCGAGGCTGCACCTAAATGCATTTCGGGGAGTACGAGCTATCTC
15425
15409.575
15440.425





 144
TCAACCTGTTGTCCATCGCCTACGCCTTTCGGCCTCGGCTTAGGTCCCGA
15192
15176.808
15207.192





 145
GGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTCCATGCGGAACCACCGG
15410
15394.59
15425.41





 146
ATTAACCTATGGATTCAGTTAATGATAGTGTGTCGAAACACACTGGGTTT
15453
15437.547
15468.453





 147
CCTCTTAACCTTCCAGCACCGGGCAGGCGTCAGCCCCTATACTTCGCCTT
15130
15114.87
15145.13





 148
AAAAAGCAAGCTCTCTCAAGTTCCGTTCGACTTGCATGTGTTAGGCGCGC
15361
15345.639
15376.361





 149
GGGCCCGTGTCTCAGTGCCCATGTGGGGGACCCTCCTCAGGCCGGCTATC
15348
15332.652
15363.348





 150
GACTTAACAAACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAAC
15250
15234.75
15265.25





 151
CAACCTGTTGTCCATCGGCTACGCTTTTCAGCCTCACCTTAGGTCCCGAC
15160
15144.84
15175.16





 152
CACACACCACCACCACCCGAAAGCGGAGGCGGGGCGCGGGCAGATTGGTT
15426
15410.574
15441.426





 153
CCGTTCGACTTGCATGTGTTAAGCACGCCGCCAGCGTTCATCCTGAGCCA
15274
15258.726
15289.274





 154
GGCACCCTCTACGGCCAGGCCTTCAAGCCTGTTCCCCTGGCAAGCCGTTT
15211
15195.789
15226.211





 155
GCCCTTCAAAAGCGTCCCTGTGTTTAAATCTTCGGAGGTTACGGAATTTC
15342
15326.658
15357.342





 156
TCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCG
15540
15524.46
15555.54





 157
TCCCGGGGTTCTTTTCACCGTTCCTTCACAGTACTATGCGCTATCGGTCA
15221
15205.779
15236.221





 158
GACTGTTCGAGGTTAGACATCAAACGAGAACAGAGCGGTATTTCACCTTG
15458
15442.542
15473.458





 159
CACCTTAGAGTGCCCAACTGAATGCTGGCAACTAAGATCAAGGGTTGCGC
15404
15388.596
15419.404





 160
TATGGCACTTAAGCCGACACCTCACGGCACGAGCTGACGACAACCATGCA
15303
15287.697
15318.303





 161
TCTCGTCCATTGACCAATATTCCTCACTGCTGCCTCCCGTAGGAGTTTGG
15230
15214.77
15245.23





 162
TTTTCACCTTTCCCTCACGGTACTGGTTCGCTATCGGTCTCTCGGGAGTA
15252
15236.748
15267.252





 163
TTCCCCATTCAGAGATCTCCGGATCAATGGATATTTGCTCCTCCCCGAAG
15232
15216.768
15247.232





 164
TGAGCCAACATCCTGGTTGTCTGCGTATCTTCACATCGTTTTCCACTTAA
15228
15212.772
15243.228





 165
TCGGAGTTTGATATTCTTCGGTAGGCTTTGACGCCCCCTAGGAAATTCAG
15398
15382.602
15413.398





 166
CCTTCGGCTCCCCTATTCGGTTAACCTTGCTACAGAATATAAGTCGCTGA
15247
15231.753
15262.247





 167
GTCTGGACCGTGTCTCAGTTCCAGTGTGGCTGGTCATCCTCTCAGACCAG
15336
15320.664
15351.336





 168
TTATCCGTTCCGTACATAGCTGCCCAGCCGTGCCATTGGCATGACCACTG
15273
15257.727
15288.273





 169
TTCACAGTACTATGCGCTATCGGTCACTAAGGAGTATTTAGCCTTGCGGG
15407
15391.593
15422.407





 170
GACTCACCCGGGGACGACGAACGTGGCCCCGGAACCCTTGGTCATCCAGC
15328
15312.672
15343.328





 171
GGCAACTTCAACCTGCACATGGATAGATCACCCGGTTTCGGGTCTACGTA
15346
15330.654
15361.346





 172
ACCACGAATTCCGCCTGCCTCAACTGCACTCAAGATATCCAGTATCAACT
15163
15147.837
15178.163





 173
ACCACGCATTGCTGCATCCCAAGCTTCGGTTACATGCTTAGCCCCGTTAC
15193
15177.807
15208.193





 174
CCAGAGCTTTTCTCGCCTCCGTCCAAGCATGCTTCCCTACTAAATTTCAG
15143
15127.857
15158.143





 175
GCTGCACCTAAATGCATTTCGGAGAGAACCAGCTATCACGGAATTTGATT
15939.1
15923.1609
15955.0391





 176
CCTGGTTCGGGCCTCCAGTGAGTTTTACCTCACCTTCACCCTGCTCATGG
15207
15191.793
15222.207





 177
ACTCACCCGGGGACGACGAACGTGGCCCCGGAACCCTTGGTCATCCAGCG
15328
15312.672
15343.328





 178
AACATCCTGGTTGTCTGTGCAATTCCACATCCTTCTCCACTTAACGTGAA
15206
15190.794
15221.206





 179
CTACGACTTCTCCCCATACAGAACGCTCTCCTACCATACATTAGATGTAT
15144
15128.856
15159.144





 180
CACACTTAGCCCCGGACAACCATCACCGGGGATGAGCTACCTCACTGCGT
15246
15230.754
15261.246





 181
GGGCGACCCTCCAACAGCGGCGGAACACATTTCGACTACGGGACTCTCAC
15311
15295.689
15326.311





 182
CTCCGGTGCTTAACCTTGCCAGTGAGCGCAACTCGCCGGACCGTTCTACA
15259
15243.741
15274.259





 183
TTCGCAGGCTTACAGAACGCTCCCCTACCCAACAACGCATAAGCGTCGCT
15205
15189.795
15220.205





 184
CCGTCAAGCCATGGGAGCCGGGTGTACCTAAAGTCGGTAACCGCAAGGAG
15495
15479.505
15510.495





 185
TTACCTACACCATCACCTACACGCTTACACCAACAATCCACTAAGCGGCA
15101
15085.899
15116.101





 186
GCGTACACCTGCAGCCTATCTACCTCGTAGTCTTCAAGGGGTCTTACCTG
15264
15248.736
15279.264





 187
GCCGTCGCCCGTTAGTACCGGTCGGCTCCACCCCTCGCGGGGCTTCCACC
15189
15173.811
15204.189





 188
CACAGTGCTGTGTTTTTAATAAACAGTTGCAGCCAGCTGGTATCTTCGAC
15366
15350.634
15381.366





 189
CTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGACGGCATTTCCACTC
15270
15254.73
15285.27





 190
ACTTAGATGCTTTCAGCACTTATCCAATCCCGACTTAGATACCCGGCAAT
15224
15208.776
15239.224





 191
GCTTGCGCTAACCTCTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCAGC
15195
15179.805
15210.195





 192
ACCTATCCTGTACATGTGGTACAGATACTCAATATCAAACTGCAGTAAAG
15345
15329.655
15360.345





 193
CTCCACCAGACTAAAACGAGGCTAGCCCTAAAGCTATTTCGAGGAGAACC
15326
15310.674
15341.326





 194
CCCGGCTTACCTTGGGCGGACGAACCTTCCCCAAGAAACCTTAGATTTTC
15242
15226.758
15257.242





 195
GCAGAACAACTGGTACACCAGCGGTGCGTCCATCCCGGTCCTCTCGTACT
15268
15252.732
15283.268





 196
GACCAGGTCGATTCCATTGCCTGGCCCGGCTACCTTCCTGCGTCACACCT
15186
15170.814
15201.186





 197
CTCTGAGACTTCAAATGTGTCCCTGTGCTTAACTCTTTTGGTGGTGACGG
15380
15364.62
15395.38





 198
ACCTCGCGGTACGCCTTCGACGCTGACTGGAATGCTCCCCTACCGATCAT
15219
15203.781
15234.219





 199
CGTCCATCCTGAGGGAACCTTTGGGCGCCTCCGATACCCTTTCGGAGGCG
15331
15315.669
15346.331





 200
CACCTATCGGTCTCTCCTTAGGTCCCGACTAACCCAGGGCGGACGAGCCT
15244
15228.756
15259.244





 201
CGCTCGCCGCTACTAAGGAAATCGATGTTTCTTTCTCTTCCTCCGGCTAC
15190
15174.81
15205.19





 202
CGCGAGTCCATCTTCAAGCGATAAAATCTTTGATATCAAAACCATGTGGT
15352
15336.648
15367.352





 203
TGACTGGAGTTTGTCCAGCCGGGTTTCCCCATTCAGAGATCTGCGGATCA
15384
15368.616
15399.384





 204
CCTACTTAGCTACCCGGCTATGCCCCTGGCGGAACAACCGGTGCACCAGC
15238
15222.762
15253.238





 205
ACGCTTAAACCGGGACAACCGTCGCCCGGCCAACATAGCCTTCTCCGTCC
15182
15166.818
15197.182





 206
GATTTGCCTGGGATAATCAACATCTACACCCTTTAACGGACTATTCCGTC
15255
15239.745
15270.255





 207
CTAATGCGCCGCGGGTCCATCTGTAAGTGGTAGCCGAAGCCACCTTTTAT
15353
15337.647
15368.353





 208
GGATCTTAGCACTCGCAGTCTGACTGCCGACCATAAATCAATGGCATTCG
15330
15314.67
15345.33





 209
ACCTATCCTGTACATGTGGTACAGGTACTCAATATCAAACTGCAGTAAAG
15361
15345.639
15376.361





 210
TCACCGGGGATGAGCTACCTCACTGCGTCCCTCCGCAGCTTGCCTACTAC
15195
15179.805
15210.195





 211
GCCATGCAGATTCTCACTGCATTCGCGCTACTCATTCCGGCATTCTCACT
15159
15143.841
15174.159





 212
CTTCACCTCACATACGACGCTCCCCTACCCCTGACAATTACTTGTCAAGC
15066
15050.934
15081.066





 213
CCCTACTGATCGTCGCCTTGGTGGGCCGTTACCCCGCCAACAAGCTAATC
15219
15203.781
15234.219





 214
ACGCATTCGGAGTTTGTCAAGACTTGATAGGCGGTGAAGCCCTCGCATCT
15417
15401.583
15432.417





 215
ACATTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCGTCAGACACTGTCT
15276
15260.724
15291.276





 216
GGTGGGTTTCCCCATTCGGAAATCTCCGGATCAAAGCTTGCTTACAGCTC
15328
15312.672
15343.328





 217
CTCATCCCCACCCTTTTCAACGGATGTGGGTTCGGTCCTCCATTGCCTTT
15157
15141.843
15172.157





 218
AGGTCACTTGGTTTCGGGTCTACATCTACGTACTTAACCGCCCTTTTCAG
15269
15253.731
15284.269





 219
ACACACTCACCACACCACCACAACATCAAAGACATCACAATGGCAGGCTC
15153
15137.847
15168.153





 220
TGACAACTGGTGCACCAGAGGTGCGTCCATCCCGGTCCTCTCGTACTAGG
15339
15323.661
15354.339





 221
TCTGCCTCTGCACATTGCTCCTCTACCGCGCATCTTCTTCAGACGCACCC
15056
15040.944
15071.056





 222
CTTTTCTCGACAGTACGGGATCACCAACTTCACCAATTAAGGCTACGCAT
15249
15233.751
15264.249





 223
CCCTCATGTCACTATTTATTCATGACATGATGACACGCTGTTAACGTGCC
15246
15230.754
15261.246





 224
GTACGCAGTCACACGCCTAAGCGTGCTCCCACTGCTTGTACGTACACGGT
15283
15267.717
15298.283





 225
GGCGACCACCCCAGTCAAACTACCCACCAAGCAATGTCCGCGCATAGCGC
15209
15193.791
15224.209





 226
GACTTAGTCCCAATCACGAGCCTCACCTTAGACGGCTCCATCCCACAAGG
15204.9
15189.6951
15220.1049





 227
GCGCTTATGCGGTATTAGCAGTCATTTCTAACTGTTATCCCCCTGTATAA
15292
15276.708
15307.292





 228
CGCTTTCACTGCGGCTACGTGTCTCGTGACACTCAACCTCGCCAGTGACG
15250
15234.75
15265.25





 229
ATGCTTTTCGCTTACAGGACTATAACCTTCTTTGGTGTGCCTTCCCATAC
15219
15203.781
15234.219





 230
CGACTAACCCAGGGCGGACGAGCCTTCCCCTGGAAACCTTAGTCTTACGG
15317
15301.683
15332.317





 231
TAGGACCCGACTAACCCTGATCCGATTAGCGTTGATCAGGAAACCTTAGT
15354
15338.646
15369.354





 232
ACAGCTTTTCTCGTCTCTTTCCAAACTGACTTCCGCTTACGCGTCCCTTA
15100
15084.9
15115.1





 233
TAAGACTTGCTCTCGCTGCGGCTTCAGACCTTAAGTCCTTAACCTTGCCA
15223
15207.777
15238.223





 234
CTCTCAAACCAGCTATGGATCGTCGGCTTGGTAGGCCATTACCCCACCAA
15251
15235.749
15266.251





 235
GGAATTTCTCCCCTATCCACACGTCATCTCCACCCTTTTCAACGGATGTG
15143
15127.857
15158.143





 236
CCGGTCCATGGTCGGTACGGGAATATCCACCCGTTCATCCATTCGACTAC
15258
15242 .742
15273.258





 237
CCCCCGACCGGTTTCACGGCCGCAGGTTAGAATTCCAGAAACCTAAGGGC
15326
15310.674
15341.326





 238
AAGTTTCGGTGGCTACGGAATTTCAACCGTATGTGCATCGACTACGCCTC
15352
15336.648
15367.352





 239
TGCGCTCCCTTTACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTA
15162
15146.838
15177.162





 240
ATTTCGCCTACGGGACTGTCACCCTCTATGGTCCACCTTTCCAGGTGAGT
15255
15239.745
15270.255





 241
GCTTCGGTGGCATGTTTTAGCCCCGGACATTTTCGGCGCAGGACCTCTCG
15352
15336.648
15367.352





 242
GACATGTCTCCACATCATTCAGTTGCAATTCAAGCCCGGGTAAGGTTCCT
15296
15280.704
15311.296





 243
CGATAACTGGCACACCAGAGGTGCGTCCTTCCCGGTCCTCTCGTACTAGG
15299
15283.701
15314.299





 244
AACGCTTATCGGTGCGGACCTCCATCCCGTGTTACCGGGACTTCATCCTG
15265
15249.735
15280.265





 245
CCACTCCGTCGATGTGAACTCTTGGGAGTGATAAGCCTGTTATCCCCAGG
15353
15337.647
15368.353





 246
GCCGCCTTTTCAACGGAGGTCGGTTCGGCCCTCCATGGAGTTTTACCTCC
15272
15256.728
15287.272





 247
ACCGTTATAGTTACGGCCGCCGTTTACTGGGGCTTCAATTCGCACCTTCG
15295
15279.705
15310.295





 248
AGGTGTTCTCATGTGGGTTTCCCCATTCAGAGATCTGCGGGTCAATGGAT
15454
15438.546
15469.454





 249
AGCCTGTTCCCCTGGCAAGCCGTTTTATGACTCCCGCCCGGTCCGTCGGA
15242
15226.758
15257.242





 250
GCTGACCTACTACGAGGGGGGATCCCAACGCGCCCGCGCCGCGACCCCCC
15250
15234.75
15265.25





 251
GTTATCCCCCTGTATGAGGCAGGTTACCCACGCGTTACTCACCCGTCCGC
15210
15194.79
15225.21





 252
CGGACATCTTCGGCGCACAATCACTCGACCAGTGAGCTATTACGCACTCT
15251
15235.749
15266.251





 253
TGCTTGATGCCCGATTATTATCCACGCCAAACTCCTCGACTAGTGAGCTG
15272
15256.728
15287.272





 254
CTCCATTCGGAAATCTGCGGATCAAAGCCTACTTACGGCTCCCCGCAGCT
15227
15211.773
15242.227





 255
GCTGTTGGTCCGGATTGTTCTCCTTTAGGACATGGACCTTAGCACCCATG
15350
15334.65
15365.35





 256
TGCTGGCACGGAGTTAGCCGTCACTTCCTTGTTGAGTACCGTCATTATCT
15325
15309.675
15340.325





 257
GCTATCGGTCAGACAGGTATGCTTAGACTTACCCAACGGTCTGGGCTGAT
15417
15401.583
15432.417





 258
TATTCCTCACTGCTGCCTCCCGTAGGAGTTTGGACCGTGTCTCAGTTCCA
15246
15230.754
15261.246





 259
TCCCGCTGGCCTTAGAATTCTCTTCCTGTCCACCTGTGTCGGTTTGCGGT
15244
15228.756
15259.244





 260
CGACTATTGTCCTCGGCTTAGGTCCCGACTTACCCTGAGAGGACGAGCCT
15314
15298.686
15329.314





 261
GGTCCTTTTCACCTTTCCTTCACAGTACTATGCGCTATCGGTCACTAAGT
15204
15188.796
15219.204





 262
TCGGCTACTGATCGTCGCCTTGGTAGGCCGTTGCCCTGCCAACTAGCTAA
15305
15289.695
15320.305





 263
CTTGGGAGTATGTTTACACGCACTATTACCGTTTTCCGAGGAAATTGGTA
15421
15405.579
15436.421





 264
CACACAACCCCTACCAGGTATCACATGCACACGGTTTAGCCTCATCCACG
15149
15133.851
15164.149





 265
CCACGGCTTCGGTGTTGTGTTTTAGCCCCGGACATTTTCGGCGCAGGGCC
15368
15352.632
15383.368





 266
CCACCTTCCTCCAGTTTATCACTGGCAGTCTCCTTTGAGTTCCCGGCCGG
15167
15151.833
15182.167





 267
AGCTTTCGGGGAGAACCAGCTATCTCCCGGTTTGATTGGCCTTTCACCCC
15280
15264.72
15295.28





 268
CGAGCCTTCCTCAGGAAACCTTAGGCATTCGGTGGAGGGGATTCTCACCC
15363
15347.637
15378.363





 269
CCCAGGGCTAGATCATCCCGCTTCGGGTCCAGGACAAGCGACTGAAAACG
15375
15359.625
15390.375





 270
AAAATCATGGGAAATCTCATCTTGAGGGGGGCTTCGCACTTAGATGCTTT
15455
15439.545
15470.455





 271
ATCCTGTACAAGCTGTACCAACATTCAATATCAGGCTGCAGTAAAGCTCC
15282
15266.718
15297.282





 272
TTAGCAGGTGGTCCGGATTCTTCTCCTCTCGGGCACGGACCTTAGCACCC
15281
15265.719
15296.281





 273
GTCCGTTTACGGTACGGGTACCTCAAGGATAAGTTTAGCGGGTTTTCTAG
15478
15462.522
15493.478





 274
CACTGGCGTGCTGCCTTCTCTGCCTCCCACCTATCCTGTACATGAAATAC
15144
15128.856
15159.144





 275
TGCGGTATTAGCAGTCATTTCTAACTGTTATCCCCCTGTATAAGGCAGGT
15357
15341.643
15372.357





 276
GCTATCGGTCAGACAGGTATGCTTAGACTTACACCACGGTCGGTGCGGAT
15442
15426.558
15457.442





 277
TTTACTCCTTTCGGATGGGATATCTCATCTTGAGGGGGGCTTCACGCTTA
15380
15364.62
15395.38





 278
TGGCCGGTCGCCCTCTCAGGCCGGCTACCCGTCGAAGCCTTGGTGAGCCG
15332.9
15317.5671
15348.2329





 279
AAGCCTGTTCCCCTGGCAAGCCGTTTTATGACTCCCGCCCGGCCCGTCGG
15227
15211.773
15242.227





 280
AAGGTTAAGCCTCACGGTTCATTAGTACCGGTTAGCTCAACGCATCGCTG
15361
15345.639
15376.361





 281
GACATCATACTAACGCGCCCTATTAAGACTCGGTTTCCCTACGGCTCCGT
15217
15201.783
15232.217





 282
TGTGTTTTTGTTAAACAGTTGCCTGGACCGATTCTCTGCGCCTCAAGTCG
15340
15324.66
15355.34





 283
GCCCCAGTCAAACTACCCACCAGACACTGTCCGCAACCCGGATTACGGGT
15215
15199.785
15230.215





 284
GCGTCACACCTGTTAATGCGCTTGCCTTACCGGTTCAGGTCCCGCGCTCC
15217
15201.783
15232.217





 285
GCGATGGCCCTTCCATGCGGAACCACCGGATCACTAAGCCCGACTTTCGT
15268
15252.732
15283.268





 286
AAGCTCCATGGGGTCTTTCCGTCTAGTCGCGGGTAACCGGCATCTTCACC
15305
15289.695
15320.305





 287
CGCTAGCCCTAAAGCTATTTCGGAGAGAACCAGCTATCTCCAAGTTCGTT
15305
15289.695
15320.305





 288
TCCCATCCGCACTTCGCTTCCCTGCTATGCCGTTGGCACGACAACAGTTG
15185
15169.815
15200.185





 289
TTTCACTCCCCTCCCGGGGTCCTTTTCACCTTTCCTTCACAGTACTCTGC
15028
15012.972
15043.028





 290
CGTCCTCGGCTTAGGCCCCGACTTACCCTGGGCGGATGAACCTTCCCCAG
15236
15220.764
15251.236





 291
CGACATCGAGGTGCCAAACCTCCCCGTCGATGTGGACTCTTGGGGGAGAT
15428
15412.572
15443.428





 292
TACCTGATCGACTTGTCAGTCTCCCAGTCAAGCGCCCTTATGCCATTACA
15192
15176.808
15207.192





 293
CTTCCAAGCCAACATCCTAGCTGTCTTAGCAATCTGACTTCGTTAGTTCA
15206
15190.794
15221.206





 294
ACGCCTTAACCATGTGAAGGGTAGATTTTCTGACCCCTTCGGCCTGAACG
15337
15321.663
15352.337





 295
CTCAAGGATTAAGTTTAGCGGATTTTCTCGGGAGTATGTTTACACGCACT
15421
15405.579
15436.421





 296
CCCCATCCATCACCGATAAATCTTTAATCTCTTTCAGATGTCTTCTAGAG
15165
15149.835
15180.165





 297
ATACTTTGGGACCTTAGCTGTGGGTCTGGGCTGTTTCCCTTTTGACAATG
15411
15395.589
15426.411





 298
CGCCCATAGGCGGTGCCGGCCCATGACGGCCGGCGGGTTCCCCCATTCGG
15343
15327.657
15358.343





 299
AAAATCATGGGAAATCTCATCTTGAGGTGGGCTTCGCACTTAGATGCTTT
15430
15414.57
15445.43





 300
ACAACTTGATACCCGATTATTATCCACGCCCGACTCCTCGACTAGTGAGC
15210
15194.79
15225.21





 301
CTGAGTTTGATAAGCTTCGCTAACCTCTCGGCCGCTAGGCTATTCAGTGC
15319
15303.681
15334.319





 302
GCCCAGATCGTTGCGCCTTTCGTGCGGGTCGGAACTTACCCGACAAGGAA
15388
15372.612
15403.388





 303
TTATAGTTACGGCCGCCGTTCACTGGGGCTTCGGATCACTGCTTCAGATC
15335
15319.665
15350.335





 304
GGCATTGTCCCACCGCCGGGTCACGGCGGCTGGTTAGAAACCCAATACTG
15373
15357.627
15388.373





 305
GTCCACACATTTAGCCCCAGACAACCATCGCTGGGGTTGAGCTACCTCAC
15236
15220.764
15251.236





 306
TCTCACGACGTTCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAG
15323
15307.677
15338.323





 307
ATGCGACGAGCCGACATCGAGGTGCCAAACCTCCCCGTCGATGTGAACTC
15326
15310.674
15341.326





 308
CCTGTGTCGGTTTAGGGTACGGGCAGTTTGAACCTCGCGCCGATGCTTTT
15422
15406.578
15437.422





 309
CGATATTGCAAGGGTGGTATCCCAACAGCGCCTCCTCAGAGACTGGCGTC
15372
15356.628
15387.372





 310
CCCCCGACCGGATTCACGGCCGCAGGTTAGAATTTCAGCACCTCAAGAGT
15301
15285.699
15316.301





 311
TCAGATGGCGGCATTGTCACTACTGCGTCTCCACATCACTCCTGGAGGTA
15313
15297.687
15328.313





 312
CTTTTCGTCCCATCGCGGGTAATCGGCATCTTCACCGATACTACAATTTC
15198
15182.802
15213.198





 313
ACAACGAATTCCGCCAACTTCCCGCGCACTCAAGCCCTCCAGTTCGCGCT
15117
15101.883
15132.117





 314
CCCGAAGTTACGGGGCCAATTTGCCGAGTTCCTTAACAACCCTTCTCCCG
15218
15202.782
15233.218





 315
TCAAGGGGGTTTACTTCTTTCGAATGGGATATCTCATCTTAAGGGGGGCT
15493
15477.507
15508.493





 316
CTTCACAGTACTATACGCTATCGGTCACTGGGTAGTATTTAGGGTTGGAG
15462
15446.538
15477.462





 317
ATTCCGTCAGACGGCCGGACTGTCACTTCTCCGTCACCACATCGCTCTCT
15145
15129.855
15160.145





 318
CGGTACTGGTTCACTATCGGTCACTAGGGAGTATTTAGGGTTGGGAGATG
15583
15567.417
15598.583





 319
AGCTGATGGTCCGGATTCTTCTCCTTTAGGACATGGACCTTAGCACCCAT
15303
15287.697
15318.303





 320
CGTATTACCGCGGCTGCTGGCACGGAATTAGCCGGTCCTTATTCATAAGG
15393
15377.607
15408.393





 321
ACGGGTTAGCCTCGCCACGCACCACTGACTCGCAGACTCATTTTTCGATA
15242
15226.758
15257.242





 322
ACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCG
15264.9
15249.6351
15280.1649





 323
TGCGCATTCGGAGTTTATCAAGACTTGATAGGCGGTGAAGCCCTCGCATC
15417
15401.583
15432.417





 324
CTGTTGTCCATCGGCTACGACTCTCGTCCTCACCTTAGGCCCCGACTTAC
15136
15120.864
15151.136





 325
GGCTCACGCCTCACCTTCGACGCGGAGTGGAATGCTCCCCTACCGATGTT
15275
15259.725
15290.275





 326
GATGTTTCAGTTCAGGCGGTTCCCTCGATATACCTATTTTTAAGTTCAGT
15338
15322.662
15353.338





 327
CATTGTCTAAGATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGT
15296
15280.704
15311.296





 328
TCACAGTACTATGCGCTATCGGTCACTAAGTGGTATTTAGCCTTAGGGGG
15447
15431.553
15462.447





 329
GTAGTATTTAGGCTTGGAGGATGGTCCCTCCTGCTTCCCACAGGGTTTCA
15390
15374.61
15405.39





 330
TTGGGACCTTAGCTGCGGGTCTGGGCTCTTTCCCTTTTGACTATCCAACT
15292
15276.708
15307.292





 331
CAGCTTGGTGGCGCAGAACTAAGCATTTGACTCAGTCCTCACCTCACTGC
15282
15266.718
15297.282





 332
ACCAAGTACAGGAATATTAACCTGTTTCCCATCGACTACGCCTTTCGGCC
15225
15209.775
15240.225





 333
AAGCCCGCTTGTGCGATTACACTCGACACCCGATTGCCAACCGGGCCGAG
15302
15286.698
15317.302





 334
CCTTAAATACGCACAACCATCGGCGCACTGCAGCTACCTGTCTGCGTCAC
15196
15180.804
15211.196





 335
CTACCCAGCGATGCCTTTGGCAAGACAACTGGTACACCAGCGGTAAGTCC
15325
15309.675
15340.325





 336
CCTGTGTCGGTTTACGGTACGGGCGCATGGCAAACAATAGCGGCTTTTCT
15424
15408.576
15439.424





 337
CCGCGCTTACCCTATCCTCCTGCGTCCCCCCATTGCTCAAATGGTGAGGA
15170
15154.83
15185.17





 338
GGCTCTCTGTACTGTCAGGTTTCAGCAAGGACTAACTCTTAATCTGCCCC
15263
15247.737
15278.263





 339
GGATCACCGGATTCGGGCCGTAAGGCCCCCATCATCGCGCCTCGCCCCGA
15254.8
15239.5452
15270.0548





 340
TGGTCTCCGCTCGTTCAGACAAGGTTTCACGTGTCTCGTCCTACTCTGGA
15286
15270.714
15301.286





 341
CAATCCCACTTTATGCCACCGGATCACTAAGTCCTACTTTCGTACCTGCT
15127
15111.873
15142.127





 342
GTCACCAAGTAGTATTTAGCCTTGGGGGGTGGGCCCCCCGTCTTCCCACC
15306
15290.694
15321.306





 343
ATCCCCGGAGTACCTTTTATCCGTTGAGCGATGGCCCTTCCATTCAGAAC
15248
15232.752
15263.248





 344
TACCTCTCACGGTGACCATCCGACGCGGCACCTAAATGCCTTTCGGGGAG
15308
15292.692
15323.308





 345
CCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTAAGGGG
15428
15412.572
15443.428





 346
ATCACCAGTTTTACCCTAGGGCGCTCCTTGCGGTTACGCACTTCAGGTAC
15264
15248.736
15279.264





 347
GGAGGGCACCTTTAGAAGCCTCCGTTACGCTTTTGGAGGCGACCACCCCA
15348
15332.652
15363.348





 348
CTGGAGACCTTGGATATTCGGCCACAAGGATTCTCACCTTGTTCTCGCTA
15303
15287.697
15318.303





 349
GGGCTTTCACCCTCTTTGGCTGGCTTTCCCAAAACCATTCTGCTAGGATC
15230
15214.77
15245.23





 350
GTGGGATTGGCTTAACCTCGCGGTTTCGCTGCCCTTTGTTCTGTCCATTG
15339
15323.661
15354.339





 351
ATGCTACGCAGAGAAGTCCGGATATCAATGCCAGACTAGAGTAAAGCTCC
15421
15405.579
15436.421





 352
TCCGTATACTCTCAGGTTCGACTCTCCCCGCGGATTTGCCTACGGGAATC
15240
15224.76
15255.24





 353
CTGGACCTATTCTCTGCGCCTCACATTGCTGTGAGGACCCTTTATCCCGA
15215
15199.785
15230.215





 354
TTAGCAGGTGGTCCGGATTCTTCTCCTCTCGGGCACGGACCTTAGCACCC
15281
15265.719
15296.281





 355
GCCTGTACACCTGCATCCTATCAACGTCATAGTCTTTGACGACCCTGAGA
15241
15225.759
15256.241





 356
AGACTCCAATCCGGACTACGACGCACTTTATGAGGTCCGCTTGCTCTCGC
15258
15242 .742
15273.258





 357
GGTTTGCCCTCCTGCCTCTTCGCTCGCCGCTACTGAGGCAATCGCTCTTG
15199
15183.801
15214.199





 358
ACCTTTCCCTCACGGTACTGGTACGCTATCGGTCAGACAGGTATGCTTAG
15328
15312.672
15343.328





 359
