SOLUTION-BASED METHODS FOR RNA EXPRESSION PROFILING

Abstract
The present invention is directed to novel high-throughput, low-cost, and flexible solution-based methods for RNA expression profiling, including expression of microRNAs and mRNAs.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 28, 2013 is named SEQ037822-056701-C.txt and is 202,138 bytes in size.


FIELD OF THE INVENTION

The present invention is directed to methods of screening for malignancies, cellular disorders, and other physiological states as well as novel high-throughput, low-cost, and flexible solution-based methods for RNA expression profiling, including expression of microRNAs and mRNAs.


BACKGROUND OF THE INVENTION

The availability of high-performance RNA profiling technologies is central to the elucidation of the mechanisms of action of disease genes and the identification of small molecule therapeutics by molecular signature screening (Lamb et al., Cell 114:323-34 (2003); Stegmaier et al., Nature Genetics 36:257-63 (2004)). For example, detection and quantification of differentially expressed genes in a number of conditions including malignancy, cellular disorders, etc. would be useful in the diagnosis, prognosis and treatment of these pathological conditions. Quantification of gene expression would also be useful in indicating susceptibility to a range of conditions and following up effects of pharmaceuticals or toxins on molecular level. These methods can also be used to screen for molecules that provide a desired gene profile.


The power of being able to simultaneously measure the expression level of multiple mRNA species has been of recent interest. For example, the expression of seventy and eighty-one transcripts have together been shown to outperform established clinical and histologic parameters in disease outcome prediction for breast cancer (van de Vijver et al., New Eng. J. Med. 347: 1999-2009 (2002)) and follicular lymphoma (Glas et al., Blood 105:301-7 (2005)), respectively.


MicroRNAs are thought to act as post-transcriptional modulators of gene expression, and have been implicated as regulators of developmental timing, neuronal differentiation, cell proliferation, programmed cell death, and fat metabolism. Determining expression profiles of microRNAs is particularly challenging however because of their short size, typically around 21 base pairs, and high degree of sequence homology, where different microRNAs may differ by only a single base pair. It would also be highly desirable to simultaneously measure the expression level of microRNAs, a recently identified class of small non-coding RNA species.


The rapid pace of discovery of new genes generated by large-scale genomic and proteomic initiatives has required the development of high-throughput strategies to quantify the expression of a large number of genes and their alternatively spliced isoforms, as well as elucidate their biological functions, regulations and interactions. (Consortium, E. P. (2004) Science 306, 636-40; Lander et al., Nature 409, 860-921 (2001)) A number of high-throughput techniques have been developed to detect and quantify nucleic acids. Microarray-based analysis has been one widely used high-throughput technique used to study nucleic acids. Another approach for high-throughput analysis of nucleic acids involves the sequencing of a short tag of each transcript, including expressed sequence tag (EST) sequencing (Lander et al., 2001) and serial analysis of gene expression (SAGE) (Velculescu et al., Science 270, 484-7 (1995)).


However, both microarray and tag-sequencing techniques are associated with a number of significant problems. These techniques typically are not sufficiently sensitive and demand relatively high input levels of mRNA that are often unavailable, particularly when studying human diseases. In addition, the array quality is often a problem for cDNA or oligonucleotide microarrays. For example, most researchers cannot confirm the identity of what is immobilized on the surface of a microarray and generally have limited capacity to check and control possible errors in the microarray fabrication. Additionally, the high costs of microarrays have caused many investigators to perform relatively few control experiments to assess the reliability, validity, and repeatability of their findings. Moreover, given the high costs of microarray fabrication, custom designing arrays to tailor analysis to an individual expression profile is simply impractical in many instances. For the tag-sequencing analysis, a large amount of sequencing effort, generally slow and costly, is needed for tag-based analysis and the sensitivity of tag-based analyses is relatively low and high sensitivity can only be achieved by sequencing a large number of tag sequences.


Thus it would be desirable to develop simple, flexible, low-cost, high-throughput methods for the sensitive and accurate quantification of nucleic acids, which can be easily automated and scaled up to accommodate testing of large numbers of samples and overcome the problems associated with available techniques. Such a method would permit diagnostic, prognostic and therapeutic purposes, and would facilitate genomic, pharmacogenomic and proteomic applications, including the discovery of small molecule therapeutics.


SUMMARY OF THE INVENTION

We have now discovered simple, flexible, low-cost and high-throughput solution-based methods for expression profiling nucleic acids. More specifically, the invention provides methods for detection of multiple genes in a single reaction, including for the detection of mRNAs and microRNAs.


The present invention provides a solution-based method for determining the expression level of a population of target nucleic acids, by a) providing in solution a population of target-specific bead sets, where each target-specific bead set is individually detectable and comprises a capture probe which corresponds to an individual target nucleic acid, referred to as an individual bead set; b) hybridizing in solution the population of target-specific bead sets with a population of molecules that can contain a population of detectable target molecules, where each target nucleic acid has been transformed into a corresponding detectable target molecule which will specifically bind to its corresponding individual target-specific bead set; and c) screening in solution for detectable target molecules hybridized to target-specific beads to determine the expression level of the population of target nucleic acids.


In one embodiment, the target-specific bead sets can have at least 5 individual bead sets that can bind with a corresponding set of target nucleic acids. The population of target-specific beads can contain at least 100 individual bead sets that bind with a corresponding set of target nucleic acids.


One preferred embodiment provides a method for detection of populations of mRNAs. In this method, mRNA is transformed into a corresponding detectable target molecule by a) reverse transcribing the mRNA to generate a cDNA; b) hybridizing an upstream probe and a downstream probe to the cDNA, where the upstream probe has a universal upstream sequence and an upstream target-specific sequence, and the downstream probe has a universal downstream sequence and a downstream target-specific sequence, such that when the upstream probe and the downstream probe are both hybridized to the cDNA the two probes are capable of being ligated; c) ligating the two probes to generate ligation complexes; and d) amplifying the ligation complexes with a universal upstream primer and a universal downstream primer, which are complementary to the universal upstream sequence and the universal downstream sequence, respectively. In this method, at least one of universal primers is detectably labeled, such that product of the amplification is detectably labeled, thereby generating a detectable target molecule which corresponds to the target nucleic acid. In this method, either the upstream probe or the downstream probe also has an amplicon tag between the universal sequence and the target-specific. The amplicon tag has a nucleic acid sequence that is unique for the mRNA to be detected, and that is complementary to the sequence of the capture probe of the corresponding bead set, allowing the detectable nucleic acid molecule to hybridize to the bead set with the complementary capture probe.


One embodiment of the invention provides the use of these multiplex mRNA detection methods to screen for the presence of a particular physiological state in a test sample, such as a malignancy, infection or a cellular disorder. In one embodiment, the genes which are specifically associated with one physiological state but not another physiological state are already determined; such a group of genes is typically referred to as an expression signature. To screen for a physiological state using the mRNA detection methods, one first determines the expression signature of a group of genes in the test sample; and then compares the expression signature between the test sample and a corresponding control sample, where a difference in the expression signature between the test sample and the control sample is indicative of the test sample comprising said malignant cells, infected cells or cellular disorder. In one embodiment, the expression signature has at least 5 genes.


One embodiment of the invention provides a method for identifying an expression signature for a physiological state, using the multiplex mRNA detection methods to rapidly screen for genes which are differentially expressed between two physiological states. In one embodiment, the expression signature has at least 5 genes. Examples of physiological states include the presence of a cancer, infection, or a cellular disorder. To identify novel expression signatures, one isolates cells from two groups of individuals, one with and one without the physiological state of interest, and then identifies those genes which are differentially expressed in the two groups of individuals. For those genes which differ at a statistically significant level, linear regression analysis can be applied to identify an expression signature of a gene group that is indicative of an individual having the physiological state of interest.


One preferred embodiment provides a method to detection of populations of microRNAs. In this method, microRNAs are transformed into corresponding detectable target molecules by first ligating at least one adaptor to each microRNA, generating an adaptor-microRNA molecule; and then detectably labeling the adaptor-microRNA molecule, thereby generating a detectable target molecule which corresponds to the target nucleic acid. In one embodiment, the adaptor-microRNA is detectably labeled by reverse transcription using the adaptor-microRNA as a template for polymerase chain reaction, wherein a pair of primers is used in said polymerase chain reaction, and wherein at least one of said primers is detectably labeled. In this method, the capture probe of the bead set which corresponds to an individual microRNA has a sequence which is complementary to the miRNA sequence, allowing the detectable target molecule to bind to the corresponding bead set.


The invention also provides the use of the multiplex microRNA detection methods to screen for the presence of a malignancy in a test sample. In one embodiment, one analyzes the level of expression of microRNAs in a test sample and a corresponding control sample, where a lower level of expression of microRNAs in the test sample relative to the control sample is indicative of the test sample containing malignant cells.


One embodiment of the invention provides a method of screening an individual at risk for cancer by obtaining at least two cell samples from the individual at different times; and determining the level of expression of microRNAs in the cell samples, where a lower level of expression of microRNAs in the later obtained cell sample compared to the earlier obtained cell sample is indicative of the individual being at risk for cancer.


Another embodiment of the invention provides methods of screening an individual at risk for cancer, by determining the level of expression for a specific group of microRNAs, sometimes referred to as a profile group of microRNAs, where lower expression of the profile group of microRNAs is associated with risk for a particular type of cancer.


One embodiment of the invention provides a method for identifying an active compound. In this embodiment, cells are contacted with a plurality of molecules including chemical compounds and biologic molecules, and the expression of a set of marker genes present in the cells is determined using the novel detection methods of the invention. To identify active compounds, the expression of the marker genes to identify a cellular phenotype is scored, the presence of a specific cellular phenotype being indicative of an active compound. In one embodiment the plurality of chemical compounds is a set of compounds selected from the group consisting of small molecule libraries, FDA approved drugs, synthetic chemical libraries, phage display libraries, dosage libraries. In another embodiment the active compound is an anti-cancer drug. In a further embodiment the active compound is a cellular differentiation factor. In certain embodiments, the set of marker genes can include genes encoding mRNAs and/or genes encoding microRNAs.


Another embodiment of the invention provides kits for determining in solution the expression level of a population of target nucleic acids. Kits can include a population of detectable bead sets, wherein each target-specific bead set is individually detectable and is capable of being coupled to a capture probe which corresponds to an individual target nucleic acid of interest; components for transforming a target nucleic acid of interest into a corresponding detectable target molecule which will specifically bind to its corresponding individual target-specific bead set; and instructions for performing the solution-based detection methods of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows one embodiment of the present method for multiplex detection of mRNAs. Transcripts are captured on immobilized poly-dT and reverse transcribed. Two oligonucleotide probes are designed against each transcript of interest. For example, the upstream probes contain in the embodiment illustrated 20 nt complementary to a universal primer (T7) site, one of one hundred different 24 nt FlexMAP barcodes, and a 20 nt sequence complementary to the 3′-end of the corresponding first-strand cDNA. The downstream probes are 5′-phosphorylated and contain a 20 nt sequence contiguous with the gene-specific fragment of the upstream probe and a 20 nt universal primer (T3) site. Probes are annealed to their targets, free probes removed, and juxtaposed probes joined by the action of Tag ligase to yield synthetic 104 nt amplification templates. PCR is performed with T3 and 5′-biotinylated T7 primers. Biotinylated barcoded amplicons are hybridized against a pool of one hundred sets of fluorescent microspheres each expressing capture probes complementary to one of the barcodes, and incubated with streptavidin-phycoerythrin (SA-PE) to fluorescently label biotin moieties. Captured labeled amplicons are quantified and beads decoded and counted by flow cytometry. This strategy is based on published methods (Elering et al., 2003; Yeakley et al., 2002).



FIG. 2 shows the reproducibility of an embodiment of the method. Mean expression levels for each transcript under each condition were computed and the deviation of each individual data point from its corresponding mean was recorded. A histogram of the fraction of data points in each of twelve bins of fold deviation values is shown. This plot represents 1,800 data points (two conditions×ninety transcripts×ten replicates).



FIG. 3 shows the results of comparison of expression levels in one embodiment. Plot of mean expression values reported by LMA-FlexMAP against IVT-GeneChip for each transcript under both conditions. Means were calculated as for FIG. 4.



FIG. 4 shows performance in a representative gene space. Total RNA from HL60 cells treated with tretinoin or vehicle (DMSO) alone were analyzed by LMA-FlexMAP in the space of ninety transcripts selected from IVT-GeneChip analysis of the same material. Plots depict log ratios of expression levels (tretinoin/DMSO) reported by both platforms for each transcript, in each of nine classes. Correlation coefficients of the log ratios between platforms within each class are shown. IVT-GeneChip, green bars; LMA-FlexMAP, yellow bars. Asterisks (*) flag failed features. Ratios were computed on the means of three parallel hybridizations of the pooled product from three amplification and labeling reactions (IVT-GeneChip) or ten parallel amplification and hybridization procedures (LMA-FlexMAP) for each condition. Basal expression categories are 20-60 (low), 60-125 (moderate) and >125 (high). Differential expression categories are 1.5-2.5× (low), 3-4.5× (moderate) and >5× (high).



FIGS. 5A-5B show schematics of target preparation and bead detection of miRNAs. (FIG. 5A) 18 to 26-nucleotide (nt) small RNAs were purified by denaturing PAGE (polyacrylamide gel electrophoresis) from total RNAs extracted from tissues or cells. Small RNAs underwent two steps of adaptor ligation utilizing both the 5′-phosphate and 3′-hydroxl groups, each followed by a denaturing purification. Ligation products were reverse-transcribed (RT) and PCR amplified using a common set of primers, with biotinylation on the sense primer. (FIG. 5B) Denatured targets were hybridized to beads coupled with capture probes for miRNAs. After binding to streptavidin-phycoerythrin (SAPE), the beads went through a flow cytometer that has two lasers and is capable of detecting both the bead identity and fluorescence intensity on each bead.



FIGS. 6A-6C show the specificity and accuracy of bead-based miRNA detection. (FIG. 6a) Synthetic oligonucleotides corresponding to let-7 family and mutants (see FIG. 11 for sequence similarity) were PCR-labelled and hybridized separately on beads and a glass-microarray. Synthetic targets indicated on horizontal axis, capture probes on vertical axis. Values represent proportion of signal relative to correct probe (set to 100%). (FIG. 6B) Cumulative cross-hybridization on capture probes. (FIG. 6C) Northern blot vs. bead detection (lanes 1-7: HEL, K562, TF-1, 293, MCF-7, PC-3, SKMEL-5). Bead results shown at left (averages from three (HEL, TF-1, 293, MCF-7, PC-3) or two (K562, SKMEL-5) independent experiments; error bars indicate standard deviation).



FIG. 7A-7C show hierarchical clustering of miRNA expression. (FIG. 7a) miRNA profiles of 218 samples covering multiple tissues were clustered (average linkage, correlation similarity; samples are columns, miRNAs are rows). Samples of epithelial (EP) origin or derived from the gastrointestinal tract (GI) are indicated. Supplementary FIG. 4 shows more detail. (FIG. 7B) Clustering of 73 bone marrow samples from patients with ALL. Colored bars indicate the ALL subtypes. (FIG. 7C) Comparison of miRNA data and mRNA data. For 89 epithelial samples from (FIG. 7A) that had mRNA expression data, hierarchical clustering was performed. Samples of GI origin are shown in blue. GI-derived samples largely cluster together in the space of miRNA expression, but not by mRNA expression. Abbreviations: STOM: stomach; PAN: pancreas; KID: kidney; PROST: prostate; UT: uterus; MESO: mesothelioma; BRST: breast; FCC: follicular lymphoma; MF: mycosis fungoides; LVR: liver; BLDR: bladder; MELA: melanoma; TALL: T-cell ALL; BALL: B-cell ALL; LBL: diffuse large-B cell lymphoma; AML: acute myelogenous leukemia; HYPER 47-50: hyperdiploid with 47 to 50 chromosomes; HYPER >50: hyperdiploid with over 50 chromosomes; MLL: mixed lineage leukaemia; NORMP: normal ploidy. Further details in Example 3.



FIGS. 8A-8C show comparison between normal and tumor samples reveals global changes in miRNA expression. (FIG. 8A) Markers were selected to correlate with normal vs. tumor distinction. Heatmap of miRNA expression is shown, with miRNAs sorted according to the variance-fixed t-test score. (FIG. 8B) miRNA markers of normal (norm) vs. tumor distinction in human tissues from (FIG. 8A) applied to normal lungs and lung adenocarcinomas of KRasLA1 mice. A k-nearest neighbor (kNN) classifier based on human sample-derived markers yielded a perfect classification of the mouse samples (Euclidean distance, k=3). Mouse tumor T_MLUNG5 (3rd from right) was occasionally classified as normal with other kNN parameters (Supplementary Information). (FIG. 8C) HL-60 cells were treated with ATRA (+) or vehicle (−) for the indicated days. Heatmap of miRNA expression from a representative experiment is shown.