CCGGTCCTCTCGTACTAGGGACAGCTCCCATCAAATATCCTGCGCCCACG
15188
15172.812
15203.188





 360
CCATTGGCATGACAACCCGAACACCAGTGATGCGTCCACTCCGGTCCTCT
15212
15196.788
15227.212





 361
ATGTGCTTGTAAGCACAGAGTTTCAGGTTCTTTTCACTCCCCTCCCGGGG
15310
15294.69
15325.31





 362
CCCTTCTCCCGAAGTTACGGGGTAATTTTGCCGAGTTCCTTAACAACCCT
15223
15207.777
15238.223





 363
CCTGAGTCGGTTTAGGGTACGGGCGCGTTATGCCCTCACGTCGAGGCTTT
15432
15416.568
15447.432





 364
ATCTGGGCTGTTTCCCTTTCGACAATGAAACTTATCTCACACTGTCTGAC
15237
15221.763
15252.237





 365
CGTATTTCAAGGATGGCTCCACAAACACTGGCGTGCCTGCTTCAAAGCCT
15306
15290.694
15321.306





 366
GGTCATTGCCTGCTTGCGGCTGACCATGGCTTATCGCAGCTGACCACGTC
15321
15305.679
15336.321





 367
CCTGGCGCGGGTAACCAGCATCTTCACTGGTACTTCAATTTCACCGGGTG
15329
15313.671
15344.329





 368
GTAACTCACAAGGCTGCACCTAAATGCATTTCGGGGAGTACGAGCTATCT
15394
15378.606
15409.394





 369
GTCGGTTTGGGGTACGGGCGGCCATAGCCCTCACGCCGAGGCTTTTCTCG
15418
15402.582
15433.418





 370
CACCGTCTATGGTCCCATTTTCCAAAGGGTTCTACTCATGAAATGTCTTG
15277
15261.723
15292.277





 371
CCGGCAACGCAACCCCCGACGGGTATCACGCGCAACCGGTTTGGTCTGAT
15318
15302.682
15333.318





 372
TTATCCTTCTGTGTCACTGCTTCATTCCATCGGTAGTGCAGGAATCTACA
15268
15252.732
15283.268





 373
CAGAGCACCCCTTCTCCCGAAGTTACGGGGTCATTTTGCCGAGTTCCTTA
15264
15248.736
15279.264





 374
ATACTATCAGGTTCGATTCTCATGGTGGATTTGCCTGCCAAGATCAACAT
15350
15334.65
15365.35





 375
CTTACGGGGCTTTCACCCTCTCTGGCCGGCTTTCCCAAAACCGTTCTGCT
15167
15151.833
15182.167





 376
GACCGGCCTTCCCATGCCGTTCGGTTAACAACTTAAGTCCTAAATGCGGT
15297
15281.703
15312.297





 377
CGTTTATCCGATCCGTACGTAGTTGCCCAGCTATGCTCCTGGCGGAACAA
15313
15297.687
15328.313





 378
GTATCTAATCCTGTTTGATACCCACACTTTCGAGCATCAGCGTCAGTTAC
15246
15230.754
15261.246





 379
GGTGCTTGTAAACACAAGGTTTCAGGTTCTTTTTCACTCCCCGTCAGGGG
15374
15358.626
15389.374





 380
GTAGGCGCACGGTTTCAGGAACTCTTTCACTCCCCTCCCGGGGTGCTTTT
15287
15271.713
15302.287





 381
ACTTCTGAGTTCGGCATGGGGTCAGGTGGGACCACCGCGCTACGGCCGCC
15421
15405.579
15436.421





 382
TTCCGTGTTCGGTATGGGAACGGGTGTGACCTCTTCGCTATCGCCACCAA
15360
15344.64
15375.36





 383
TCGCCTTAGGACCCGACTCACCCGGGGACGTTAACCGTGGCCCCGGAACC
15279
15263.721
15294.279





 384
CACTCACCCACAACCATGGGCTCCCCATCATGCCTCAACCTTCACGCCCA
15006
14990.994
15021.006





 385
CTCCGAGACTTCATATGTGTCCCTGTGTTTAACTCTTTTGGTGGTGACGG
15371
15355.629
15386.371





 386
AAAATTCCCTACTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCAGTCC
15280
15264.72
15295.28





 387
GACCAGGTAAGGTTCTTCGCGTTGCATCGAATTAAACCACATGCTCCACC
15290
15274.71
15305.29





 388
CGAAGTTTGATAGGGTTCGGTAAGCTTTGTGGCCCCCTAGCCCATTCAGT
15399
15383.601
15414.399





 389
AGGCTTGCGCCGCCGCTTCGCCCCGATGGGGACGCTCTCCTACCCAGCGT
15252.8
15237.5472
15268.0528





 390
CGAACAGAGCGGTATTTCACCTTACGGCTCCGCGCGATCTGGCGACCGCG
15349
15333.651
15364.349





 391
ACCGTTCTACAAAAAGTACGCGGTTGTACTCGTATGGTACTTCCACAGTT
15335
15319.665
15350.335





 392
CGTTTCGCTCGCCGCTACTCAGGGAATCGCATTTGCTTTCTCTTCCTCCG
15173
15157.827
15188.173





 393
GCTACTTGGGACAACACGATCGGAAGACGGCTCACGTCCAGGTACGGGGC
15471
15455.529
15486.471





 394
AAGGTCCCCCTCTTTGGTCTTGCGACGTTATGCGGTATTAGCTACCGTTT
15316
15300.684
15331.316





 395
GTTCTGAACCCAGCTCGCGTACCACTTTAATCGGCGAACAGCCGAACCCT
15236
15220.764
15251.236





 396
TGATTCAAAGCCTCCGGCCTATCCTACACATCAATCACCCAAATTCAATG
15162
15146.838
15177.162





 397
GTCTTTTCGTCCCATCGCGGGTAATCGGCATCTTCACCGATACTACAATT
15238
15222.762
15253.238





 398
CCCCCCCCCCCCTTCCCCCCTCTCCTCCCCCTTCCCCCTTTCGCGCCCCC
14627
14612.373
14641.627





 399
CAGGTGTCACCCCATATACGTCATCTTTCGATTTAGCATAGAGCTGTGTT
15317
15301.683
15332.317





 400
CTCCACCAGACTAAAACGAGGCTAGCCCTAAAGCTATTTCGAGGAGAACC
15326
15310.674
15341.326





 401
TTCCGTCAGCCGGCAGGACTGTCACTTCTCCGTCTCCACGTCACTCCATG
15161
15145.839
15176.161





 402
CGCTAATTTTTCAACATTAGTCGGTTCGGTCCTCCAGTTAGTGTTACCCA
15268
15252.732
15283.268





 403
CTTGGCAGTGTGACATCACTAACTTCGCTACTAAACTTCGCTCCCCATCA
15176
15160.824
15191.176





 404
CCCGTTAAATTTTCGGCGCAGAGTCACTCGACCAGTGAGCTATTACGCAC
15306
15290.694
15321.306





 405
CCCGGAGTACCTTTTATCCTTTGAGCGATGTCCCTTCCATGCGGAAACAC
15248
15232.752
15263.248





 406
TTCTCTGCGGCTCCATCGCTGCAGCACCCCTTCTCCCGAAGTTACGGGGT
15217
15201.783
15232.217





 407
AAGCTACCTACTTCTTTTGCAACCCACTCCCATGGTGTGACGGGCGGTGT
15304
15288.696
15319.304





 408
GCACAGCCATGTGTTTTTGTTAAACAGTTGCCTGGACCTATTCTCTGCGC
15309
15293.691
15324.309





 409
GCCAACATCCTGGTTGTCTGTGCAATTCCACATCCTTTTCCACTTAACTA
15157
15141.843
15172.157





 410
GGTCACCCGGTTTCGGGCCCATTATATGCAACTTAACGCCCTTTTCAAAC
15232
15216.768
15247.232





 411
TTATAGTTACGGCCGCCGTTCACTGGGGCTTCGATTCAATGCTTGCACAT
15334
15318.666
15349.334





 412
GTTTATCTGAGATTGGTAATCCGGGATGGACCCCTCAATCAAACAGTGCT
15400
15384.6
15415.4





 413
CGAAGTTACGGGGTCATTTTGCCGAGTTCCTTGACAATGCTTCTTCCGCC
15310
15294.69
15325.31





 414
GTCCACACACGCGTGTGTCCCTCATCAGTTCTCACCCTCCATGCCCCCCG
15051
15035.949
15066.051





 415
CCGGCCCGTCGGGGCCGGGACACACGCTCCCGCAACCCCGGCCACGCAAC
15220
15204.78
15235.22





 416
CCGGTACATTTTCGGCGCAGGGTCACTCGACTAGTGAGCTATTACGCACT
15353
15337.647
15368.353





 417
CTCGAACTTCTTGTAAGCACACGGTTTCAGGTTCTCTTTCACTCCCCTTC
15140
15124.86
15155.14





 418
TTTCAGTTCAGGCGGTTCCCCCCGTATCCCTATGGATTCAGAATACGGTG
15319
15303.681
15334.319





 419
TCCGTTACATTTTGGGAGGCGACCGCCCCAGTCAAACTGCCTACCTGACA
15267
15251.733
15282.267





 420
CCGCTCCTTCCATCAAGGTTCCACGTGTCTCGATGTACTCTGGATCCTGC
15191
15175.809
15206.191





 421
CCACGTGTTACTCACCCGTCCGCCGCTAACATCAGGGAGCAAGCTCCCAT
15197
15181.803
15212.197





 422
GACTCCGTACTGTCAGGTTCGGCTCAACGGGTGGATTTGCCTGCCCATCT
15336
15320.664
15351.336





 423
ACGTGTCCGGCGGTACTCTGGATACAGATGGCTGTTCAGGCTTTTCGTGT
15446
15430.554
15461.446





 424
TGGGCTGTTTCCCTTTGGACAATGAAACTTATCTCCCACTGTCTGACTCC
15229
15213.771
15244.229





 425
ACATAGCTACCCAGCCATGCCCTTGGCAGAACAACTGGTACACCAGCGGT
15294
15278.706
15309.294





 426
CAGAGGTCAGTCCAACACGGTCCTCTCGTACTAGTGTCAGAGCCACGCAA
15325
15309.675
15340.325





 427
GTTTGATAGGGTTCAGTAACTTCTCAGCCCCTAGCCCATTCAGTGCTTTA
15293
15277.707
15308.293





 428
CGGCACCGGGCAGGCGTCACACCCTATACGTCCACTGTTCGTGTTGGCAG
15340
15324.66
15355.34





 429
AACCCAATAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGC
15220
15204.78
15235.22





 430
CCATACATCAATTATCTGGCATTCTGAGTTTGATAGGGTTCAGTAACCTC
15325
15309.675
15340.325





 431
CCTCCGTTACACTTTGGGAGGCGACCGCCCCAGTCAAACTGCCCGCCAAG
15238
15222.762
15253.238





 432
CTGTTATCCCCGAGGTAGCTTTTATCCGTTAAGCGACGGCTTTTCCACTC
15245
15229.755
15260.245





 433
TAGCCCATTCAGTGCTTTACCTCCGGTAATCTAAATCAACGCTAGCCCTA
15200
15184.8
15215.2





 434
TCCACAGCTCCTTACGGTACTGCTTCGTCCCGCATGCAATGCTCCTCTAC
15120
15104.88
15135.12





 435
CCATCGCGGGTAATCGGCATCTTCACCGATACTACAATTTCACCGAGCTC
15226
15210.774
15241.226





 436
CTGGACCTATTCTCTGCGCCCAACTCTCGTTGGGACCCTTTATCCCGAAG
15200
15184.8
15215.2





 437
CTTTTACCTTTACACTCTACGATTGATTTCCAACCAATCTGAGCCAACCT
15125
15109.875
15140.125





 438
TTATAGTTACGGCCGCCGTTTACCGGGGCTTCAATTCAAAGCTTCATATT
15317
15301.683
15332.317





 439
GCCATTAAGATTCTCACTTAATTCTCGCTACTTATTCCGGCATTCTCACT
15147
15131.853
15162.147





 440
GGCCGATCACCCTCTCAGGTCGGCTACGCATCGTCGCCTTGGTGAGCCGT
15307
15291.693
15322.307





 441
CTTCTCCCGCTGGCCTTAGAATCTTCTTCCTATCTACCTGTGTCGGTTTG
15178
15162.822
15193.178





 442
TTCCTTCACCCGAGTTCTCTCAAGCGCCTTGGTATTCTCTACCTGACCAC
15110
15094.89
15125.11





 443
GCTAGTCCTAAAACTATTTCGGGGAGAACCAGCTATCTCCGGGTTCGATT
15376
15360.624
15391.376





 444
CCTCCGGCCGGTTTCACGGCCGCAAGTTAGAATTCCAGCACTACAAGAGT
15316
15300.684
15331.316





 445
TGTTCGTCCCGTCCTTCATCGGCTCCTAGTGCCAAGGCATCCACCGTGCG
15217
15201.783
15232.217





 446
GCCAGGCCTTCAAGCCTGTTCCCCTGGCTAGCCGCTTTATGACTCCCGCC
15162
15146.838
15177.162





 447
CTTTCTTTTCCTCCGGCTACTTAGATGTTTCAGTTCACCGGGTTCCCTTC
15153
15137.847
15168.153





 448
ATGATTCTCACATAATTCTCGCTACTCATTCCGGCATTCTCACTCGTATG
15172
15156.828
15187.172





 449
CGGGCACGGACCTTAGCACCCATGCCCTTACTGCCGGACTGCAGACCGTG
15294
15278.706
15309.294





 450
GTGAGTTTCCTCATTCAGAGATCTCCGGATCAATGCTTATTTGCAGCTCC
15293
15277.707
15308.293





 451
TAAATGCAGTCCGAACCCCGGAGTGCACGCACTCCGGTTTGGGCTCTTTC
15314
15298.686
15329.314





 452
GCCCAAGGGTAGATCACTTGGTTTCGCGTCTACTCCTTCCGACTATACGC
15264
15248.736
15279.264





 453
AGCTTAGCGGATTTTCTCGGGAGTCTGATTACCGGCGCTATTGGATTCCA
15414
15398.586
15429.414





 454
CTCGCAGTCAAGCTCCCTTCTGCCTTTGCACTCTCCGAATGATTTCCAAC
15119
15103.881
15134.119





 455
GTCTAGTCCCACGTACTTGTGCGCCCTGTTCAGACTCGCTTTCGCTCCGC
15183
15167.817
15198.183





 456
TTCTCCGCTATCCACACCTCATCGCCACCCTTTTCAACGGATGTGCGTTC
15095
15079.905
15110.095





 457
GCCGGCTCCCATTCCGTGTCACCCCTGCGCTCACCTACCACGGCTACGCT
15092
15076.908
15107.092





 458
TCCCGGGGTCCTTTTCACCTTTCCTTCACAGTACTATGCGCTATCGGTCA
15181
15165.819
15196.181





 459
CCAACATCCTGGTTGTCTGTGCAATTCCACATCCTTTTCCACTTAAATCC
15117
15101.883
15132.117





 460
GCTGGCGCCGCGGCTTCGAAGCCTCCCGCCTATGCTACACAATCCGCACC
15190
15174.81
15205.19





 461
ACGCCCAATAATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTG
15236
15220.764
15251.236





 462
CCCTACCAGGTATCACATGCACACGGTTTAGCCTCATCCACGTTCGTTCG
15193
15177.807
15208.193





 463
AGCACCGGGCAGGTGTCAGGCTGTATACGTGATCTTTCAATTTGGCACAG
15457
15441.543
15472.457





 464
CTCCCCATCATGCCTCAACCTTCACGCCCAGCGGATTTACCTACCAGACA
15076
15060.924
15091.076





 465
CTTCAACTTAACCTCGCACGTAAACGTAACTCGCCGGTTCATTCTACAAA
15193
15177.807
15208.193





 466
AGAGTAGCCATAACACAAGGGTAGTATCCCAACAACGCCTCAGTCGAAAC
15359
15343.641
15374.359





 467
GCTCGCGTACCACTTTAAATGGCGAACAGCCATACCCTTGGGACCTACTT
15266
15250.734
15281.266





 468
CATAGACCTGTGTTTTTGCTAAACAGTTGCTTGAGCCTATTCTCTGCGGC
15324
15308.676
15339.324





 469
ACACACAACCCCTACCAAGTATCACATGCACACGGTTTAGCCTCATCCAC
15117
15101.883
15132.117





 470
TCTACGACCACGTACTCATGCGCCCTATTCAGACTCGCTTTCGCTGCGGC
15185
15169.815
15200.185





 471
CATTCGGATATCTCTGGATCAAGGCTTACTTACAGCTCCCCAAAGCATGT
15280
15264.72
15295.28





 472
GCTCTCCTACCACTGTTCGAAGAACAGTCCGCAGCTTCGGTGATACGTTT
15288
15272.712
15303.288





 473
TCTTTTCGTCCCATCGCGGGTAATCGGCATCTTCACCGATACTACAATTT
15213
15197.787
15228.213





 474
TGTACCCCCCATTGTAACACGTGTGTAGCCCCGGACGTAAGGGCCGTGCT
15339
15323.661
15354.339





 475
TCCCCGGAGTACCTTTTATCCTTTGAGCGATGTCCCTTCCATACGGAAAC
15223
15207.777
15238.223





 476
CGTTGAGCGATGGCCCTTCCTTTCGGTACCACCGGATCACTAAGCCCGAC
15259
15243.741
15274.259





 477
TTCAAGGGGTCTTACTCGTTATACGATGGGATATCTAATCTTGGAGTCGG
15477
15461.523
15492.477





 478
CCTCCTGATGTCCGACCAGGATTAGCCAACCTTCGTGCTCCTCCGTTACT
15160
15144.84
15175.16





 479
ACCTTGGTCTTACGGCGGGAGGGAATCTCACCCTCCTTATCGTTACTTAT
15294
15278.706
15309.294





 480
CGTGCCCCGCCCTACTCAGGATACTGCTAGCCACGATCAACTTTTAGGTA
15242
15226.758
15257.242





 481
CACCCTCAGTTCATCCGGAAGCTTTTCAACGCTTATCGGTTCGGTCCTCC
15175
15159.825
15190.175





 482
TCTACCTCCATGAGACTAATACGAGGCTAGCCCTAAAGCTATTTCGAGGA
15338
15322.662
15353.338





 483
TACCTGTGTCGGTTTGCGGTACGGGCACCTTAGCATACACTAGAACTTTT
15358
15342.642
15373.358





 484
AGCGGTTCCACAGCTTGTAAACATATGGTTTCAGGTTCTCTTTCACTCCC
15253
15237.747
15268.253





 485
TTATAGTTACGGCCGCCGTTCACTGGGGCTTCGGGTCAAAGCTTGCACTC
15360
15344.64
15375.36





 486
TTATAGTTACGGCCGCCGTTTACTGGGGCTTCGGTTCGATGCTTCGATTG
15412
15396.588
15427.412





 487
GCCTTACGGGGTGGTCCCCGCTCATTCCCACAAGGTTTCTCGTGTCTCGT
15263
15247.737
15278.263





 488
CCGGAGTTTTTCACACTGAGCCATGCAGCTCTGTGCGCTTATGCGGTATT
15350
15334.65
15365.35





 489
CTTCTCCCGTTGGCCTTAGAATCTTCTTCCTACCTACCTGTGTCGGTTTG
15178
15162.822
15193.178





 490
TGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTACAGCCCC
15262
15246.738
15277.262





 491
GGAGTTCTTCGTGATATCTAAGCATTTCACCGCTACACCACGAATTCCGC
15256
15240.744
15271.256





 492
AGTGATGGGCAGGTTGGATACGCGTTACTCACCCGTGCGCCGGTCGACGC
15460
15444.54
15475.46





 493
TCACGGTACTCGTACGCTATCGGTCAGACAGGTATACTCAGGCTTACCCG
15322
15306.678
15337.322





 494
ACGCATTCGGAGTTTGTCAAGACTTGATAGGCGGTGAAGCCCTCGCATCT
15417
15401.583
15432.417





 495
CATCATCTGTATGGCATTCGGAGTTTGATATCCCTTAGTAAGCTTTGACG
15372
15356.628
15387.372





 496
TTCTCCGCTATCCACACCTCATCGCCACCCTTTTCAACGGATGTGCGTTC
15095
15079.905
15110.095





 497
AAGCACTTTGGTTTGGGCTGTTCCCCGTTCGCTCGCCGCTACTTAGGGAA
15351
15335.649
15366.351





 498
CACTTATGCCCGATTATTATCCACGCCAAACTCCTCGACTAGTGAGCTGT
15216
15200.784
15231.216





 499
CTTAGGACCCGACTCACCCAGGGCAGACAAACTTGACCCTGGAACCCTTG
15270
15254.73
15285.27





 500
CTCATCAGTTCTCACCCCCAATGTCCCCCGGATTTACCTGAGGGACGGGC
15219
15203.781
15234.219





 501
CCCATGGTGCACGCACCATGGTTTGGGCTCTTCCGCGTTCGCTCGCCGCT
15249
15233.751
15264.249





 502
GCTAGTCCTAAAACTATTTCGGGGAGAACCAGCTATCTCCGGGTTCGATT
15376
15360.624
15391.376





 503
ACCCCATCAATTAACCTTCCGGCACCGGGCAGGCGTCACACCGTATACGT
15221
15205.779
15236.221





 504
CATTCCGGCATTCTCACTCGAATACAATCCACCGCTGCTTCCGCTACGAC
15122
15106.878
15137.122





 505
GTTTCAGTTCGCCGGGTACCTCTCTTGCAGGCCATGTATTCACCTGCAGA
15295
15279.705
15310.295





 506
ACCTGAGGCTACTCGCCTCGACTACCTGTGTCGGTTTGCGGTACGGGTAG
15401
15385.599
15416.401





 507
AAGGCTAGCCCTAAAGCTATTTCGAGGAGAACCAGCTATCTCCGGGTTCG
15395
15379.605
15410.395





 508
ATTATTATTTTCTCCTCCTACGGGTACTGAGATGTTTCACTTCCCCGCGT
15210
15194.79
15225.21





 509
GCTTGCGCTAACCTCTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCAGC
15195
15179.805
15210.195





 510
CAGAGGTCTGTCCAACACGGTCCTCTCGTACTAGTGTCAGAGCCACGCAA
15316
15300.684
15331.316





 511
ATCCTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCAC
15209
15193.791
15224.209





 512
TCACGCAGAATTCCTCGTGCTCCGCGCTACTCAGGATACCACTAGGCTTC
15218
15202.782
15233.218





 513
CGCGTCTTCGGTGGCGTGCTTGAGCCCCGCTACATTGTCGGCGCGGAACC
15362.9
15347.5371
15378.2629





 514
TACTTATGCCCGATTATTATCCACGCCAAACTCCTCGACTAGTGAGCTGT
15231
15215.769
15246.231





 515
ACCGTAGTGCCTCGTCATCACGCCTCAGCCTTGATTTTCCGGATTTGCCT
15206
15190.794
15221.206





 516
AGCTGACGCCTGTATTTCCCAGTCTCCCACCTATCCTGTACATGAAATAC
15176
15160.824
15191.176





 517
GGCGTTGCTGATCCGCGATTACTAGCGACTCCGCCTTCACGGAGCCGGGT
15371
15355.629
15386.371





 518
GGGTGCCGCATGGGTTAAGCTTAGCGGATTTTCTCGGGAGTATGGTTACC
15535
15519.465
15550.535





 519
TCTTCAGCCCCAGGATGCGATGAGCCGACATCGAGGTGCCAAACTTCCTC
15292
15276.708
15307.292





 520
CGCCGGCACCGGATCACTATCTCCGACTTTCGTCCCTGCTCGATCCGTCG
15161.8
15146.6382
15176.9618





 521
CACACTATCCGTCTCCGTCACTCCTTCGCTCCATATACGGGTGCAGGAAT
15193
15177.807
15208.193





 522
ACTGTCAGGTTCGACTCTTCCTGCGGATTTGCCTGCAGGAATCAACATCT
15303
15287.697
15318.303





 523
TCTTTCGGCGAGGGGGTTTCCCACCCCCTTTATCGTTACTTATACCTACA
15205
15189.795
15220.205





 524
CTTTTCAGTGCTCTACAGGACACATCCATCACCTGAGGCTGTACCTCAAT
15216
15200.784
15231.216





 525
ATGACCCTCCCCGGTTGAGCCGGGGGCTTTCACATCAGACTTAAGAAACC
15316
15300.684
15331.316





 526
TTTCACAACTGACTTAAATATCCATCTACGCTCCCTTTAAACCCAATAAA
15135
15119.865
15150.135





 527
CTACTTATTTTCGGTCCCTTACGCCCGGGTCAACCAACGCCCGGGTCCAG
15210
15194.79
15225.21





 528
GTATTTAGGCTTACCGGGTGGTCCCGGCAGATTCACAGCAGATTCCACGA
15402
15386.598
15417.402





 529
CTTCAACCTGGACATGGATAGGTCACCCGGTTTCGGGTCTGCACACACTG
15338
15322.662
15353.338





 530
TCCGGAAGCCACGCCTCAAGGGCACAACCTCCAAGTCGACATCGTTTACG
15270
15254.73
15285.27





 531
GGTCACCCGGTTTCGGGCCCATTGTATGCAACTTAACGCCCTTTTCAAAC
15248
15232.752
15263.248





 532
GGCTACACATTTTAAAATGCTTAACCTTGCCGGAAAAAGTAACTCGTAGG
15401
15385.599
15416.401





 533
CAAATTTCCTGCGCCCGCGACGGATAGGGACCGAACTGTCTCACGACGTT
15332
15316.668
15347.332





 534
GCCAGGGTAGTATCCCACCGATGCCTCCACCGAAGCTGGCGCTCCGGTTT
15300
15284.7
15315.3





 535
TTCACTGAAGGGTAACACCCCATAACAGGTGCCAGGTTTCCCCATTCGGA
15315
15299.685
15330.315





 536
TCCAGCTAATCAGACGCGGGTCCATCTTATACCACCGGAGTTTTTCACAC
15241
15225.759
15256.241





 537
CTTTATGAATATGCTTAGCGGATTTTCTTGGGAGCCTGATTACGTCCATT
15378
15362.622
15393.378





 538
CATCAGGTAGTATTCAGGCTTACCAGGTGGTCCTGGCAGATTCACACGAA
15410
15394.59
15425.41





 539
CATGCACCACGGATTTGCCTATGATGCGCGCTGCGTGCTTGACCACGGAA
15363
15347.637
15378.363





 540
GACAGCCTGGCCATCATTACGCCATTCGTGCAGGTCGGAACTTACCCGAC
15292
15276.708
15307.292





 541
TCACTGCTTTAAGCAGCTCCGACCGCTTGTAGGCGCACGGTTTCAGGAAC
15338
15322.662
15353.338





 542
GCTCCCAACACCACGCGGCGATACCAACCCGAAGGAAGGAACCACCACGA
15276
15260.724
15291.276





 543
GACTTCCCATTCCATTCCACTAAACCTTTACAATACCGTTTTCTGTCCGA
15101
15085.899
15116.101





 544
ACTTAACGACCCGTCTGCGCTCCCTTTAAACCCAATAAATCCGGATAACG
15203
15187.797
15218.203





 545
GGGGTGGGTTTCATACTTAGATGCTTTCAGCAGTTATCCGCTCCGCACTT
15365
15349.635
15380.365





 546
GAAATCCTCGGATCAAAGCCCTGCTGGCGGCTCCCCGAGGCATATCGCAG
15342
15326.658
15357.342





 547
CTTTCATGGCCCCTACTGATCATCGCCTTGGTAGGCCATTACCCTACCAA
15168
15152.832
15183.168





 548
CTGTTATCCCCAGGGTAACTTTTATCCGTTGAGCGATGGCATTTCCACTC
15269
15253.731
15284.269





 549
CCTACCCTCAGCTCATCCAGAAGCTTTTCAACGCTTATTGGTGCGGTCCT
15199
15183.801
15214.199





 550
ACCAAGAAGGTGCTCCGACCGCTTGTAGGCACATGGTTTCAGGAACTATT
15410
15394.59
15425.41





 551
CTTCTCCCGTTGGCCTTAGAATCTTCTTCCTACCTACCTGTGTCGGTTTG
15178
15162.822
15193.178





 552
CCTGGCCAAGGGTAGATCACTTGGTTTCGCGTCTGCCACTGCCGACTATA
15329
15313.671
15344.329





 553
GGGGGTCTCCCTTATGCCGAAGGCACGGGAGCAATTTGCCGAGTTCCTTG
15450
15434.55
15465.45





 554
CATGGTTTAGCCCCGTTACATCTTCCGCGCAGGCCGACTCGACCAGTGAG
15299
15283.701
15314.299





 555
ATCCGCCGCCTTTTCAACGGAGGTCGGTTCGGTCCTCCATGGAATTTTAC
15295
15279.705
15310.295





 556
CCAAAGTCAATGCTAAGCTGTAGTAAAGGTTCACGGGGTCTTTTCGTCCC
15376
15360.624
15391.376





 557
AAAGTTCGGTGGTTACGGAATTTCTACCGTATGTGCATCGACTACGCCGT
15407
15391.593
15422.407





 558
CAGGTGTCAGCCCCTATACTTCATCTTTCGATTTAGCAGAGACCTGTGTT
15293
15277.707
15308.293





 559
ACTTAAAGCCAGCGCCCCTTCTCCCGAAGTTACGGGGCCATTTTGCCGAG
15283
15267.717
15298.283





 560
ACTTAGATGCTTTCAGCACTTATCCGATCCAGACTTAGATACCCGGCAAT
15264
15248.736
15279.264





 561
CTACAGGATTTAGTTTAGCGGATTTTCTTGGCAGCATGATTACATGCACT
15396
15380.604
15411.396





 562
CCTTAACCTTCCGGCACTGGGCAGGTGTCAGCCCGTATACGTCGTATCTC
15265
15249.735
15280.265





 563
TGAGCCAACATCCTAGTTGTCTTCGAAATCCCACATCCTTTTCCACTTAA
15150
15134.85
15165.15





 564
CAGGATGTGACGAGCCGACATCGAGGTGCCAAACCCCTCCGTCGATATGA
15390
15374.61
15405.39





 565
GGTTTTGCCGGTCCATGGTCGGTACGGGAATATCCACCCGTTCATCCATT
15335
15319.665
15350.335





 566
CTTTACGCTATCGGTCATTGGGTAGTATTTAGGCTTGGAGGGTGGTCCCC
15461
15445.539
15476.461





 567
GCATGGATTAAGTTTAGCGGATTTTCTAGGAAGTATGATTACCTACGCTA
15469
15453.531
15484.469





 568
ACTGTCCATCCTCTGGTTTCACAGAGCTATGTTAGAATTTCAGTAACCGA
15310
15294.69
15325.31





 569
ACCTCGCGGTACGCCTTCGACGCCGACTGGAATGCTCCCCTACCGATCAT
15204
15188.796
15219.204





 570
CTCTTGCGATGAGCTCTCCTCTTAACCTTCCAGCACCGGGCAGGTGTCAG
15265
15249.735
15280.265





 571
AGCTGACGCCTTGGCTTCCCAGTCTCCCACCTATCCTGTACATGTAATAC
15168
15152.832
15183.168





 572
GAATGAATGGCTGCTTCCAAGCCAACATCCTAGCTGTCACTGGGACCAGA
15364
15348.636
15379.364





 573
TGAGCCAACATCCTGGTTGTCTACGTATCTTCACATCGTTTTCCACTTAA
15212
15196.788
15227.212





 574
TGAGGGCACCTTTAGAAGCCTCCGTTACGCTTTTGGAGGCGACCACCCCA
15323
15307.677
15338.323





 575
TTAAATCGACCGAAGTTTCAATAAAGTAATTCCCGTTCGACTTGCATGTG
15358
15342.642
15373.358





 576
AGTCGGGTTGCAGACTCCAATCCGAACTGAGAGAGGCTTTAGGGATTAGC
15515
15499.485
15530.515





 577
CCTGTGTCGGTTTACGGTACGGGTATGGTATGAACAATAGCGGCTTTTCT
15469
15453.531
15484.469





 578
CTCCCGGATTCCGACGGAATTTCACGTGTTCCGCCGTACTCAGGATCCAC
15234
15218.766
15249.234





 579
AAACATTAAAGGGTGGTATTTCAAGGTCGGCTCCATGCAGACTGGCGTCC
15450
15434.55
15465.45





 580
CCTGAGTATATTCAACCCGACTACGTGTGTCCGTTTACGGTACGGGTACC
15328
15312.672
15343.328





 581
ACCACGAATTCCGCCTGCCTCAACTGCACTCAAGATATCCAGTATCAACT
15163
15147.837
15178.163





 582
AGTGAGCTATTACGCACTCTTTTAATGAGTGGCTGCTTCTAAGCCAACAT
15350
15334.65
15365.35





 583
GGCTCACGCCCCGCCTTCAACGCCGAGTGGAATGCTCCCCTACCGATGAT
15229
15213.771
15244.229





 584
AGGGCACCTTTAGAAGCCTCCGTTACACTTTTGGAGGCGACCACCCCAGT
15307
15291.693
15322.307





 585
CTCTGCCATCGCCATCGCCGTTCGGCTTAGACTTAGGACCCGACTGACCC
15195
15179.805
15210.195





 586
GCCGAGTTCCTTAACAAGGGTTCTCCCGCTCGTCTTAGGATTCTCTCCTC
15206
15190.794
15221.206





 587
CTCCCCCCCCCCCCTTCCCCTCCGCGGCCACCTTTCCCCCCCCCTCCCCA
14685
14670.315
14699.685





 588
CCCATATACACGGGTTAGAATCCAAACAAATGAAGGGTCGTATTTCAACA
15379
15363.621
15394.379





 589
CCCGCATCAGCGGGTTAGAACTCAAATAATCAAAGGGCCGTATTTCAACA
15356
15340.644
15371.356





 590
CTTCACAGTACTATACGCTATCGGTCACTGGGTAGTATTTAGGGTTGGAG
15462
15446.538
15477.462





 591
CATTCCCACTTAATACCACCGGATCACTAAGCCCTACTTTCGTACCTGCT
15096
15080.904
15111.096





 592
CTTCCGTCGCCCCGCGGTGGTTTCACTGCTCCGTCTCCACGTCGCCCCAT
15105
15089.895
15120.105





 593
GCGGGTAACCTGCATCTTCACAGGTACTAAAATTTCACCGAGTCTCTCGT
15296
15280.704
15311.296





 594
AAAAGTACGCGGTTGAGCTAATAATGCTCTTCCACAGCTTGTAAACACAG
15386
15370.614
15401.386





 595
CGGTACGGGAATATCAACCCGTTCATCCATTCGACTACGCCTGTCGGCCT
15258
15242 .742
15273.258





 596
CCTCATCTACCTGTGTCGGTTTGCGGTACGGGCGCCTTAGTATACCTCAT
15286
15270.714
15301.286





 597
GTAGTATTTAGCCTTGGAGGGTGGTCCCTCCTGCTTCCCACAGGGTTTCA
15366
15350.634
15381.366





 598
TTCCGTCAGGTGGCGGCACTTACGTTCCTTCGTCTCTCCATCGAGGTATA
15286
15270.714
15301.286





 599
CTTCAAAGTCTCCGGCCTATCCTACACATCAATTACCCAAATTCAATGTT
15143
15127.857
15158.143





 600
CTCTCAGGGCTCTTACTAACTGAACGTTATGGGAAATCTCATCTTGAGGG
15391
15375.609
15406.391





 601
AAGTCCTCGAGCGATTAGTATTGGTCCGCTTCACGTCTCACAACGCTTCC
15248
15232.752
15263.248





 602
ACGCCTTTCGTGCAGGTCGGAACTTACCCGACAAGGAATTTCGCTACCTT
15297
15281.703
15312.297





 603
CCTGATCGACTTGTATGTCTCCCAGTCAAGCGCCCTTATGCCATTACACT
15183
15167.817
15198.183





 604
CGTTTTCCACTTAGCATGTATTAGGGACCTTAGCTGTGGGTCTGGGCTGT
15436
15420.564
15451.436





 605
TAGTCAAGTATCGTCTCTCTTCTTCCTTGCTGATAGACCTTTACATACCG
15203
15187.797
15218.203





 606
GACACATGGTTTTCTGCAACTGCCGGCCGGCCCGTCGGAGCCGGCGCACG
15366
15350.634
15381.366





 607
TTTCTCGTGTCTCGTGGTACTCTGGATCCCGCCTTGCCGCTCCCGGTTTC
15196
15180.804
15211.196





 608
CTAATGAGATGTTTCAGTTCACAGCGTTTACCTCCAACTAGACTATGAAT
15318
15302.682
15333.318





 609
ATCCTTTCCCACTTAGCACGCGCTTGGGGACCTTAGACGACGATCTGGGC
15313.9
15298.5861
15329.2139





 610
GTTTCACGTGTCTGGCCGTACTCTGGAACTCGCTCAGCTCTTGTCGTTTT
15283
15267.717
15298.283





 611
ATGGTTATAGTTACCACCGCCGTTTACCGGGGCTTGAATTCACCGCTTCG
15319
15303.681
15334.319





 612
CCGCACGGAATGGCCGTCTCGTCTCGGGGCGGGCTTCCCGCTTAGATGCT
15363
15347.637
15378.363





 613
TGCTCGACTTGTCTGTCTCGCAGTCAAGCTCCCTTATACCTTTACACTCT
15140
15124.86
15155.14





 614
ATGCATTGCCAGAAGCTTTTCCTGGAAGCCGTCATCATGTGCTTCGCTAC
15303
15287.697
15318.303





 615
TCTTGCGGCGAGCAGGTTTCTCACCTGCTTTATCGTTACTTATACCTACA
15244
15228.756
15259.244





 616
CGCGCACGCAACCCCCGACGGGTATCACGCGCACGCGGTTTGGTCTGATC
15310
15294.69
15325.31





 617
CGCTTTATCGTTACTTATGTCAGCATTCGCACTTCTGATACCTCCAGCAT
15188
15172.812
15203.188





 618
GACAGTGCCCAAATCATTACGCCTTTCGTGCGGGTCGGAACTTACCCGAC
15307
15291.693
15322.307





 619
TCCCATCTATCCTGTGCATGCAACACCGAAACCCAATATTAGGCTACAGT
15218
15202.782
15233.218





 620
CCCGGGTCATGCCCTTTCAGAGTGTCCCTCTGCTTAAAACTTTCGGTGGT
15286
15270.714
15301.286





 621
GGGATCCCATTCCCGGCTTCCGCTCTCTGCACGTGTCCCCACAGTTCTGT
15168
15152.832
15183.168





 622
CACCTCGCCATACACGCCGCACGGATTTGCCTATGCGACTGGCTGCGTGC
15260
15244.74
15275.26





 623
TCGCTCCTCAGCGTCAGTTACAGACCAGAGAGTCGCCTTCGCCACTGGTG
15299
15283.701
15314.299





 624
TATCGAACCATAACGGCTCCCATCATCACACCTCGCCATGCATGCCATGC
15140
15124.86
15155.14





 625
TTCACCGGGGCTTCAATTCGGAGCTTGCACCCCTCCTCTTGACCTTCCGG
15192
15176.808
15207.192





 626
CTGCAGGATTAAGTTTAGCGGATTTTCTCGGCAGCATGCTTACGCGCACT
15383
15367.617
15398.383





 627
TCTCCTACCATACCTATAAAGGTATCCACAGCTTCGGTAATATGTTTTAG
15269
15253.731
15284.269





 628
GGGCGCGTCATGCCCTCACGTCGAGGCTTTTCTCGGCAGCATAGGATCAC
15355
15339.645
15370.355





 629
CTCCGACGGATTGTAGGCGCACGGTTTCAGGAACTCTTTCACTCCCCTCC
15225
15209.775
15240.225





 630
CACTCGACTAGTGAGCTATTACGCACTCTTTGAATGAATAGCTGCTTCTA
15310
15294.69
15325.31





 631
ACTCCCCTCGCCGGGGTTCTTTTCGCCTTTCCCTCACGGTACTGGTTCAC
15134
15118.866
15149.134





 632
CCCTCCCGGGGTTCTTTTCACCTTTCCCTCACGGTACTATGCGCTATCGG
15158
15142.842
15173.158





 633
CTGGTCCTCTCGTACTAGGAGCAGATCCTCTCAAATTTCCTTCGCCCGCG
15200
15184.8
15215.2





 634
ACTTTCGTTACTGCTCGGGCCGTCACCCTCGCAGTTAGGCTAGCTTTTGC
15262
15246.738
15277.262





 635
TGTAATAGCCACGTAATTTAAAACTGAAATTGAGAGAGACTTACCCAGAG
15458
15442.542
15473.458





 636
GGTGGTCTACCGGGAGACTTACCCTCATGTGAGGTGGGAATACTCATCTT
15448
15432.552
15463.448





 637
TGGCGGTCTGGGCTGTTTCCCTTTCGACTACGGATCTTATCACTCGCAGT
15317
15301.683
15332.317





 638
TCTCCACATCACTCTTATAGGTAGTACAGGAATATTAACCTGTTCTGCCA
15254
15238.746
15269.254





 639
CCATTCTGAGGGTACCTTTGGGCGCCTCCGTTACTCTTTCGGAGGCGACC
15312
15296.688
15327.312





 640
GATGGCAGGACTGTCACTTCTCCGTCTCCACATCGCTCCATAAAGTAGTA
15281
15265.719
15296.281





 641
TCGGCGCAGAGTCACTCGACCAGTGAGCTATTACGCACTCTTTAAATGGT
15361
15345.639
15376.361





 642
CGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCAGTATTCCCCACTG
15306
15290.694
15321.306





 643
CGGACATCCTTAATGACATTCGCAGTTTGATTGTATTCAGTACCCCGGGA
15351
15335.649
15366.351





 644
TACCGGCATTCTCACTTCTAAGCGCTCCACCAGTCCTTCCGGTCTGGCTT
15151
15135.849
15166.151





 645
TTCGGGCCTCCATTCAGTGTTACCTGAACTTCACCCTGGACATGGGTAGA
15328
15312.672
15343.328





 646
CGGAGGCGACCGCCCCAGTCAAACTCCCCGCCTGGCATTGTCCCACCGCC
15160
15144.84
15175.16





 647
ACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCCCGTCAGACACTGTCT
15252
15236.748
15267.252





 648
ACAGCCCAGCCTTCCGTTGTGCGTACTTCACTACACAACAGCCTCACTGC
15147
15131.853
15162.147





 649
TCATACCACCGGAGTTTTTACCCCTGCACCATGCGGTGCTGTGGTCTTAT
15270
15254.73
15285.27





 650
CACTCACCCGAAGGCTTGCTCCCAAACAAAAGAGGTTTACAACCCGAAGG
15311
15295.689
15326.311





 651
CGTCAATTCATTTGAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGTCG
15295
15279.705
15310.295





 652
ACTTTCGTTCCTGCTCGACTTGTCAGTCTCGCAGTCAGGCTGGCTTGTGC
15293
15277.707
15308.293





 653
CCACCAGGGAGGCTCCGACGGTTTGTGGGCGCACGGTTTCAGGAACTGTT
15475
15459.525
15490.475





 654
ACTGGCGTGCACGTCTCTTTGTCTCCCACCTATCCTGTACATGTATGACC
15190
15174.81
15205.19





 655
TGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCCTCAGGACGTATGC
15298
15282.702
15313.298





 656
AAATCTTTAATCTCTTTCAGATGTCTTCTAGAGACGTCATTGGGTATTAG
15370
15354.63
15385.37





 657
CACCGGGGCCCCAAGACCCACACACACCAACAAACCCGAAGGCTTAGTGG
15267
15251.733
15282.267





 658
TACTTTTCCAATTTTTTTTTTTTTTTTTTTTTTTTTTTTCTTCCAATAAA
15130
15114.87
15145.13





 659
CTCTGCCTATCCTTCTGTGTCACTGCATCCGGTTGCTCGGCGGTATCGGA
15278
15262.722
15293.278





 660
ATGCCTGGCAGTTCCCTACTCTCGCATGGGGAGACCCCACACTACCATCG
15228
15212.772
15243.228





 661
AACATCCTGGTTGTCTAAGCAACTCCACATCCTTTTCCACTTAACGTATA
15174
15158.826
15189.174





 662
CTCCGGCCGGGCCCGCCAGGACCCGGACACACGCTCCCTCAACACCACGC
15138.7
15123.5613
15153.8387





 663
TTCTCTGCGGCTCTTTCGAGCACTCCTTATTCCGAAGTTACGGAGTCAAT
15269
15253.731
15284.269





 664
GGCACAGCCCTGTGTTTTTGTTAAACAGTTGCCTGGACCGATTCTCTGCG
15350
15334.65
15365.35





 665
TGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACTGTCCAGTAAGCCGC
15194
15178.806
15209.194





 666
ATGCGTCCCACGGATTTGCCTATGGGACGGGCTGCGTGCTTGACCACGGA
15435
15419.565
15450.435





 667
CCCAGACAACCATCGCTGGGGTTGAGCTACCTCCCTGCGTCCCTCCGCAG
15205
15189.795
15220.205





 668
ACGCCGTTAGGCCTCACCTTAGCTCCCGACTGACCTGGAGCGGACGAACC
15278
15262.722
15293.278





 669
GCCTTTAGCCTTAACCTTGCCAGCCGGCGTAACTCGCCGGACCGTTCTAC
15210
15194.79
15225.21





 670
TGGCCGTTCAACCTCTCAGTCCGGCTACTGATCGTCGCCATGGTGAGCCG
15306
15290.694
15321.306





 671
CGCTTTCGCTCGCCACTACTCACGGAGTATCCCTTCCTGCAGGTACTGAG
15225
15209.775
15240.225





 672
AGGACCCGACTCACCCGGGGACGACGAACGTGGCCCCGGAACCCTTGGTC
15353
15337.647
15368.353





 673
CATTGCGGAAGATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGT
15330
15314.67
15345.33





 674
GCATGTATTAGGCACGCCGCCAGCGTTCGTCCTGAGCCAGGATCAAACTC
15332
15316.668
15347.332





 675
CCCGTTACCCATCATCGCCATGGTAGGCCTTTACCCTACCATCTAGCTAA
15137
15121.863
15152.137





 676
GCCCTCACCCGATTAGTAACAGTCAGCTCCATGTGTTGCCACACTTCCAC
15162
15146.838
15177.162





 677
ACCCCAAGTCATCCCCCGGTTTTCAACCCAGGTGGGTTCGGTCCTCCACG
15194.8
15179.6052
15209.9948





 678
CGCCTTAGGACCCGACTAACCCAGGGCGGATAAACCTAGCCCTGGAACCC
15280
15264.72
15295.28





 679
TTCCGTCTTGCCGCGGGTACACTGCATCTTCACAGCGAGTTCAATTTCAC
15239
15223.761
15254.239





 680
GTACGGGTAACACAGAAATATGCTTAGCGGGTTTTCTTGGGAGCCGGTTT
15527
15511.473
15542.527





 681
AAGCTCCATGGGGTCTTTCCGTCTTGTCGCGGGTAACCGGCATCTTCACC
15296
15280.704
15311.296





 682
AACTTTATTCCCTTATAGAAGCAGTTTACAACCCATAGGGCCGTCTTCGT
15270
15254.73
15285.27





 683
GGGCGGGATTCGCACCCGCCTCTCGCTACTCATGTCTGCATTCTCACTCC
15176.8
15161.6232
15191.9768





 684
ATACTATCAGGTTCGGATCTCATGGTGGATTTGCCTGCCATGATCGACTC
15358
15342.642
15373.358





 685
ACGCCGTCGGGCATATAAAGCCCTCCGACAGTTTGTAAACACAGGGTTTC
15355
15339.645
15370.355





 686
GCCTATCGACCACGTGTTCTGCATGGGGTCTTCAGCGGCTCGGGGCCGCA
15387
15371.613
15402.387





 687
GGATAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATTTCACAACACG
15395
15379.605
15410.395





 688
GCCCCCGAGCCTTGGCAGTGCTCTACACGGCGTGAGGTTCATCCGAGGCT
15356
15340.644
15371.356





 689
TTCCTTAACCAAGAATCTCTCAACGCCTTAGTATGTTCTACCCGACCACG
15160
15144.84
15175.16





 690
TTTCCCTGCGGCTCCGGGACTTTATCCCTTAACCTTGCCAGTATGCACAA
15199
15183.801
15214.199





 691
TACTGTCAGGTTCGACTCTTGCACCGGATTTGCCTGGCACAATCAACATC
15272
15256.728
15287.272





 692
GCCTTCCCATGCCATTCTGCTAGATACCTTCCATACCGTGCGCTGTCCGA
15160
15144.84
15175.16





 693
ATGAGCCGACATCGAGGTGCCAAACACCGCCGTCGATATGAACTCTTGGG
15405
15389.595
15420.405





 694
TTCGGCTCAAAGTCCGGATTTGCCTGGACCTCTCATCACCTACACTCTTC
15159
15143.841
15174.159





 695
ACGCATTTCACCGCTACACGTGGAATTCCACTCTCCTCTTCTGCACTCAA
15112
15096.888
15127.112





 696
TTTCCGTTTCGCCTACGGGGCTCTCACCCTCTCTGGCCGGTCTTTCCAGA
15174
15158.826
15189.174





 697
GCCCCGGACAACCATCGCCGGGGATGAGCTACCTCCCTGCGTCCCTCCGC
15191
15175.809
15206.191





 698
TGTCGCGGGTAACCGGCATCTTCACCGGTACTACAATTTCGCCGGGCGGG
15395
15379.605
15410.395





 699
AAGCCCTCGATCTATTAGTACACACTTGCTGAATGGATCGCTCCACTTAC
15240
15224.76
15255.24





 700
CCTTGGCAACAGTTCTCTCGCTCACCTCGGGATACTCTCCCTGCCCACCT
15081
15065.919
15096.081





 701
TCTCCGCCAAAGCCAAAGCCTTGGTTTCCCAGAGTCCCATCTATCCTGTG
15193
15177.807
15208.193





 702
AGGAGTATTCAGGCTTACCAGGTGGTCCTGGCAGATTCACACGAGATTTC
15441
15425.559
15456.441





 703
CAGGATGTGACGAGCCGACATCGAGGTGCCAAACCACTCCGTCGATATGA
15414
15398.586
15429.414





 704
CAACCTGTTGTCCATCGGCTACGCTTTTCAGCCTCACCTTAGGTCCCGAC
15160
15144.84
15175.16





 705
TCAGATGGCGGCACTGCCACGACTCCGTCTCCACGTCACTCCCCAAGGTA
15213
15197.787
15228.213





 706
CTACGGGGCCATCACCCTCTGCGGCCCGGCATTCAATCCGGTTCGCCTCA
15195.8
15180.6042
15210.9958





 707
CCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGG
15298
15282.702
15313.298





 708
CCTTTAATCATGTGAACATGCGGACTCATGATGCCATCTTGTATTAATCT
15300
15284.7
15315.3





 709
TTTTCACACCTGACTTAAGATCCCGCCTTAAGCTTCCCTTTACACCCAGT
15102
15086.898
15117.102





 710
CCTACCCTCAGCTCATCCAGAAGCTTTTCAACGCTTATTGGTGCGGTCCT
15199
15183.801
15214.199





 711
GTCACACTGAGTATTTAGGCTTACCGGGTGGTCCCGGCAGATTCACAGCA
15402
15386.598
15417.402





 712
CCAGGATAACTTACGTACACCATTCGACGCCGTGAGTATGCTCCCCTACC
15211
15195.789
15226.211





 713
AGAGAACCAGCTATCTCCAAGTTCGTTTGGAATTTCTCCGCTACCCACAA
15249
15233.751
15264.249





 714
CCCGAAGTTACGGGGTAATTTTGCCGAGTTCCTTAACAACCCTTCTCCCG
15248
15232.752
15263.248





 715
GGCTCACGCCCCACCTTCGACGCGGAGTGGAATGCTCCCCTACCGATGTT
15260
15244.74
15275.26





 716
GTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACTGAGCGTCAGTCTTC
15181
15165.819
15196.181





 717
CGCGAGTCCATCCTGAAGCGAATAAATCCTTTTCCCTCAGCACCATGCGG
15251
15235.749
15266.251





 718
TTATCGCAGCTTATCACGTCTTTCTTCGGCTCTTAGTGCCAAGGCATCCA
15229
15213.771
15244.229





 719
CGGCAAAGATTCTCACTTTGCTCTCGCTACTCATGCCGGCATTCTCTCTC
15150
15134.85
15165.15





 720
CCGGCAGACCGATCAAGAAAAAACCCACAACCCCGCACGCGCAACCCCTG
15196
15180.804
15211.196





 721
GGGCTGTTTCCCTTTTGACTATGAGACTTATCTCACATAGTCTGACTGCT
15299
15283.701
15314.299





 722
CCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGT
15257
15241.743
15272.257





 723
TTGTGACTATTCTCTGCGGCCTGCTCTCGCAGGCACCCCTTATCCCGAAG
15216
15200.784
15231.216





 724
TTACCTCCACTTCAACCTGGACATGGGTAGGTCACCCGGTTTCGGGTCGA
15329
15313.671
15344.329





 725
TCGCAAGGTTATCCCCAAGTGAAGGGCAGGTTGGATACGCGTTACTCACC
15411
15395.589
15426.411





 726
CGCGATCGGCAGACCATGCGCGTTCAGGTACGGGGCCCTCACCCTCTGCG
15326
15310.674
15341.326





 727
GCCTTTCACTCCTACACTCGGCTCATCCAGAAGCTTTTCAACGCTTATTG
15158
15142.842
15173.158





 728
AGTTTGATAAGGTTCAGTAACCTCTCGGCCCCTAGCCAATTCAGTGCTTT
15302
15286.698
15317.302





 729
GGCTGCAACACGGTGACGTGAAGCGAATCCCAAAAACCATCTCTCAGTTC
15333
15317.667
15348.333





 730
CCGGTCTCTCGACTAGTGAGCTGTTACGCACTCTTTGAATGAATGGCTGC
15359
15343.641
15374.359





 731
GGATCACTAACTCCAACTTTCGTTACTGCTCGAACTGTCGCTCTCGCAGT
15223
15207.777
15238.223





 732
CTCGCGTACCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACCGACTAC
15277
15261.723
15292.277





 733
CGGCTACGCCTTTCGGCCTCACCTTAGCTCCCGACTAACTTGGAGCGGAC
15235
15219.765
15250.235





 734
ACCTTTCCCTCACGGTACTGGTTCACTATCGGTCACTAGGGAGTATTTAG
15318
15302.682
15333.318





 735
ATACTGTCAGGTTCGACTCTTGCACCGGATTTGCCTGGCGCAATCAGCAT
15328
15312.672
15343.328





 736
TGTCATGCTCTATGGTCTTTCTTTCCAGAAAGTTCTTCTCCGATGTCTTC
15216
15200.784
15231.216





 737
ATCACCTTAGGATTCTCTCCTCGCCTACCTGTGTCGGTTTGCGGTACGGG
15302
15286.698
15317.302





 738
ACGTATTCACCGTGGCATTCTGATCCACGATTACTAGCGATTCCGACTTC
15247
15231.753
15262.247





 739
TAGAGCATTTTCTTGGAAGCAGGATTACCCACACTATTGGTTTACTCCGA
15350
15334.65
15365.35





 740
CATTGACCAATATTCCTCACTGCTGCCTCCCGTAGGAGTTTGGGCCGTGT
15295
15279.705
15310.295





 741
ATCCGCCGCCTTTTCAACGGAGGTCGGTTCGGTCCTCCATGGAATTTTAC
15295
15279.705
15310.295





 742
CCTGTGTCGGTTTACGGTACGGGCGCATGGCAAACGATAGCGGCTTTTCT
15440
15424.56
15455.44





 743
GCCCAAGGGTAGATCACTTGGTTTCGCGTCTACTCCTTCCGACTATACGC
15264
15248.736
15279.264





 744
GGCGGATTTTCCCAAATCCTTCGACTATCAAGTTCTTTGGTAACTCAAAT
15285
15269.715
15300.285





 745
CTTTCGGGGAGTACGAGCTATCTCCGAGTTTGATTGGCCTTTCACTCCTA
15325
15309.675
15340.325





 746
CTCTAGTTAGCCTGCTGCGTCCCTCCTTCACTCAATACTCTAGTACAGGA
15183
15167.817
15198.183





 747
CGCCGTCGATGTGAACTCTTGGGCGAGATCAGCCTGTTATCCCCAGGGTA
15394
15378.606
15409.394





 748
AGTCGTTTCCAACTGTTGTCCCCCACTCCAGGGCAGGTTACTCACGCGTT
15240
15224.76
15255.24





 749
GCATGCTTAAAGTTCGGCGGCTACGGAATTTCAACCGTATGTGCATCGAC
15401
15385.599
15416.401





 750
ATTACCGCGGCTGCTGGCACGGAATTAGCCGGTCCTTATTCTTATGGTAC
15359
15343.641
15374.359





 751
CGCACAGCCCTGTGTTTTTGTTAAACAGTTGCCTGGACCTATTCTCTGCG
15285
15269.715
15300.285





 752
CATAATTTTATTTTCTTCTCCTACGGGTACTGAGATGTTTCACTTCCCCG
15209
15193.791
15224.209





 753
ACCTTGGGCGGACGAACCTTCCCCAAGAAACCTTAGATTTTCGGCCATTA
15290
15274.71
15305.29





 754
TACTATCAGGTTCGGCTCTCAAGGTGGATTTGCCTGCCTCGATCTGCGCC
15311
15295.689
15326.311





 755
CTGTACATGCAATACCAAGCTCCAGTACCAAACTGGAGTAAAGCTCCATG
15316
15300.684
15331.316





 756
TGCTTGACCACGGAAAACCACCTCCGCGGCCGGCTCCCATTCCGTGTCAC
15189
15173.811
15204.189





 757
CAGTAACCCGCAAGGCTGCACCTAAATGCATTTCGGGGAGTACGAGCTAT
15404
15388.596
15419.404





 758
AAGCCAACATCCTGGTTGTCTACGCAATTGCACATCCTTTTCCACTTAAC
15175
15159.825
15190.175





 759
CACATCTTACGACGGCAGTCTCGACAGAGTCCCCAGCATCACCTGATGGT
15276
15260.724
15291.276





 760
TTATAGTTACGGCCGCCGTTCACTGGGGCTTCGATTCAATGCTTGCACAT
15334
15318.666
15349.334





 761
CATCTTTACTCGTACTGCAATTTCGCCGAGCTCCTGGTCGAGACAGTGGG
15344
15328.656
15359.344





 762
ACACCGAGCCATGCAGCTCTGTGCGCTTATGCGGTATTAGCAGTCATTTC
15328
15312.672
15343.328





 763
AGGTCCCGCGCTCCCCACCACCGTCCCCGTCAAAGACGGGGTTCGGGATG
15295
15279.705
15310.295





 764
ATCGAGCTCACAGCATGTGCATTTTTGTGTACGGGGCTGTCACCCTGTAT
15374
15358.626
15389.374





 765
GGAATTTCTCCCCTAGCCACAAGTCATCCGCTAACTTTTCAACGGTAGTC
15216
15200.784
15231.216





 766
GCTCTACCTCCAAGACTCTTACCTTGAGGCTAGCCCTAAAGCTATTTCGG
15232
15216.768
15247.232





 767
TTATAGTTACGGCCGCCGTTTACTGGGGCTTCAATTCAATGCTTCTCTTG
15315
15299.685
15330.315





 768
CTTCAACCTGGACATGGATAGGTCACCCGGTTTCGGGTCTGCACDCACTG
15338
15322.662
15353.338





 769
GAGGCTAGCCCTAAAGCTATTTCGAGGAGAACCAGCTATCTCCGGGTTCG
15411
15395.589
15426.411





 770
TGGGCTGTTTCCCTTTCGACTACGGATCTTAGCACTCGCAGTCTGACTGC
15286
15270.714
15301.286





 771
CTCCGGCCTATCCTACACATCGATTGCCCAAATTCAATGTAAAGCTATAG
15233
15217.767
15248.233





 772
CCACTTCACCTAACAACAATGCAAAAAGGGCGTGCCACTGGTAGATGACA
15350
15334.65
15365.35





 773
ACCCTCAGGTCATCCAGAAGCTTTTCAACGCTTATTGGTTCGGTCCTCCA
15223
15207.777
15238.223





 774
AGTATCCCTTCCTGCAGGTACTGAGATGTTTCACTTCCCTGCGTACCCCC
15175
15159.825
15190.175





 775
ACTTGGTATCCCTTCGGCTCCGCACCTTAAGTGCTTAACCTCGCCAGTAT
15199
15183.801
15214.199





 776
TCGGATACGTGTGTCGTCACACTTAACCTTGCCGGCAAAGGCAACTCGTA
15346
15330.654
15361.346





 777
GGATCACTAACTCCAACTTTCGTTACTGCTCGAACTGTCGCTCTCGCAGT
15223
15207.777
15238.223





 778
CGAACGCCTTAGTATTTTCAACCTGACTACCTGTGTCGGTTTGGGGTACG
15374
15358.626
15389.374





 779
TTCTGCTTCTGCCCGTACACGTTGCTCCCCTACCCAGAAGTTTCCTTCTG
15117
15101.883
15132.117





 780
TCACGGTACTAGTTCGCTATCGGTCAGACAGGTATATCTAGGCTTACCCC
15312
15296.688
15327.312





 781
ACTTCTTACAAAGCTCCGACCGCTTGTAGGCGCATGGTTTCAGGGACTAT
15352
15336.648
15367.352





 782
TCTTTAAAGGATGGCTGCTTCTGAGCCAACCTCCTAGTTGTCTGGGCATC
15334
15318.666
15349.334





 783
CCCCATTGGGGCCCACAACACCGCACACACAACCCCTACCAAGTATCACA
15097
15081.903
15112.097





 784
CTCAACTTCAACCTGCTCATGGCTAGATCACCCGGTTTCGGGTCTGCAAC
15233
15217.767
15248.233





 785
GCATACGCCACACGGCTTATGCTCGCCACCCGCCACTGACTCGCAGACTC
15158
15142.842
15173.158





 786
GTTCGTCTATATGCCCGCACCTCACTGCGCCATGCCGGCAGACATGACCA
15228
15212.772
15243.228





 787
ATCTGGGCTGTTTCCCTTTTGACAATGACATTTATCTGACACTGTCTGAC
15283
15267.717
15298.283





 788
CTATTAGTAGCAGTCAGCTCCATGTGTTACCACACTTCCACCCCTGCCCT
15128
15112.872
15143.128





 789
TTTCACAACTGACTTAAACATCCATCTACGCTCCCTTTAAACCCAATAAA
15120
15104.88
15135.12





 790
CCGTTGAATTTTCGGCGCAGAGTCACTCGACCAGTGAGCTATTACGCACT
15337
15321.663
15352.337





 791
TCCTTAACGAGAGTTCGCTCGCTCACCTGAGGCTACTCGCCTCGACTACC
15194
15178.806
15209.194





 792
CCACTCCGTCGATGTGAACTCTTGGGAGTGATAAGCCTGTTATCCCCAGG
15353
15337.647
15368.353





 793