FIGS. 9A-9M show unsupervised analysis of miRNA expression data. miRNA profiling data of 218 samples covering multiple tissues and cancers were filtered, and centred centered and normalized for each feature. The data were then subjected to hierarchical clustering on both the samples (horizontally oriented) and the features (vertically oriented, with probe names on the left), with average-linkage and Pearson correlation as a similarity measure. Sample names (staggered) are indicated on the top and miRNA names on the left. Tissue types and malignancy status (MAL; N for normal, T for tumor and TCL for tumor cell line) are represented by colored bars. Samples that belong to the epithelial origin (EP) or derived from the gastrointestinal tract (GI) are also annotated below the dendrogram. STOM: stomach; PAN: pancreas; KID: kidney; PROST: prostate; UT: uterus; MESO: mesothelioma; BRST (breast); FCC: follicular lymphoma; MF: mycosis fungoides; COLON: colon; LVR: liver; BLDR: bladder; OVARY: ovary; Lung: lung; MELA: melanoma; BRAIN: brain; TALL: T-cell ALL; BALL: B-cell ALL; LBL: diffused large-B cell lymphoma; AML: acute myelogenous leukaemia.



FIG. 10 shows comparison of miRNA expression levels of poorly differentiated and more-differentiated tumors. Poorly differentiated tumors (PD) with primary origins from colon, ovary, lung, breast (BRST) or lymphnode (LBL) were compared to more-differentiated tumors (non-PD) of the corresponding tissue types in the miGCM collection. After filtering out non-detectible miRNAs, the remaining 173 features were centered and normalized for each tissue type separately to a mean of 0 and a standard deviation of 1. A heatmap of the data is shown. Samples with the same tissue type and PD status were sorted according to total miRNA expression readings, with higher expressing samples on the left. Features were sorted according to the variance-thresholded t-test score.



FIG. 11 shows specificity and accuracy of the bead-based miRNA detection platform, probe similarity (for FIG. 6). Eleven synthetic oligonucleotides corresponding to human let-7 family of miRNAs or mutants were PCR-labelled. Each of the labelled targets was split and hybridized separately on the bead platform and on a glass microarray. The synthetic targets are indicated on the horizontal axis, and the capture probes are indicated on the vertical axis. The similarity of the capture probes are measured by the differences in nucleotides (nt) and indicated by shades of blue.



FIGS. 12A-12B show noise and linearity of bead detection of miRNAs. (FIG. 12a) The noise of target preparation and bead detection was analyzed. Multiple analyses of the same RNA samples were performed. Expression data were log2-transformed after thresholding at 1 to avoid negative numbers. The standard deviation (std) of each miRNA was plotted against the mean of that miRNA. Data were generated from independent labeling reactions and detections of five replicates of MCF-7, four replicates of PC-3, three replicates of HEL, three replicates of TF-1 and three replicates of 293 cell RNAs. Note that most miRNAs have a standard deviation below 0.75 when their mean is above 5 (in log2 scale). (FIG. 12b) Linearity of target preparation and bead detection. miRNAs were labeled and profiled from HEL cell total RNA with different starting amounts (10 ug, 5 ug, 2 ug and 0.5 ug, respectively). Data are averages of duplicate determinations, measured in median fluorescence intensity (MFI). Each line connects the readings of one miRNA with different amounts of starting material.



FIG. 13 shows hierarchical clustering analyses of miRNA data and mRNA data. For 89 epithelial samples that had successful expression data of both miRNAs and mRNAs, hierarchical clustering was performed using average linkage and correlation similarity, after gene filtering. Filtering of miRNA data eliminates genes that do not have expression values above a minimum threshold in any sample (see Supplementary Methods for details). Three different filtering methods were used for mRNA data. The first method (mRNA filt-1) uses the same criteria as used for miRNA data, resulting in 14546 genes. The second method (mRNA filt-2) employed a variation filter as described (Ramaswamy et al., 2001), and resulted in 6621 genes. The third method (mRNA filt-3) focused on transcription factors that passed the above variation filter, ending with 220 genes. Samples of gastrointestinal tract (GI) or non-GI origins are indicated. Tissue type (TT) and malignancy status (MAL) for normal (N) or tumor (T) samples are also indicated. Note that the GI-derived samples largely cluster together in the space of miRNA expression, but not by mRNA expression. Abbreviations: PAN: pancreas; KID: kidney; PROST: prostate; UT: uterus; MESO: mesothelioma; BRST: breast; COLON: colon; BLDR: bladder; OVARY: ovary; Lung: lung; MELA: melanoma.



FIGS. 14A-14C show In vitro erythroid differentiation. Purified CD34+ cells from human umbilical cord blood were induced to differentiate along the erythroid lineage. (FIG. 14A) Total cell counts were determined every two days. Data are averages of cell counts from a triplicate experiment and error bars represent standard deviations. (FIG. 14B) Markers of erythroid differentiation, CD71 and Glycophorin A (GlyA), were determined using flow cytometry. Percentages of cells with negative (−), low, or positive (+) marker staining are plotted. (FIG. 14C) miRNA expression profiles of differentiating erythrocytes were determined on days indicated after induction. Data were log2-transformed, averaged among successfully profiled same-day samples and normalized to a mean of 0 and a standard deviation of 1 for each miRNA. Data were then filtered to eliminate miRNAs that do not have expression values higher than a minimum cut-off (7.25 on log2 scale) in any sample. A heatmap of miRNA expression is shown, with red color indicating higher expression and blue for lower expression. Data shown are from a representative differentiation experiment of two performed.



FIG. 15 shows comparison of miRNA expression levels with an mRNA signature of proliferation. A consensus set of mRNA transcripts that positively correlate with proliferation rate was assembled based on published data (see Supplementary Data). Data for miRNA and mRNA expression in lung and breast (BRST) were centered and normalized for each gene, bringing the mean to 0 and the standard deviation to 1. The mean expression of mRNAs correlated with proliferation (on the horizontal axis) was plotted against the mean expression of miRNA markers for tumor/normal distinction (on the vertical axis). Normal samples, poorly differentiated (diff.) tumors and more differentiated tumors are represented by round, triangle and square dots, respectively. Note that the mRNA proliferation signature distinguishes normal samples from tumors, reflecting faster proliferation rates in cancer specimens; however, it does not distinguish between poorly differentiated tumors and more differentiated tumors, even though the miRNA expression levels in the latter two categories are different.





DETAILED DESCRIPTION OF THE INVENTION

The invention is directed to the discovery and use of improved methods for expression profiling of nucleic acids. As will be discussed in detail below, we have found a simple and flexible method that permits us to rapidly and inexpensively measure gene expression of multiple genes in a single multiplex reaction, ranging from a few genes to 50, 60, 70, 90 or 200 or more genes. Using this method, we have analyzed microRNA and mRNA expression levels, and found these methods are highly efficient and as effective as commercial slide-based microarrays. However, unlike microarrays, the flexibility of the present method permits simple tailoring of the population of genes which can be analyzed in a single reaction. Thus, the present invention is particularly useful for gene expression profiling methods. In addition, using the methods of the invention, we have discovered that microRNAs are downregulated in a wide variety of cancers. Thus, the invention also provides methods for detection of cancer, using microRNA expression profiling.


In one embodiment, the method uses a population of bead sets and measures in solution the expression level of a population of target nucleic acids of interest in a sample. For each individual target nucleic acid of interest, there is a corresponding bead set which comprises a capture probe specific for its target nucleic acid and a unique detectable label, referred to as the bead signal. In this method, a target nucleic acid, such as mRNA in a cell, is first labeled with a detectable signal, referred to as the target signal, before being hybridized with the population of bead sets. Following hybridization in solution of the labeled target nucleic acids with the population of bead sets, the level of both detectable signals is determined for each hybridized bead-target complex. Thus, the bead signal indicates which target nucleic acid is present in the complex, and the level of the target signal indicates the level of expression of that target nucleic acid in the sample. The method can be used to detect tens, or hundreds, or thousands of different target nucleic acids in a single sample.


Accordingly, the invention provides simple, flexible, low-cost, high-throughput methods for simultaneously measuring the expression level of multiple nucleic acids, including mRNAs and microRNAs. In terms of multiplicity, the methods allow the expression level of a few to hundreds, and even thousands, of different target nucleic acids to be measured simultaneously in a single reaction (e.g. 5, 10, 50, 100, 500, or even 1,000 different target nucleic acids). In terms of throughput, the methods allow high numbers of the multiplexed samples to be processed simultaneously, allowing thousands of samples to be rapidly processed. The simplicity of the methods allows the entire procedure to be readily automated. The low cost aspect of the method is reflected for example in a typical unit cost of only several dollars to analyze the expression of 100 nucleic acids in a single sample. As exemplified herein, the performance of the present methods is at least comparable to the current industry-standard oligonucleotide microarrays.


One particularly important advantage of the present method is the high degree of flexibility it provides regarding the population of target nucleic acids to be analyzed. Because the population of bead sets is not fixed, as opposed to the probes on a microarray, the bead population can be readily changed by adding or removing one of the individual bead sets, without altering the other bead sets in the total population. Thus, unlike a slide-based microarray, the population of target nucleic acids to be analyzed can be readily tailored to specific needs, without refabrication of the entire population of bead sets.


The detection methods of the invention can be used in a wide variety of applications as described in detail below, including but not limited to gene expression profiling, screening assays, diagnostic and prognostic assays, for example for gene expression signatures, small molecule or genetic library screening, such as screening cDNA/ORFs, shRNAs, and microRNAs, pharmacogenomics, and the classification of induced biological states.


The invention provides a solution-based method for determining the expression level of a population of target nucleic acids. The method comprises the steps of (a) providing in solution a population of target-specific bead sets, wherein each target-specific bead set is individually detectable and comprises a capture probe which corresponds to an individual target nucleic acid referred to as an individual bead set; (b) hybridizing in solution the population of target-specific bead sets with a population of molecules that can contain a population of detectable target molecules, wherein each target nucleic acid has been transformed into a corresponding detectable target molecule which will specifically bind to its corresponding individual target-specific bead set; and (c) screening in solution for detectable target molecules hybridized to target-specific beads to determine the expression level of the population of target nucleic acids.


In one embodiment, the population of target-specific bead sets comprises at least 5 individual bead sets that can bind with a corresponding set of target nucleic acids. In one embodiment, the population of target-specific beads comprises at least 100 individual bead sets that can bind with a corresponding set of target nucleic acids.


In one embodiment, the population of target nucleic acids is a population of mRNAs. In one embodiment, the population of target nucleic acids is a population of microRNAs.


In one embodiment, each target nucleic acid is an mRNA which has been transformed into a corresponding detectable target molecule. The mRNA is transformed into a corresponding detectable target molecule by a process comprising the steps of (a) reverse transcribing the mRNA target nucleic acid to generate a cDNA; (b) contacting the cDNA with an upstream probe and a downstream probe, wherein the upstream probe comprises a universal upstream sequence and an upstream target-specific sequence, and the downstream probe comprises a universal downstream sequence and a downstream target-specific sequence, such that when the upstream probe and the downstream probe are both hybridized to the cDNA the two probes are capable of being ligated; (c) ligating said cDNA contacted with said upstream and downstream probes to generate ligation complexes; and (d) amplifying said ligation complexes with a pair of universal primers comprising a universal upstream primer and a universal downstream primer. The universal upstream primer is complementary to the universal upstream sequence and the universal downstream primer is complementary to the universal downstream sequence. At least one of the pair of universal primers is detectably labeled. The product of the amplification is detectably labeled. Accordingly, a detectable target molecule is generated which corresponds to the target nucleic acid.


In one embodiment, in the process of transforming the mRNA into a corresponding detectable target molecule, either the upstream probe further comprises an amplicon tag between the universal sequence and the target-specific sequence or the downstream probe further comprises an amplicon tag between the universal sequence and the target-specific sequence. The amplicon tag comprises a nucleic acid sequence that is complementary to the sequence of the capture probe of the bead set.


In one embodiment, each target nucleic acid is a microRNA which has been transformed into a corresponding detectable target molecule. The process of transforming the microRNA into a corresponding detectable target molecule comprises the steps of (a) ligating at least one adaptor to the microRNA, generating an adaptor-microRNA molecule; (b) detectably labeling said adaptor-microRNA molecule. Accordingly, a detectable target molecule is generated which corresponds to the target nucleic acid.


In one embodiment, the adaptor-microRNA is detectably labeled by reverse transcription using the adaptor-microRNA as a template for polymerase chain reaction. In one embodiment, a pair of primers is used in said polymerase chain reaction, and at least one of said primers is detectably labeled.


The present invention further provides a method of screening for the presence of malignancy, infection, cellular disorder, or response to a treatment in a test sample. The method comprises the steps of (a) determining the expression signature of a group of genes in the test sample; and (b) comparing the expression signature between the test sample and a reference sample. A similarity or difference in the expression signature between the test sample and the reference sample is indicative of the presence of malignant cells, infected cells, cellular disorder, or response to a treatment in the test sample. In one embodiment, the solution-based method for determining the expression level of target nucleic acids is used for determination of the expression signature in the test sample and the target nucleic acids are mRNAs. In one embodiment, the expression signature comprises at least 5 genes.


In one embodiment, the reference sample is known to express a predetermined expression signature indicative of the presence of malignancy, infection, or cellular disorder, and the similarity of the expression signature of the test sample to the predetermined expression signature of the reference sample indicates the presence of malignant cells, infected cells, or cellular disorder, in the test sample.


In one embodiment, the reference sample is known to express a predetermined expression signature indicative of a response to treatment, and the similarity of the expression signature of the test sample to the predetermined expression signature of the reference sample indicates the presence of malignant the response to a treatment in the test sample. In one embodiment, the response to treatment is an adverse response to treatment. In one embodiment, the response to treatment is a therapeutic response to treatment.


The invention further provides a method of identifying an expression signature associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment. The method comprises the steps of (a) isolating cells from a group of individuals with said cancer, infection, cellular disorder, or response to treatment, and determining the expression levels of a group of genes; (b) isolating cells from a group of individuals without said cancer, infection, cellular disorder, or response to treatment, and determining the expression levels of said group of genes; and (c) identifying differentially expressed genes from said group of genes which are together indicative of the presence or risk of cancer, infection, cellular disorder, or response to treatment in an individual. Accordingly, an expression signature is identified associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment. In one embodiment, the expression levels of the group of genes is determined using the solution-based method of determining expression level of target nucleic acids.


The invention further provides a method of screening for the presence of malignant cells in a test sample. The method comprises the steps of (a) determining the level of expression of a group of microRNAs in the test sample, and (b) comparing the level of expression of a group of microRNAs between the test sample and a reference sample. In one embodiment, a lower level of expression of the group of microRNAs in the test sample compared to the reference sample is indicative of the test sample containing malignant cells. In one embodiment, a similarity or difference in the level of expression of the group of microRNAs in the test sample compared to the reference sample is indicative of the test sample containing malignant cells. In one embodiment, the microRNAs are transformed into a corresponding detectable target molecule by the process of the present invention. In one embodiment, the determination of the level of microRNA in the sample is determined by the solution-based method of the present invention for determining the expression level of a population of target nucleic acids. In one embodiment, the group of microRNAs comprises at least 5 microRNAs. In one embodiment, the test sample is isolated from an individual at risk of or suspected of having cancer.


The invention further provides a method of screening an individual at risk for cancer. The method comprises the steps of (a) obtaining at least two cell samples from the individual at different times; (b) determining the level of expression of a group of microRNAs in the cell samples, and (c) comparing the level of expression of a group of microRNAs between the cell samples obtained at different times. A lower level of expression of the group of microRNAs in the later obtained cell sample compared to the earlier obtained cell sample is indicative of the individual being at risk for cancer. In one embodiment, the microRNAs are transformed into a corresponding detectable target molecule by the process of the present invention. In one embodiment, the determination of the level of microRNA in the sample is determined by the solution-based method of the present invention for determining the expression level of a population of target nucleic acids.


The invention further provides a method of identifying a microRNA expression signature associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment. The method comprises the steps of (a) isolating cells from a group of individuals with said cancer, infection, cellular disorder, or response to treatment, and determining the expression levels of a group of microRNAs; (b) isolating cells from a group of individuals without said cancer, infection, cellular disorder, or response to treatment, and determining the expression levels of said group of microRNAs; and (c) identifying differentially expressed microRNAs from said group of microRNAs which are together indicative of the presence or risk of cancer, infection, cellular disorder, or response to treatment in an individual. Accordingly, a microRNA expression signature is identified associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment. In one embodiment, the microRNAs are transformed into a corresponding detectable target molecule by the process of the present invention. In one embodiment, the determination of the level of microRNA in the sample is determined by the solution-based method of the present invention for determining the expression level of a population of target nucleic acids.


The invention further provides a method of classifying a tumor sample. The method comprises (a) determining the expression pattern of a group of microRNAs in a tumor sample of unknown tissue origin, generating a tumor sample profile; (b) providing a model of tumor origin microRNA expression patterns based on a dataset of the expression of microRNAs of tumors of known origin; and (c) comparing the tumor sample profile to the model to determine which tumors of known origin the sample most closely resembles. Accordingly, the tissue origin of the tumor sample is classified. In one embodiment, the determination of the level of microRNA in the sample is determined by the solution-based method of the present invention for determining the expression level of a population of target nucleic acids.