CAACAGGATGAAGTTTAGCGGATTTTCTCGGGAGTATGATTACATGCGCT
15495
15479.505
15510.495





 794
GACGGGCTGCGTGCTTGACCACGGAAAACCACCTCCGCGGCCGGCTACCC
15304
15288.696
15319.304





 795
CGGATTTGCCTATGATGCGCGCTGCGTGCTTGACCACGGAAAACCACCTC
15323
15307.677
15338.323





 796
CTGAGTTTGATAAGCTTCGCTAACCTCTCGGCCGCTAGGCTATTCAGTGC
15319
15303.681
15334.319





 797
TGCAGCACCTGTCTCACGGTTCCCGAAGGCACATTCTCATCTCTGAAAAC
15226
15210.774
15241.226





 798
AGGCTAGCCCTAAAGCTATTTCGGGGAGAACCAGCTATCTCCGAGTTCGA
15395
15379.605
15410.395





 799
GACGTCCTATCTCTAGGATTGTCAGAGGATGTCAAGACCTGGTAAGGTTC
15456
15440.544
15471.456





 800
GTTTTGACTACAGGGCTGTTACCTCCTATGGCGGGCCTTTCCAGACCTCT
15286
15270.714
15301.286





 801
CTGGGGCTTCAATTCAGATCTTCGCTAACGCTAAACCCTCCTCTTAACCT
15167
15151.833
15182.167





 802
CCTTAGTATATTCAACCCGACTACGTGTGTCCGTTTACGGTACGGGTACC
15303
15287.697
15318.303





 803
CTATACATCATCTTACGATTTAGCAGAGAGCTGTGTTTTTGATAAACAGT
15388
15372.612
15403.388





 804
CTAACAATGTCCCCCGACTCGATTCAGAGCCGCAGGTTAGAATTCCAATA
15283
15267.717
15298.283





 805
TTTGGCCTCTTCCGCGTTCGCTCGCCACTACTTACGGAATCTCAGTTGAT
15221
15205.779
15236.221





 806
CCCGCCAACTGGCTAATCAGACGCGGGTCCATCTTATACCACCGGAGTTT
15267
15251.733
15282.267





 807
GCTACTTGGGACACGCGATCGGAAGACGGCAAGCGTCCAGGTACGGGGCT
15527
15511.473
15542.527





 808
CATCACCGGGGATGAGCTACCTCACTGCGTCCCTCCGCAGCTTGCCTACT
15195
15179.805
15210.195





 809
ACAACTTAATACCCGATTATTATCCACGCCAGACTCCTCGACTAGTGAGC
15218
15202.782
15233.218





 810
CTCTCAGACCAGTTACGGATCGTCGCCTTGGTAGGCCTTTACCCCACCAA
15218
15202.782
15233.218





 811
TCACGTAGTCTGACTGCTGATCATCAATTAGCCGGCATTCAGAGTTTGAT
15366
15350.634
15381.366





 812
TAGGTCACCCGGTTTCGGGTGTACTGCATGCAACTTTACGCCCTTTTCAG
15310
15294.69
15325.31





 813
TACTTTAGTTCGCTCCACATCACGGCTTCGTCTCATGCACAGCGGATTTG
15254
15238.746
15269.254





 814
CTTACGGGGCTTTCACCCTCTCTGGCAGGCTTTCCCAAAAACCTTTCTGC
15175
15159.825
15190.175





 815
GGCCGGGCTTTCGATCCCGTTCTTCTATCCTCTCTCTTGCCATATCATGG
15188
15172.812
15203.188





 816
ACGGCTTCTACTCGTATACAACGCTCCCCTACCACTATAGTTTCCTACAA
15120
15104.88
15135.12





 817
ATCGAGTTTTCTTTCTCTTCCTCCGGCTACTTAGATGTTTCAGTTCACCG
15201
15185.799
15216.201





 818
GCTTTACATACCGAAATACTTCTTCACTCACGCGGCGTCGCTGCATCAGG
15257
15241.743
15272.257





 819
TCCCTTCTGCCTTTGCACTCTTCTAATGGTTTCCGACCATTATGAGGGAA
15244
15228.756
15259.244





 820
CTCCATCAGGCAGTTTCCCAGACATTACTCACCCGTCCGCCACTCGTCAG
15123
15107.877
15138.123





 821
TGCCAAACCTCCCCGTCGATGTGAACTCTTGGGGGAGATAAGCCTGTTAT
15377
15361.623
15392.377





 822
GCCTGGACCTATTCTCTGCGCCTCACATTACTGTGAGGACCCTTTATCCC
15175
15159.825
15190.175





 823
ACCTTTACACCTGCATCCTATCAACGTCGTAGTCTACAACGACCCTCAGA
15154
15138.846
15169.154





 824
GTATTCATTAACGCTAGAAGCTTTTCTTGGCAGAGTGACATCACTAGCTT
15365
15349.635
15380.365





 825
GCTGTTGGTCCGGATTGTTCTCCTTTAGGACATGGACCTTAGCACCCATG
15350
15334.65
15365.35





 826
AAAAACCCTCCCCCCCCCCCCTTCCCCTCCGCGGCCACCTTTCCCCCCCC
14767
14752.233
14781.767





 827
CTGTCGGTACCCGATACGGGCCCTCAAGCATCCAGTAGCTCTACCCCCCG
15188.8
15173.6112
15203.9888





 828
ATCTACGCATTTCACCGCTACACTAGGAATTCCGCTTACCTCTGTTGCAC
15167
15151.833
15182.167





 829
TCTGTCCCACCTTCGGCGGCTGGCTCCTAAAAGGTTACCTCACCGACTTC
15185
15169.815
15200.185





 830
TGACCAAGGGTAGATCACTTGGTTTCGCGTCTACTCCTTCCGACTAATCG
15303
15287.697
15318.303





 831
TGTGCACTTGCACTCGCCACCCGATTGCCAACCGGGCTGAGCGGACCTTT
15275
15259.725
15290.275





 832
CAGCCTCACTCCCAGGCTGTAAAATATGCCCCTTCGGAGTTTGATAAGGT
15321
15305.679
15336.321





 833
ACGCTTCCACTAACACACACACTGATTCAGGCTCTGGGCTGCTCCCCGTT
15178
15162.822
15193.178





 834
CTGTCAAGGTCGACTCTCCCTGCGGATTTGCCTACAGGAATCTACATCTA
15272
15256.728
15287.272





 835
CCTGTGTTTTTGGTAAACAGTCGCTACCCCCTGGCCTGTGCCACCCCCCG
15176.8
15161.6232
15191.9768





 836
ATCTGATAGCGTGAGGTCCGAAGATCCCCCACTTTCTCCCTCAGGACGTA
15282
15266.718
15297.282





 837
ACACTTTGGGACCTTAGCCGGTGGTCTGGGCTCTTTCCCTTTTGACTACC
15277
15261.723
15292.277





 838
CTACAAGGGATCTTACCTGATTGAATCAGTGGGATATCTTATCTTTGGGT
15436
15420.564
15451.436





 839
CTGAAGGGTAACCCCACATAACCAGGGCCAGGTTTCCCCATTCGGACATC
15285
15269.715
15300.285





 840
TCAGTCCGCGGCGCTGTCACGCCTCCGTCTCCACGTCACTCCTTAAGGTA
15186
15170.814
15201.186





 841
TTAACAAGGGTTCTCCCGTTCGTCTCAGGATTCTCTCCTCGCCCACCTGC
15151
15135.849
15166.151





 842
CTAACATCCTAGTTGTCTGTGCAACCCCACATCCTTTTCCACTTAACAAT
15110
15094.89
15125.11





 843
GATAAATCTTTCCCCCGTAGGGCACATTCGGTATTACTCCCAGTTTCCCG
15223
15207.777
15238.223





 844
GTTTACAATCCGAAGACCTTCTTCCCACACGCGGCGTTGCTGCATCAGGG
15298
15282.702
15313.298





 845
CGGCGCACTGCAGCTACCTGTCTGCGTCACCCCTGTTAACACGCTTGCCT
15186
15170.814
15201.186





 846
ATGAAGCTGGAATCGCTAGTAATCGTATATCAGCAATGATACGGTGAATA
15505
15489.495
15520.505





 847
CGGATTTGCCTATGGGACGGGCTGCGTGCTTGACCACGGAAAACCACCTC
15388
15372.612
15403.388





 848
GGATGACCCCCTTGCCGAAACAGTGCTCTACCCCCGGAGATGAATTCACG
15301
15285.699
15316.301





 849
GGTACGGGTAACATATACTATAACTTAGAAGATTTTCTCGGAAGTCGACT
15447
15431.553
15462.447





 850
CTTTGTAACTCCGTACAGAGTGTCCTACAACCCCAAGAGGCAAGCCTCTT
15250
15234.75
15265.25





 851
TCTTACTTCTTGCGAATGGGAGATCTCATCTTGGAGTAGGCTTCGTGCTT
15395
15379.605
15410.395





 852
GTCAAGCTCCCTTATACCTTTACACTCTGCGATTGATTTCCAACCAATCT
15141
15125.859
15156.141





 853
CCACCTATCCTACACATCAAGGCTCAATGTTCAGTGTCAAGCTATAGTAA
15257
15241.743
15272.257





 854
AAAAGCAGTTTACAACCCATAGGGCCGTCATCCTGCACGCTACTTGGCTG
15315
15299.685
15330.315





 855
TGAGGGCACCTTTAGAAGCCTCCGTTACACTTTTGGAGGCGACCACCCCA
15307
15291.693
15322.307





 856
ACGCTCTAACCTTATGGTAACCGGATTTGCCTGGTAACCAGCCGCTTCGC
15273
15257.727
15288.273





 857
GCTTCCAAGCCAACATCCTAGCTGTCTTAGCAATCTGACTTCGTTAGTTC
15222
15206.778
15237.222





 858
TGGCCGTTCACCCTCTCAGGCCGGCTATGGATCGTCGCCTTGGTAGGCCG
15338
15322.662
15353.338





 859
TGAGCCAACATCCTGGTTGTCTTCGAAATCCCACATCCTTTTCCACTTAA
15166
15150.834
15181.166





 860
CTAGAGAGTATTTAGGGTTAGGAGATGGTCCTCCCAGATTCCGACGAGAT
15505
15489.495
15520.505





 861
GCCTTTCGGCCTCGCGTTAGGTCCCGACTTACCCAGGGCGGACGAACCTT
15291
15275.709
15306.291





 862
GTCAAACTGCCCACCTGACACTGTCTCCCCGCCCGATAAGGGCGGCGGGT
15294
15278.706
15309.294





 863
TGGAGTAAAGCTCCATGGGGTCTTTCCGTCCTGGCGCAGGTAACCAGCAT
15418
15402.582
15433.418





 864
TTTCTTCTCCTACGGGTACTGAGATGTTTCACTTCCCCGCGTAACCCCCA
15150
15134.85
15165.15





 865
ACCAGCTATGGATCGTCGGCTTGGTAGGCCATTACCCCACCAACTACCTA
15251
15235.749
15266.251





 866
GGGGCAAGTTTCGTGCTTAGATGCTTTCAGCACTTATCTCTTCCGCATTT
15315
15299.685
15330.315





 867
CACCAGTGTCGGTTTGGGGTACGGGCGGCCATAGCCCTCACGCCGAGGCT
15421
15405.579
15436.421





 868
GACGTTCTGAACCCAGCTCGCGTGCCGCTTTAATGGGCGAACAGCCCAAC
15317
15301.683
15332.317





 869
GGTTAGAATTCCAATATCGCAAGGATGGTATCCCAACGGCCTCTCCGCCA
15315
15299.685
15330.315





 870
AGGTTACCCACGCGTTACTCACCCGTCCGCCACTAGAAACAATCTAAATC
15188
15172.812
15203.188





 871
CAGGTGTCACCCCATATACGTCATCTTTCGATTTAGCATAGAGCTGTGTT
15317
15301.683
15332.317





 872
TCTTTCGGCGAGGGGGTTTCCCACCCCCTTTATCGTTACTTATACCTACA
15205
15189.795
15220.205





 873
CTTAGGACCGTTATAGTTACGGCCGCCGTTTACCGGGGCTTCGATCAAGA
15393
15377.607
15408.393





 874
CCACTTAGTGATGATTTGGGGACCTTAGCTGGCGGTCTGGGTTGTTTCCC
15437
15421.563
15452.437





 875
TCCCCCATTCGGACACCTCCGCTTCTTCGCTTCCTTACAGCTTCACGGAG
15096
15080.904
15111.096





 876
ATAGATCACCCGGTTTCGGGTCTGCCCCCACTGACTCTGGCCCTCTTAAG
15225
15209.775
15240.225





 877
GCCTATCAAACACGTGTTCCACATGCGGGCTTCAGGACCCCGAAGGGCCC
15302
15286.698
15317.302





 878
CCATTTCTGACTGTTATCCCCCTGTATAAGGCAGGTTGCCCACGCGTTAC
15239
15223.761
15254.239





 879
CATCATCTGTATGGCATTCGGAGTTTGATATCCCTTAGTAAGCTTTGACG
15372
15356.628
15387.372





 880
GTTTGGGGTACGGGCGGCTAAAACCTCGCGCCGATGCTTTTCTAGGCAGC
15450
15434.55
15465.45





 881
GCGATGGCCCTTCCATACGGTACCACCGGATCACTAAGCCCGACTTTCGT
15243
15227.757
15258.243





 882
GAGTTAACCCCGGCGGTCCCCCGTGAGTTCCCACCATAACGTGCTGGCAA
15292.9
15277.6071
15308.1929





 883
GGATAATCGGCGGACGGGATTCCCACCCGTCACACGCTACTCATGCCTGC
15293
15277.707
15308.293





 884
TACCTCTTCGTTATGATATGTCCGCAACCCCAATAAAGAAAACTTTATTG
15262
15246.738
15277.262





 885
ACGTGTCCGGCGGTACTCTGGATTCAGCTGGCGGATCTTCTCTTTCGCAT
15342
15326.658
15357.342





 886
TCGAGACCAGACTTCGTTAGACTAACTCAGACAGGATTCCGGGACCTTAG
15379
15363.621
15394.379





 887
TGGCCGTTCAACCTCTCAGTCCGGCTACCAATCGTCGCCTTGGTGGGCCG
15282
15266.718
15297.282





 888
TATAAGTCAAGGCTGCACCTAAATGCATTTCGGGGAGTACGAGCTATCTC
15409
15393.591
15424.409





 889
CTACTGTTTCACCGCGTATACAACGCTCCCCTACCCAGCATGTAAACATG
15170
15154.83
15185.17





 890
TTATAGTTACGGCCGCCGTTTACTGGGGCTTCAATTCACACCTTCGACAA
15287
15271.713
15302.287





 891
GGATGGACCCCTCACCCAAACAGTGCTCTACCTCCATGATTCTTAATGTC
15201
15185.799
15216.201





 892
TTGGGACCTTAGCTGCGGGTCTGGGCTCTTTCCCTTTTGACTATCCAACT
15292
15276.708
15307.292





 893
GGCTCTGACTACTTGTAGGCACACGGTTTCAGGATCTCTTTCACTCCCCT
15230
15214.77
15245.23





 894
TCGCTACTCATTCCGGCATTCTCACTCGTGTACAGTCCACCGCTGCTTTC
15126
15110.874
15141.126





 895
CCTCCCCCCCCCCCCCCCCCCCCCCCCCTTCCCCCCTCTCCTCCCCCTTC
14517
14502.483
14531.517





 896
TAACACCCCATAACAGGTGCCAGGTTTCCCCATTCGGACATCCTCGGATC
15211
15195.789
15226.211





 897
ACCTCGACACGGACGGTGACAAGCCGGTACCAGAATATCAACTGGTTACC
15358
15342.642
15373.358





 898
ATAGATCACCCGGTTTCGGGTCTACTCCGGCTGACTCGCTCGCCCTATTC
15216
15200.784
15231.216





 899
TAAATGATGGCTGCTTCTAAGCCAACATCCTGGCTGTCTGGGCCTTCCCA
15288
15272.712
15303.288





 900
CAGCTTATAGGGTTGCGTACTTCACTACAACCCAACCTTGATGCTTGCAC
15256
15240.744
15271.256





 901
GCTTGGGCCTTTTCACTGCGGCTGACTTATCGCCAGCGCCCCTTCTCCCG
15184
15168.816
15199.184





 902
TGAGGTCGGCTTCACGCTTAGATGCTTTCAGCGTTTATCCGTTCCGCACT
15301
15285.699
15316.301





 903
CTCCGGGTACTGTCAGGTTCGACTCTCAGGGCGGATTTGCCTACCCCGAT
15321
15305.679
15336.321





 904
GCTTGGGCCTCTTCACTGCGGCTTAATTGCTTAAGCACTCCTTCTCGCTA
15221
15205.779
15236.221





 905
TTTATCCCGAAGTTACAGGGTCAGTTTGCCTAGTTCCTTAACCGTGAATC
15317
15301.683
15332.317





 906
GTAGTTAGCCGGAGCTTCCTCCTAAAGTACCGTCATTATCGTCCTTTAAG
15302
15286.698
15317.302





 907
TCTTTCGGCGAGGGGGTTTCCCGCCCCCTTTATCGTTACTTATACCTACA
15221
15205.779
15236.221





 908
GGATGTACTAGCAGCTTTTCTCGCCAGCGTGAACTCACTCGCTTCCCTAC
15224
15208.776
15239.224





 909
TTAGTATCAGTGCTTTATCAGGGGCGCATATACTCGGGTACCAGAATATC
15415
15399.585
15430.415





 910
GCTTGGCGGCGTCCTACTCTCACAGGGGGAAACCCCCGACTACCATCGGC
15294
15278.706
15309.294





 911
AGATTCACGCAGAATTCCTCGTGCTCCGCGCTACTCAGGATACTACTATG
15281
15265.719
15296.281





 912
TATCAACCTGATCATCTTTCAGGGATCTTACTTCCTTGCGGAATGGGAAA
15350
15334.65
15365.35





 913
TCAATAGGCACGCCACCACACTCTTATGGAGCGGTGACTGCTTGTAAGTC
15346
15330.654
15361.346





 914
CTACTATATTTCGGTCCCTTACGCCCGGGGCAACCATCGCCCGGGATAAC
15243
15227.757
15258.243





 915
TGCCATGACTGCTTGTAAGTCCACGGTTTCAGGTTCTCTTTCACTCCCCT
15196
15180.804
15211.196





 916
TCCATTTGCGCAGCACCAGTAATCATGTTCTTAACATAGTCAGCATGTCC
15255
15239.745
15270.255





 917
TCTCAGTCCCAATGTGGCCGGTCACCCTCTCAGGTCGGCTACTGATCGTC
15241
15225.759
15256.241





 918
TGGCCGTTCAACCTCTCAGTCCGGCTACTGATCGTCGCCTTGGTGGGCCT
15288
15272.712
15303.288





 919
TTATAGTTACGGCCGCCGTTTACCGGGGCTTCAATTCGGAGCTCTCACTC
15295
15279.705
15310.295





 920
TAGTGAAAGGTAGATTTTCTGACCCTTTCGACCTGAACGTACCAACCAGC
15329
15313.671
15344.329





 921
TCTTGGCAGTGTGACATCACTAACTTCGCTACTAAACTTCGCTCCCCATC
15167
15151.833
15182.167





 922
ACCTGCTTTCGCACCTGCTCGCGCCGTCACGCTCGCAGTCAAGCTGGCTT
15202
15186.798
15217.202





 923
TCGGAGTTTGATATTCTTCGGTAAGCTTTGACGCCCCCTAGGAAATTCAG
15382
15366.618
15397.382





 924
ACCCACCGAGTGGGCGCCCATCAGGTCTCAAGCACATAGCCGGCGGATTT
15342
15326.658
15357.342





 925
TACGGGTGCCGCATGGATAAGTTTAGCGGATTTTCTCGGGAGCATGGTTA
15543
15527.457
15558.543





 926
TTCAAACAACCATCCGGTATTAGCCCCGGTTTCCCGGAGTTATCCCAGTC
15217
15201.783
15232.217





 927
TCCTTAACCACGCTGCATACCATAACTCGCCGGACCATTCTACAAAAGGT
15203
15187.797
15218.203





 928
CCGGCACCGGGCAGGTGTCAGGCTGTATACGTCATCTTTCGAGTTTGCAC
15385
15369.615
15400.385





 929
CAGGAATATTCAGGCTTACCCAACGGTCTGGGCGGATTCGCACGGGGTTC
15443
15427.557
15458.443





 930
TTTATCCCGAAGTTACAGGGTCAGTTTGCCTAGTTCCTTAACCGTGAATC
15317
15301.683
15332.317





 931
CTTCTGCAATTGCACTCGTCGATTGGTTTCCATCCAATCTGAGCGTACCT
15229
15213.771
15244.229





 932
TCGGTTTGCCCTCTTCCGCGTTCGCTCGCCACTACTTACGGAATCTCGTT
15173
15157.827
15188.173





 933
AAGCTCCATGGGGTCTTTCCGTCTTGTCGCGGGTAACCGGCATCTTCACC
15296
15280.704
15311.296





 934
CATCGGCCTCACCGTTCGGCTGAGCCTTAGGACCCGACTAACCCTGATCC
15204
15188.796
15219.204





 935
CCTCGCCATACACGCCGCACGGATTTGCCTATGCGACTGGCTGCGTGCTT
15266
15250.734
15281.266





 936
CCTGTCGCGGGTAACCTGCATCTTCACAGGTACTATAATTTCACCGAGTC
15272
15256.728
15287.272





 937
TCAGCCTTATGGGAAACGGATTTGCCTATTTCCCAGCCTAACTGCTTGGA
15327
15311.673
15342.327





 938
TTTCACAACACGCTTAAAAGGCGGCCTACGCTCCCTTTAAACCCAATAAA
15211
15195.789
15226.211





 939
CCCCGCGGTACTCTGGATCCTGCTAGCTCTCGCTCCTTTTCGTCTACGTG
15174
15158.826
15189.174





 940
ATCGGTTCACACACTCACCCACCCCAGAAGCATCAAAAACACTCCCAAGA
15144
15128.856
15159.144





 941
TAGAAAGGAGGTGATCCAGCCGCACCTTCCGATACGGCTACCTTGTTACG
15371
15355.629
15386.371





 942
GCCCATTGTCCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCG
15210
15194.79
15225.21





 943
TCACCTTTCCCTCACGGTACTGGTTCGCTATCGGTCTCTCGGGAGTATTT
15252
15236.748
15267.252





 944
CGAAGTTACGGGGTCATTTTGCCGAGTTCCTTGACAATGCTTCTCCCGCC
15295
15279.705
15310.295





 945
AGATCCTCTCAAATTTCCTACGCCCGCGACGGATAGGGACCGAACTGTCT
15291
15275.709
15306.291





 946
TCTCAGTCCCAATGTGGCCGGTCACCCTCTCAGGTCGGCTACTGATCGTC
15241
15225.759
15256.241





 947
GGCAACCCAACAACCCACACATCATCATCTTCAGCTACAGGACTCTCACC
15102
15086.898
15117.102





 948
GCACTATTGCCTTGTCCCGGAGGACGCGGCATACTGTCAGGTTCGAATCA
15378
15362.622
15393.378





 949
CCGTGGCTTTCTGGTTAGGTACCGTCAAGGTACCGCCCTATTCGAACGGT
15360
15344.64
15375.36





 950
ATACTATCAGGTTCGACTCTTATCCCGGATTTGCCTGGGATAATCAACAT
15310
15294.69
15325.31





 951
TAAGTCCTTAACCTTGCTGCATACAATCGCTCGCCGGACCGTTCTACAAA
15225
15209.775
15240.225





 952
ATCTGGGCTGTTTCCCTTTTGACAATGACATTTATCTGACACTGTCTGAC
15283
15267.717
15298.283





 953
AGAGTAACCATAACACAAGGGTAGTATCCCAACAACGCCTCCTCCGAAAC
15279
15263.721
15294.279





 954
TGGACAGGATTCTCACCTGTCTTACGCTACTCATACCGGCATTCTCACTT
15198
15182.802
15213.198





 955
GCCCGGCTACCTTCCTGCGTCACACCTGTTAATACGCTTGGCTCCCCAGT
15161
15145.839
15176.161





 956
GTCAAGCTCCCTTATACCTTTACACTCTGCGAATGATTTCCAACCATTCT
15141
15125.859
15156.141





 957
CCCAACCCTTGGAACATACTACAGCCCCAGGTGGCGAAGAGCCGACATCG
15304
15288.696
15319.304





 958
TCTTTCGGCGAGGGGGTTTCCCACCCCCTTTATCGTTACTTATACCTACA
15205
15189.795
15220.205





 959
GGGTGTTCCCCTTTTGCCCGCGGAACTTATCTCTCGCGGACTGACTCCCA
15232
15216.768
15247.232





 960
ACCCGGTTTCGGGTCTATGGCATACAACTTCTCGCCCTTGTCAGACTCGC
15240
15224.76
15255.24





 961
CTGCCTGGCTTACGCCTACGGGGCTTTCACCCTCTCCGGCGCCGGCATTC
15194
15178.806
15209.194





 962
GCTGCGGGGCTGAGCCCCTTAACCTCGCCGGAAAAAGTAACTCGTAGGTT
15412
15396.588
15427.412





 963
AAGGATGGCTCTCTTCAAATCTCCTGCGCCCGCGACGGATAGGGACCGAA
15381
15365.619
15396.381





 964
CAGGCCCCACAACACCGCACACACAACCCCCGCCGGGTATCACATGCACA
15123
15107.877
15138.123





 965
CCCCTACGGATCCATGCCTTGGTGGGCCATTACCCCACCAACTAGCTAAT
15187
15171.813
15202.187





 966
ACTTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGT
15327
15311.673
15342.327





 967
TATCCATCGAAGACTAGGTGGGCCGTTACCCCGCCTACTATCTAATGGAA
15330
15314.67
15345.33





 968
CAGGCGTCAGCTCGTATACGTCATCTTTCGATTTAGCACAAACCTGTGTT
15302
15286.698
15317.302





 969
TGGCCGTTCAACCTCTCAGTCCGGCTACCGATCGCGGTCTTGGTGAGCCG
15322
15306.678
15337.322





 970
CCTGTGTTTTTGCTAAACAGTCGCCTGGGCCTATTCACTGCGGCTCTCTC
15237
15221.763
15252.237





 971
ACGCCTTTCGGCCTGACCTTAGCTCCCGACTTACTTGGAGCGGACGAACC
15259
15243.741
15274.259





 972
GGTCTGGGCTCTTTCCCTTTTGACTGCCCAACTTATCTCGTGCAGTCTGA
15252
15236.748
15267.252





 973
GAATGAATGGCTGCTTCTGAGCCAACATCCTAGTTGTCTTAGAGATCCCA
15360
15344.64
15375.36





 974
CCCCATCATGCCTCAACCTTCACGCCCAGCGGATTTACCTACCAGACAGT
15116
15100.884
15131.116





 975
AAAAGTACGCGGTTCATCATATAAAGATGTTCCACAGCTTGTAAACACAG
15394
15378.606
15409.394





 976
ATCTGAAGTCTTCTCGTTTAACATACAGGACTATTACCTTCTGTGGTGAG
15356
15340.644
15371.356





 977
GGTCACACCCTTTTGAAGTGTCCCTTTGCTTAAATTACAGATGGTTACGG
15357
15341.643
15372.357





 978
CAGCTTATCACGTCTTTCATCGGCTCTTAGTGCCAAGGCATCCACCCTGC
15184
15168.816
15199.184





 979
TTCCATTCGGCACCGCCGGATCACTATTCCCGACTTTCGTCCCTGTTCGA
15151
15135.849
15166.151





 980
TCCAGGTTCGATTGGCATTTCACCCCTACCCACACCTCATCCCCGCACTT
15049
15033.951
15064.049





 981
TACACCTTCTGCGTACATAGAACGCTCTCCTACCATCCCCTAAGGGATCC
15146
15130.854
15161.146





 982
GCTTGCGCTAACCTCTCCTCTTAACCTTCCAGCACCGGGCAGGCGTCAGC
15195
15179.805
15210.195





 983
CGCCCGTTAGTACCGGTCGGCTCCACCCCTCGCGGGGCTTCCACCTCCGG
15189
15173.811
15204.189





 984
CTCCGGGACCTTAGACGGCGGTCTGGATTCTTCTCCTCTCGGGGACGGAC
15362
15346.638
15377.362





 985
TGGTTAAGTCCTCGATCGATTAGTATCTGTCAGCTCCATGTGTCGCCACA
15318
15302.682
15333.318





 986
TAAGTCCTTAACCTTGCTGCATACAATCGCTCGCCGGACCGTTCTACAAA
15225
15209.775
15240.225





 987
ACCGGACTTTCCATTTCCGGCCCATGTTTCCCTCCCGTGTCCCCACAGTT
15087
15071.913
15102.087





 988
CGGCTCCCACCTATGCTACGCAGAAGAATCCGGATATCAATGCCAGACTA
15293
15277.707
15308.293





 989
ACCCCACATCCTTTTCCACTTAACATATATTTGGGGACCTTAGCTGGTGG
15262
15246.738
15277.262





 990
CCACACCACTTCACCTAACAACAACACACAAGCACGATGATGGTAGTCAC
15199
15183.801
15214.199





 991
TCATCCCCGCACTTTTCACGTACGTGTGGTTCGGACCTCCACGACGTCTT
15191
15175.809
15206.191





 992
CCCTTCAAAGCCTCCGACCTATCCTACACATCACGTGCCCAGATTCAATG
15115
15099.885
15130.115





 993
CTTCACCTAACAACAATGCGCAAGCAGGACGTCAGTAGCCATCCTCATCA
15237
15221.763
15252.237





 994
GGGGTACGGGCGGCAACGCGCCTGACGCCGAAGCTTTTCTCGGCACCACG
15415
15399.585
15430.415





 995
ATGGCTAGATCACCGGGTTTCGGGTCTATACCCTGCAACTTAACGCCCAG
15322
15306.678
15337.322





 996
ATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGA
15193
15177.807
15208.193





 997
GCCGGCTTTCCCAAAGCCGTTCTGCTACCTCTCGCGGATCAATTATGCGG
15265
15249.735
15280.265





 998
ACGCCTTCCGGCCTCACCTTAGCTCCCGACTAACTTGGAGCGGACGAACC
15213
15197.787
15228.213





 999
ACACCACGCGGCGATACCAACCCGAAGGAAGGAACCACCACGAGGCGGAG
15421
15405.579
15436.421





1000
CCGAACCCCGAGATGCACGCATCTCGGTTTGGCCTCTTTCGCGTTCGCTC
15217
15201.783
15232.217





1001
GGGACTTCATCCTGGCCAAGTGTAGATCACTTGGTTTCGCGTCTACCCCC
15280
15264.72
15295.28





1002
AGCCCTCGACCTATTAGTACTGCCAAGCTGAATGCCTCACGGCACTTACA
15235
15219.765
15250.235





1003
GGGAGCGGGATTACCTTCACTATCAATCCACCCGAAGGTTTCATGTACTA
15345
15329.655
15360.345





1004
CACGCGGGATTCCACGAGGCCCGCGCTACTTGGGACAACACGATCGGAAG
15416
15400.584
15431.416





1005
CCTACACCCTTCAACCATCTATTCCGTCAGATGGCGGCACTGTCACTACT
15137
15121.863
15152.137





1006
CCCCGTACCTGTTCTCGATACCAGGTTAGAACCCCGGTCACACAAGAGTG
15276
15260.724
15291.276





1007
GTTTCACGTGTCTGGCCGTACTCTGGATCCTGCGCAGCTCTCTCCGTTTT
15244
15228.756
15259.244





1008
TTCCCGCTTAGATGCTTTCAGCGGTTATCCCTCCCGAACGTAGCCAACCG
15209
15193.791
15224.209





1009
GCACTCCCACAGCTTGTAGACACAGGGTTTCAGGTTCTCTTTCACTCCCC
15184
15168.816
15199.184





1010
CCTGGCCAAGGGTAGATCACTTGGTTTCGCGTCTGCCACTGCCGACTATA
15329
15313.671
15344.329





1011
CCGCGAGGGACCTCACCTACATATCAGCGTGCCTTCTCCCGAAGTTACGG
15268
15252.732
15283.268





1012
AAGCTCCATGGGGTCTTTCCGTCTTGCCGCAGGTAACCGGCATCTTCACC
15265
15249.735
15280.265





1013
CGTCGGCTTGGTGGGCCGTTACCTCACCAACTACCTAATCCAACGCGGGT
15299
15283.701
15314.299





1014
GCTCCCACCTATCCTGTACATGCAATACCAAGCTCCAGTACCAAACTGGA
15188
15172.812
15203.188





1015
ACCGGACTTTCCATTTCCGGCCCATGTTTCCCTCCCGTGTCCCCACAGTT
15087
15071.913
15102.087





1016
CAGTTCCCCGGGTCTGCCTTCTCATATCCTATGAATTCAGATATGGATAC
15262
15246.738
15277.262





1017
GGTCCCGGCAGATTCGCGCAGGATTCCTCGTGTCCCGCGTTACTCAGGAT
15346
15330.654
15361.346





1018
GTATTAACTTTACTCCCTTCCTCCCCGCTGAAAGTACTTTACAACCCGAA
15135
15119.865
15150.135





1019
GGGGGCGGGGAGCGGGGCGTGGGCGGGAGGAGGGGAGGAGGCGTGGGGGG
16068
16051.932
16084.068





1020
CACGAGGCCCGCGCTACTTGGGACACGCGATCGGGAGACGGCAAGCGTCC
15433
15417.567
15448.433





1021
CGTTTATCCCCTCCCTACTTAGCTACCCAGCGATGCTCTTGGCAGAACAA
15177
15161.823
15192.177





1022
CCTCTTAACCTTCCGGCACCGGGCAGGCGTCAGAGCGTATACAGCGGCTT
15323.9
15308.5761
15339.2239





1023
ACCTTGGGCGGACGAACCTTCCCCAAGAAACCTTAGATTTTCGGCCATTA
15290
15274.71
15305.29





1024
TTCGTTCGCCACTACTAGCAGAATCATAATTTTATTTTCTTCTCCTACGG
15202
15186.798
15217.202





1025
GTTTCTCGCATGCCTCTCGCTACTCATACCGGCATTCTCTCTTGTGCAGT
15172
15156.828
15187.172





1026
CCTATCAACGTCGTCGTCTTCAACGTTCCTTCAGGACCCTTAAAGGGTCA
15232
15216.768
15247.232





1027
CTGTTATCCCCAGGGTAGCTTTTATCCGTTGAGCGACGGCATTTCCATTC
15285
15269.715
15300.285





1028
CAACAATATATGGAACACCTACCTGGCGAGACAATAGAATGTGTTCCCTC
15331
15315.669
15346.331





1029
TTATAGTTACGGCCGCCGTTTACTGGGGCTTCAATTCAATGCTTCTCTTG
15315
15299.685
15330.315





1030
ACAACAGAGCTTTACGATCCGAAAACCTTCATCACTCACGCGGCGTTGCT
15259
15243.741
15274.259





1031
CCCGTTCCACGGGTTAGAATCCAAACAAATAAAGGGTCGTATTTCAACAG
15371
15355.629
15386.371





1032
CCCCCTTCCCCCCTCTCCTCCCCCTTCCCCCTTTCGCGCCCCCTTTTCCC
14687
14672.313
14701.687





1033
TGGTGTTCCAACCAATTCGGCTTGGGGGGATGGATCTTAAAAACTGGTCC
15472
15456.528
15487.472





1034
CTCGTGTCCCGCCGTACTCAGGATCCTGCTTGGCATCAAGTGAATTTCAA
15288
15272.712
15303.288





1035
AGCTTCTACACCCTTCAACCATCTATTCCGTCAGATGGCGGCACTGTCAC
15177
15161.823
15192.177





1036
CCGATTAGTACCAGTCAACTCCGTACATCACTGCACTTCCATCCCTGGCC
15122
15106.878
15137.122





1037
CGCTTGAACCACACATCAGGCCCCACGGCTTGCCACCATGTTAACCCGAA
15190
15174.81
15205.19





1038
TGGCGAGACAATAGAATGTGTTCCCTCGTTTGTGGCATAGGACCATCAGC
15441
15425.559
15456.441





1039
CGTCCATCCCGGTCCTCTCGTACTAGGGACAGCTCCTCTCAAATATCCTG
15169
15153.831
15184.169





1040
TCGAGGTGCCAAACCTCCCCGTCGATGTGAACTCTTGGGGGAGATAAGCC
15412
15396.588
15427.412





1041
CTTAACAACTTAACCTCGCTGCACACAGTAACTCGCCGGCCCGTTCTACA
15155
15139.845
15170.155





1042
GTCAACAGGTAGTATTCAGGCTTACCAGGTGGTCCTGGCAGATTCACACG
15426
15410.574
15441.426





1043
AGGCACGCCGTCACACATTGCTGTGCTCCGACCGCTTGTAGGCGTATGGT
15370
15354.63
15385.37





1044
TCCCTTTCCCCCTTCCCCCCCCCCCCCCCCCCCCCCCCCTTTCCCCCCCC
14532
14517.468
14546.532





1045
AACCATGACTTTGGGACCTTAGCTGGCGGTCTGGGTTGTTTCCCTCTTCA
15341
15325.659
15356.341





1046
TGCCATTACACTCTATGAGACCGGTTACCAATCGGTCCGAAGGGCACCTT
15306
15290.694
15321.306





1047
GATTGGAATTTCTCCGCTACCCACACCTCATCCGCTACCATTTCAACGGG
15177
15161.823
15192.177





1048
TTCTCGTGTCCCGCGGTACTCTGGATCCTGCTCAGTCTGCTCTGTTTTCG
15235
15219.765
15250.235





1049
GTAAACCCCCACAACAGCTATGAATTCACTGAAGGGTAACACCCCATAAC
15254
15238.746
15269.254





1050
TCCCGAAGTTACAGGGTCAATTTGCCTAGTTCCTTAACCGTGAATCACTC
15271
15255.729
15286.271





1051
CCCCCGACGGGTATCACACGCGCAAGGTTTGGCCATCATCCGCTTTCGCT
15235
15219.765
15250.235





1052
CCCTTGTCTCAGTGCCCATCTCCGGGCTCCTCCTTCCAGAGCCCGTACCC
15058
15042.942
15073.058





1053
TCAGACTTGCTCTCGCTGCGGCTTCACACCTTAAGTGCTTAACCTCGCCG
15200
15184.8
15215.2





1054
CTCCATTCGGAAATCCACGGATCAATGCCTACTTACGGCTCCCCGTGGCT
15218
15202.782
15233.218





1055
TTTTACGGTTGAGCCGCAAACTTTCACAACTGACTTAACAACCCGCCTAC
15209
15193.791
15224.209





1056
CGGTTTAGGCTCTTCCGCGTTCGCTCGCCGCTACTTACGGAATCGAGTTT
15302
15286.698
15317.302





1057
CTTCACTATATACTCTAGTACAGGAATATCAACCTGTTGGCCATCGGATA
15303
15287.697
15318.303





1058
TGTTTCAGTTCACTGCGTCTTCCTTCTCATAACCTTAACAGTTATGGATA
15242
15226.758
15257.242





1059
GACGGAGCTTATCCCCCGCCGACTCACTGCCGGGATACGCGTCACGGGTA
15333.9
15318.5661
15349.2339





1060
CCGAACTGTCTCACGACGTTCTGAACCCAGCTCGCGTACCGCTTTAATGG
15258
15242 .742
15273.258





1061
GACGGTGACAAGCCGGTACCAGAATATCAACTGGTTACCCATCGACTACG
15373
15357.627
15388.373





1062
GATGCGCATTCGGAGTTTGTCAAGACTTGATAGGCGGTGAAGCCCTCGCA
15482
15466.518
15497.482





1063
TAGGTGAGCCGTTACCCCACCTACTAGCTAATCCCATCTGGGCACATCCG
15227
15211.773
15242.227





1064
TGGTCCCCGCTCATTCCATCAAGGTTTCTCGTGTCTCGATGTACTCTGGA
15261
15245.739
15276.261





1065
ATGCTCCCCTACCGATACTTTTTAATGCTATCCCGCGCCTTCGGTACCTG
15150
15134.85
15165.15





1066
TTACCTTTACTTCAACCTGACCATGGGTAGGTCACCCGGTTTCGGGTCGA
15319
15303.681
15334.319





1067
GTAGTATTTAGCCTTGGAGGATGGTCCCTCCTGCTTCCCACAGGGTTTCA
15350
15334.65
15365.35





1068
GATTTCCAACCATTCTGAGGGAACCTTTGGGCGCCTCCGTTACCTTTTAG
15294
15278.706
15309.294





1069
ATCCCTTCCGGGCTTGGCTACTCGGCCGTAGACTTGGCAGTCTAACCGAT
15305
15289.695
15320.305





1070
GATGCGCATTCGGAGTTTGTCAAGACTTGATAGGCGGTGAAGCCCTCGCA
15482
15466.518
15497.482





1071
GTAATCGCCTTGGTGGGCCATTACCCCACCAACAAGCTGATAGGCCGCAG
15341
15325.659
15356.341





1072
ACCCTCAGGTCATCCAGAAGCTTTTCAACGCTTATTGGTTCGGTCCTCCA
15223
15207.777
15238.223





1073
AGCTCCATGGGGTCTTTCCGTCTAGTTGCGGGTAACCTGCATTTTCACAG
15350
15334.65
15365.35





1074
CGTGGGGATTAAGTTTAGCGGATTTTCTCGGGAGTATGATTACGTGCGCT
15549
15533.451
15564.549





1075
TATTTTGGGACCTTAACTGGCGGTCTGGGCTGTTTCCCTCTTGACCATGG
15372
15356.628
15387.372





1076
TAACCTTGCACGGGATCGTAACTCGCCGGTTCATTCTACAAAAGGCACGC
15315
15299.685
15330.315





1077
GACGGCCCAGAGACCTGCCTTCGCCATCGGTGTTCTTCCCGATATCTACA
15233.9
15218.6661
15249.1339





1078
TCACACGGGATTCCACGAGTCCCGCGCTACTTGGGAGACACGATCCGGAG
15382
15366.618
15397.382





1079
AGTATTTAGCCTTGGAGGATGGTCCCCCCATATTCAGACAGGATACCACG
15370
15354.63
15385.37





1080
TTTGGCCTCTTCCGCGTTCGCTCGCCACTACTAGCGGAATCTCGGTTGAT
15262
15246.738
15277.262





1081
CTGCTTCCAAGCCAACATCCTAGCTGTCTTAGCAGTCAGACTTCGTTAGT
15247
15231.753
15262.247





1082
CTGGGGCTTCAATTCACACCTTCGCTTACGCTAAGCGCTCCTCTTAACCT
15159
15143.841
15174.159





1083
GTTTGGGCTTCTCCCCTTTCGCTCGCCGCTACTCAGGGAATCACTGTTGT
15253
15237.747
15268.253





1084
ACAATCCACACCGAATGCCAATACCAAGGTATAGTAAAGGTCCCGGGGTC
15366
15350.634
15381.366





1085
CAGGGTAGCTTTTATCCGTTGAGCGATGGCCCTTCCATACGGTACCACCG
15329
15313.671
15344.329





1086
ATAGGCGGTGAAGCCCTCTTGACCTATCGGTCGCTCTACCTCTCACGGTG
15305
15289.695
15320.305





1087
GCCATGCAGATTCTCACTGCATTCGCGCTACTCATTCCGGCATTCTCACT
15159
15143.841
15174.159





1088
CGGTACGCCGCCGGTACGGGAATATCCACCCGTTCATCCATTCGACTACG
15268
15252.732
15283.268





1089
GCACTCCACAGCTCCTTCCGGTACTGCTTCTTCGCGTTAAGAATGCTCCT
15175
15159.825
15190.175





1090
CGTTCACTCTTCCTTGGCTCCTACCTATCCTGTACATGTGTAACAGATAC
15173
15157.827
15188.173





1091
CCCCTGACCTGATTCAAGGCCACAGGTTAGAATTTCAGCACTTCAAGAGT
15314
15298.686
15329.314





1092
CTACCCAGCAATGCCTTTGGCAAGACAACTGGTACACCAGCGGTAAGTCC
15309
15293.691
15324.309





1093
CCAGCACCGGGCAGGCGTCACCCCCTATACTTCATCTTACGATTTCGCAG
15203
15187.797
15218.203





1094
ATTCCTCACTGCTGCCTCCCGTAGGAGTTTGGACCGTGTCTCAGTCCCAA
15240
15224.76
15255.24





1095
CTACGAGACTCAAGCTTGCCAGTATCAGATGCAGTTCCCAGGTTGAGCCC
15331
15315.669
15346.331





1096
CTCTCAACGATGACGTCTCCTCTTAACCTTCCAGCACCGGGCAGGTGTCA
15218
15202.782
15233.218





1097
ATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGTAA
15441
15425.559
15456.441





1098
GCGATGGACTTTCACACCGGACGCGACGAGCCGCCTACGAGCCCTTTACG
15317.9
15302.5821
15333.2179





1099
CCCACACCGGATATGGACCGAACTGTCTCACGACGTTCTGAACCCAGCTC
15221
15205.779
15236.221





1100
GAATGAATGGCTGCTTCTGAGCCAACATCCTAGTTGTCTTAGAGATCCCA
15360
15344.64
15375.36





1101
TCCCCGGAGTACCTTTTATCCTTTGAGCGATGTCCCTTCCATACGGAAAC
15223
15207.777
15238.223





1102
GTAAAGCCACCTTATACCCTTGCATTCTACAGGAGATTTCTGACCTCCTT
15206
15190.794
15221.206





1103
TCCGCCTGCGCACCCTTTAAACCCAATAAATCCGGATAACGCTCGTATCC
15155
15139.845
15170.155





1104
AGGAAGTATTCAGGCTTACCAGGTGGTCCTGGCAGATTCACACACGATTC
15410
15394.59
15425.41





1105
GTGTAGGATTCTCACCTACATCTCGCTACTCACACCGGCATTCTCACTTC
15143
15127.857
15158.143





1106
GAACTGAGACCGGTTTTCAGGGATCCGCTCCATGTCGCCATGTCGCATCC
15313.9
15298.5861
15329.2139





1107
TTCCTGAAGTTGATTCTTCGGGTTAGACAGCCAAACTTCTCAGGGTGGTA
15422
15406.578
15437.422





1108
CGGTACTGGTACGCTATCGGTCAGACAGGTATGCTTAGACTTACGCCACG
15402
15386.598
15417.402





1109
GTTTCCCCTCGACTTGCATGTGTTAAGCCTGTAGCTAGCGTTCATCCTGA
15285
15269.715
15300.285





1110
CGAAGTTACGGGGTCATTTTGCCGAGTTCCTTGACAATGCTTCTCCCGCC
15295
15279.705
15310.295





1111
CTTGGGAATGATCAGCCTGTTATCCCCGGGGTACCTTTTATCCGTTGAGC
15350
15334.65
15365.35





1112
GTCTATAAGTACTTCGATTTTTGCAAGTCCGAACCCCGAACGTCCGTAGA
15320
15304.68
15335.32





1113
CACCTTTCCTTCACAGTACTGGTTCACTATCGGTCTCTCGGGAGTATTTA
15244
15228.756
15259.244





1114
CCGGGAATTCCAGTCTCCCCTACCGCACTCCAGCCCGCCCGTACCCGGCG
15110.7
15095.5893
15125.8107





1115
ACAGCTTTTCTCGCCATCTTCCATCTCGGACTTCGGTACTAATTTCCCTC
15100
15084.9
15115.1





1116
TCTTTCGGCGAGGGGGGTTCCCGCCCCCTTTATCGTTACTTATACCTACA
15246
15230.754
15261.246





1117
TGTATGCGCCATTGTAGCACGTGTGTAGCCCTGGTCGTAAGGGCCATGAT
15464
15448.536
15479.464





1118
CTTTCGTCTCTGATCGAGTTGTCACTCTCGCAGTCAGGCACCCTTCTGCC
15182
15166.818
15197.182





1119
GATACTACAATTTCACTGAGCTCTTGGTTGAGACAGCGTCCGGATCATTA
15375
15359.625
15390.375





1120
GATGTTTCAGTTCAGGCGGTTCCCTCAATACACCTATTTTAAATTTCAGT
15291
15275.709
15306.291





1121
AAAAAAAAACAAAAAAAAAAACCCTCCCCCCCCCCCCTTCCCCTCCGCGG
15058
15042.942
15073.058





1122
GCCCTGTTAAGACTTGGTATCCCTTCGGCTCCGCACCTTAAGTGCTTAAC
15239
15223.761
15254.239





1123
ACCACGAATTCCGCCTGCCTCAACTGCACTCAAGATATCCAGTATCAACT
15163
15147.837
15178.163





1124
GAGTTTTTCACACTGTGCCATGCAGCACTGTGCGCTTATGCGGTATTAGC
15374
15358.626
15389.374





1125
TGCCTAGTTCCTTAACCATGAATCTCTCAACGCCTCAGTATGTTCTACCC
15142
15126.858
15157.142





1126
GGTGTGTACAAGGCCCGGGAACGTATTCACCGCGCCGTGGCTGATGCGCG
15485
15469.515
15500.485





1127
TTCGCCACCGGTATTCCTCCAGATCTCTACGCATTTCACCGCTACACCTG
15104
15088.896
15119.104





1128
CGCTTAACGCGTTAGCTCCGACACGGAACACGTGGAACGTGCCCCACATC
15285.9
15270.6141
15301.1859





1129
ACACGAGCCGAAACCCGTGTCTCTCAGACTCCCACCTATCCTGTGCATCA
15156
15140.844
15171.156





1130
ACTCGATTTCTCTTCGGCTCCACACCTTAAGTGCTTAACCTTGCCGGCAC
15159
15143.841
15174.159





1131
TGAACCCGCCCCGAAGGGAAACGCCATCTCTGGCGTCGTCGGGAACATGT
15382
15366.618
15397.382









3. Immobilized Oligonucleotides for Enriching


In some embodiments, immobilized oligonucleotides are designed for enriching desired library fragments. In some embodiments, oligonucleotides for enriching comprise one or more desired RNA sequence. A user can design oligonucleotides for enriching using similar means of selecting probes as described above for depleting. For example, a user could prepare immobilized oligonucleotides of desired RNA sequences comprised in organisms of interest in the human microbiome, for use in enriching library fragments prepared from these desired RNA sequences. Likewise, a user could prepare immobilized oligonucleotides of desired mRNA sequences from an organism of interest.


In some embodiments, desired RNA may be comprised in some immobilized oligonucleotides, and the complement of desired RNA may be comprised in other immobilized oligonucleotides.


E. Immobilized Oligonucleotides Comprising Adapter Sequences and Library Fragments Comprising Adapter Sequences


In some embodiments, solid supports comprise immobilized oligonucleotides comprising adapter sequences. In some embodiments, the adapter sequences comprised in immobilized oligonucleotides are solid support adapter sequences. As used herein, “solid support adapter sequences” refer to adapter sequences that are comprised in oligonucleotides immobilized to the solid support. In some embodiments, solid support adapter sequences bind to library adapter sequences. As used herein, a “library adapter sequence” refers to an adapter sequence incorporated into library fragments, wherein the library adapter sequence can bind to the solid support adapter sequence. In some embodiments, solid support adapter sequences can serve to immobilize library fragments to a solid support, wherein this immobilizing is not due to the cDNA sequence comprised in the library fragment, but due to binding to a library adapter comprised in library fragments. In some embodiments, binding of a library adapter sequence comprised in a library fragment to a solid support adapter sequence comprised in an immobilized oligonucleotide serves to immobilize the library fragment to the solid support.


In some embodiments, library adapter sequences are incorporated into library fragments during library preparation. In some embodiments, the library of fragments added to the solid support is prepared by a method comprising incorporating one or more library adapters that specifically bind to solid support adapter sequences comprising P5 (SEQ ID NO: 1132), P7 (SEQ ID NO: 1133), and/or their complements. Such methods for incorporating one or more library adapters may be tagmentation or fragmentation followed by adapter ligation.


In some embodiments, library adapter sequences are incorporated into library fragments after performing enriching or depleting as described herein. In other words, enriching or depleting may be performed, and then library adapters may be added to the enriched or depleted library. In some embodiments, library adapter sequences are added to collected library fragments. In some embodiments, the library adapter sequences are added to collected library fragments by ligation.


In some embodiments, library fragments comprise library adapters and the solid support comprises immobilized oligonucleotides comprising solid support adapter sequences that can bind to library adapters.


In some embodiments, the solid support adapter sequences comprise a P5 sequence (SEQ ID NO: 1132), a P7 sequence (SEQ ID NO: 1133), and/or their complements. In some embodiments, library adapter sequences comprise a sequence complementary to P5 sequence or P7 sequence. In some embodiments, library adapter sequences comprise a P5 sequence or P7 sequence.


In some embodiments, a solid support comprises immobilized oligonucleotides comprising P5 and/or its complement. In some embodiments, a solid support comprises immobilized oligonucleotides comprising P7 and/or its complement. In some embodiments, a solid support comprises more than one pool of immobilized oligonucleotides, wherein one or more pool may comprise immobilized oligonucleotides comprising a P5 sequence, a P7 sequence, and/or their complements.


In some embodiments, library adapter sequences comprised in library fragments specifically bind to solid support adapter sequences comprising P5 (SEQ ID NO: 1132), P7 (SEQ ID NO: 1133), and/or their complements.


F. Adapter Complements for Binding Solid Support Adapter Sequences


In some embodiments, adapter complements can bind to solid support adapter sequences. As used herein, an “adapter complement” is an oligonucleotide that can bind to a solid support adapter sequence. In some embodiments, the solid support adapter sequence is single-stranded and the adapter complement is single-stranded. In some embodiments, adapter complements that are all or partially complementary to the solid support adapter sequences are bound to the solid support adapter sequences. In some embodiments, the binding of adapter complements to solid support adapter sequences serves to prevent binding of library adapter sequences comprised in library fragments to solid support adapter sequences. In this way, a user can control when library fragments can bind to solid support adapter sequences comprised in immobilized oligonucleotides. For example, a user can block binding of library adapter sequences (using adapter complements) to solid support adapter sequences during enriching or depleting steps.


In some embodiments, adapter complements bound to the solid support adapter sequences generate double-stranded immobilized oligonucleotides. In some embodiments, solid support adapter sequences bound to adapter complements cannot bind to library adapters. In some embodiments, double-stranded immobilized oligonucleotides comprising a solid support adapter sequence and an adapter complement cannot bind to library adapter sequences.


In some embodiments, the binding of the adapter complements to the solid support adapter sequences is reversible. In some embodiments, an increase in temperature or a denaturing agent can be used to denature library adapter sequences from the solid support adapter sequences. After the denaturing of adapter complements, solid support adapter sequences comprised in immobilized oligonucleotides can be available for binding to library adapter sequences.


G. Solid Support Comprising More than One Pool of Immobilized Oligonucleotides


In some embodiments, a solid support comprises more than one pool of immobilized oligonucleotides on its surface.


For example, a solid support may comprise a first pool of immobilized oligonucleotides for depleting and a second pool of immobilized oligonucleotides for enriching. In some embodiments, one pool of immobilized oligonucleotides may be blocked (such as with complementary nucleic acid sequences) to avoid binding to complementary library fragments during certain steps of methods using the solid support. For example, blocking may be used to inhibit binding of P5/P7 sequences until a user wishes to perform bridge amplification after depletion/enrichment (as shown in FIG. 2).


In some embodiments, a solid support has two pools of immobilized oligonucleotides on its surface, wherein the first pool comprises immobilized oligonucleotides each comprising an unwanted RNA sequence and the second pool comprises immobilized oligonucleotides each comprising a solid support adapter sequence that can bind to a library adapter comprised in library fragments (as shown in FIG. 2). In some embodiments, solid support adapter sequences are bound by adapter complements, wherein the adapter complements can be denatured during a method to allow binding of solid support adapter sequences to library adapters in library fragments. Such a solid support can be used for methods of preparing a depleted library and amplifying the depleted library on the same solid support (such as described in Example 2).


In some embodiments, at least one unwanted RNA sequence has at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments. In some embodiments, all unwanted sequences have at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments.


II. Methods of Enriching or Depleting of Library Fragments Using Immobilized Oligonucleotides