The invention further provides a method of classifying a sample from an unknown mammalian species. The method comprises the steps of (a) determining the expression pattern of a group of microRNAs in a sample of an unknown mammalian species, generating a sample profile; (b) providing a model of known mammalian species microRNA expression patterns based on a dataset of the expression of microRNAs of known mammalian species; and (c) comparing the sample profile to the model of known species to determine which known mammalian species the sample profile most closely resembles. Accordingly, the mammalian species of the sample is classified. In one embodiment, the determination of the level of microRNA in the sample is determined by the solution-based method of the present invention for determining the expression level of a population of target nucleic acids.


The invention further provides a method for identifying an active compound or molecule. The method comprises the steps of (a) contacting cells with a plurality of compounds or molecules, (b) determining the expression of a set of marker genes present in the cells using the solution-based method of the present invention for determining the expression level of a population of target nucleic acids, and (c) scoring the expression of the marker genes to identify a cellular phenotype. The presence of a specific cellular phenotype is indicative of an active compound or molecule. In one embodiment, the plurality of chemical compounds or molecules is a set of compounds or molecules selected from the group consisting of small molecule libraries, FDA approved drugs, synthetic chemical libraries, phage display libraries, dosage libraries. In one embodiment, the set of marker genes comprises genes which encode microRNAs and/or messenger RNAs. In one embodiment, the active compound is an anti-cancer drug. In one embodiment, the cellular phenotype is a tumorigenic status of the cell. In one embodiment, the cellular phenotype is a metastatic status of the cell. In one embodiment, the set of marker genes is a cancer versus non-cancer marker gene set. In one embodiment, the set of marker genes is a metastatic versus non-metastatic marker gene set. In one embodiment, he set of marker genes is a radiation resistant versus radiation sensitive marker gene set. In one embodiment, the set of marker genes is a chemotherapy resistant versus chemotherapy sensitive marker gene set. In one embodiment, the active compound is a cellular differentiation factor. In one embodiment, the cellular phenotype is a cellular differentiation status.


The invention further provides a kit for determining in solution the expression level of a population of target nucleic acids. The kit comprises: (a) a population of detectable bead sets, wherein each target-specific bead set is individually detectable and is capable of being coupled to a capture probe which corresponds to an individual target nucleic acid of interest; (b) components for transforming a target nucleic acid of interest into a corresponding detectable target molecule which will specifically bind to its corresponding individual target-specific bead set; and (c) instructions for performing the solution-based method of the present invention for determining the expression level of a population of target nucleic acids. In one embodiment, the population of target nucleic acids comprises mRNAs and the kit further comprises components for performing the method of the present invention for transforming mRNA into a corresponding detectable target molecule. In one embodiment, the population of target nucleic acids comprises microRNAs, and the kit further comprises components for performing the method of the present invention or transforming microRNA into a corresponding detectable target molecule. In one embodiment, the kit further comprises a polymerase and nucleotide bases. In one embodiment, the kit further comprises a plurality of detectable labels. In one embodiment, the kit further comprises capture probes capable of specifically hybridizing to at least 10 different microRNAs, at least 30 different microRNAs, at least 100 different microRNAs, at least 200 different target microRNAs. In one embodiment, the kit further comprises oligonucleotides for use as capture probes or oligonucleotide sequence information to design target specific probes capable of specifically hybridizing to at least 10 different target mRNAs, at least 30 different target mRNAs, at least 100 different target mRNAs, at least 200 different target mRNAs. In one embodiment, the population of target nucleic acids comprises a set of marker genes associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment. In one embodiment, the sample comprises or is suspected of comprising malignant cells.


Samples

The target nucleic acid can be only a minor fraction of a complex mixture such as a biological sample. As used herein, the term “biological sample” refers to any biological material obtained from any source (e.g. human, animal, plant, bacteria, fungi, protist, virus). For use in the invention, the biological sample should contain a nucleic acid molecule. Examples of appropriate biological samples for use in the instant invention include: solid materials (e.g. tissue, cell pellets, biopsies) and biological fluids (e.g. urine, blood, saliva, amniotic fluid, mouth wash).


Nucleic acid molecules can be isolated from a particular biological sample using any of a number of procedures, which are well-known in the art, the particular isolation procedure chosen being appropriate for the particular biological sample.


Solution-Based Method to Determine Expression Levels of Nucleic Acids

The invention provides a solution-based method for highly multiplexed determination of the expression levels of a population of target nucleic acids. The population of target nucleic acids can be a collection of individual target nucleic acids of interest, such as a member of a gene expression signature or just a particular gene of interest. Each individual target nucleic acid of interest is first transformed into a detectable target molecule in a quantitative or semi-quantitative manner, such that the level of each target nucleic acid is reflected by the level of the corresponding detectable target molecule, which is labeled with a detectable signal such as a fluorescent marker. The detectable signal of the target molecule is sometimes referred to as the target molecule signal or simply as the target signal. The method also involves a population of target-specific bead sets, where each target-specific bead set is individually detectable and has a capture probe which corresponds to an individual target nucleic acid. The population of bead sets is hybridized in solution with the population of detectable target molecules to form a hybridized bead-target complex. To determine the expression level of the population of target nucleic acids present, one detects both the target signal and the bead signal for each hybridized bead-target complex, such that the level of the target signal indicates the level of expression of the target nucleic acid, and the bead signal indicates the identity of the target nucleic acid being detected. In one embodiment, the beads can be LUMINEX™ beads, which are polystyrene microspheres that are internally labeled with two spectrally distinct fluorochromes, such that each set of LUMINEX™ beads can be distinguished by its spectral address.


The methods of the invention can be used to detect any population of target nucleic acids of interest, including but not limited to DNAs and RNAs. In one preferred embodiment the target nucleic acids are messenger RNAs (mRNAs). In another preferred embodiment the target nucleic acids are microRNAs (microRNAs).


The present invention provides multiplex detection of target nucleic acids in a sample. As used herein, the phrase multiplex or grammatical equivalents refers to the detection of more than one target nucleic acid of interest within a single reaction. In one embodiment of the invention, multiplex refers to the detection of between 2-10,000 different target nucleic acids in a single reaction. As used herein, multiplex refers to the detection of any range between 2-10,000, e.g., between 5-500 different target nucleic acids in a single reaction, 25-1000 different target nucleic acids, 10-100 different target nucleic acids in a single reaction etc.


The present invention also provides high throughput detection and analysis of target nucleic acids in a sample. As used herein, the phrase “high throughput” refers to the detection or analysis of more than one reaction in a single process, where each reaction is itself a multiplex reaction, detecting more than one target nucleic acid of interest. In one preferred embodiment, 2-10,000 multiplex reactions can be processed simultaneously.


Detectable Bead Sets

The solution-based methods of the invention use detectable target-specific bead sets which comprise a capture probe coupled to a detectable bead, where the capture probe corresponds to an individual target nucleic acid. As used herein, beads, sometimes referred to as microspheres, particles, or grammatical equivalents, are small discrete particles.


Each population of bead sets is a collection of individual bead sets, each of which has a unique detectable label which allows it to be distinguished from the other bead sets within the population of bead sets. In one embodiment, the population comprises at least 5 different individual bead sets. In another embodiment, the population comprises at least 20 different individual bead sets. The population can comprise any number of bead sets as long as there is a unique detectable signal for each bead set. For example, at least 10, 20, 30, 50, 70, 100, 200, 500 or even more different individual bead sets. In a further embodiment, the population comprises at least 1000 different individual bead sets.


Any labels or signals can be used to detect the bead sets as long as they provide unique detectable signals for each bead set within the population of bead sets to be processed in a single reaction. Detectable labels include but are not limited to fluorescent labels and enzymatic labels, as well as magnetic or paramagnetic particles (see, e.g., Dynabeads® (Dynal, Oslo, Norway)). The detectable label may be on the surface of the bead or within the interior of the bead. Detectable labels for use in the invention are described in greater detail below.


The composition of the beads can vary. Suitable materials include any materials used as affinity matrices or supports for chemical and biological molecule syntheses and analyses, including but not limited to: polystyrene, polycarbonate, polypropylene, nylon, glass, dextran, chitin, sand, pumice, agarose, polysaccharides, dendrimers, buckyballs, polyacrylamide, silicon, rubber, and other materials used as supports for solid phase syntheses, affinity separations and purifications, hybridization reactions, immunoassays and other such applications.


Typically the beads have at least one dimension in the 5-10 mm range or smaller. The beads can have any shape and dimensions, but typically have at least one dimension that is 100 mm or less, for example, 50 mm or less, 10 mm or less, 1 mm or less, 100 μm or less, 50 μm or less, and typically have a size that is 10 μm or less such as, 1 μm or less, 100 nm or less, and 10 nm or less. In one embodiment, the beads have at least one dimension between 2-20 μm. Such beads are often, but not necessarily, spherical e.g. elliptical. Such reference, however, does not constrain the geometry of the matrix, which can be any shape, including random shapes, needles, fibers, and elongated. Roughly spherical, particularly microspheres that can be used in the liquid phase, also are contemplated. The beads can include additional components, as long as the additional components do not interfere with the methods and analyses herein.


Commercially available beads which can be used in the methods of the invention include but are not limited to bead-based technologies available from LUMINEX™, Illumina, and Lynx. In one embodiment provides microbeads labeled with different spectral property and/or fluorescent (or colorimetric) intensity. For example, polystyrene microspheres are provided by LUMINEX™ Corp, Austin, Tex. that are internally dyed with two spectrally distinct fluorochromes. Using precise ratios of these fluorochromes, a large number of different fluorescent bead sets (e.g., 100 sets) can be produced. Each set of the beads can be distinguished by its spectral address, a combination of which allows for measurement of a large number of analytes in a single reaction vessel. In this embodiment, the detectable target molecule is labeled with a third fluorochrome. Because each of the different bead sets is uniquely labeled with a distinguishable spectral address, the resulting hybridized bead-target complexes will be distinguishable for each different target nucleic acid, which can be detected by passing the hybridized bead-target complexes through a rapidly flowing fluid stream. In the stream, the beads are interrogated individually as they pass two separate lasers. High speed digital signal processing classifies each of the beads based on its spectral address and quantifies the reaction on the surface. Thousands of beads can interrogated per second, resulting a high speed, high throughput and accurate detection of multiple different target nucleic acids in a single reaction.


In addition to a detectable label, the bead sets also contain a capture probe which corresponds to an individual target nucleic acid. Typically, the capture probes are short unique DNA sequences with uniform hybridization characteristics. Useful capture probes of the invention are described in detail below.


The capture probe can be coupled to the beads using any suitable method which generates a stable linkage between probe and the bead, and permits handling of the bead without compromising the linkage using further methods of the invention. Coupling reactions include but are not limited to the use capture probes modified with a 5′ amine for coupling to carboxylated microsphere or bead.


Methods to Transform a Target mRNA into a Detectable Target Molecule


In one preferred embodiment, the present invention provides methods to detect a population of target nucleic acids, where the target nucleic acids are mRNAs, as illustrated in FIG. 1.


To detect a nucleic acid, for example, mRNAs, the invention provides methods to transform a mRNA into a corresponding detectable target molecule. However, any nucleic acid can be used, e.g., DNA, microRNA, etc. In this example, the mRNA target nucleic acid is first reverse transcribed to generate a cDNA, which is then amplified. During the amplification reaction, a detectable signal is also introduced to create a detectable target molecule, sometimes referred to as a tagged or detectable amplicon. In this process, an upstream probe and a downstream probe are first hybridized to the cDNA. The upstream probe comprises a universal upstream sequence and an upstream target-specific sequence, and the downstream probe comprises a universal downstream sequence and a downstream target-specific sequence, such that when the upstream probe and the downstream probe are both hybridized to the cDNA, the two probes are capable of being ligated, as illustrated in FIG. 1. Next, the upstream and downstream probes hybridized to the cDNA are ligated, to generate a ligation complex. For each mRNA present in the starting sample, a single ligation complex is created. Thus, the number of ligation complexes present is a function of the number of individual mRNA molecules present in the starting sample. Finally, the population of ligation complexes is amplified using a pair of universal primers, a universal upstream primer and a universal downstream primer. The universal upstream primer is complementary to the universal upstream sequence, and the universal downstream primer is complementary to the universal downstream sequence. Typically, the universal upstream sequence and the universal downstream sequence are common between all upstream and downstream probes, respectively, so that within a single multiplex reaction, only two universal primers are required to amplify all of the different target nucleic acids being detected. At least one of the pair of universal primers is detectably labeled, such that the product of the amplification is detectably labeled. Accordingly, this process generates a detectable target molecule which corresponds to the target nucleic acid. Detectable labels are discussed in detail below.


The target-specific sequences of the upstream and the downstream probes comprise polynucleotide sequences that are complementary to a portion of the polynucleotide sequence of the target nucleic acid of interest. Preferably, the target-specific sequences of the present invention are completely complimentary to their corresponding target sequence in the nucleic acid of interest. However, the target-specific sequences used in the present invention can have less than exact complementarity with their target sequences, as long as the upstream and downstream probes hybridized to the target sequence can be ligated by a DNA ligase.


To allow hybridization to the capture probe of the corresponding bead set, a sequence which is complementary to the capture probe must be present in the detectable target molecule. For the detection and analysis of mRNA, this sequence is sometimes referred to as the amplicon tag. The amplicon tag may be a sequence within the target nucleic acid-specific sequence, i.e. part of the upstream or downstream target specific sequences. Alternatively, either the upstream probe or the downstream probe may additionally contain an amplicon tag, which lies between the universal sequence and the target specific sequence of the probe. For example, if the amplicon tag resides within the upstream probe, then it is between the upstream universal sequence and the upstream target specific sequence.


Methods to Transform a microRNA into a Detectable Target Molecule


The present invention also provides methods to detect other nucleic acid, such as a population of microRNAs. The detection of microRNAs represents a significant problem in the art because of their size and sequence similarities. microRNAs are a recently identified class of small non-coding RNAs, which are typically around 21 nucleotides and may differ in sequence by only one or a few nucleotides. At present, hundreds of distinct microRNAs have been identified; however, new microRNAs continue to be described.


Mature microRNAs are excised from a stem-loop precursor that itself can be transcribed as part of a longer primary RNA, sometimes referred to as pri-microRNA. The pri-microRNA is then processed by a nuclear RNAse, cleaving the base of the stem-loop and defining one end of the microRNA. Following export to the cytoplasm, the precursor microRNA is further processed by a second RNAse which cleaves both strands of the RNA, typically about 22 nucleotides from the base of the stem. The two strands of the resulting double-stranded RNA are differentially stable, and the mature microRNA resides on the more stable strand. See Lee, EMBO J. 21:4663-70 (2002); Lee, Nature 425:415-19 (2003); Yi, Genes Dev. 17:17:3011-16 (2003); Lund, Science 303:95-8 (2004); Khvorova, Cell 115:209-16 (2003); and Schwarz, Cell 115:199-208 (2003).


To detect a population of microRNAs, the invention provides methods to transform a microRNA into a corresponding detectable target molecule using essentially the method previously described in Miska et al., Genome Biology 5:R68 (2004). In this method, one first ligates at least one adaptor to the population of microRNAs, generating a population of ligated adaptor-microRNA molecules. These ligated molecules are then detectably labeled, thereby generating a detectable target molecule which corresponds to the specific microRNA. In one embodiment, the adaptor-microRNA is detectably labeled by reverse transcription using the adaptor-microRNA as a template for polymerase chain reaction. At least one of the primers used in said polymerase chain reaction is detectably labeled. Detectable labels are described in detail below.


More particularly, the method involves first size selecting 18-26 nucleotide RNAs from total RNA, for example using denaturing polyacrylamide gel electrophoresis (PAGE). Oligonucleotides are then attached to the 5′ and 3′ ends of the small RNAs to generate ligated small RNAs. The ligated small RNAs are then used as templates for reverse transcription PCR, as previously described for microRNA cloning. See Lee, Science 294:862-4 (2001); Lagos-Quintana, Science 294:853-8 (2001); Lau, Science 294:858-62 (2001). The RT-PCR can include for example 10 cycles of amplification. To detectably label the resulting amplification product, either of the primers used for the RT-PCR reaction can have a detectable label, such as a fluorophore such as Cy3. Preferably, the detectable label is attached to the 5′ end of the primer.


The adaptors of the present invention are comprised of nucleic acid sequences typically not found in the population of microRNAs. Preferably, there is less than 35% identity (homology) between the adaptor sequence and the template, more preferably less than 30% identity, still more preferably less than 25% identity. The sequence analysis programs used to determine homology are run at the default setting.


To specifically identify individual microRNAs, the invention provides a population of bead sets where the capture probes are complementary to the microRNA sequences themselves, rather than the adaptor sequences. Thus, the invention provides in certain embodiments a populations of bead sets which are specific to all known microRNAs. As microRNAs continue to be discovered, the invention allows ready addition of new bead sets corresponding to the newly discovered microRNAs to be added. As discussed in detail below, the invention also provides specific sets of populations of bead sets for the expression profiling of signature microRNAs.


Primers, Probes, and Adaptors

As described above, the probes, primers, and adaptors of the invention comprise include but are not limited to the capture probes of the bead sets, universal primers for amplification of the ligation complexes for nucleic acid detection such as mRNA detection, adaptors for the detection of different nucleic acids such as microRNAs, and amplicon tags for hybridization of the detectable target molecules to the capture probes of the bead sets. The invention also provides additional primers, probes, and adaptors for use in various nucleic acid manipulations. The probes, primers and adaptors are sometimes referred to simply as primers.


The probes, primers, and adaptors used in the methods of the invention can be readily prepared by the skilled artisan using a variety of techniques and procedures. For example, such probes, primers, and adaptors can be synthesized using a DNA or RNA synthesizer. In addition, probes, primers, and adaptors may be obtained from a biological source, such as through a restriction enzyme digestion of isolated DNA. Preferably, the primers are single-stranded.


As used herein, the term “primer” has the conventional meaning associated with it in standard PCR procedures, i.e., an oligonucleotide that can hybridize to a polynucleotide template and act as a point of initiation for the synthesis of a primer extension product that is complementary to the template strand.


Preferably, the primers of the present invention have exact complementarity with its target sequence. However, primers used in the present invention can have less than exact complementarity with their target sequence as long as the primer can hybridize sufficiently with the target sequence so as to function as described; for example to be extendible by a DNA polymerase or for hybridization with the capture probe of the bead set.


For use in a given multiplex reaction, the universal primer sequences are typically analyzed as a group to evaluate the potential for fortuitous dimer formation between different primers. This evaluation may be achieved using commercially available computer programs for sequence analysis, such as Gene Runner, Hastings Software Inc. Other variables, such as the preferred concentrations of Mg+2, dNTPs, polymerase, and primers, are optimized using methods well-known in the art (Edwards et al., PCR Methods and Applications 3:565 (1994)).


Detectable Labels

Any labels or signals which allow detection of the bead set and the detectable target molecules can be used in the methods of the invention. Such detectable labels are well known in the art.


According to the invention, there is a target-specific bead set which corresponds to each target nucleic acid of interest. For each bead set there is a detectable signal, and for the corresponding target nucleic acid there is a distinct detectable signal. Thus, detection of an individual target nucleic interest requires two distinguishable detectable signals.


The detectable labels of the invention may be added to the target nucleic acid and/or the bead sets using various methods. The detectable label may be covalently conjugated with the nucleic acid or non-covalently attached to the nucleic through sequence-specific or non-sequence-specific binding. Examples of the detectable labels include, but are not limited to biotin, digoxigenin, fluorescent molecule (e.g., fluorescin and rhodamine), chemiluminescent moiety (e.g., LUMINOL™), coenzyme, enzyme substrate, radio isotopes, a particle such as latex or carbon particle, nucleic acid-binding protein, polynucleotide that specifically hybridizes with either the target or reference nucleic acid strand. Detection of the presence of the label can be achieved by observation or measurement of signals emitted from the label. The production of the signal may be facilitated by binding of the label to its counter-part molecule, which triggers a reaction directly or indirectly. For example, the target nucleic acid may be labeled with biotin; upon binding of streptavidin-HRP (horse radish peroxidase) and addition of the substrate for HRP (e.g., ABTS), the presence of the biotin-labeled target molecule can be detected by observing or measuring color changes in the mixture.


In certain preferred embodiments, the labels are fluorescent and the hybridized bead-target complexes are detected using fluorescence polarization machine, also referred to as a flow cytometer. Fluorescent dyes with diverse spectral properties (e.g., as supplied by MOLECULAR PROBES™, Eugene, Oreg.) may be used to simultaneously detect multiple detectable target molecules. In this assay, each target molecules may be labeled with a fluorescent dye having different spectral property than that for another target molecule. In another preferred embodiment, the detectable target molecule is labeled with a biotin, and the final hybridized bead-target complexes are further reacted with a signal such as streptavidin-phycoerythrin.


Target Nucleic Acids

In the present invention, a target nucleic acid refers to a sequence of nucleotides to be studied either for the presence of a difference from a reference sequence or for the determination of its presence or absence. The target nucleic acid sequence may be double stranded or single stranded and from a natural or synthetic source. When the target nucleic acid sequence is single stranded, a nucleic acid duplex comprising the single stranded target nucleic acid sequence may be produced by primer-extension and/or amplification.


The present invention is preferably used with at least 5 targets in a single reaction, more preferably at least 10 targets, still more preferably with at least 14 targets, even more preferably with at least 20 targets, yet more preferably with at least 30 targets, still more preferably with at least 50 targets, and even more preferably with at least 100 targets in a single reaction, although one can target any number from 5-1000 as long as a uniquely detectable signal is used. Multiplex detection as used herein refers to the simultaneous detection of multiple nucleic acid targets in a single reaction mixture.


High-throughput denotes the ability to simultaneously process and screen a large number of individual reaction mixtures such as multiplexed nucleic acid samples (e.g. in excess of 100 RNAs) in a rapid and economical manner, as well as to simultaneously screen large numbers of different target nucleic acids within a single multiplexed nucleic acid sample.


Any nucleic acid sample of interest may be used in practicing the present invention, including without limitation eukaryotic, prokaryotic and viral DNA or RNA. In a preferred embodiment, the target nucleic acids represents a sample of total RNA, including mRNA and microRNA, isolated from an individual. This DNA may be obtained from any cell source or body fluid. Non-limiting examples of cell sources available in clinical practice include blood cells, buccal cells, cervicovaginal cells, epithelial cells from urine, fetal cells, or any cells present in tissue obtained by biopsy. Body fluids include blood, urine, cerebrospinal fluid, semen and tissue exudates at the site of infection or inflammation. Nucleic acid such as RNA is extracted from the cell source or body fluid using any of the numerous methods that are standard in the art. It will be understood that the particular method used to extract the nucleic acid will depend on the nature of the source and the type of nucleic acid to be extracted.


The present method can be used with polynucleotides comprising either full-length RNA or DNA, or their fragments. The RNA or DNA can be either double-stranded or single-stranded, and can be in a purified or unpurified form. Preferably, the polynucleotides are comprised of RNA. In certain embodiments, the present invention can be used with full-size cDNA polynucleotide sequences, such as can be obtained by reverse transcription of RNA. The DNA fragments used in the present invention can be obtained by digestion of cDNA with restriction endonucleases, or by amplification of cDNA fractions from cDNA using arbitrary or sequence-specific PCR primers. The nucleic acid can be obtained from a variety of sources, including both natural and synthetic sources. The nucleic acid can be from any natural source including viruses, bacteria, yeast, plants, insects and animals.


Certain embodiments of the invention provide amplification of a nucleic acid using polymerase chain reaction (PCR). “Amplification” of DNA as used herein denotes the use of polymerase chain reaction (PCR) to increase the concentration of a particular DNA sequence within a mixture of DNA sequences. In practicing the present invention, a nucleic acid sample is contacted with pairs of oligonucleotide primers under conditions suitable for polymerase chain reaction. Conditions for performing PCR are well known in the art. Standard PCR reaction conditions may be used, e.g., 1.5 mM MgCl.sub.2, 50 mM KCl, 10 mM Tris-HCl, pH 8.3, 200 μM deoxynucleotide triphosphates (dNTPs), and 25-100 U/ml Taq polymerase (PERKIN-ELMER™, Norwalk, Conn.). The concentration of each primer in the reaction mixture can range from about 0.05 to about 4 μM. Each potential primer can be evaluated by performing single PCR reactions using each primer pair (e.g. a universal upstream primer and a universal downstream primer) individually. Similarly, each primer pair can be evaluated independently to confirm that all primer pairs to be included in a single multiplex PCR reaction generate a product of the expected size. As the number of targets in a single reaction increases, certain targets may not be amplified as efficiently as other targets. The concentration of the primers for such underrepresented targets may be increased to increase their yield. For example, when multiplying 15 or more targets; more preferably, when multiplying 30 or more targets.


Multiplex PCR reactions are typically carried out using manual or automatic thermal cycling. Any commercially available thermal cycler may be used, such as, e.g., PERKIN-ELMER™ 9600 cycler.


A variety of DNA polymerases can be used during PCR with the present invention. Preferably, the polymerase is a thermostable DNA polymerase such as may be obtained from a variety of bacterial species, including Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermus flavus, Thermococcus literalis, and Pyrococcus furiosus (Pfu). Many of these polymerases may be isolated from the bacterium itself or obtained commercially. Polymerases to be used with the present invention can also be obtained from cells which express high levels of the cloned genes encoding the polymerase. Preferably, a combination of several thermostable polymerases can be used.


The PCR conditions used to amplify the targets are standard PCR conditions which are well known in the art. Typical conditions use 35-40 cycles, with each cycle comprising a denaturing step (e.g. 10 seconds at 94° C.), an annealing step (e.g. 15 sec at 68° C.), and an extension step (e.g. 1 minute at 72° C.). As the number of targets in a single reaction increases, the length of the extension time may be increased. For example, when amplifying 30 or more targets, the extension time may be three times as longer than when amplifying 10-15 targets (e.g. 3 minutes instead of 1 minute).


In addition to the detection methods specific to the present invention, the reaction products can be analyzed using any of several methods that are well-known in the art, for example to confirm isolated steps of the methods. For example, agarose gel electrophoresis can be used to rapidly resolve and identify each of the amplified sequences. In a multiplex reaction, different amplified sequences are preferably of distinct sizes and thus can be resolved in a single gel. In one embodiment, the reaction mixture is treated with one or more restriction endonucleases prior to electrophoresis. Alternative methods of product analysis include without limitation dot-blot hybridization with allele-specific oligonucleotides and SSCP.


Applications

The methods of the invention can be used in any application or method in which it is desirable to measure or detect the presence of a population of target nucleic acids, such as for gene expression profiling or microRNAs profiling. While several preferred applications are described in detail here, the invention is in no way limited to these embodiments. Other applications would become apparent to one skilled in the art having the benefit of this disclosure.


As described in detail below, the invention can be used in methods for gene expression profiling assays such as, diagnostic and prognostic assays, for example for gene expression signatures, molecule or genetic library screening, such as screening cDNA/ORFs, shRNAs, and microRNAs, pharmacogenomics, and the classification of induced biological states.


Expression Profiling Applications

The methods of the invention are useful for a variety of gene expression profiling applications. More particularly, the invention encompasses methods for high-throughput genetic screening. The method allows the rapid and simultaneous detection of multiple defined target nucleic acids such as mRNA or microRNA sequences in nucleic samples obtained from a multiplicity of individuals. It can be carried out by simultaneously amplifying many different target sequences from a large number of desired samples, such as patient nucleic acid samples, using the methods described above.


In general, as used herein, an expression signature is a set of genes, where the expression level of the individual genes differs between a first physiological state or condition relative to their expression level in a second physiological state or condition, i.e. state A and state B. For example, between cancerous cells and non-cancerous cells, or cells infected with a pathogen and uninfected cells, or cells in different states of development.


The terms “differentially expressed gene,” “differential gene express” and their synonyms, which are used interchangeably, refer to a gene whose expression is activated to a higher or lower level in one physiological state relative to a second physiological subject suffering from a disease, such as cancer, relative to its expression in a normal or control subject. As used herein, “gene” specifically includes nucleic acids which do not encode proteins, such as microRNAs. The terms also include genes whose expression is activated to a higher or lower level at different states of the same disease. A differentially expressed gene may be either activated or inhibited at the nucleic acid level or protein level, or may be subject to alternative splicing to result in a different polypeptide product. Such differences may be evidenced by a change in mRNA levels or microRNA levels, surface expression, secretion or other partitioning of a polypeptide, for example. Differential gene expression may include a comparison of expression between two or more genes or their gene products, or a comparison of the ratios of the expression between two or more genes or their gene products, or even a comparison of two differently processed products of the same gene, which differ between normal subjects and subjects suffering from a disease, specifically cancer, or between various stages of the same disease. Differential expression includes both quantitative, as well as qualitative, differences in the temporal or cellular expression pattern in a gene or its expression products among, for example, normal and diseased cells, or among cells which have undergone different disease events or disease stages. Differential gene expression is considered to be present when there is at least an about two-fold, preferably at least about four-fold, more preferably at least about six-fold, more preferably at least about ten-fold difference between the expression of a given gene between two different physiological states, such as in various stages of disease development in a diseased individual.


An expression signature is sometimes referred to herein as a set of marker genes. An expression signature, or set of marker genes, is a minimum number of genes that is capable of identifying a phenotypic state of a cell. A set of marker genes that is representative of a cellular phenotype is one which includes a minimum number of genes that identify markers to demonstrate that a cell has a particular phenotype. In general, two discrete cell populations in different physiological states having the desired phenotypes may be examined by the methods of the invention. The minimum number of genes in a set of marker genes will depend on the particular phenotype being examined. In some embodiments the minimum number of genes is 2 or, more preferably, 5 genes. In other embodiments, the minimum number of genes is 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 1000 genes.


Screening for Expression Signatures

One embodiment of the invention provides highly practical, i.e. low cost, high throughput, and highly flexible routine mRNA expression analysis, for example for clinical testing. The invention provides methods to analyze the expression signature for a cellular phenotype of interest by determining the expression level of a set of marker genes in a test sample. A “phenotype” as used herein refers to a physiological state of a cell under a specific set of conditions, including but not limited to malignancy, infection or a cellular disorder.


In general, analysis of an expression signature involves first determining the expression profile of a gene group, also known as the expression signature, in the test sample, and comparing the expression profile between the test sample and a corresponding control sample, where a difference in the expression profile between the test sample and the control sample is indicative of the test sample expressing the physiological state or cellular phenotype associated with the signature profile. There can be a range of differences in gene expression in the expression profile between the control sample and the profile of interest. Preferably, there are differences from the control profile in at least 25% of the genes being looked at. This can range from a sample showing a 25% change to 100% change from the control sample pattern to the condition of interest and all points in between, at least 30%, at least 40%, at least 50%, at least 75%, at least 90%.


The methods of the invention can be used to analyze any expression signature for a cellular phenotype of interest. The identification of expression signatures is the subject of intense study. The invention contemplates the analysis of any expression signature of interest and is in no way limited to the specific embodiments described herein.


In one embodiment, the present invention provides methods to measure gene expression signatures in a sample, where the expression signature is indicative of a malignancy. For example, van de Vivjer et al. New Engl. J. Med. 347: 1999-2009 (2002) described a 70 member expression signature associated with breast cancer malignancy or metastasis, and is a predictor of survival. U.S. Patent Application Publication No. 2004/0018527 discloses a group of 91 genes associated with docetaxel chemosensitivity in breast cancer. Additional breast cancer expression signatures are described in detail in U.S. Patent Application Publication No. 2004/0058340 as well as Abba et al., BMC Genomics 6:37 (2005). Glas et al. (2005) described an 81 member expression signature associated with follicular lymphoma, particularly the aggressiveness of the lymphoma. Stegmaier et al. (2004) described a 5 member expression signature which was used in a cell-based small molecule screen for agents inducing the differentiation of human leukemia cells. U.S. Patent Application Publication No. 2004/0009523 discloses 14 genes associated with a diagnosis of multiple myeloma, as well as four subgroups of 24 genes associated with a prognosis of multiple myeloma. U.S. Patent Application Publication No. 2005/0089895 discloses 26 genes associated with the likelihood of recurrence in hepatocellular carcinoma. O'Donnell et al., 2005, Oncogene 24:1244-51, described a group of 116 genes associated with squamous cell carcinoma of the oral cavity. Beer et al. 2002, Nat Med 8:816-824 discloses 50 gene risk index associated with lung adenocarcinoma survival. Classification of human lung cancer by gene expression profiling has been described in several recent publications (M. Garber, PNAS, 98(24): 13784-13789 (2001); A. Bhattacharjee, PNAS, 98(24):13790-13795 (2001). Ramaswamy et al., 2002, Nat Gen 33:49-54 discloses 128 genes whose relative expression levels distinguish between primary and metastatic tumors. Glinsky et al., 2005, J. Clin. Invest. 115:1503-21, discloses 11 genes associated with highly aggressive disease outcomes for several different cancers.


Other disease conditions have also been found to be associated with expression signatures. For example, U.S. Patent Application Publication No. 20040220125 discloses 40 cardioprotective genes, which are useful as a means to diagnose cardiopathology. Baechler et al. 2003, PNAS 100:2610-15 disclose a group of 161 genes associated with severe lupus; see also U.S. Patent Application Publication No. 2004/0033498.


Other cellular states for which expression signatures have been reported include apoptosis, for which a set of 35 regulator genes has been reported (Eldering et al., Nuc. Acid Res. 31:e153 (2003), as well as inflammation, which was associated with a group of 30 genes (Id.).