In some embodiments, a method selects cDNA library fragments from a library of cDNA fragments prepared from RNA. This selecting may be depleting unwanted library fragments by removing them, or this selecting may be enriching desired library fragments and collecting them. In some embodiments, selecting includes both depleting unwanted library fragments and enriching desired library fragments.


In some embodiments, a method of selecting cDNA library fragments from a library of cDNA fragments prepared from RNA comprises (a) preparing a solid support comprising a pool of immobilized oligonucleotides, wherein each immobilized oligonucleotide in the pool comprises a nucleic acid sequence corresponding to an RNA sequence or its complement, (b) adding the library of fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of library fragments to at least one immobilized oligonucleotide, and (c) collecting library fragments either bound or not bound to at least one immobilized oligonucleotide.


In some embodiments, the selecting is depleting unwanted cDNA library fragments, wherein the RNA sequence comprises an unwanted RNA sequence, the unwanted library fragments comprise those prepared from unwanted RNA sequences, and the collecting comprises collecting library fragment not bound to at least one immobilized oligonucleotide.


In some embodiments, the selecting is enriching desired cDNA library fragments, wherein the RNA sequence comprises a desired RNA sequence, the desired library fragments comprise those prepared from desired RNA sequences, and the collecting comprises collecting library fragment bound to at least one immobilized oligonucleotide.


In some embodiments, the library of fragments is subjected to depleting unwanted cDNA library fragments and the collected library fragments not bound to at least one immobilized oligonucleotides are then subjected to enriching desired cDNA library fragments.


In some embodiments, the library fragments are prepared from a sample comprising RNA. In some embodiments, library fragments are prepared from cDNA prepared from RNA in a sample. Such a sample may be any type comprising RNA and any method of cDNA and library preparation may be combined with the present method.


In some embodiments, the present methods using solid supports decrease library preparation costs and hands-on-time, as compared to prior art methods of depleting unwanted RNA, followed by library preparation. In some embodiments, the present methods reduce degradation and/or loss of rare RNA transcripts that may be seen with RNase-H-mediated depletion methods that are performed before library preparation. Methods described herein can be used for depletion of unwanted rRNA transcripts, as well as unwanted non-rRNA transcripts (such as for depleting host transcriptome when evaluating microbiome samples).


In some embodiments, methods of depleting or enriching library fragments as described herein improves yield of the resulting library after the enriching or depleting in comparison to methods wherein RNA is depleted or enriched prior to library preparation. Such an improvement in yield may be due to the fact that library preparation itself can be limited when a starting RNA sample has very low concentrations of RNA. The present methods of enriching or depleting after library preparation can avoid or reduce the impact of low RNA concentration in the starting sample on library yield.


The present methods of depleting and enriching are flexible for use with any upstream methods of cDNA and library preparation that a user prefers. In other words, a user can choose the best method of cDNA preparation and the best method of library preparation for their particular sample, and then the user can deplete or enrich the resulting library fragments using methods described herein.


In some embodiments, cDNA is prepared using a stranded method. In some embodiments, library preparation comprises incorporating one or more adapter sequence into library fragments. Alternatively, one or more adapter sequence may be incorporated into fragments after the present methods of enriching or depleting.


In some embodiments, single-stranded library fragments are preparing before adding a library of fragments to a solid support. In this way, single-stranded library fragments can bind to single-stranded immobilized oligonucleotides on the surface of a solid support.


In some embodiments, the method is performed after library preparation from cDNA prepared from RNA. In some embodiments, the method does not require degradation of RNA.


In some embodiments, the library depleted of unwanted library fragments or enriched for desired library fragments is assessed for library size and/or concentration. The library depleted of unwanted library fragments or enriched for desired library fragments may also be amplified and/or sequenced.


In some embodiments a method comprises steps of both depleting unwanted library fragments and enriching desired library fragments. For example, a depletion flowcell may be used to deplete unwanted library fragments, and the depleted library can then be enriched for desired library fragments using an enrichment flowcell. Such a workflow comprising both depletion and enrichment may have particular use for generating data from desired library fragments that are relatively rare in a sample. For example, data from library fragments generated from a particular microorganism comprised in a metatranscriptomics sample may be improved by a method of depletion followed by enrichment.


In some embodiments, a method comprises amplifying and/or sequencing on the same flowcell used for depleting and/or enriching. Such a method comprising amplifying and/or sequencing on the same flowcell used for depleting and/or enriching may be termed a “one-pot” or “single flowcell” method.


In some embodiments, amplifying and sequencing are not performed on the flowcell used for depleting and/or enriching. For example, a collected library may be amplified in a thermocycler and then the amplified library fragments are sequenced on a flowcell that is different from the flowcell used for the depleting and/or enriching.


In some embodiments, amplifying is performed on the flowcell used for depleting and/or enriching, and the amplified library fragments are then sequenced on a flowcell that is different from the flowcell used for the depleting and/or enriching. Such a method may comprise bridge amplification on the flowcell used for depleting and/or enriching (as described below), and amplified library fragments are then sequenced on a flowcell that is different from the flowcell used for the depleting and/or enriching.


A. Methods of Depleting


In some embodiments, library fragments prepared from one or more abundant RNA transcripts, sequences thereof, or subsequences thereof, have been depleted from the sample using a plurality of immobilized oligonucleotides after RNA transcripts are reverse transcribed to generate complementary DNAs (cDNAs) and library fragments are prepared from the cDNA. In some embodiments, the library fragments are sequenced after the depleting to generate a plurality of sequence reads. In some embodiments, the one or more abundant RNA transcripts can be ribosomal RNA transcripts and/or globin mRNA transcripts.


In some embodiments, a method of depleting unwanted cDNA library fragments from a library of cDNA fragments prepared from RNA comprises (a) preparing a solid support comprising at least one immobilized oligonucleotide, wherein each immobilized oligonucleotide comprises a nucleic acid sequence corresponding to an unwanted RNA sequence or its complement, (b) adding the library of fragments to the solid support and hybridizing the library fragments to the at least one immobilized oligonucleotide to allow binding of unwanted library fragments to the at least one immobilized oligonucleotide, and (c) collecting library fragments not bound to the at least one immobilized oligonucleotide. In some embodiments, the solid support for depleting comprises a pool of oligonucleotides. In some embodiments, the pool of oligonucleotides comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, or 1100 or more oligonucleotides.


In some embodiments, unwanted library fragments comprise those prepared from unwanted RNA sequences. In some embodiments, library fragments that hybridize to immobilized oligonucleotides comprise library fragments prepared from unwanted RNA sequences. In some embodiments, the unwanted RNA sequences comprise rRNA.


In some embodiments, the collected library fragments comprise a library depleted of unwanted library fragments. In some embodiments, the collected library fragments are collected in a reservoir comprised in a sequencer comprising the flowcell. Collected library fragments can then be removed from the reservoir, and the user can perform any additional steps of interest, such as quantification, amplification, quality control, or sequencing.


In some embodiments, all unwanted sequences have at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments. In some embodiments, all unwanted sequences have at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments.


In some embodiments, the library depleted of unwanted library fragments comprises fewer library fragments prepared from unwanted RNA sequences, as compared to the same library before it was added to the solid support. In other words, the present method of depleting may decrease the number of library fragments prepared from unwanted RNA sequences that are comprised in the collected library.


1. Denaturing in Methods of Depleting


In some embodiments, a method of depleting further comprises a step of denaturing one or more nucleic acid bound to an immobilized oligonucleotide.


In some embodiments, a method further comprises denaturing library fragments hybridized to immobilized oligonucleotides. In some embodiments, the denatured library fragments are unwanted library fragments. In some embodiments, unwanted library fragments are denatured from immobilized oligonucleotides, and unwanted library fragments are siphoned to a waste container.


In some embodiments, a method further comprises denaturing adapter complements hybridized to immobilized oligonucleotides. In some embodiments, adapter complements are denatured from immobilized oligonucleotides, and adapter complements are siphoned to a waste container.


In some embodiments, a single step denatures both adapter complements and unwanted library fragments. In some embodiments, both adapter complements and unwanted library fragments are siphoned to a waste container.


In some embodiments, the denaturing is performed with a denaturing agent or heat. In some embodiments, the denaturing agent is NaOH.


In some embodiments, a method comprises repeating steps. In some embodiments, the steps of adding a sample, collecting, and denaturing are repeated, wherein the collected library fragments are added back to the solid support after the denaturing. In this way, multiple rounds of depleting of unwanted library fragments (by binding of unwanted library fragments to immobilized oligonucleotides) can be performed. Multiple rounds of depleting may increase the percentage of unwanted fragments that are depleted from a library.


In some embodiments, a method further comprises adding the collected library fragments to the solid support after denaturing the hybridized library fragments and/or adapter complements.


2. Depleting of Host RNA


In some embodiments, a method of depleting is for depleting library fragments prepared from host RNA. In some embodiments, host RNA are unwanted RNA sequences, while non-host RNA are desired RNA sequences.


In some embodiments, the unwanted library fragments that hybridize to immobilized oligonucleotides comprise library fragments prepared from host RNA comprised in a sample comprising host RNA and non-host nucleic RNA. In other words, the depleting method may be for depleting library fragments prepared from host RNA from a sample that comprises both library fragments prepared from host RNA and library fragments prepared from non-host RNA. Representative samples that could comprise host RNA and non-host RNA (and be used for library preparation) include samples for assessing a patient's microbiome or assessing fluids from a patient for an infectious organism (such as a virus, fungus, or bacterium).


In some embodiments, the non-host RNA is microbial. In some embodiments, the microbe is a bacterium, a virus, and/or a fungus. In some embodiments, the microbe is a pathogen. In some embodiments, the microbe is an organism in the host microbiome. In some embodiments, the host is human.


B. Methods of Enriching


In some embodiments, a method of enriching desired cDNA library fragments from a library of cDNA fragments prepared from RNA comprises (a) preparing a solid support comprising at least one immobilized oligonucleotide, wherein each immobilized oligonucleotide comprises a nucleic acid sequence corresponding to a desired RNA sequence or its complement, (b) adding the library of fragments to the solid support and hybridizing the library fragments to the at least one immobilized oligonucleotide to allow binding of desired library fragments to the at least one immobilized oligonucleotide, and (c) collecting library fragments bound to the at least one immobilized oligonucleotide. In some embodiments, the desired library fragments comprise those prepared from desired RNA sequences.


In some embodiments, the solid support for enriching comprises a pool of oligonucleotides. In some embodiments, the pool of oligonucleotides comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, or 1100 or more oligonucleotides.


In some embodiments, the desired RNA sequence has homology to an RNA sequence that a user wishes to study, i.e., an RNA sequence of interest. In some embodiments, at least one desired RNA sequence has at least 90%, at least 95%, or at least 99% homology to an RNA sequence of interest in a sample used to prepare the library of fragments. In some embodiments, all desired RNA sequences have at least 90%, at least 95%, or at least 99% homology to an RNA sequence of interest in a sample used to prepare the library of fragments. In some embodiments, at least one desired RNA sequence is an RNA sequence of interest.


In some embodiments, the collected library fragments comprise a library enriched for desired library fragments. In some embodiments, the library of fragments added to the solid support is prepared from RNA using a stranded method of cDNA preparation.


In some embodiments, the collecting comprises denaturing the library fragments hybridized to the immobilized oligonucleotides and then collecting the library enriched for desired fragments in a reservoir comprised in a sequencer comprising the solid support. In other words, the library fragments bound to immobilized oligonucleotides may comprise desired library fragments, and these desired library fragments may be denatured and then collected.


In some embodiments, the denaturing is performed with a denaturing agent or heat. In some embodiments, the denaturing agent is NaOH.


In some embodiments, the steps of adding the library, denaturing, and collecting library fragments not bound to the solid support are repeated, wherein the collected library fragments not bound to the solid support are then added back to the solid support after the denaturing. Multiple rounds of these steps may lead to greater enrichment of desired library fragments, as more unwanted library fragments may be removed.


In some embodiments, the library enriched for desired library fragments comprises a greater percentage of library fragments prepared from desired RNA sequences, as compared to the library before adding to the solid support. This enrichment can be due to the removal of unwanted library fragments that do not bind to immobilized oligonucleotides comprising desired RNA sequences.


Additional steps may be performed once an enriched library is prepared (i.e., bound desired library fragments are denatured and collected). In some embodiments, the library enriched for desired library fragments is assessed for library size and/or concentration. In some embodiments, the library enriched for desired library fragments is sequenced. In some embodiments, the method further comprises amplifying the library enriched for desired library fragments before sequencing.


C. Samples


The present methods are not limited to a specific type of sample comprising RNA, and these methods can be used with libraries prepared from any sample comprising RNA. Described below are a few exemplary types of samples comprising RNA, wherein sequencing of library fragments prepared from this RNA can be improved by enriching or depleting.


In some embodiments, the sample comprises a microbe sample, a microbiome sample, a bacteria sample, a yeast sample, a plant sample, an animal sample, a patient sample, an epidemiology sample, an environmental sample, a soil sample, a water sample, a metatranscriptomics sample, or a combination thereof. In some embodiments, the sample comprises an organism of a species that is not predetermined, an unknown species, or a combination thereof. As used herein, “a species not predetermined” means that a user has not already characterized a given species to be present in the sample. For example, the spectrum of bacterial species present in a sample from, for example, soil or gut microbiome may not be predetermined, although the bacterial species later determined to be in the sample may be generally known in the art. As used herein, “unknown species” refers to a species that has not been previously characterized.


In some embodiments, the sample comprises organisms of at least two species.


1. Metatranscriptomic and Microbiome Samples


In some embodiments, methods are used to assess RNA from metatranscriptomic samples. As used herein, “metatranscriptomic samples” refer to samples for generating culturable and non-culturable microbial transcriptome information by large-scale, high-throughput sequencing of transcripts from all microbial communities in specific environmental samples. Metatranscriptomic sequencing allows a user to randomly sequence RNA for understanding complex microbial communities. Methods that can avoid culturing of microbes can allow for data that avoids bias introduced by methods related to individual bacterial isolation and culture.


In some embodiments, the metatranscriptomic sample is a “microbiome sample” from a patient. As used herein, a microbiome sample refers to microorganisms that are present in one or more part of the patient's body.


In some embodiments, the patient is human. In some embodiments, the microbiome sample is oral, vaginal, or from the gut. In some embodiments, the sample from the gut is a stool sample. In some embodiments, the oral sample is a sample from the tongue.