The present invention also provides methods for diagnosis of infection by gene expression profiling using the methods of the invention. In one embodiment, the expression signature is comprised of cellular host genes whose expression is altered in the presence of an infectious agent. For example, U.S. Patent Application Publication No. 20040038201 discloses expression signatures of cellular host genes associated with infection with a variety of infectious agents, including E. coli, the enterohemorrhagic pathogen E. coli 0157:H7, Salmonella spp. Staphylococcus aureus, Listeria monocytogenes, M. tuberculosis, and M. bovis bacilli Calmette-Gurin (BCG).


In another embodiment, the expression signature is comprised of genes of the infectious agent. The expression signature can also comprise a combination of host and infectious agent genes.


Another preferred embodiment of the invention provides methods for screening for the presence of an infection in a sample by detecting the presence of multiple genes associated with the infectious agent. Viruses, bacteria, fungi and other infectious organisms contain distinct nucleic acid sequences, which are different from the sequences contained in the host cell. Detecting or quantifying nucleic acid sequences that are specific to the infectious organism is important for diagnosing or monitoring infection. Examples of disease causing viruses that infect humans and animals and which may be detected by the disclosed processes include but are not limited to: Retroviridae (e.g., human immunodeficiency viruses, such as HIV-1 (also referred to as HTLV-III, LAV or HTLV-III/LAV, See Ratner, L. et al., Nature, Vol. 313, Pp. 227-284 (1985); Wain Hobson, S. et al, Cell, Vol. 40: Pp. 9-17 (1985)); HIV-2 (See Guyader et al., Nature, Vol. 328, Pp. 662-669 (1987); European Patent Publication No. 0 269 520; Chakraborti et al., Nature, Vol. 328, Pp. 543-547 (1987); and European Patent Application No. 0 655 501); and other isolates, such as HIV-LP (International Publication No. WO 94/00562 entitled “A Novel Human Immunodeficiency Virus”; Picornaviridae (e.g., polio viruses, hepatitis A virus, (Gust, I. D., et al., Intervirology, Vol. 20, Pp. 1-7 (1983); entero viruses, human coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdoviridae (e.g., vesicular stomatitis viruses, rabies viruses); Filoviridae (e.g., ebola viruses); Paramyxoviridae (e.g., parainfluenza viruses, mumps virus, measles virus, respiratory syncytial virus); Orthomyxoviridae (e.g., influenza viruses); Bungaviridae (e.g., Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses); Arena viridae (hemorrhagic fever viruses); Reoviridae (e.g., reoviruses, orbiviurses and rotaviruses); Birnaviridae, Hepadnaviridae (Hepatitis B virus); Parvoviridae (parvoviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae (herpes simplex virus (HSV) 1 and 2, varicella zoster virus, cytomegalovirus (CMV), herpes viruses); Poxyiridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g., African swine fever virus); and unclassified viruses (e.g., the etiological agents of Spongiform encephalopathies, the agent of delta hepatitis (thought to be a defective satellite of hepatitis B virus), the agents of non-A, non-B hepatitis (class 1=internally transmitted; class 2=parenterally transmitted (i.e., Hepatitis C); Norwalk and related viruses, and astroviruses).


Examples of infectious bacteria include but are not limited to: Helicobacter pyloris, Borelia burgdorferi, Legionella pneumophilia, Mycobacteria sps (e.g. M. tuberculosis, M. avium, M. intracellulare, M. kansaii, M. gordonae), Staphylococcus aureus, Neisseria gonorrhoeae, Neisseria meningitidis, Listeria monocytogenes, Streptococcus pyogenes (Group A Streptococcus), Streptococcus agalactiae (Group B Streptococcus), Streptococcus (viridans group), Streptococcus faecalis, Streptococcus bovis, Streptococcus (anaerobic sps.), Streptococcus pneumoniae, pathogenic Campylobacter sp., Enterococcus sp., Haemophilus influenzae, Bacillus antracis, corynebacterium diphtheriae, corynebacterium sp., Erysipelothrix rhusiopathiae, Clostridium perfringers, Clostridium tetani, Enterobacter aerogenes, Klebsiella pneumoniae, Pasturella multocida, Bacteroides sp., Fusobacterium nucleatum, Streptobacillus moniliformis, Treponema pallidium, Treponema pertenue, Leptospira, and Actinomyces israelli.


Examples of parasitic protozoan infections include but are not limited to: Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, Plasmodium falciparum, Toxoplasma gondii, Pneumocystis carinii, Trypanosoma cruzi, Trypanasoma brucei gambiense, Trypanasoma brucei rhodesiense, Leishmania species, including Leishmania donovani, Leishmania mexicana, Naegleria, Acanthamoeba, Trichomonas vaginalis, Cryptosporidium species, Isospora species, Balantidium coli, Giardia lamblia, Entamoeba histolytica, and Dientamoeba fragilis. See generally, Robbins et al, Pathologic Basis of Disease (Saunders, 1984) 273-75, 360-83.


microRNA Expression Profiles


We have also found that one can screen for the presence of malignant cells in a test sample by determining the level of expression of total microRNAs in a test sample; and comparing the levels of expression of microRNAs of the test sample and a control sample. A lower level of expression of microRNAs in the test sample compared to the control sample is indicative of the test sample containing malignant cells. One can use any screening method including the solution base method described herein, or other known methods such as micorarrays for microRNAs, such as that described in Miska et al., 2004.


Another embodiment of the invention provides methods of screening an individual at risk for cancer by obtaining at least two cell samples from the individual at different times; and comparing the level of expression of microRNAs in the cell samples, where a lower level of expression of microRNAs in the later obtained cell sample compared to the earlier obtained cell sample indicates that the individual is at risk for cancer.


In one preferred embodiment, the methods of the present invention are useful for characterizing poorly differentiated tumors. As exemplified herein, microRNA expression distinguishes tumors from normal tissues, even for poorly differentiated tumors. As shown in FIG. 9, the majority of microRNAs analyzed were expressed in lower levels in tumors compared to normal tissues, irrespective of cell type.


The methods of detecting microRNAs are particularly useful for detecting tumors of histologically uncertain cellular origin, which account for 2-4% of all cancer diagnoses. In this embodiment, the expression profile of microRNAs in a tumor of uncertain cellular origin is compared to a set of microRNA expression profiles for a set of tumors of known origin, allowing classification of the test samples to be assessed based on the comparison.


In another embodiment, the level of expression for a specific group of microRNAs, sometimes referred to a profile group of microRNAs, is determined, where lower expression of said profile group of microRNAs is associated with risk for a particular type of cancer. In particular, microRNAs can be used to classify acute lymphoblastic leukemias into the following subclassifications: t(9;22) BCR/ABL ALLs; t(12;21) TEL/AML1 ALLs; and T-cell ALLs.


Identification of Novel Expression Signatures

We have also discovered methods for identifying an expression profile of a gene group associated with risk of a cellular disorder. It can be any type of nucleic acid that is viewed. In certain embodiments, the genes encode mRNAs. In other preferred embodiments, the genes encode microRNAs.


In one embodiment, the methods involve the establishment of two or more sets of gene expression profiles. The gene expression profiles are utilized to develop marker gene sets which identify a phenotype. Thus, the methods of the invention involve the identification of a cell signature which is useful for identifying a phenotype of a cell.


As used herein, a control gene or set of control genes is selected that are common between the two physiological states in similar or equivalent degrees of gene expression. Additionally, a common housekeeping gene(s) may be used as an “internal” reference or control to normalize the readout for relative differences in cell populations in the screening assay. One example of a common gene useful in the invention is glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (M33197). The expression level of the marker genes will define the phenotypic state when taken in ratio to the common gene(s). Hence, quantitation of the expression levels for 2 or more marker genes will be adequate to identify a new phenotypic state.


In this method, one isolates cells from a group of individuals with a cancer, infection, or cellular disorder, and determining the expression level of multiple genes; isolating cells from a group of individuals without said cancer, infection, or cellular disorder, and determining the expression level of said multiple genes; and identifying differential gene expression patterns that are statistically significant; and applying linear regression analysis to identify an expression profile of a gene group that is indicative of an individual having risk of said cancer, infection, or cellular disorder. One can use any screening technique to identify the expression profile. The method described herein is particularly useful because of the flexibility it provides in selecting beads that suit a specific profile.


Small Molecule Screening Methods

The present invention also provides methods to screen a library to identify molecules that change the profile of a cell to result in a desired result. The methods of multiplex target nucleic acid detection are particularly useful in methods for drug screening, such as those disclosed in U.S. Published Patent Application No. 2004/0009495, which is hereby incorporated herein in its entirety.


In this method, the effect of a molecule such as a small molecule protein, etc. on the expression profile signature is used to identify small molecules of interest. For example, one can screen for molecules which alter an expression signature associated with a biological state, such as cancer, such that the expression signature of a sample exposed to the small molecule is altered to more closely resemble the healthy state, i.e. a non-cancerous state. One would look for molecules that change the profile of at least 25% of the genes in the profiling to a profile of the healthy cell. In. other embodiments, one looks for molecules or groups of molecules that result in a change of the expression profile of at least 30$, at least 40%, at least 50%, at least 60%, at least 75%, at least 80%, at least 90% until one gets virtual identity with the desired state.


In another embodiment, one can also screen from molecules that cause an undesired condition by looking at how an expression profile is changes from the desired profile to an undesired profile. The present methods can also be used to monitor when a patient should get therapy, what therapy and the effect of that therapy. For example, in pharmacogenomics applications and methods, including the use of gene expression signatures to predict response to therapy. Such applications can be deployed on this platform providing a practical (i.e. low cost, high throughput) mRNA expression based tool to inform treatment decisions or enrollment in clinical trials.


The screening methods may be used for identifying therapeutic agents or validating the efficacy of agents. Agents of either known or unknown identity can be analyzed for their effects on gene expression in cells using methods such as those described herein. Briefly, purified populations of cells are exposed to the plurality of chemical compounds, preferably in an in vitro culture high throughput setting, and optionally after set periods of time, the entire cell population or a fraction thereof is removed and mRNA is harvested therefrom. Any target nucleic acids, such as mRNAs or microRNAs, are then analyzed for expression of marker genes using methods such as those described herein. Hybridization or other expression level readouts may be then compared to the marker gene data. These methods can be used for identifying novel agents, as well as confirming the identity of agents that are suspected of playing a role in regulation of cellular phenotype.


The methods of the invention allows for subjects to be screened and potentially characterized according to their ability to respond to a plurality of drugs. For instance, cells of a subject, e.g., cancer cells, may be removed and exposed to a plurality of putative therapeutic compounds, e.g., anti-cancer drugs, in a high throughput manner. The nucleic acids of the cells may then be screened using the methods described herein to determine whether marker genes indicative of a particular phenotype are expressed in the cells. These techniques can be used to optimize therapies for a particular subject. For instance, a particular anti-cancer therapy may be more effective against a particular cancer cell from a subject. This could be determined by analyzing the genes expressed in response to the plurality of compounds. Likewise a therapeutic agent with minimal side effects may be identified by comparing the genes expressed in the different cells with a marker gene set that is indicative of a phenotype not associated with a particular side effect. Additionally, this type of analysis can be used to identify subjects for less aggressive, more aggressive, and generally more tailored therapy to treat a disorder.


The methods are also useful for determining the effect of multiple drugs or groups of drugs on a cellular phenotype. For instance it is possible to perform combined chemical genomic screens to identify a synergistic or other combined effect arising from combinations of drugs. One set of drugs that induces a first set of marker genes indicative of a phenotype, while another drug induces an second set of marker genes. When the two sets of drugs are combined they may act to achieve a collective phenotypic change, exemplified by a third set of marker genes. Additionally the methods could be used to assess complex multidrug effects on cell types. For instance, some drugs when used in combination produce a combined toxic effect. It is possible to perform the screen to identify marker genes associated with the toxic phenotype. Existing compounds could be screened for there ability to “trip” the signal signature of toxic effect, by monitoring the marker genes associated with the toxic phenotype.


The methods may also be used to enhance therapeutic strategies. For instance, oncolytic therapy involves the use of viruses to selectively lyse cancer cells. A set of marker genes which identify a gene expression signature favorable to selective viral infection can be identified. Using this set of marker genes, drugs can be found which favor or enable selective viral infectivity in order to enhance the therapeutic benefit.


Thus, the methods of the invention are useful for screening multiple compounds. For instance, the methods are useful for screening libraries of molecules, FDA approved drugs, and any other sets of compounds. Preferably the methods are used to screen at least 20 or 30 compounds, and more preferably, at least 50 compounds. In some embodiments, the methods are used to screen more than 96, 384, or 1536 compounds at a time.


In one embodiment, the methods of the invention are useful for screening FDA approved drugs. An FDA approved drug is any drug which has been approved for use in humans by the FDA for any purpose. This is a particularly useful class of compounds to screen because it represents a set of compounds which are believed to be safe and therapeutic for at least one purpose. Thus, there is a high likelihood that these drugs will at least be safe and possibly be useful for other purposes. FDA approved drugs are also readily commercially available from a variety of sources.


A “library of molecules” as used herein is a series of molecules displayed such that the compounds can be identified in a screening assay. The library may be composed of molecules having common structural features which differ in the number or type of group attached to the main structure or may be completely random. Libraries are meant to include but are not limited to, for example, phage display libraries, peptides-on-plasmids libraries, polysome libraries, aptamer libraries, synthetic peptide libraries, synthetic small molecule libraries and chemical libraries. Methods for preparing libraries of molecules are well known in the art and many libraries are commercially available. Libraries of interest include synthetic organic combinatorial libraries. Libraries, such as, synthetic small molecule libraries and chemical libraries. The libraries can also comprise cyclic carbon or heterocyclic structure and/or aromatic or polyaromatic structures substituted with one or more functional groups. Libraries of interest also include peptide libraries, randomized oligonucleotide libraries, and the like. Degenerate peptide libraries can be readily prepared in solution, in immobilized form as bacterial flagella peptide display libraries or as phage display libraries. Peptide ligands can be selected from combinatorial libraries of peptides containing at least one amino acid. Libraries can be synthesized of peptoids and non-peptide synthetic moieties. Such libraries can further be synthesized which contain non-peptide synthetic moieties which are less subject to enzymatic degradation compared to their naturally-occurring counterparts.


Small molecule combinatorial libraries may also be generated. A combinatorial library of small organic compounds is a collection of closely related analogs that differ from each other in one or more points of diversity and are synthesized by organic techniques using multi-step processes. Combinatorial libraries include a vast number of small organic compounds. One type of combinatorial library is prepared by means of parallel synthesis methods to produce a compound array. A “compound array” as used herein is a collection of compounds identifiable by their spatial addresses in Cartesian coordinates and arranged such that each compound has a common molecular core and one or more variable structural diversity elements. The compounds in such a compound array are produced in parallel in separate reaction vessels, with each compound identified and tracked by its spatial address. Examples of parallel synthesis mixtures and parallel synthesis methods are provided in U.S. Pat. No. 5,712,171 issued Jan. 27, 1998.


One type of library, which is known as a phage display library, includes filamentous bacteriophage which present a library of peptides or proteins on their surface. Phage display libraries can be particularly effective in identifying compounds which induce a desired effect in cells. Briefly, one prepares a phage library (using e.g. m13, fd, lambda or T7 phage), displaying inserts from 4 to about 80 amino acid residues using conventional procedures. The inserts may represent, for example, a completely degenerate or biased array. DNA sequence analysis can be conducted to identify the sequences of the expressed polypeptides. The minimal linear peptide or amino acid sequence that have the desired effect on the cells can be determined. One can repeat the procedure using a biased library containing inserts containing part or all of the minimal linear portion plus one or more additional degenerate residues upstream or downstream thereof.


For certain embodiments of this invention, e.g., where phage display libraries are employed, a preferred vector is filamentous phage, though other vectors can be used. Vectors are meant to include, e.g., phage, viruses, plasmids, cosmids, or any other suitable vector known to those skilled in the art. The vector has a gene, native or foreign, the product of which is able to tolerate insertion of a foreign peptide. By gene is meant an intact gene or fragment thereof. Filamentous phage are single-stranded DNA phage having coat proteins. Preferably, the gene that the foreign nucleic acid molecule is inserted into is a coat protein gene of the filamentous phage. Examples of coat proteins are gene III or gene VIII coat proteins. Insertion of a foreign nucleic acid molecule or DNA into a coat protein gene results in the display of a foreign peptide on the surface of the phage. Examples of filamentous phage vectors which can be used in the libraries are fUSE vectors, e.g., fUSE1 fUSE2, fUSE3 and fUSE5, in which the insertion is just downstream of the pill signal peptide. Smith and Scott, Methods in Enzymology 217:228-257 (1993).


By recombinant vector it is meant a vector having a nucleic acid sequence which is not normally present in the vector. The foreign nucleic acid molecule or DNA is inserted into a gene present on the vector. Insertion of a foreign nucleic acid into a phage gene is meant to include insertion within the gene or immediately 5′ or 3′ to, respectively, the beginning or end of the gene, such that when expressed, a fusion gene product is made. The foreign nucleic acid molecule that is inserted includes, e.g., a synthetic nucleic acid molecule or a fragment of another nucleic acid molecule. The nucleic acid molecule encodes a displayed peptide sequence. A displayed peptide sequence is a peptide sequence that is on the surface of, e.g. a phage or virus, a cell, a spore, or an expressed gene product.


In certain embodiments, the libraries may have at least one constraint imposed upon their members. A constraint includes, e.g., a positive or negative charge, hydrophobicity, hydrophilicity, a cleavable bond and the necessary residues surrounding that bond, and combinations thereof. In certain embodiments, more than one constraint is present in each of the broader sequences of the library.


In addition to the basic libraries, the methods can also be used to screen combinations of drugs. Thus, more than one type of drug can be contacted with each cell.


In other aspects of the invention, the cells do not necessarily need to be contacted with any compounds. The cells may be analyzed for phenotypic status based on environmental condition, such as in vivo or in vitro conditions. It is possible to analyze the differentiation state or tumorigenic state of a cell using the marker gene sets or metagenes of the invention. Thus, a cell may be subjected to conditions in vitro or in vivo and then analyzed for differentiation status.


Additionally, it is possible to screen sets of compounds to identify particular dosages effective at producing a phenotypic state in a cell. For instance, one or more drugs could be contacted with the cells at a variety of dosages over a large range. When the level of marker genes expressed in each of the cells is assessed, it will be possible to identify an optimum dosage for producing a particular phenotypic state of the cell. Additionally, if some markers are associated with the production of undesirable side effects, such as production of cytotoxic factors, then an optimum drug, combination of drug or dosage of drug can be identified using the methods of the invention.


The methods of the invention are useful for assaying the effect of compounds on cells or for analyzing the phenotypic status of a cell. The methods may be used on any type of cell known in the art. For instance the cell may be a cultured cell line or a cell isolated from a subject (i.e. in vivo cell population). The cell may have any phenotypic property, status or trait. For instance, the cell may be a normal cell, a cancer cell, a genetically altered cell, etc.


Cancers include, but are not limited to, basal cell carcinoma, biliary tract cancer; bladder cancer; bone cancer; brain and CNS cancer; breast cancer; cervical cancer; choriocarcinoma; colon and rectum cancer; connective tissue cancer; cancer of the digestive system; endometrial cancer; esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer; intra-epithelial neoplasm; kidney cancer; larynx cancer; leukemia; liver cancer; lung cancer (e.g., small cell and non-small cell); lymphoma including Hodgkin's and non-Hodgkin's lymphoma; melanoma; myeloma; neuroblastoma; oral cavity cancer (e.g., lip, tongue, mouth, and pharynx); ovarian cancer; pancreatic cancer; prostate cancer; retinoblastoma; rhabdomyosarcoma; rectal cancer; renal cancer; cancer of the respiratory system; sarcoma; skin cancer; stomach cancer; testicular cancer; thyroid cancer; uterine cancer; cancer of the urinary system, as well as other carcinomas and sarcomas. Some cancer cells are metastatic cancer cells.


“Normal cells” as used herein refers any cell, including but not limited to mammalian, bacterial, plant cells, that is a non-cancer cell, non-diseased, or a non-genetically engineered cell. Mammalian cells include but are not limited to mesenchymal, parenchymal, neuronal, endothelial, and epithelial cells.


A “genetically altered cell” as used herein refers to a cell which has been transformed with an exogenous nucleic acid.


Kits

The present invention further concerns kits which contain, in separate packaging or compartments, the reagents such as adaptors and primers required for practicing the detection methods of the invention. Such kits typically include at least a population of detectable bead sets and preferably several different primers to generate a population of detectably labeled target molecules for detection. Such kits may optionally include the reagents required for performing ligation reactions, such as DNA or RNA ligases, PCR reactions, such as DNA polymerase, DNA polymerase cofactors, and deoxyribonucleotide-5′-triphosphates. Optionally, the kit may also include various polynucleotide molecules, restriction endonucleases, reverse transcriptases, terminal transferases, various buffers and reagents. Optimal amounts of reagents to be used in a given reaction can be readily determined by the skilled artisan having the benefit of the current disclosure.


The kits may also include reagents necessary for performing positive and negative control reactions. Preferably the kits include several target nucleic acids, in separate vials or tubes, or preferably, a set of combined standards comprising at least two different standards in the same vial or tube with known amount of dried standard nucleic acid(s) with instructions to dilute the sample in a suitable buffer, such as PBS, to a known concentration for use in the quantification reaction. Alternatively, the standard is pre-diluted at a known concentration in a suitable buffer, such as PBS. Suitable buffer can be either suitable for both for storing nucleic acids and for, e.g., PCR or direct enhancement reactions to enhance the difference between the standard and a corresponding target nucleic acid as described above, or the buffer is just for storing the sample and a separate dilution buffer is provided which is more suitable for the consequent PCR, enhancement and quantification reactions. In a preferred embodiment, all the standard nucleic acids are combined in one tube or vial in a buffer, so that only one standard mix can be added to a nucleic acid sample containing the target nucleic acid.


The kit also preferably comprises a manual explaining the reaction conditions and the measurement of the amount of target nucleic acid(s) using the standard nucleic acid(s) or a mixture of them and gives detailed concentrations of all the standards and of the type of buffer. Kits contemplated by the invention include, but are not limited to kits for determining the amount of target nucleic acids in a biological sample, and kits determining the amount of one or more transcripts that is expected to be increased or decreased after administration of a medicament or a drug, or as a result of a disease condition such as cancer.


The present invention also provides kits specific for the detection of particular gene expression signatures, as described above. For example, a kit containing target specific bead sets for detecting microRNA for use in determining microRNA expression profiles in samples, including for example diagnostic screening kits.


EXAMPLES
Example 1
A Bead-Based Gene Expression Signature Analysis Method
Materials and Methods
Cell Culture and RNA Isolation:

HL60 (human promyelocytic leukemia) cells were cultured in RPMI™ supplemented with 10% fetal bovine serum and antibiotics. Cells were treated with 1 μM tretinoin (all-trans-retinoic acid; SIGMA-ALDRICH™) in dimethylsulfoxide (DMSO; final concentration 0.1%) or DMSO alone for five days. Total RNA was isolated from bulk cultures with TRIzol Reagent (INVITROGEN™) in accordance with the manufacturer's directions. Cells cultured in microtiter plates were treated with 200 nM tretinoin or DMSO for two days and prepared for mRNA capture by the addition of Lysis Buffer (RNAture).


Microarrays:

Total RNA was amplified and labeled using a modified Eberwine method, the resulting cRNA hybridized to Affymetrix GeneChip HG-U133A oligonucleotide microarrays, and the arrays scanned in accordance with the manufacturer's directions. Intensity values were scaled such that the overall fluorescence intensity of each microarray was equivalent. Expression values below an arbitrary baseline (20) were set to 20. These data are provided as Tables 5-8.


Gene Selection:

The 9466 probe-sets reporting above baseline were first divided into up- and down-regulated groups by differences in mean expression levels between tretinoin and vehicle treatments. Each of these groups was further divided into three sets of approximately equal size on the basis of the lower mean expression level. The selected basal expression categories were 20-60 (low), 60-125 (moderate) and >125 (high). Probe-sets reporting small (1.5-2.5×), medium (3-4.5×) or large (>5×) changes in mean expression level within each basal expression category were extracted and ranked by signal to noise ratio. The top five probes mapping to unique RefSeq identifiers according to NetAffx in each of the eighteen categories were selected, populating nine sets of ten genes (Table 2).


Probes and Primers:

Upstream LMA probes were composed (5′ to 3′) of the complement of the T7 primer site (TAA TAC GAC TCA CTA TAG GG) (SEQ ID NO: 876), a 24 nt barcode, and a 20 nt gene-specific sequence. Downstream LMA probes were 5′-phosphorylated and contained a 20 nt gene-specific sequence and the T3 primer site (TCC CTT TAG TGA GGG TTA AT) (SEQ ID NO: 877). Barcode sequences were developed by Tm Bioscience and detailed in the FlexMAP Microspheres Product Information Sheet (LUMINEX™). Gene-specific fragments of LMA probes were designed against the Oligator Human Genome RefSet keyed by RefSeq identifier. A 40 nt region was manually selected from within these 70 nt sequences to yield two fragments of equal length with roughly similar base composition and juxtaposing nucleotides being C-G or G-C, where possible. Probe sequences are provided as Table 3. Capture probes contained the complement of the barcode sequences and had 5′-amino modification and a C12 linker. The T7 primer (5′-TAA TAC GAC TCA CTA TAG GG-3′) (SEQ ID NO: 876) was 5′-biotinylated. The T3 primer has the sequence 5′-ATT AAC CCT CAC TAA AGG GA-3′ (SEQ ID NO: 878). Oligonucleotides (all with standard desalting) were from Integrated DNA Technologies.


Beads and Bead Coupling:

xMAP Multi-Analyte COOH Microspheres (LUMINEX™) were coupled to capture probes in a semi-automated microtiter plate format. Approximately 2.5×106 microspheres were dispensed to the wells of a V-bottomed microtiter plate, pelleted by centrifugation at 1800 g for 3 min, and the supernatant removed. Beads were resuspended in 25 μl of binding buffer [0.1M 2-(N-morpholino)ethansulfonic acid, pH 4.5] by sonication and pipeting, and 100 pmol of capture probe added. Two and a half μl of a freshly prepared 10 mg/ml aqueous solution of 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (Pierce) was added, and the plate incubated at room temperature in the dark for 30 min. This addition and incubation step was repeated, and 180 μl 0.02% Tween-20 added with mixing. Beads were pelleted by centrifugation, as before, and washed sequentially in 180 μl 0.1% SDS and 180 μl TE (pH 8.0) with intervening spins. Coupled microspheres were resuspended in 50 μl TE (pH 8.0) and stored in the dark at 4° for up to one month. Bead mixes were freshly prepared and contained ˜1.5×105/ml of each microsphere in 1.5×TMAC buffer [4.5 M tetramethylammonium chloride; 0.15% N-lauryl sarcosine; 75 mM tris-HCl, pH 8.0; 6 mM EDTA, pH 8.0]. The mapping of bead number to capture probe sequence is provided as Table 4.


Ligation-Mediated Amplification (LMA):

Transcripts were captured in oligo-dT coated 384 well plates (GenePlateHT; RNAture) from total RNA (500 ng) in Lysis Buffer (RNAture) or whole cell lysates (20 μl). Plates were covered and centrifuged at 500 g for 1 min, and incubated at room temperature for 1 h. Unbound material was removed by inverting the plate onto an absorbent towel and spinning as before. Five μl of an M-MLV reverse transcriptase reaction mix (Promega) containing 125 μM of each dNTP (INVITROGEN™) was added. The plate was covered, spun as before, and incubated at 37° for 90 min. Wells were emptied by centrifugation, as before. Ten fmol of each probe was added in 1×Taq Ligase Buffer (NEW ENGLAND BIOLABS™) (5 μl), the plate covered, spun as before, heated at 95° for 2 min and maintained at 50° for 6 h. Unannealed probes were removed by centrifugation, as before. Five μl of 1×Taq Ligase Buffer containing 2.5 U Taq DNA ligase (NEW ENGLAND BIOLABS™) was added, the plate covered, spun as before and incubated at 45° for 1 h followed by 65° for 10 min. Wells were emptied by centrifugation, as before. Fifteen μl of a HotStarTaq DNA Polymerase mix (QIAGEN™) containing 16 μM of each dNTP (INVITROGEN™) and 100 nM of T3 primer and biotinylated-T7 primer was added. The plate was covered, spun as before, and PCR performed in a THERMO ELECTRON™ MBS 384 Satellite Thermal Cycler (initial denaturation of 92° for 9 min; 92° for 30 s, 60° for 30 s, 72° for 30 s for 39 cycles; final extension at 72° for 5 min).


Hybridization and Detection:

Fifteen μl of LMA reaction product was mixed with 5 μl TE (pH 8.0) and 30 μl of bead mix (˜4500 of each microsphere) in the wells of a Thermowell P microtiter plate (Costar). The plate was covered and incubated at 95° for 2 min and maintained at 45° for 60 min. Twenty μl of a reporter mix containing 10 ng/μl streptavidin R-phycoerythrin conjugate (MOLECULAR PROBES™) in 1×TMAC buffer [3 M tetramethylammonium chloride; 0.1% N-lauryl sarcosine; 50 mM tris-HCl, pH 8.0; 4 mM EDTA, pH 8.0] was added with mixing and incubation continued at 45° for 5 min. Beads were analyzed with a LUMINEX™ 100 instrument. Sample volume was set at 50 μl and flow rate was 60 μl/min. A minimum of 100 events were recorded for each bead set and median fluorescence intensities (MFI) computed. Expression values for each transcript were corrected for background signal by subtracting the MFI of corresponding bead sets from blank (ie TE only) wells. Values below an arbitrary baseline (5) were set to 5, and all were normalized against an internal control feature (GAPDH-3′).


k-Nearest-Neighbor (KNN) Classifier:


The IVT-GeneChip data from long duration high dose tretinoin or vehicle treatments were used to train a series of KNN classifiers in the spaces of the full ninety member gene set and each of the nine ten member gene categories. These were applied to the corresponding data from the eighty-eight LMA-FlexMAP test samples whose internal reference feature (GAPDH-3′) was within two standard deviations from the mean. To permit the cross-platform analysis, both the train and test data sets were normalized so that each gene had a mean of zero and a standard deviation of one. The KNN algorithm classifies a sample by assigning it the label most frequently represented among the k nearest samples. In this case k was set to 3. The votes of the nearest neighbors were weighted by one minus the cosine distance. This analysis was performed with the GenePattern software package at world wide web address broad “dot” mit “dot” edu under cancer/software/genepattern.


Results

Measurement of seventy and eight-one transcripts has been shown to outperform established clinical and histologic parameters in disease outcome prediction for breast cancer (van de Vijver et al., 2002) and follicular lymphoma (Glas et al., 2005), respectively. Signatures of similar size and comparable prognostic power are sure to follow for a wide variety of diseases. A five member gene expression signature has also been used successfully in a cell-based small molecule screen for agents inducing the differentiation of human leukemia cells (Stegmaier et al., 2004). The absence of reliance upon prior target identification makes gene expression signature screening a powerful new strategy in drug discovery. However, immediate implementation of these and other important medical and pharmaceutical applications of genomics research is now blocked simply by the absence of a cost-effective gene expression profiling solution tailored specifically for the analysis of any feature set of up to one hundred transcripts.


High-density oligonucleotide microarrays (Lockhart et al., 1996) coupled with RNA amplification and labeling based on in vitro transcription (Van Gelder et al., 1990) provide the solution of choice for unbiased transcriptome analysis. However, the number and complexity of manipulations required, together with the cost of reagents, instrumentation, and the arrays themselves preclude its use for routine clinical and high-throughput applications. Fluorescence mediated real-time RT-PCR integrates amplification, labeling and detection Gibson et al., 1996; Morrison et al., 1998; Tyagi and Fr, 1996) and is ideal for quantitative assessment of individual transcripts. But the absence of a stable multiplex implementation makes this approach equally unsuitable for signature analysis. Conventional multiplex RT-PCR is simple and cheap but suffers from low amplification fidelity, not to mention the absence of a convenient way to detect, identify and quantify multiple amplicons.


Ligation-mediated amplification (LMA), in which two oligonucleotide probes are annealed immediately adjacent to each other on a complementary target DNA or RNA molecule and fused together by a DNA ligase (Landegren et al., 1988; Nilsson et al., 2000) to yield an synthetic amplification template (Hsuih et al., 1996), provides high targeting specificity and, by incorporating universal primer recognition sequences in fixed length ligation products, maintains target representation during multiplex PCR. Further, the ability to include distinct sequence addresses in one of the paired probes allows each of the resulting amplicons to be uniquely identified. Two gene expression profiling solutions based upon these principles—known as RASL (Yeakley et al., 2002) and RT-MLPA (Eldering et al., 2003)—each allowing the simultaneous analysis of around fifty transcripts, have been described.


The LUMINEX™ xMAP technology platform is composed of a basic auto-injecting bench-top two laser flow cytometer and a panel of one hundred sets of carboxylated polystyrene microspheres, each set being impregnated with different proportions of two fluorophores, allowing each bead to be classified on its passage through the flow cell world wide web address luminexcorp “dot” com. Furnishing bead sets with so-called molecular barcodes (Shoemaker et al., 1996)—short unique DNA sequences with uniform hybridization characteristics—delivers an optimized universal detection solution for amplicons designed to contain complementary sequences (Iannone et al., 2000). The simplicity, flexibility, throughput and modest capital and operating costs of the LUMINEX™ system compares very favorably with the self-assembled bead fiber-optic bundle array and capillary electophoresis detection pieces intrinsic to the RASL and RT-RLPA procedures (Eldering et al., 2003; Yeakley et al., 2002). This motivated evaluation of an integrated LMA-FlexMAP gene expression signature analysis solution (FIG. 1). A detailed description of our method is also available online at world wide web address broad “dot” mit “dot” edu/cancer.