In some embodiments, the patient is at least 12 months of age, at least 15 months of age, at least 24 months of age, or at least 36 months of age. In some embodiments, the microbiome sample comprises at least one unwanted RNA molecule from Faecalibacterium, Lachnospiraceae, and/or Clostridium. In some embodiments, the microbiome sample is vaginal and comprises at least one unwanted RNA molecule from Gardnerella, Lactobacillus, and/or Olsenella. In some embodiments, the microbiome sample is from tongue and comprises at least one unwanted RNA molecule from Veillonella, Rothia, Streptococcus and/or Prevotella.


The spectrum of bacterial species present in a sample from, for example, soil or gut microbiome may not be predetermined. Further, bacteria species present in a sample can involve hundreds or perhaps thousands of different species. Consequently, depletion protocols designed against only two representative bacterial species can be insufficient for the needs of the metatranscriptome field. Methods described herein can be used with designing of immobilized oligonucleotides for depleting abundant sequences (e.g., abundant transcripts, such as rRNAs and globin mRNAs) from a sample, such as a complex sample including a metatranscriptomic biosample.


Metatranscriptomic analysis has a number of applications. In some embodiments, a user wants to evaluate the microbial population in a patient, as specific bacteria comprised in the patient's microbiome are linked to either positive or negative effects on the patient. For example, a user might want to evaluate the microbiome of a patient exhibiting symptoms of an overactive immune response. In some embodiments, a user may wish to evaluate the impact of a treatment on a patient's microbiome using metatranscriptomic analysis.


Metatranscriptomic samples may comprise a broad spectrum of organisms. In some embodiments, immobilized oligonucleotides for use in the present methods are designed in an unbiased fashion. In other words, the present methods can be used to prepare enriched libraries from a broad spectrum of organisms, including those which may not be identified, without biasing the library towards known organisms.


In some embodiments, the present methods may be used to deplete known sequences from a metatranscriptomic sample (in which case known sequences would be the unwanted RNA sequences) to prepare a library with a greater percentage of library fragments from unknown sequences. When a greater percentage of library fragments are from unknown sequences, the user could sequence these library fragments at greater depth.


In some embodiments, the sample comprises an organism of a species that is not predetermined, an unknown or unidentified species, or a combination thereof. In some embodiments, the sample comprises organisms of, of about, of at least, or of at most, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or a number or a range between any two of these values, species. The one or more abundant RNA transcripts can comprise RNA transcripts from organisms of, of about, of at least, or of at most, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or a number or a range between any two of these values, species. The sample can comprise, comprise about, comprise at least, or comprise at most, 1 ng, 2 ng, 3 ng, 4 ng, 5 ng, 6 ng, 7 ng, 8 ng, 9 ng, 10 ng, 20 ng, 30 ng, 40 ng, 50 ng, 60 ng, 70 ng, 80 ng, 90 ng, 100 ng, 200 ng, 300 ng, 400 ng, 500 ng, 600 ng, 700 ng, 800 ng, 900 ng, or 1000 ng of RNA transcripts.


2. Oncology Samples


In some embodiments, samples may be from a cancer patient (i.e., an oncology sample). For example, oncology samples may be used to evaluate changes in RNA expression in tumor cells, and to potentially monitor these changes over time or over the course of a therapeutic treatment. In such cases, RNA related to tumor markers may be desired RNA. In the present method, RNA from known tumor markers may be used as desired RNA to design oligonucleotides for immobilizing to a solid support for enriching library fragments related to cancer markers. Alternatively or together with an enrichment method described herein, oncology samples may be depleted of rRNA and/or mRNA related to other “housekeeping” genes that are not implicated in tumor genesis or progression.


D. Unwanted Library Fragments Functioning as Carrier Molecules


In some embodiments, unwanted RNA can function as carrier nucleic acid. In some embodiments, unwanted RNA serves as carrier molecules for other library fragments. In some embodiments, unwanted RNA serves as carrier molecules for desired library fragments.


It is well known that samples with low nucleic acid concentration perform poorly in a variety of biochemical reactions, such as having limited percentage yield in purification methods (See, for example, Higgins et al., Forensic Sci Med Pathol 10:56-61 (2014)). Low input concentrations can be associated with low library complexity and can result in difficulties with cDNA conversion or other aspects of library construction. Accordingly, “upfront depletion” methods (such as depletion methods using RNase) may results in RNA samples that produce low library yield that reduces downstream data quality (such as poor sequencing results). In some embodiments, depletion methods described herein have an advantage of unwanted RNA functioning as carrier nucleic acid for desired RNA during cDNA and library preparation. In some embodiments, the present methods of depletion of library fragments improve the yield of desired library fragments in comparison to prior art method of depletion of RNA followed by library preparation.


In some embodiments, the yield of library fragments after depletion of unwanted library fragments via the present method is greater than the yield of library fragments after depletion of unwanted RNA followed by library preparation in prior art methods.


In some embodiments, sequencing results after library preparation and depletion with the present method (with downstream depletion of unwanted library fragments after library preparation) may be improved as compared to sequencing results with prior art methods (with upstream depletion of unwanted RNA before library preparation), when aliquots of the same sample comprising RNA is used for the present and prior art methods.


Performance of prior art depletion methods that rely on depletion of unwanted RNA samples before library preparation may have performance issues with low input (for example, less than 100 ng of starting RNA). As used herein, “starting RNA” refers to the RNA present in a biological sample, before methods of depletion and library preparation. In some embodiments, the present methods yield sequencable libraries after depletion when the starting sample comprises less than 100 ng of RNA. In some embodiments, starting samples comprise less than 100 ng of RNA, less than 50 ng of RNA, less than 20 ng of RNA, less than 10 ng of RNA, or less than 1 ng of RNA.


E. Stranded cDNA Preparation


A variety of methods are known in the art that allow sequencing data to identify the mRNA strand that was the origin of a library fragment. Use of such “stranded” methods can allow the user to determine the sequence of the original mRNA strand using the sequence of the first strand of cDNA (without confounding data from a second strand of cDNA).


In some embodiments, a library of fragments added to the solid support is prepared from RNA using a stranded method of cDNA preparation.


In the present methods, use of a stranded method of cDNA preparation means that most library fragments after an amplification step will correspond to the complementary sequence of an undesired RNA. In this way, unwanted fragments after amplification can generally be depleted by immobilized oligonucleotides corresponding to the undesired RNA.


In some embodiments, a user may prefer to use a non-stranded method of cDNA preparation. When cDNA is prepared by a non-stranded method and a user wants to deplete unwanted RNA, the user may prefer to immobilize oligonucleotides corresponding to both the unwanted RNA sequence and its complement to increase efficiency of the depleting. When cDNA is prepared by a non-stranded method and a user wants to enrich desired RNA, the user may prefer to immobilize oligonucleotides corresponding to both the desired RNA sequence and its complement to increase efficiency of the enriching.


An exemplary method of stranded cDNA preparation is outlined in “TruSeq Stranded Total RNA Reference Guide,” Illumina, 2017. The mRNA is copied into a first strand of cDNA using reverse transcriptase in a First Strand Synthesis Actinomycin Mix, which allows RNA-dependent synthesis and prevents undesired DNA-dependent synthesis. The First Strand Synthesis Actinomycin Mix can improve strand specificity when generating a first strand of cDNA. Second strand cDNA synthesis is performed using DNA polymerase I and RNase H in a Second Strand Marking Mix, wherein dTTP has been replaced by dUTP. Incorporation of dUTP in the second strand of cDNA can quench amplification of this strand when a uracil-intolerant DNA polymerase is used.


In some embodiments, the nucleoside trisphosphates comprised in a composition for first strand cDNA synthesis comprises dCTP, dATP, dGTP, and dTTP.


In some embodiments, dTTP is replaced with dUTP in a second strand cDNA synthesis reaction for strand specificity. In some embodiments, a composition for second strand cDNA synthesis comprises dCTP, dATP, dGTP, and dUTP. In some embodiments, incorporation of dUTP in the second strand of cDNA suppresses amplification of the second strand of cDNA in the index PCR reaction during library preparation. In some embodiments, suppression of amplification of the second strand of cDNA allows for strand-specific methods.


In some embodiments, a uracil-intolerant DNA polymerase may be used in stranded methods of cDNA preparation comprising amplification. In some embodiments, the presence of uracil in a second strand of cDNA prepared from RNA in a sample can quench amplification of this second strand when a uracil-intolerant DNA polymerase is used. In this way, the amplified cDNA is limited to that generated from the first strand of cDNA from an RNA that was comprised in the sample.


In some embodiments, cDNA preparation is by a non-stranded method that does retain strand information from the mRNA.


F. Library Preparation


Libraries prepared by any method can be used together with the present methods of enriching or depleting. In some embodiments, a method of library preparation prepares double-stranded library fragments, and the double-stranded library fragments are denatured before being added to a solid support. In this way, a library fragment may be single stranded when they are available to hybridize to an immobilized oligonucleotide comprising a sequence all or partially complementary to the library fragment. Similarly, in some embodiments, immobilized oligonucleotides are single-stranded to allow for hybridizing and capturing of single-stranded library fragments that are complementary. In some embodiments, specific binding of a single-stranded library fragment to an immobilized oligonucleotide generates a double-stranded oligonucleotide. The immobilized oligonucleotide specifically bound to the library fragment may be bound with a high-enough affinity to avoid denaturing of this double-stranded oligonucleotide in standard washing steps. In this way, library fragments with specific binding to an immobilized oligonucleotide may remain bound during washing steps and removal of unbound library fragments.


G. Library Adapter Sequences


In some embodiments, one or more adapter sequence are incorporated into library fragments. Such adapter sequences comprised in library fragments may be termed “library adapters.” In some embodiments, a given library adapter sequence may universal, meaning that all or most library fragments comprise this library adapter sequence.


In some embodiments, library adapter sequences are incorporated into library fragments during library preparation. In some embodiments, library adapter sequences are incorporated into library fragments after methods of depleting or enriching as described herein.


Adapter sequences can be any known in the art, and one skilled in the art can choose adapter sequences based on any downstream method (such as sequencing) and what platform will be used for the downstream method (such as a particular sequencer). Further, a library adapter sequence can be designed to bind to a solid support adapter sequence comprised in an immobilized oligonucleotide on a solid support.


In some embodiments, a library fragment comprises one or more adapter sequence in addition to the library adapter sequence for binding to the solid support adapter. In some embodiments, an adapter sequence comprises a primer sequence, an index tag sequence, a capture sequence, a barcode sequence, a cleavage sequence, or a sequencing-related sequence, or a combination thereof. As used herein, a sequencing-related sequence may be any sequence related to a later sequencing step. A sequencing-related sequence may work to simplify downstream sequencing steps. For example, a sequencing-related sequence may be a sequence that would otherwise be incorporated via a step of ligating an adapter to nucleic acid fragments. In some embodiments, the adapter sequence comprises a P5 (SEQ ID NO: 1132) or P7 sequence (SEQ ID NO: 1133), and/or their complement, to facilitate binding to a flowcell in certain sequencing methods. This disclosure is not limited to the type of adapter sequences which could be used and a skilled artisan will recognize additional sequences which may be of use for library preparation and next generation sequencing.


In some embodiments, an adapter comprises a region for cluster amplification. In some embodiments, an adapter comprises a region for priming a sequencing reaction.


In some embodiments an adapter comprises an A14 primer binding sequence (SEQ ID NO: 1134). In some embodiments, an adapter comprises a B15 primer binding sequence (SEQ ID NO: 1135).


H. Amplifying


In some embodiments, methods described herein comprise one or more amplification step. In some embodiments, library fragments are amplified before being added to a solid support. In some embodiments library fragments are amplified after a method of enriching or depleting described herein. In some embodiments, amplifying is by PCR amplification.


1. Amplification with a Uracil-Intolerant Polymerase


In some embodiments, library fragments are amplified before being added to a solid support. In some embodiments, amplifying of library fragments is comprised in a method of library preparation. For example, in a stranded method of cDNA preparation, amplification with a uracil-intolerant DNA polymerase is used to selectively amplify cDNA strands prepared as a first strand from RNA (without amplifying second strands of DNA that comprise uracil). Accordingly, the library fragments added to the solid support may comprise mostly fragments comprising a sequence complementary to a desired RNA or unwanted RNA. In other words, the library fragments may comprise mostly fragments prepared from a first strand of cDNA. In some embodiments, more than 70%, more than 80%, more than 90%, or more than 95% of library fragments comprise cDNA from a first strand of cDNA.


2. Amplification after Depleting or Enriching


In some embodiments, collected library fragments are amplified after a method of depleting or enriching. In some embodiments, a depleted library is amplified. In some embodiments, an enriched library is amplified.


In some embodiments, the amplifying is performed with a thermocycler. In some embodiments, the amplifying is by PCR amplification.


In some embodiments, the amplifying is performed without PCR amplification. In some embodiments, the amplifying does not require a thermocycler. In some embodiments, enriching/depleting and amplifying after the enriching/depleting is performed in a sequencer.


In some embodiments, the amplifying is performed without a thermocycler. In some embodiments, the amplifying is performed by bridge or cluster amplification. As shown in FIG. 2, library fragments comprising library adapter sequences can bind to immobilized oligonucleotides comprising solid support adapter sequences. This binding can allow for standard bridge amplification. In some embodiments, bridge amplification is performed on the same solid support used for enriching or depleting.


In some embodiments, bridge amplification is performed after adding the collected library fragments to the solid support and allowing the library adapters comprised in the collected library fragments to bind to the solid support adapter sequences, wherein the adding is performed after denaturing the hybridized library fragments and/or adapter complements. Such a method is described in FIG. 2 and Example 2 herein.


In some embodiments, a method of amplifying desired cDNA library fragments from a library of cDNA fragments prepared from RNA, comprises:

    • a. providing a solid support having two pools of immobilized oligonucleotides on its surface, wherein the first pool comprises immobilized oligonucleotides each comprising an unwanted RNA sequence and the second pool comprises immobilized oligonucleotides each comprising a solid support adapter sequence that can bind to a library adapter comprised in library fragments, wherein adapter complements are reversibly bound to the solid support adapter sequences,
    • b. adding the library of fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of unwanted library fragments to the first pool of oligonucleotides,
    • c. collecting library fragments not bound to the first pool of oligonucleotides to prepare collected library fragments;
    • d. denaturing and removing library fragments bound to the first pool of oligonucleotides and adapter complements bound to the adapter sequences of the second pool of oligonucleotides;
    • e. adding the collected library fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of desired library fragments to the second pool of oligonucleotides; and
    • f. amplifying the bound desired library fragments by bridge amplification on the solid support.


For example, in some embodiments, the immobilized DNA fragments can be amplified using cluster amplification methodologies as exemplified by the disclosures of U.S. Pat. Nos. 7,985,565 and 7,115,400, the contents of each of which is incorporated herein by reference in its entirety. The incorporated materials of U.S. Pat. Nos. 7,985,565 and 7,115,400 describe methods of solid-phase nucleic acid amplification which allow amplification products to be immobilized on a solid support in order to form arrays comprised of clusters or “colonies” of immobilized nucleic acid molecules. Each cluster or colony on such an array is formed from a plurality of identical immobilized polynucleotide strands and a plurality of identical immobilized complementary polynucleotide strands. The arrays so-formed are generally referred to herein as “clustered arrays.” The products of solid-phase amplification reactions such as those described in U.S. Pat. Nos. 7,985,565 and 7,115,400 are so-called “bridged” structures formed by annealing of pairs of immobilized polynucleotide strands and immobilized complementary strands, both strands being immobilized on the solid support at the 5′ end, in some embodiments via a covalent attachment. Cluster amplification methodologies are examples of methods wherein an immobilized library fragment is used to produce immobilized amplicons.


I. Sequencing of Depleted or Enriched Libraries


In some embodiments, a library depleted of unwanted library fragments is sequenced. In some embodiments, a library enriched for desired library fragments is sequenced.


After methods of depleting or enriching described herein, the collected library may comprise less than 15%, 13%, 11%, 9%, 7%, 5%, 3%, 2% or 1% or any range in between of unwanted RNA species. In some embodiments, the collected library after enriching or depleting comprises at least 99%, 98%, 97%, 95%, 93%, 91%, 89% or 87% or any range in between of desired RNA. In other words, the library for sequencing after the enriching or depleting mainly comprises library fragments that were prepared from RNA of interest.


In some embodiments, sequencing data generated after depleting of unwanted library fragments has fewer sequences corresponding to unwanted RNA as compared to the same library sequenced without the depleting.


In some embodiments, sequencing data generated after enriching of desired library fragments has a higher percentage of sequences corresponding to desired RNA as compared to the same library sequenced without the enriching.


Depleted or enriched libraries prepared by the present method can be used with any type of RNA sequencing, such as RNA-seq, small RNA sequencing, long non-coding RNA (lncRNA) sequencing, circular RNA (circRNA) sequencing, targeted RNA sequencing, exosomal RNA sequencing, and degradome sequencing.


For example, for circRNA sequencing, a user may prepare by depleted of linear RNA with digestion of linear RNA, followed by library preparation and depleting of rRNA by a method described herein. As such, the present methods can easily be combined with other steps in known protocols related to RNA sequencing.


Depleted or enriched libraries can be sequenced according to any suitable sequencing methodology, such as direct sequencing, including sequencing by synthesis, sequencing by ligation, sequencing by hybridization, nanopore sequencing and the like. In some embodiments, the depleted or enriched libraries are sequenced on a solid support. In some embodiments, the solid support for sequencing is the same solid support on which the enriching or depleting is performed. In some embodiments, the solid support for sequencing is the same solid support upon which amplification occurs after the enriching or depleting.


Flowcells provide a convenient solid support for performing sequencing. One or more library fragments (or amplicons produced from library fragments) in such a format can be subjected to an SBS or other detection technique that involves repeated delivery of reagents in cycles. For example, to initiate a first SBS cycle, one or more labeled nucleotides, DNA polymerase, etc., can be flowed into/through a flowcell that houses one or more amplified nucleic acid molecules. Those sites where primer extension causes a labeled nucleotide to be incorporated can be detected. Optionally, the nucleotides can further include a reversible termination property that terminates further primer extension once a nucleotide has been added to a primer. For example, a nucleotide analog having a reversible terminator moiety can be added to a primer such that subsequent extension cannot occur until a deblocking agent is delivered to remove the moiety. Thus, for embodiments that use reversible termination, a deblocking reagent can be delivered to the flowcell (before or after detection occurs). Washes can be carried out between the various delivery steps. The cycle can then be repeated n times to extend the primer by n nucleotides, thereby detecting a sequence of length n. Exemplary SBS procedures, fluidic systems and detection platforms that can be readily adapted for use with amplicons produced by the methods of the present disclosure are described, for example, in Bentley et al., Nature 456:53-59 (2008), WO 04/018497; U.S. Pat. No. 7,057,026; WO 91/06678; WO 07/123744; U.S. Pat. Nos. 7,329,492; 7,211,414; 7,315,019; 7,405,281, and US 2008/0108082, each of which is incorporated herein by reference.


Performing sequencing, and optionally performing amplifying, on the same solid support used for the depleting and/or enriching can reduce the number of hands-on steps for the user and sample loss that would be associated with transferring sample from one solid support to another.


III. Methods of Depleting rRNA from a Microbiome Sample from a Patient Using DNA Probes and RNase


Creating nucleic acid libraries from RNA for sequencing is often times difficult due to an abundance of unwanted transcripts such as ribosomal RNA (rRNA) that can dominate a sample and swamp out the RNA sequences of interest. If the unwanted transcripts are not removed, analysis of the transcriptome could be compromised. Therefore, depleting unwanted RNA from a microbiome sample comprising nucleic acid prior to analysis such as sequencing or other downstream applications can increase the specificity and accuracy of the desired analysis. Exemplary methods of depleting rRNA are described in WO 2020132304 A1, which is incorporated herein in its entirety.


The present disclosure describes methods and materials useful in depleting rRNA species from a nucleic acid sample such that the RNA of importance can be studied and is not lost in the sea of undesired RNA transcripts. The nucleic acid sample may be any described herein, such as a metatranscriptomic sample.


A microbiome sample may contain RNA or DNA or both, including both undesired (off-target or unwanted) and desired (target) nucleic acids. The DNA or RNA in the sample can be either unmodified or modified and includes, but is not limited to, single or double stranded DNA or RNA or derivatives thereof (e.g., some regions of the DNA or RNA are double stranded whereas concurrently other regions of the DNA or RNA are single stranded) and the like. However, a microbiome sample may also contain cells from the host. For example, a gut microbiome patient from a human patient (i.e., the “host”) may comprise microorganisms present in the gut as well as host cells, such that the sample comprises nucleic acids from both the host and microorganisms.


A microbiome sample may include any chemically, enzymatically, and/or metabolically modified forms of nucleic acids as well as any unmodified forms of nucleic acids, or combinations thereof. A microbiome sample can contain both wanted and unwanted nucleic acids. Unwanted nucleic acids include those nucleic acids from the host as well as rRNA from microorganisms. Wanted or desired nucleic acids are those nucleic acids that are the basis or focus of study, the target nucleic acids. For example, a researcher may desire to study mRNA expression analysis from microorganisms comprised in a microbiome, wherein rRNA from microorganisms would be considered unwanted nucleic acids and other RNA from microorganisms is the target nucleic acid. In some embodiments, unwanted RNA is rRNA.


For example, a microbiome sample could contain the desired RNA (such as mRNA) from microorganisms while also including undesired rRNA. General methods for RNA extraction from a gross sample, like blood, tissue, cells, fixed tissues, etc., are well known in the art, as found in Current Protocols for Molecular Biology (John Wiley & Sons) and multitude molecular biology methods manuals. RNA isolation can be performed by commercially available purification kits, for example Qiagen RNeasy mini-columns, MasterPure Complete DNA and RNA Purification Kits (Epicentre), Parrafin Block RNA Isolation Kit (Ambion), RNA-Stat-60 (Tel-Test) or cesium chloride density gradient centrifugation. The current methods are not limited by how the RNA is isolated from a sample prior to RNA depletion.


In some embodiments, methods include use of probes to host unwanted RNA and/or microbial unwanted RNA. For example, methods described herein may include the use of probes directed to non-microbial RNA (such as the DP1 probe set described herein) as well as probes directed to microbial rRNA (such as HMv1 and/or HMv2 probe sets described herein), as described in Example 5.


In some embodiments, a method for depleting unwanted RNA molecules comprised in a patient microbiome sample, wherein the patient microbiome sample comprises at least one target RNA or DNA sequence and at least one unwanted RNA molecule, comprises


(a) sequencing a plurality of probe-development microbiome samples to determine at least one unwanted RNA molecule comprising a bacterial ribosomal RNA (rRNA) sequence from sequencing data; (b) preparing a probe set comprising at least one DNA probe complementary to the at least one unwanted RNA molecule; (c) contacting the patient microbiome sample with the probe set to prepare DNA:RNA hybrids; and (d) contacting the DNA:RNA hybrids with a ribonuclease that degrades the RNA from the DNA:RNA hybrids, thereby degrading the unwanted RNA molecules in the patient microbiome sample to form a degraded mixture.


In some embodiments, a method for depleting unwanted RNA molecules comprised in a patient microbiome sample, wherein the patient microbiome sample comprises at least one target RNA or DNA sequence and at least one unwanted RNA molecule, comprises


(a) contacting the patient microbiome sample with a probe set comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131 to prepare DNA:RNA hybrids; and (b) contacting the DNA:RNA hybrids with a ribonuclease that degrades the RNA from the DNA:RNA hybrids, thereby degrading the unwanted RNA molecules in the patient microbiome sample to form a degraded mixture.


In some embodiments, a method further comprises (a) degrading any remaining DNA probes by contacting the degraded mixture with a DNA digesting enzyme, optionally wherein the DNA digesting enzyme is DNase I, to form a DNA degraded mixture; and


(b) separating the degraded RNA from the degraded mixture or the DNA degraded mixture.


In some embodiments, the addition of a destabilizer such as formamide helps remove some unwanted RNA that was shown to be more problematic to deplete if formamide was not present. In some embodiments, formamide may serve to relax structural barriers in the unwanted RNA (such as rRNA) so that the DNA probes can bind more efficiently. Further, the addition of formamide has demonstrated the added benefit of improving the detection of some non-targeted transcripts possibly by denaturing/relaxing regions of the RNAs, for example, which have very stable secondary or tertiary structures and are not normally well represented well in other library preparation methods.


In some embodiments, the contacting with the probe set comprises treating the nucleic acid sample with a destabilizer. In some embodiments, the destabilizer is heat and/or a nucleic acid destabilizing chemical. In some embodiments, the nucleic acid destabilizing chemical comprises betaine, DMSO, formamide, glycerol, or a derivative thereof, or a mixture thereof. In some embodiments, the nucleic acid destabilizing chemical comprises formamide. In some embodiments, the formamide is present during the contacting with the probe set at a concentration of from about 10 to 45% by volume. In some embodiments, treating the sample with heat comprises applying heat above the melting temperature of the at least one DNA:RNA hybrid. In some embodiments, the ribonuclease is RNase H or hybridase.


In some embodiments, the unwanted RNA is converted to a DNA:RNA hybrid by hybridizing partially or completely complementary DNA probes to the unwanted RNA molecules. Methods for hybridizing nucleic acid probes to nucleic acids are well-established in the sciences and whether a probe is partially or completely complementary with the partner sequence, the fact that a DNA probe hybridizes to the unwanted RNA species following washes and other manipulations of the sample demonstrates a DNA probe that can be used in methods of the present disclosure. DNA can also be considered an unwanted nucleic acid if the target for study is an RNA, at which point DNA can also be removed by depletion.


In some embodiments, an RNA sample is denatured in the presence of DNA probes. In some embodiments, the DNA probes are added to the denatured RNA sample (denatured at 95° C. for 2 min.) whereupon cooling the reaction to 37° C. for 15-30 minutes results in hybridization of the DNA probes to their respective target RNA sequences thereby creating DNA:RNA hybrid molecules.


In some embodiments, contacting with the probe set comprises treating the nucleic acid sample with a destabilizer. In some embodiments, a destabilizer is heat or a nucleic acid destabilizing chemical. In some embodiments, a nucleic acid destabilizing chemical is betaine, DMSO, formamide, glycerol, or a derivative thereof, or a mixture thereof. In some embodiments, a nucleic acid destabilizing chemical is formamide or a derivative thereof, optionally wherein the formamide or derivative thereof is present at a concentration of from about 10 to 45% of the total hybridization reaction volume. In some embodiments, treating the sample with heat comprises applying heat above the melting temperature of the at least one DNA:RNA hybrid.


In some embodiments, formamide is added to the hybridization reaction regardless of RNA sample source (e.g., human, mouse, rat, etc.). For example, in some embodiments, hybridizing to the DNA probes is performed in the presence of at least 3%, 5%, 10%, 20%, 25%, 30%, 35%, 40%, or 45% by volume of formamide. In one embodiment, a hybridization reaction for RNA depletion includes approximately 25% to 45% by volume of formamide.


Following the hybridization reaction, a ribonuclease that degrades RNA from a DNA:RNA hybrid may be added to the reaction. In some embodiments, a ribonuclease is RNase H or Hybridase. RNase H (NEB) or Hybridase (Lucigen) are examples of enzymes that will degrade RNA from a DNA:RNA hybrid. Degradation by a ribonuclease such as RNase H or Hybridase degrades the RNA into small molecules that can then be removed. For example, RNase H is reported to digest RNA from a DNA:RNA hybrid approximately every 7-21 bases (Schultz et al., J. Biol. Chem. 2006, 281:1943-1955; Champoux and Schultz, FEBS J. 2009, 276:1506-1516). In some embodiments, the digestion of the RNA of the DNA:RNA hybrid can occur at 37° C. for approximately 30 minutes.