A ninety member gene expression signature was derived from an unbiased genome-wide transcriptional analysis of a cell culture model of differentiation. Total RNA was isolated from HL60 cells following treatment with tretinoin or vehicle (DMSO) alone, amplified and labeled by in vitro transcription (IVT), and target hybridized to Affymetrix GeneChip microarrays. Features reporting above threshold were binned into three groups of equal size on the basis of expression level. Ten transcripts exhibiting low, moderate and high differential expression between the two conditions were then selected from each bin, populating a matrix of nine classes (Table 2) representing the diversity of expression characteristics.


Probe pairs incorporating unique FlexMAP barcode sequences were designed against each of the ninety transcripts (Table 3) and ten aliquots of the two original RNA samples were analyzed in this space by LMA-FlexMAP. Following subtraction of background signals, thresholding and normalization against an internal reference control feature (ie GAPDH), 98.5% of data points fell within two fold of their corresponding means (FIG. 2). This compares well with a similar assessment of variability for RASL (Yeakley et al., 2002) and demonstrates the high reproducibility of the method. Most of the variability was accounted for by a single feature (13/38 failures) and two wells (17/38).


There was a poor overall correlation between the mean expression levels reported by the two platforms (correlation coefficient=0.714). LMA-FlexMAP appears to overestimate transcript levels relative to IVT-GeneChip but to a degree inversely related to absolute level (FIG. 3). Estimates of the extent of differential expression reported by our solution were correspondingly less across the entire feature space, but there was broad qualitative agreement in this parameter even in the low basal and low differential expression classes (FIG. 4). Five probe pairs produced gross errors, in line with our typical first-pass probe failure rate of 5%. One failure is attributable to ambiguous annotation of the microarray and another to high background signal. All failure modes can generally be remedied by probe redesign. Irrespective, the overall correlation of log ratios between the platforms was 0.924, somewhat higher than that reported for a similar comparison between oligonucleotide and cDNA microarrays (Yuen et al., 2002). We repeated this entire LMA-FlexMAP analysis on two separate occasions with similar results. The coefficient of variation of mean expression level for each of the ninety features across all three independent evaluations had a mean of 13.8% (maximum of 49.8%), indicating high stability of the platform.


Next, we applied our method to an idealized gene expression signature analysis problem, requiring the ability to diagnose the presence of a predefined biological state in each of a large number of samples. Data were collected for our ninety gene feature set from ninety-four microtiter well cultures of HL60 cells each treated with either tretinoin or vehicle alone. Drug concentration and treatment duration were reduced by 80% and 60%, respectively, to model the sub-maximal signatures encountered in a small molecule screen. Process time from the additional of cell lysis buffer to data delivery was sixteen hours, and overall unit cost was approximately $2. Six wells (6.4%) had internal control features signals more than two standard deviations from the mean and were discarded. This throughput and overall drop out rate is typical.


Although the feature set was designed to represent the diversity of expression characteristics rather than to contain the transcripts most highly correlated with the distinction, a k-nearest-neighbor (KNN) classifier (Cover and Hart, 1967) trained on the original high dose long duration IVT-GeneChip data delivered 100% classification accuracy for these low dose short duration samples in the full ninety gene feature space. Classifiers built in the space of each of the nine ten member gene categories had error rates between 14.8% (medium level, low differential expression) and 0% (high level, high differential expression) (Table 1). These results demonstrate both the successful deployment of our solution and the advantage of a method with higher level multiplexing capability.


Our solution underestimates changes in expression level relative to the industry-standard high-end state-of-the-art gene expression profiling platform. However, its impressive classification accuracy in an idealized application indicates that performance can easily be sacrificed for throughput in pursuit of a practical gene expression signature analysis solution, and bodes well for the rapid deployment of any legacy signature with minimal or even no optimization. The assessments reported here also suggest that new signatures designed specifically for this platform should exploit the full content capacity and avoid transcripts expressed at low or moderate levels with low degrees of differential expression. With its simplicity, flexibility, throughput and cost-effectiveness the LMA-FlexMAP method has been a transformative tool in our laboratories whose exploitation for biological discovery shall be reported elsewhere.


Example 2
A Bead-Based microRNA Expression Profiling Method
Materials and Methods
Samples

Details of sample information are available in Table 9. Total RNAs were prepared from tissues or cell lines using TRIzol (INVITROGEN™, Carlsbad, Calif.), as described (Ramaswamy et al., 2001), and in compliance with IRB protocols. Leukemia bone marrow mononuclear cells were collected from patients treated at ST. JUDE CHILDREN'S RESEARCH HOSPITAL™ and at DANA-FARBER CANCER INSTITUTE™ and their immunophenotype and genotype determined as previously described (Ferrando et al., 2002; Yeoh et al., 2002). Normal mouse lung and mouse lung cancer samples were collected from KRasLA1 mice, and genotyped as described (Johnson et al., 2001). Lungs from four- to five-month old mice were inflated with phosphate-buffered saline prior to removal. Individual lung tumors and normal lungs were dissected and immediately frozen on dry ice before RNA preparation. HL-60 cells were plated at 1.5×105 cell/ml and induced to differentiate by 1 μM all-trans retinoic acid (SIGMA™, St. Louis, Mo.; in ethanol). Cells were harvested after 1, 3 and 5 days. Culturing conditions for other cells are detailed in Example 3.


miRNA Labelling


Target preparation from total RNA follows the described procedure (Miska et al., 2004), with modifications. Briefly, two synthetic pre-labeling-control RNA oligonucleotides (5′-pCAGUCAGUCAGUCAGUCAGUCAG-3′ (Seq ID No: 872), and 5′-pGACCUCCAUGUAAACGUACAA-3′ (Seq ID No: 873), DHARMACON™, Lafayette, Colo.) were used to control for target preparation efficiency. They were each spiked at 3 fmoles per μg total RNA. Small RNAs (18- to 26-nucleotide) were recovered from 1 to 10 μg total RNA through denaturing polyacrylamide gel purification. Small RNAs were adaptor-ligated sequentially on the 3′-end and 5′-end using T4 RNA ligase (AMERSHAM BIOSCIENCES™, Piscataway, N.J.). After reverse-transcription using adaptor-specific primer, products were PCR amplified (95° C. 40 sec, 50° C. 30 sec, 72° C. 30 sec, 18 cycles for 10 μg starting total RNA; 3′-primer: 5′-tactggaattcgcggtta-3′ (Seq ID No: 874), 5′ primer: 5′-biotin-caacggaattcctcactaaa-3′ (Seq ID No: 875), IDT, Coralville, Iowa). For side-by-side comparison of the bead-detection and the glass-microarray, a 5′-Alexa-532-modified primer was used for compatibility with the glass-microarray. PCR products were precipitated and dissolved in 66 μl TE buffer (10 mM TrisHCl, pH8.0, 1 mM EDTA) containing two biotinylated post-labeling-control oligonucleotides (100 fmoles of FVR506, and 25 fmoles PTG20210, see Table 10).


Bead-Based Detection

miRNA capture probes were 5′-amino-modified oligonucleotides with a 6-carbon linker (IDT). Capture probes for miRNAs and controls were divided into three sets (see Table 10), and each sample was profiled in 3 assays on these three probe sets separately. Probes were conjugated to carboxylated xMAP beads (LUMINEX™ Corporation, Austin, Tex.) in 96-well plates, following the manufacturer's protocol. For each probe set, 3 μl of every probe-bead conjugate were mixed into 1 ml of 1.5×TMAC (4.5 M tetramethylammonium chloride, 0.15% sarkosyl, 75 mM Tris-HCl, pH 8.0, 6 mM EDTA). Samples were hybridized in a 96-well plate, with two mock PCR samples (using water as template) in each plate for background control. Hybridization was carried out with 33 μl of the bead mixture and 15 μl of labelled material, at 50° C. overnight. Beads were spun down, resuspended in 1×TMAC containing 10 μg/ml streptavidin-phycoerythrin (MOLECULAR PROBES™, Eugene, Oreg.) and incubated at 50° C. for 10 minutes before data acquisition on a LUMINEX™ 100IS machine. Median fluorescence intensity values were measured.


Computational Analyses

Profiling data were first scaled according to the post-labeling-controls and then the pre-labeling-controls, in order to normalize readings from different probe/bead sets for the same sample, and to normalize for the labeling efficiency, as detailed in Materials and Methods of Example 3. Data were thresholded at 32 and log2-transformed. Hierarchical clustering was performed with average linkage and Pearson correlation. Prior to clustering, data were filtered to eliminate genes with expression lower than 7.25 (on log2 scale) in all samples. Next, all features were centered and normalized to a mean of 0 and a standard deviation of 1. k-Nearest-Neighbor classification of normal vs. tumor was performed with k=3 in the selected feature space using Euclidean distance measure. Note that different metrics were used for clustering and normal/tumor classification. Features were selected for the distinction between all normal samples vs. all tumors (for colon, kidney, prostate, uterus, lung and breast; P<0.05 after Bonferroni-correction). P values were calculated using a variance-fixed t-test with a minimal standard deviation of 0.75, after confounding the tissue types. Multi-class predictions of poorly differentiated tumors were performed using the probabilistic neural network algorithm, a Gaussian-weighted nearest neighbor method. For each test sample, the tissue type that had the highest probability in multiple one-tissue-versus-the-rest predictions was assigned. Feature number and the Gaussian width were optimized based on leave-one-out cross-validations on the training data set. Features were selected based on the variance-fixed t-test score, requiring equal number of up- and down-regulated features. Distances were based on the cosine in the selected feature space.


Expression Data

miRNA expression data have been submitted to GEO at world wide web address at ncbi “dot” nih “dot” gov/geo, with a series accession number of GSE2564. mRNA expression data were published previously (Ramaswamy et al., 2001), and are available together with miRNA expression data at world wide web address broad “dot” mit “dot” edu under cancer/pub.


Results and Discussion

Much progress has been made over the past decade in developing a molecular taxonomy of cancer (see review Chung et al., 2002). In particular, it has become clear that among the ˜22,000 protein-coding transcripts are mRNAs capable of classifying a wide variety of human cancers (Ramaswamy et al., 2001). Recently, hundreds of small, non-coding miRNAs have been discovered (see review Bartel, 2004). The first identified miRNAs, the products of the C. elegans genes lin-4 and let-7, play important roles in controlling developmental timing and probably act by regulating mRNA translation (Ambros and Horvitz, 1984; Lee et al., 1993; Reinhart et al., 200). When lin-4 or let-7 is inactivated, specific epithelial cells undergo additional cell divisions as opposed to their normal differentiation. Since abnormal proliferation is a hallmark of human cancers, it seemed possible that miRNA expression patterns might denote the malignant state. Furthermore, altered expression of a few miRNAs has been found in some tumor types (Calin et al., 2002; E is et al., 2005; Johnson et al., 2005; Michael et al., 2003). However, the potential for miRNA expression to inform cancer diagnosis has not been systematically explored.


To determine the expression pattern of all known miRNAs, we first needed to develop an accurate and inexpensive profiling method. This goal is challenging, because of the miRNAs' short size (around 21 nucleotides) and the sequence similarity of members of miRNA families. Glass-slide microarrays have been used for miRNA profiling (Babak et al., 2004; Barad et al., 2004; Liu et al., 2004; Miska et al., 2004; Nelson et al., 2004; Thomson et al., 2004; Sun et al., 2004), but cross-hybridization of related miRNAs has been problematic. We therefore developed a bead-based profiling method. Oligonucleotide-capture probes complementary to miRNAs of interest were coupled to carboxylated 5-micron polystyrene beads impregnated with variable mixtures of two fluorescent dyes that yield up to 100 colors, each representing a miRNA. Following adaptor ligations utilizing both the 5′-phosphate and the 3′-hydroxyl groups of miRNAs (Miska et al., 2004), reverse-transcribed miRNAs were PCR-amplified using a common biotinylated primer, hybridized to the capture beads, and stained with streptavidin-phycoerythrin. The beads were then analyzed on a flow cytometer capable of measuring bead color (denoting miRNA identity) and phycoerythrin intensity (denoting miRNA abundance) (FIG. 5B).


Bead-based hybridization has the theoretical advantage that it may more closely approximate hybridization in solution and as such the specificity might be expected to be superior to glass microarray hybridization. Indeed, a spiking experiment involving 11 related sequences comparing bead-based detection to microarray-based detection demonstrated increased specificity of beads compared to microarrays, even for single base-pair mismatches (FIG. 6a, 6b). In addition, the bead method exhibited linear detection over two logs of expression (Example 3). Eight miRNAs were validated by northern blotting in seven cell lines. In all cases, bead-based detection paralleled the northern data (FIG. 6c). These results demonstrate that bead-based miRNA detection is feasible, having the attractive properties of improved accuracy, high speed and low cost. The bead-based detection platform also provides flexibility in that additional miRNA capture beads can be added to the mixture, thereby detecting newly discovered miRNAs.


We then set out to determine the expression pattern of all known miRNAs across a large panel of samples representing a diversity of human tissues and tumor types. While miRNA expression has been previously explored in small sets of tissues (Babak et al., 2004; Barad et al., 2004; Liu et al., 2004; Nelson et al., 2004; Thomson et al., 2004; Sun et al., 2004) or isolated cell types (e.g. chronic lymphocytic leukemia in Calin et al., 2001), the extent of differential expression of miRNAs across cancers has not been previously determined. Indeed, one might not have expected that miRNA expression patterns would be informative with respect to cancer diagnosis, because of the relatively small number of miRNAs encoded in the genome. Remarkably, we observed differential expression of nearly all miRNAs across cancer types (FIG. 7a). Moreover, hierarchical clustering of the samples in the space of miRNAs recapitulated the developmental origin of the tissues. For example, samples of epithelial origin fell on a single branch of the dendrogram, whereas the other major branch was predominantly populated with hematopoietic malignancies.


Furthermore, the miRNAs partitioned tumors within a single lineage. For example, we examined the miRNA profiles of 73 bone marrow samples obtained from patients with acute lymphoblastic leukemia (ALL). As shown in FIG. 7b, hierarchical clustering revealed non-random partitioning of the samples into three major branches: one containing all 5 t(9;22) BCR/ABL positive ALLs and 10 of 11 t(12;21) TEL/AML1 cases, a second branch containing 15/19 T-cell ALLs, and a third containing all but one of the samples with MLL gene rearrangement. These experiments demonstrate that even within a single developmental lineage, distinct patterns of miRNA expression reflecting mechanism of transformation are observable and further support the notion that miRNA expression patterns encode the developmental history of human cancers.


Among the epithelial samples, those of the gastrointestinal tract were of particular interest. Samples from colon, liver, pancreas and stomach all clustered together (FIG. 7a), reflecting their common derivation from tissues of embryonic endoderm. That is, the dominant structure in the space of miRNAs was one of developmental history. In contrast, when these samples were profiled in the space of ˜16,000 mRNAs, the coherence of gut-derived samples was not recovered (FIG. 7c). This observation may result from the large amount of noise and unrelated signals that are embedded in the high dimensional mRNA data. Whether or not the miRNAs that are highly expressed in the gut-associated cluster (miR-192, miR-194, miR-215) play a functional role in the specification of gut development or gut-derived tumors remains to be investigated.


Having determined that miRNA expression distinguishes tumors of different developmental origin, we next asked whether miRNAs could be used to distinguish tumors from normal tissues. We previously reported that there exist no robust mRNA markers that are uniformly differentially expressed across tumors and normal tissues of different lineages (Ramaswamy et al., 2001). It was therefore striking to observe that despite the fact that some miRNAs are upregulated or unchanged, the majority of the miRNAs (129/217, p<0.05, after correction for multiple hypothesis testing) had lower expression in tumors compared to normal tissues, irrespective of cell type (FIG. 8a). Importantly, the cancer cell lines also showed low miRNA expression relative to normal tissues (FIG. 9).


To exclude any possibility that the differential miRNA expression might be related to differences in collection of tumor vs. normal samples, we studied a mouse model of KRas-induced lung cancer (Johnson et al., 2001). We isolated miRNAs from normal lung or lung adenocarcinomas from individual mice, thereby precluding any differences in collection procedure. Notably, because of miRNA sequence conservation between human and mouse, the same miRNA capture beads could be used to profile the murine samples. As shown in FIG. 8b, the same tumor vs. normal distinction is seen in the mouse. Accordingly, a tumor-normal classifier built on human samples had 100% accuracy when tested in the mouse. Taken together, these studies indicate that miRNAs are unexpectedly rich in information content with respect to cancer.


Our observation that miRNA expression appeared globally higher in normal tissues compared to tumors led to the hypothesis that global miRNA expression reflects the state of cellular differentiation. To test this hypothesis, we explored an experimental model in which we treated the myeloid leukemia cell line HL-60 with all-trans retinoic acid, a potent inducer of neutrophilic differentiation (Stegmaier et al., 2004). As predicted, miRNA profiling demonstrated the induction of many miRNAs coincident with differentiation (FIG. 8c). In primary human hematopoietic progenitor cells undergoing erythroid differentiation in vitro, we observed a similar increase in miRNA expression occurring at a stage in differentiation when the cells continued to proliferate (see Example 3). These experiments support the hypothesis that global changes in miRNA expression are associated with differentiation, the abrogation of which is a hallmark of all human cancers. These findings are also consistent with the recent observation that mouse embryonic stem cells lacking Dicer, an enzyme required for miRNA maturation, fail to differentiate normally (Kanellopoulou et al., 2005).