In some embodiments, following DNA:RNA hybrid molecule digestion, the remaining DNA probes and any unwanted DNA in the nucleic acid sample are degraded. Thus, in some embodiments, the methods comprise contacting the ribonuclease-degraded mixture with a DNA digesting enzyme, thereby degrading DNA in the mixture. In some embodiments, the digested sample is exposed to a DNA digesting enzyme such as DNase I, which degrades the DNA probes. The DNase DNA digestion reaction is incubated, for example, at 37° C. for 30 minutes, after which point the DNase enzyme can be denatured at 75° C. for a period of time as necessary to denature the DNase, for example for up to 20 minutes.


In some embodiments, the depletion method comprises separating the degraded RNA from the degraded mixture. In some embodiments, separating comprises purifying the target RNA from the degraded RNA (and degraded DNA if present), for example, using a nucleic acid purification medium, such as RNA capture beads, such as RNAClean XP beads (Beckman Coulter). Thus, in some embodiments, following the enzymatic digestion(s), the target RNA can be enriched by removing the degraded products while leaving the desired and longer RNA targets behind. Suitable enrichment methods include treating the degraded mixture with magnetic beads which bind to the desired fragment size of the enriched RNA targets, spin columns, and the like. In some embodiments, magnetic beads such as AMPure XP beads, SPRISelect beads, RNAClean XP beads (Beckman Coulter) can be used, as long as the beads are free of RNases (e.g., Quality Controlled to be RNase free). These beads provide different size selection options for nucleic acid binding, for example RNAClean XP beads target 100 nucleotides or longer nucleic acid fragments and SPRISelect beads target 150 to 800 nucleotide nucleic acid fragments and do not target shorter nucleic acid sequences such as the degraded RNA and DNA that results from the enzymatic digestions of RNase H and DNase. If mRNA is the target RNA to be studied, then the mRNA can be further enriched by capture using, for example, beads that comprise oligodT sequences for capturing the mRNA adenylated tails. Methods of mRNA capture are well-known by skilled artisans.


Once the target RNA has been purified away from the reaction components including the undesired degraded nucleic acids, additional sample manipulation can occur. In some embodiments, the enriched target total RNA followed by an exemplary library preparation workflow that is typical for subsequent sequencing on, for example, an Illumina sequencer. However, it should be understood that these workflows are exemplary only and a skilled artisan will understand that the enriched RNA can be used in multitude additional applications such as PCR, qPCR, microarray analysis, and the like either directly or following additional manipulation such as converting the RNA to cDNA by using established and will understood protocols.


The methods described herein for RNA depletion may result in a sample enriched with the target RNA molecules. For example, the methods described herein result is a depleted RNA sample comprising less than 15%, 13%, 11%, 9%, 7%, 5%, 3%, 2% or 1% or any range in between of the unwanted RNA species. The enriched RNA sample then comprises at least 99%, 98%, 97%, 95%, 93%, 91%, 89% or 87% or any range in between of the target total RNA. Once the sample has been enriched it can be used for library preparation or other downstream manipulations.


In some embodiments, the DNA probes do not hybridize to the entire contiguous length of an RNA species to be deleted. In some embodiments, the full-length sequence of a RNA species targeted for depletion need not be targeted with a full-length DNA probe, or a probe set that tiles contiguously over the entire RNA sequence. In some embodiments, DNA probes described herein leave gaps such that the DNA:RNA hybrids formed are not contiguous. In some embodiments, gaps of at least 5 nucleotides, 10 nucleotides, 15 nucleotides or 20 nucleotides between DNA:RNA hybrids provided efficient RNA depletion. Further, probe sets that include gaps can hybridize more efficiently to the unwanted RNA, as the DNA probes do not hinder hybridization of adjacent probes as could potentially occur with probes that cover the whole RNA sequence targeted for depletion, or probes that overlap one another.


In some embodiments, the at least one DNA probe comprise 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement.


In some embodiments, the at least one DNA probe comprises 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131 or its complement.


In some embodiments, the at least one DNA probe comprises at least one HMv1 sequence and comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


In some embodiments, the at least one DNA probe comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


In some embodiments, the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.


In some embodiments, the at least one DNA probe further comprises at least one sequence of the HMv2 sequences and comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131. In some embodiments, the at least one DNA probe comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131. In some embodiments, the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.


In some embodiments, the at least one DNA probe comprises at least one HMv1 sequence or HMv2 sequence and comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


In some embodiments, the at least one DNA probe comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


In some embodiments, the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.


In some embodiments, the at least one DNA probe further comprises at least one sequence of the DP1 sequences and comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127. In some embodiments, the at least one DNA probe comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127. In some embodiments, the at least one DNA probe comprises a sequence comprising each of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.


In some embodiments, the method depletes 70% or greater, 80% or greater, 90% or greater, or 95% or greater of bacterial rRNA comprised in the microbiome sample.


A. Kits and Compositions


In some embodiments, at least one probe is comprised in a kit or composition. The at least one probe may be any combination of probes disclosed herein.


In some embodiments, a composition comprising a probe set comprises at least one DNA probe comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131; and a ribonuclease capable of degrading RNA in an DNA:RNA hybrid. In some embodiments, the ribonuclease is RNase H.


In some embodiments, a kit comprising a probe set comprises at least one DNA probe comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131; and a ribonuclease capable of degrading RNA in an DNA:RNA hybrid. In some embodiments, kit comprises a probe set comprising at least one DNA probe comprising at least one of SEQ ID NOs: 1-1131; a ribonuclease; a DNase; and RNA purification beads. In some embodiments, the ribonuclease is RNase H.


In some embodiments, a kit further comprises an RNA depletion buffer, a probe depletion buffer, and a probe removal buffer. In some embodiments, a kit further comprises a nucleic acid destabilizing chemical. In some embodiments, the nucleic acid destabilizing chemical comprises betaine, DMSO, formamide, glycerol, or a derivative thereof, or a mixture thereof. In some embodiments, the nucleic acid destabilizing chemical comprises formamide.


EXAMPLES
Example 1. Method of rRNA Depletion Using a Flowcell

A method of rRNA depletion followed by amplification via thermal cycler can be performed. This method would utilize current flowcells used for sequencing, featuring inlet ports for the sequence fluidics system to pump buffers and reagents onto the flowcell and to siphon reagents to a waste container. Like current flowcells for sequencing, oligonucleotide sequences would be tethered (i.e., immobilized) to the surface of the flowcell, and rRNA sequences would be comprised in these immobilized oligonucleotides. The user would load RNA libraries (i.e. library fragments prepared from cDNA prepared from RNA) onto a sequencer stage or inside the sequencer chiller for the fluidics system to load the library onto the flowcell. A user may use a commercially available method of stranded cDNA preparation, such as that described in “TruSeq Stranded Total RNA Reference Guide,” Illumina, 2017.



FIG. 1 outlines a representative method for depletion. As library molecules flow in solution, library fragments generated from rRNA transcripts will hybridize to complementary sequences tethered to the flowcell while library fragments generated from non-rRNA transcripts will continue to flow unimpeded to a storage chamber for collection. After the hybridization step is complete, the user would discard the flowcell and collect the siphoned non-rRNA library fragments for PCR amplification, cleanup quantification, quality control, and sequencing.


This method would leverage the advantages of current flowcell/sequencer capabilities for a user-friendly method of depleting unwanted library fragments, such as those library fragments prepared from rRNA.


Example 2. Depletion and Bridge Amplification on the Same Flowcell

Methods can also be designed to deplete library fragments prepared from rRNA and amplify library fragments prepared from non-rRNA on the same solid support. This flowcell-like solid support would comprise a pool of immobilized oligonucleotides comprising rRNA sequences. The solid support would also comprise another pool of immobilized oligonucleotides comprising double-stranded P5 and/or P7 oligonucleotides immobilized on the surface. The double-stranded P5 and/or P7 oligonucleotides would comprise an adapter complement that is an oligonucleotide reversibly bound to the P5 and/or P7 adapter sequence (i.e., a solid support adapter sequence).


A representative method is shown in FIG. 2. Library fragments could be prepared by standard methods after cDNA preparation from a sample comprising RNA. These library fragments can be prepared by incorporating library adapter sequences that can bind to P5 and/or P7. Library fragments generated from rRNA transcripts would bind to the surface of the flowcell based on hybridizing to immobilized oligonucleotides comprising rRNA sequences, while library fragments prepared from non-rRNA transcripts would flow unimpeded and be siphoned for temporary storage in a reservoir.


After this step, a denaturing reagent such as NaOH would be pumped across the flowcell device causing the hybridized library fragments prepared from rRNA and the untethered strand of the double-stranded P5 and/or P7 oligonucleotides to dissociate from the flowcell into a waste reservoir. Then the collected library fragments (comprising library fragments prepared from non-rRNA) would be reintroduced to the flowcell from the temporary storage chamber for binding to the single-stranded immobilized oligonucleotides comprising P5 and/or P7. Once bound, bridge amplification chemistry can amplify the library fragments. After bridge amplification has generated enough library fragments, a cleavage step can be done as in current sequencing chemistry to release both the forward and reverse strands for subsequent collection, quantification, and quality control prior to sequencing.


Example 3. Enrichment of Desired cDNA Library Fragments

A solid support, such as a flowcell, can be prepared for enrichment. A user could prepare oligonucleotides corresponding to desired RNA and immobilize these oligonucleotides to a solid support. For example, a user may want to enrich for RNA sequences associated with cancer markers for evaluating treatment response, tumor progression, or other means of evaluation (i.e., desired RNA), and the user can immobilize oligonucleotides comprising sequences from such RNA to a solid support. A flowcell with such immobilized oligonucleotides may be termed an enrichment flowcell.


The user can then prepare a cDNA library as described above in Example 1 from a patient sample comprising RNA. Library fragments can then be added to the enrichment flowcell. Library fragments prepared from desired RNA would bind to the enrichment flowcell, and the user can siphon fluid that does not bind to the enrichment flowcell (comprising library fragments not prepared from desired RNA) to a waste container. The user can then denature the bound library fragments, collect them, and sequence them (with optional amplification before sequencing). In this way, the library that is sequenced will be enriched for library fragments prepared from desired RNA.


Example 4. Preparation of Depletion Probes for Human Microbiome Samples

To improve enzymatic depletion using the Ribo-Zero Plus kit, an iterative design process was used to develop an additional probe set specifically targeting human gut microbiome samples. A goal was to develop probes for enzymatic rRNA depletion of human-associated microbiomes to enable metatranscriptomic analysis.


Some human-associated microbiome samples may have significant amounts of host (human) RNA in addition to bacterial RNA (such as rRNA). For example, skin, oral, and vaginal sample are expected to have a lot of human cells included, so probes against human sequences and bacterial sequences unwanted sequences together may provide the best results for depleting unwanted sequences from human microbiome samples.


Using sequencing data from stool samples depleted with Ribo-Zero Plus, the most abundant rRNA sequences that were not effectively depleted across 9 adult healthy stool RNA samples were identified. For these experiments, total RNA from gut microbiome samples of 9 donors (Petersen et al. Microbiome 5(1):98 (2017)) was processed in triplicate with the Ribo-Zero Plus rRNA Depletion Kit, converted into RNAseq libraries using the TruSeq Stranded Total RNAseq kit and sequenced on a NextSeq (PE 76), producing between 11 to 36 million reads per sample. The FASTQ files (as described in Cock et al. Nucleic Acids Res. 38(6):1767-71 (2010)) from each donor were then aligned to the SILVA (v119, see Quast et al. Nucleic Acids Res 41:D590-6 (2013)) using SortMeRNA (see Kopylova et al. Bioinformatics 28:3211-3217 (2012)) to identify the sequences of rRNA to target for depletion. Any sequence regions that align in close proximity (1-3 nucleotides) were merged and sorted by coverage depth and then filtered to remove any with less than 500× coverage. The top 50 most abundant regions were collected from each sample (donor) and combined to create a list of abundant regions. Any regions that overlapped were then merged and the list converted into a FASTA file. To identify and remove redundancies, a pairwise alignment of each region was performed and any regions that demonstrate equal to or greater than 80% identity were flagged and only one region was chosen for probe design. The existing RiboZero Plus probes (termed DP1) were then aligned to the selected, non-redundant regions and any regions where the probes were aligned at equal to or greater than 80% identity were eliminated. The remaining regions were collected, probe locations were determined, and antisense probe sequences were created for the HMv1 probe set. In addition, the HMv1 probe set also includes probes that were designed directly against the rRNA sequences from all 38 species present in the ATCC mock community samples (MSA-2002, -2005 & -2006) as well as E. coli and B. subtilis.


Example 5. Preparation of Additional Probes to Improve rRNA Depletion of Infant Stool Microbiome Samples

Human gut microbiome profiles are known to change rapidly during the first few years of life (see, for example, Stewart et al. Nature 562:583-588 (2018)). In young infants, the gut microbiota is significantly different from adult samples and tends to be dominated by different taxa such as Bifidobacteria (see Turroni et al. PLoS One 7(5):e36957 (2012)). Experiments with the Ribo-Zero Plus HMv1 probe set showed that it can efficiently remove rRNA in most infant stool samples with <26% of reads mapping to bacterial rRNA reads on average (data not shown). Interestingly, rRNA depletion was less efficient for a subset of donors in the 9- to 15-months old group. Taxonomic analysis revealed that these samples had high levels of Bifidobacterium bifidum. Lack of depletion suggests that the HMv1 probe set relatively poorly targets rRNA from this particular species.


Additional probes targeting Bifidobacterium bifidum were designed using the present iterative process and added to the HMv1 probe pool to create a second human microbiome pool (HMv2). Further experiments were performed with the HM probes set comprising both HMv1 probes and HMv2 probes.


Example 6. Evaluation of Depletion Probes for Human Microbiome Samples

A set of human microbiome samples were analyzed using either the standard RiboZero Plus probes (termed DP1), human microbiome probes (HM, comprising HMv1+HMv2 probes), or a combination of HM probes and DP1 probes (HM+DP1). Experiments were performed following standard RiboZero protocols. Results are shown in FIG. 3, with the HM probes alone or in combination with the DP1 probes showing much greater reduction in the percentage of reads that were rRNA as compared to the DP1 probes. Thus, use of the HM probes can significantly reduce the amount of sequencing of unwanted rRNA.


Experiments with wastewater also showed that a RiboZero protocol using the HM probes significantly reduced the amount of sequenced rRNA, in comparison to “Mock” samples that were not subjected to a RiboZero protocol (FIG. 4). While more than 90% of the sample comprised rRNA in Mock samples, this was reduced to less than 15% in the samples subjected to a RiboZero protocol with HM probes.


Experiments were also performed to evaluate rRNA depletion for an ATCC mock community sample of skin microbiome (skin microbiome whole cell mix, ATCC MSA-2005™). The experiment compared results with the RiboZero RNase protocol (either with standard DP1 probes or with human microbiome HM probes) to those with the RiboZero-Bact kit that uses a probe-based hybridization approach to capture and deplete bacterial rRNAs from E. coli and B. subtilis. The RiboZero-Bact probes are contained in the commercial Ribo-Zero Plus rRNA Depletion Kit (Illumina).


As shown in FIG. 5, more than 90% of reads from the skin microbiome sample represented rRNA without depletion. The RiboZero-Bact kit reduced levels of rRNA, but there was substantial variation between samples. The RiboZero standard (with the DP1 probes) only reduced rRNA reads by about 50%. In contrast, the RiboZero human microbiome (HM) treatment reduced rRNA reads to less than 10% of total reads. These results indicate that the RiboZero RNase method with the HM probes improves depletion of rRNA from human microbiome samples as compared to the RiboZero standard method (with DP1 probes) or the RiboZero-Bact kit using probe-based hybridization and probes designed for depleting rRNA from E. coli and B. subtilis. Thus, the HM probes are well-suited for depleting rRNA from human microbiome samples.


EQUIVALENTS

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the embodiments. The foregoing description and Examples detail certain embodiments and describes the best mode contemplated by the inventors. It will be appreciated, however, that no matter how detailed the foregoing may appear in text, the embodiment may be practiced in many ways and should be construed in accordance with the appended claims and any equivalents thereof.


As used herein, the term about refers to a numeric value, including, for example, whole numbers, fractions, and percentages, whether or not explicitly indicated. The term about generally refers to a range of numerical values (e.g., +/−5-10% of the recited range) that one of ordinary skill in the art would consider equivalent to the recited value (e.g., having the same function or result). When terms such as at least and about precede a list of numerical values or ranges, the terms modify all of the values or ranges provided in the list. In some instances, the term about may include numerical values that are rounded to the nearest significant figure.

Claims
  • 1. A method of selecting cDNA library fragments from a library of cDNA fragments prepared from RNA, comprising: a. preparing a solid support comprising a pool of immobilized oligonucleotides, wherein each immobilized oligonucleotide in the pool comprises a nucleic acid sequence corresponding to an RNA sequence or its complement,b. adding the library of fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of library fragments to at least one immobilized oligonucleotide, andc. collecting library fragments either bound or not bound to at least one immobilized oligonucleotide.
  • 2. The method of claim 1, wherein: a. the selecting is depleting unwanted cDNA library fragments, wherein the RNA sequence comprises an unwanted RNA sequence, the unwanted library fragments comprise those prepared from unwanted RNA sequences, and the collecting comprises collecting library fragment not bound to at least one immobilized oligonucleotide; orb. the selecting is enriching desired cDNA library fragments, wherein the RNA sequence comprises a desired RNA sequence, the desired library fragments comprise those prepared from desired RNA sequences, and the collecting comprises collecting library fragment bound to at least one immobilized oligonucleotide.
  • 3. The method of claim 2, wherein the library of fragments is subjected to depleting unwanted cDNA library fragments and the collected library fragments not bound to at least one immobilized oligonucleotides are then subjected to enriching desired cDNA library fragments.
  • 4. A solid support having two pools of immobilized oligonucleotides on its surface, wherein the first pool of oligonucleotides comprises immobilized oligonucleotides each comprising a nucleic acid sequence corresponding to an unwanted RNA sequence or its complement and the second pool of oligonucleotides comprises immobilized oligonucleotides each comprising a solid support adapter sequence that can bind to a library adapter comprised in library fragments.
  • 5. The method of claim 1, wherein at least one unwanted RNA sequence has at least 90%, at least 95%, or at least 99% homology to a high-abundance RNA sequence in a sample used to prepare the library of fragments.
  • 6. The method of claim 5, wherein the high-abundance RNA sequence is a ribosomal RNA (rRNA) sequence.
  • 7. The method of claim 5, wherein the unwanted RNA sequence is globin mRNA or 28S, 23S, 18S, 5.8S, 5S, 16S, 12S, HBA-A1, HBA-A2, HBB, HBB-B1, HBB-B2, HBG1, or HBG2 RNA, or a fragment thereof.
  • 8. The method of claim 1, wherein each pool of immobilized oligonucleotides comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, or 1100 or more oligonucleotides.
  • 9. The solid support of claim 4, wherein adapter complements that are all or partially complementary to the solid support adapter sequences are bound to the solid support adapter sequences of the second pool and wherein the binding of the adapter complements to the solid support adapter sequences is reversible.
  • 10. A method of amplifying desired cDNA library fragments from a library of cDNA fragments prepared from RNA, comprising: a. providing the solid support of claim 9;b. adding the library of fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of unwanted library fragments to the first pool of oligonucleotides;c. collecting library fragments not bound to the first pool of oligonucleotides to prepare collected library fragments;d. denaturing and removing library fragments bound to the first pool of oligonucleotides and adapter complements bound to the adapter sequences of the second pool of oligonucleotides;e. adding the collected library fragments to the solid support and hybridizing the library fragments to at least one immobilized oligonucleotide to allow binding of desired library fragments to the second pool of oligonucleotides; andf. amplifying the bound desired library fragments by bridge amplification on the solid support.
  • 11. A method for depleting unwanted RNA molecules comprised in a patient microbiome sample, wherein the patient microbiome sample comprises at least one target RNA or DNA sequence and at least one unwanted RNA molecule, comprising: a. sequencing a plurality of probe-development microbiome samples to determine at least one unwanted RNA molecule comprising a bacterial ribosomal RNA (rRNA) sequence from sequencing data;b. preparing a probe set comprising at least one DNA probe complementary to the at least one unwanted RNA molecule;c. contacting the patient microbiome sample with the probe set to prepare DNA:RNA hybrids; andd. contacting the DNA:RNA hybrids with a ribonuclease that degrades the RNA from the DNA:RNA hybrids, thereby degrading the unwanted RNA molecules in the patient microbiome sample to form a degraded mixture.
  • 12. A method for depleting unwanted RNA molecules comprised in a patient microbiome sample, wherein the patient microbiome sample comprises at least one target RNA or DNA sequence and at least one unwanted RNA molecule, comprising: a. contacting the patient microbiome sample with a probe set comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131 to prepare DNA:RNA hybrids; andb. contacting the DNA:RNA hybrids with a ribonuclease that degrades the RNA from the DNA:RNA hybrids, thereby degrading the unwanted RNA molecules in the patient microbiome sample to form a degraded mixture.
  • 13. The method of claim 11, further comprising: a. degrading any remaining DNA probes by contacting the degraded mixture with a DNA digesting enzyme, optionally wherein the DNA digesting enzyme is DNase I, to form a DNA degraded mixture; andb. separating the degraded RNA from the degraded mixture or the DNA degraded mixture.
  • 14. A composition comprising a probe set comprising: a. at least one DNA probe comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131; andb. a ribonuclease capable of degrading RNA in an DNA:RNA hybrid.
  • 15. A kit comprising a probe set comprising: a. at least one DNA probe comprising at least one sequence comprising at least one of SEQ ID NOs: 1-1131; andb. a ribonuclease capable of degrading RNA in an DNA:RNA hybrid.
  • 16. The kit of claim 15, comprising: a. a probe set comprising at least one DNA probe comprising at least one of SEQ ID NOs: 1-1131;b. a ribonuclease;c. a DNase; andd. RNA purification beads.
  • 17. The method of claim 1, wherein the pool of oligonucleotides or the probe set comprises 2 or more, 5 or more, 10 or more, 25 or more, 50 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, or 1131 sequences selected from SEQ ID NOs: 1-1131.
  • 18. The method of claim 1, wherein the pool of oligonucleotides or the probe set comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.
  • 19. The method of claim 18, wherein the pool of oligonucleotides or the probe set comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.
  • 20. The method of claim 19, wherein the pool of oligonucleotides or the probe set comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-18, 21, 22, 24-33, 35, 39-43, 45-48, 50-73, 75, 77, 78, 81-84, 86-103, 105-107, 109-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 160-165, 168-174, 176-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225, 227-246, 248-265, 269, 270, 272-277, 279, 281, 282, 284-290, 292-301, 303-321, 323-331, 333-336, 338, 340-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388, 390, 391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-512, 514, 516, 518, 519, 521-524, 526-529, 531, 532, 535-539, 541-545, 547-552, 555-577, 580-608, 610, 612-616, 618-622, 624-630, 632-636, 638-640, 643, 646-649, 652-659, 663-673, 675, 676, 678, 680-682, 684, 685, 688-692, 694, 696-705, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-779, 781-796, 798, 801-819, 821-826, 828, 830-832, 834, 836-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-881, 883-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1021, 1023-1025, 1027-1029, 1031-1044, 1046-1058, 1060-1062, 1064-1067, 1069-1075, 1080-1094, 1096, 1099-1105, 1107-1110, 1112, 1113, 1115, 1116, 1118-1126, 1129, and 1130.
  • 21. The method claim 18, wherein the pool of oligonucleotides or the probe set further comprises at least one sequence comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.
  • 22. The method of claim 21, wherein the pool of oligonucleotides or the probe set comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.
  • 23. The method of claim 22, wherein the pool of oligonucleotides or the probe set comprises a sequence comprising each of SEQ ID NOs: 19, 74, 76, 85, 104, 108, 158, 175, 226, 278, 322, 339, 389, 513, 517, 520, 546, 553, 609, 611, 650, 662, 677, 683, 686, 706, 780, 827, 835, 882, 1022, 1059, 1077, 1078, 1098, 1106, 1111, 1114, 1128, and 1131.
  • 24. The method of claim 1, wherein pool of oligonucleotides or the probe set comprises at least one sequence comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.
  • 25. The method of claim 24, wherein the pool of oligonucleotides or the probe set comprises 100 or more, 500 or more, or 1000 or more sequences comprising at least one of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.
  • 26. The method of claim 25, wherein the pool of oligonucleotides or the probe set comprises a sequence comprising each of SEQ ID NOs: 1-10, 12-19, 21, 22, 24-33, 35, 39-43, 45-48, 50-78, 81-127, 129-134, 136-140, 142, 143, 148, 149, 151-155, 157, 158, 160-165, 168-182, 184-187, 189-194, 196-204, 206, 208-215, 217-223, 225-246, 248-265, 269, 270, 272-279, 281, 282, 284-290, 292-301, 303-331, 333-336, 338-342, 344, 346-349, 351-355, 357-359, 361-372, 374-380, 383-386, 388-391, 393, 395-401, 403-406, 408-420, 422-439, 441, 443, 444, 446-460, 462-466, 468, 469, 471, 473-477, 479-502, 504-514, 516-524, 526-529, 531, 532, 535-539, 541-553, 555-577, 580-616, 618-622, 624-630, 632-636, 638-640, 643, 646-650, 652-659, 662-673, 675-678, 680-686, 688-692, 694, 696-706, 708-715, 717-731, 733, 735, 736, 739-763, 765, 767-796, 798, 801-819, 821-828, 830-832, 834-847, 849, 851, 852, 854-861, 863-865, 867-872, 874-892, 894-898, 900-909, 911, 913-921, 923-925, 927-935, 938-940, 942-948, 950-965, 967-969, 971-979, 981-984, 986-994, 997-1010, 1012-1015, 1017, 1019-1025, 1027-1029, 1031-1044, 1046-1062, 1064-1067, 1069-1075, 1077, 1078, 1080-1094, 1096, 1098-1116, 1118-1126, and 1128-1131.
  • 27. The method of claim 24, wherein the pool of oligonucleotides or the probe set further comprises at least one sequence comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.
  • 28. The method of claim 27, wherein the pool of oligonucleotides or the probe set comprises 10 or more, 20 or more, or 30 or more sequences comprising at least one of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.
  • 29. The method of claim 28, wherein the pool of oligonucleotides or the probe set comprises a sequence comprising each of SEQ ID NOs: 11, 20, 23, 34, 36-38, 44, 49, 79, 80, 128, 135, 141, 144-147, 150, 156, 159, 166, 167, 183, 188, 195, 205, 207, 216, 224, 247, 266-268, 271, 280, 283, 291, 302, 332, 337, 343, 345, 350, 356, 360, 373, 381, 382, 387, 392, 394, 402, 407, 421, 440, 442, 445, 461, 467, 470, 472, 478, 503, 515, 525, 530, 533, 534, 540, 554, 578, 579, 617, 623, 631, 637, 641, 642, 644, 645, 651, 660, 661, 674, 679, 687, 693, 695, 707, 716, 732, 734, 737, 738, 764, 766, 797, 799, 800, 820, 829, 833, 848, 850, 853, 862, 866, 873, 893, 899, 910, 912, 922, 926, 936, 937, 941, 949, 966, 970, 980, 985, 995, 996, 1011, 1016, 1018, 1026, 1030, 1045, 1063, 1068, 1076, 1079, 1095, 1097, 1117, and 1127.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a bypass continuation of PCT/US2022/077221, filed Sep. 29, 2022, which claims the benefit of priority of U.S. Provisional Application No. 63/250,563, filed Sep. 30, 2021, and U.S. Provisional Application No. 63/351,170, filed Jun. 10, 2022, the contents of which are each incorporated by reference herein in their entireties for any purpose.

Provisional Applications (2)
Number Date Country
63351170 Jun 2022 US
63250563 Sep 2021 US
Continuations (1)
Number Date Country
Parent PCT/US2022/077221 Sep 2022 US
Child 17937021 US