We next turned to a more challenging diagnostic distinction: that of tumors of histologically uncertain cellular origin. It is estimated that 2%-4% of all cancer diagnoses represent cancers of unknown origin or diagnostic uncertainty (see review Pavlidis et al., 2003). To address this, we analyzed 17 poorly differentiated tumors whose histological appearance alone was non-diagnostic, but whose clinical diagnosis was established by anatomical context, either directly (e.g. a primary tumor arising in the colon) or indirectly (a metastasis of a previously identified primary). A training set of 68 more-differentiated tumors representing 11 tumor types for which both mRNA and miRNA profiles were available was used to generate a classifier. This classifier was then used without modification to classify the 17 poorly-differentiated test samples. As a group, poorly differentiated tumors had lower global levels of miRNA expression compared to the more-differentiated training set samples (FIG. 10), consistent with the notion that miRNA expression is closely linked to differentiation. Despite this overall low level of miRNA expression, the miRNA-based classifier established the correct diagnosis of the poorly differentiated samples far beyond what would be expected by chance for an 11-class classifier (12/17 correct; p<5×10−11). In contrast, the mRNA-based classifier was highly inaccurate (1/17 correct; p=0.47), as we previously reported (Ramaswamy et al., 2001).


The experiments reported here demonstrate the feasibility and utility of monitoring the expression of miRNAs in human cancer. The unexpected findings are the extraordinary level of diversity of miRNA expression across cancers and the large amount of diagnostic information encoded in a relatively small number of miRNAs. The implication is that, unlike with mRNA expression, a modest number of miRNAs (˜200 in total) might be sufficient to classify human cancers. Moreover, the bead-based miRNA detection method has the attractive property of being not only accurate and specific but also being easily implementable in a routine clinical setting. In addition, unlike mRNAs, miRNAs remain largely intact in routinely collected, formalin-fixed paraffin-embedded clinical tissues (Nelson et al., 2004). More work is required to establish the clinical utility of miRNA expression in cancer diagnosis, but the work described here indicates that miRNA profiling has unexpected diagnostic potential. The mechanism by which miRNAs are under-expressed in cancer remains unknown. We did not observe substantive decreases of mRNAs encoding components of the miRNA processing machinery (Dicer, Drosha, Argonaute2, DGCR8 (Cullen, 2004), Example 3), but clearly other mechanisms of regulating miRNAs are possible.


The findings reported here are consistent with the hypothesis that in mammals, as in C. elegans, miRNAs can function to prevent cell division and drive terminal differentiation. An implication of this hypothesis is that down-regulation of some miRNAs might play a causal role in the generation or maintenance of tumors. Epithelial cells affected in C. elegans lin-4 and let-7 miRNA mutants generate a stem-cell-like lineage, dividing to produce daughters that, like themselves, divide rather than differentiate (Ambros and Horvitz, 1984; Reinhart et al., 2000). We speculate that aberrant miRNA expression might similarly contribute to the generation or maintenance of “cancer stem cells” recently proposed to be responsible for cancerous growth in both leukemias and solid tumors (Al-Hajj et al., 2003; Lapidot et al., 1994; Reya et al., 2001; Singh et al., 2004).


Example 3
MicroRNA Expression Profiles Classify Human Cancers

Additional information about the paper and a frequently-asked-questions (FAQ) page are available at ______.


Materials and Methods
Cell Culture

HEL, TF-1, PC-3, MCF-7, HL-60, SKMEL-5, 293 and K562 cells were obtained from the AMERICAN TYPE CULTURE COLLECTION™ (ATCC™, Manassas, Va.), and cultured according to ATCC™ instructions. All T-cell ALL cell lines were cultured in RPMI™ medium supplemented with 10% fetal bovine serum. CCRF-CEM and LOUCY cells were obtained from ATCC™. ALL-SIL, HPB-ALL, PEER, TALL1, P12-ICHIKAWA cells were obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). SUPT11 cells were a kind gift of Dr. Michael Cleary at Stanford University.


Umbilical cord blood was obtained under an IRB approved protocol from the Brigham and Women's Hospital. Light-density mononuclear cells were separated by Ficoll-Hypaque centrifugation, and CD34+ cells (85-90% purity) were enriched using Midi-MACS columns (Miltenyi Biotec, Auburn, Calif.). Erythroid differentiation of the CD34+ cells was induced in two stages in liquid culture (Ebert et al., 2005). For the first seven days, cells were cultured in Serum Free Expansion Medium (SFEM, Stem Cell Technologies, Tukwila, Wash.) supplemented with penicillin/streptomycin, glutamine, 100 ng/mL stem cell factor (SCF), 10 ng/mL interleukin-3 (IL-3), 1 μM dexamethasone (SIGMA™), 40 μg/ml lipids (SIGMA™), and 3 IU/ml erythropoietin (Epo). After 7 days, cells were cultured in the same medium without dexamethasone and supplemented with 10 IU/ml Epo. For flow cytometry analyses, approximately 1 to 5×105 cells were labeled with a phycoerythrin-conjugated antibody against glycophorin-A (CD235a, Clone GA-R2, BD-PHARMINGEN™, San Jose, Calif.) and a FITC-conjugated antibody against CD71 (Clone M-A712, BD-PHARMINGEN™). Flow cytometry analyses were performed using a FACScan flow cytometer (BECTON DICKINSON™).


Glass-Slide Detection of miRNAs


Glass slide microarrays were spotted oligonucleotide arrays and hybridized as described previously (Miska et al., 2004). Briefly, 5′-amino-modified oligonucleotide probes (the same ones as used on the bead platform) were printed onto amide-binding slides (CodeLink, AMERSHAM BIOSCIENCES™). Printing and hybridization were done following the slides manufacturer's protocols with the following modifications: oligonucleotide concentration for printing was 20 μM in 150 mM sodium phosphate, pH 8.5. Printing was done on a MicroGrid TAS II arrayer (BioRobotics) at 50% humidity. Labeled PCR product was resuspended in hybridization buffer (5×SSC, 0.1% SDS, 0.1 mg/ml salmon sperm DNA) and hybridized at 50° C. for 10 hours. Microarray slides were scanned using an arrayWoRxe biochip reader (APPLIED PRECISION™) and primary data were analyzed using the Digital Genome System suite (MOLECULARWARE™).


Northern Blot Analysis

Northern blot analyses were carried out as described (Lau et al., 2001). Total RNAs from cell lines were loaded at 10 μg per lane. Blots were detected with DNA probes complementary for human miR-20, miR-181a, miR-15a, miR-16, miR-17-5p, miR-221, let-7a, and miR-21.


Quantitative RT-PCR

Reverse transcription (RT) reactions were carried out on 50 to 200 ng total RNA in 10 μl reaction volumes, using the TAQMAN™ reverse transcription kit (APPLIED BIOSYSTEMS™, Foster City, Calif.) and random hexamers, following the manufacturer's protocol. RT products were diluted 5-fold in water and assayed using TAQMAN™ Gene Expression Assays (APPLIED BIOSYSTEMS™) in triplicates, on an ABI PRISM 7900HT real-time PCR machine. Efficiency of PCR amplification was determined by 5 two-fold-serial-diluted samples from HL-60 cDNA. The TAQMAN™ Gene Expression Assays used are listed in the parentheses. (Dicer1: Hs00998566_m1; Ago2/EIF2C2: Hs00293044_m1; Drosha/RNase3L: Hs00203008_m1; DGCR8: Hs00256062_m1; and eukaryotic 18S rRNA endogenous control)


Data Preprocessing and Quality Control

To eliminate bead-specific background, the reading of every bead for every sample was first processed by subtracting the average readings of that particular bead in the two-embedded mock-PCR samples in each plate. As stated in the Methods, every sample was assayed in three wells. Each of the three wells contained 94 probes (19 common probes and 75 unique ones). Out of the 19 common probes are the two pre-labeling controls and the two post-labeling controls. Quality control was performed as part of the preprocessing by requiring that the reading from each control probe exceeds some minimal probe-specific threshold. These thresholds were determined by identifying a natural lower cutoff, i.e. a dip, in the distribution of each control probe. The cutoff values were chosen based on a set of samples in a pilot study. The lower post-control should be greater than 500 and the higher post-control must exceed 2450. The lower and higher pre-controls should exceed 1400 and 2000 respectively (after well-to-well scaling). In this study, about 70% of the samples passed the quality control. Note that the above specifications were used on version 1 of the platform. A similar preprocessing was performed on version 2 of the platform.


Preprocessing was done in four steps: (i) well-to-well scaling—the reading from each well were scaled such that the total of the two post-labeling controls, in that well, became 4500 (a median value based on a pilot study); (ii) sample scaling—the normalized readings were scaled such that total of the 6 pre-labeling controls in each sample reached 27,000 (a median value based on a pilot study); (iii) thresholding at 32 (see below); and (iv) log2 transformation. All control probes, as well as a probe (EAM296) which had a high background in the absence of any prepared target, were removed before any further analysis. After eliminating these probes, 217 (255 for version 2 of the platform) features were left and these were used throughout the analysis.


Hierarchical Clustering

miRNA expression data first underwent filtering. The purpose of this filtering is to remove features which have no detectable expression and thus are uninformative but may introduce noise to the clustering. A miRNA was regarded as “not expressed” or “not detectible”, if in none of the samples, that particular miRNA has an expression value above a minimal cutoff. We applied a cutoff of 7.25 (after data were log2-transformed). This cutoff value was determined based on noise analyses of target preparation and bead detection (see below and FIG. 12a). In that experiment, the majority of features had a standard deviation below 0.75 when their mean was over 5 in log2-transformed data. Thus we used a cutoff of 3 standard deviations above the minimal expression level (5+3×0.75=7.25). Any feature that is not expressed under this criterion was filtered out before clustering. Data were then centered and normalized for each feature, bringing the mean to 0 and the standard deviation to 1. This equalizes the contributions of all features. For hierarchical clustering, we used Pearson correlation as a similarity measure, and used the average-linkage algorithm (Jain et al., 1988) for both the samples and the features.


k-Nearest Neighbor (kNN) Prediction


After feature filtration (described in the hierarchical clustering), marker selection was performed on 187 features. The variance-thresholded t-test score was used as a measure to score features. A minimal standard deviation of 0.75 was applied. Markers were searched among the filtered miRNAs. Nominal P-value was calculated for each feature, by permuting the class labels of the samples. In order to select features that best distinguish tumors from normal samples on all tissue types, i.e. taking into account the confounding tissue-type phenotype, restricted permutations were performed (Good, 2004). In restricted permutations, one shuffles the tumor/normal labels only within each tissue type to get the distribution under the desired null hypothesis. To achieve accurate estimates for the p-values, 400 times the number of features (400×187=74,800) of iterations were performed. To correct for multiple-hypotheses testing, markers were selected requiring the Bonferroni-corrected P-values to be less than 0.05. kNN prediction was performed using the kNN module in the GenePattern software, with k=3 and a Euclidean distance measure (GenePattern at ______).


Probabilistic Neural Network (PNN) Prediction

A two-class PNN (Specht, 1990) prediction was calculated based on the following class posterior probability:








P


(

c
|
x

)


=




P


(

x
|
c

)




P


(
c
)







c






P


(

x
|

c



)




P


(

c


)





=




P


(
c
)



n
c







i
:



y
_

i


c





exp


(



-


D


(

x
,

y
i


)


2


/
2



σ
2


)








c





[



P


(

c


)



n

c









i
:



y
_

i



c







exp


(



-


D


(

x
,

y
i


)


2


/
2



σ
2


)




]





,




where x is the predicted sample and c is the class for which the posterior probability is calculated. The training set samples are yi, nc is the number of samples of class c in the training set, and D(x,yi) is the distance between the predicted sample and training sample i. In our case, the sum in the denominator (of c′) is over two class values, since we predict a sample either to belong or not to belong to a specific tissue-type. Note that the first step is derived using Bayes rule which allows to incorporate a prior probability for each class, P(c). We used a uniform prior over all 11 tissue-types which translated to 1/11 for being in a certain type and 10/11 for not being in that type. We did not use the tissue-type frequencies in the training set since they likely do not represent the frequencies of different tumors in the general population.


Multi-class prediction using PNN was achieved by breaking down the question into multiple one vs. the rest (OVR) predictions. To perform PNN OVR two-class classification, we built a model based on the training set. This model has two parameters: the number of features used, and σ (the standard deviation of the Gaussian kernel which is used to calculate the contribution of each training sample to the classification). The optimal parameters (for each OVR classifier) were selected using a leave-one-out cross-validation procedure from all possible parameter-pairs in which the number of features ranges from 2 to 30 in steps of 2 and σ takes the values from 1 to 4 times the median nearest neighbor distance, in steps of 0.5 (a total number of 105 combinations). The best model was determined by (i) the fewest number of leave-one-out errors on the training set, which include both false-positive and false-negative errors with the same weight, and (ii) among all conditions with the same error rate, the parameters that gave rise to the maximal mean log-likelihood of the training set were selected. The mean log-likelihood is defined


as







L


[


{

x
i

}

;
M

]


=


1

#





of





training





examples






i



log


(


P
M



(


c
i

|

x
i


)


)








where ci is the true class of sample x, and the probability is evaluated using the model M. The top n features were selected using the variance-thresholded t-test score in a balanced manner; n/2 features with the top positive scores and n/2 features with most negative scores. The cosine distance measure was used; D(x,yi)=1-cosine(x,yi).


P-Value Calculation for the Number of Correct Classifications

A Binomial distribution was used to calculate the probability to obtain at least the number of correct classifications (on the test set) as we observed. Assuming a random classifier would predict the tissue-type randomly with a uniform distribution over the 11 possible outcomes, the probability of a correct classification is 1/11. This is applicable to the PNN prediction, in which the background frequency of each tissue type was assumed to be 1/11. The p-value is, therefore, the tail of the Binomial distribution from the observed number of correct classifications, s, to the total number of samples in the test set, n:







P
-
value

=




t
=
s

n




(



n




t



)





p
t



(

1
-
p

)



n
-
t








where p is one over the number of tissue-types (1/11, in our case) and t is the number of correct classification which goes from the observed number, s, to the maximum of possible correct samples n.


Results and Discussion

Development of a Bead-Based miRNA Profiling Platform


Compared with glass-based microarrays, bead-based profiling solutions have the advantages of higher sample throughput and liquid phase hybridization kinetics, while having the disadvantage of lower feature throughput. For the genomic analysis of miRNA expression, this disadvantage is negligible because of the relative small number of identified miRNAs. Since new miRNAs are still being discovered, the flexibility and ease of these “liquid chips” to introduce new features is of particular value.


We developed a bead-based miRNA profiling platform, as detailed in the Methods section. Version 1 of this platform (used for most samples in this study) covers 164 human, 185 mouse, and 174 rat miRNAs, according to Rfam 5.0 miRNA registry database (Ambros et al., 2003; Griffiths-Jones, 2004). Version 2 of this platform (used for the acute lymphoblastic leukemia study and the erythroid differentiation study) covers additional 24 human, 13 mouse and 2 rat miRNAs (refer to Table 10 for details).


This profiling platform is compatible in theory with any miRNA labeling method that labels the sense strand. For our study, we followed one described by Miska et al., 2004 that labels mature miRNAs through adaptor ligation, reverse-transcription and PCR amplification. We reasoned that the amplification step will allow future use of these labeled materials, which were from precious clinical samples. Defined amounts of synthetic artificial miRNAs were added into each sample of total RNAs as pre-labeling controls. This allows us to normalize the profiling data according to the starting amount of total RNA, using readings from capture probes for these synthetic miRNAs (see Methods for details). This contrasts the use of total feature intensity to normalize the readings of different samples; the hidden assumption of the latter is that the total miRNA expression is the same in all samples, which may not be true considering the small known number of miRNAs.


We analyzed the variation caused by labeling and detection using repetitive assays of the same RNA samples of a few cell lines originated from different tissues; these cell lines have different miRNA profiles. We plotted the standard deviation of each probe versus its means, after the data were log2-transformed (FIG. 12a). The variations are large for low means, and decrease and stabilize with increasing means. For most measured features with mean above 5 (32 before log2-transformation), the standard deviation is below 0.75. This value of mean provides a good cutoff for a lower threshold of the data, which was thus used in this study.


We compared the data from expression profiles and northern blots on a panel of 7 cell lines; the same quantities of the same starting total RNAs were used for both analyses. We picked eight miRNAs that are expressed in any of these cell lines and that show differential expression according to the expression profiles, and probed them with northern blots. All eight display good concordance between the two assays (FIG. 6c), indicating that our profiling platform has good accuracy.


We next examined the linearity of profiling (both labeling and detection) by measuring a series of starting materials, covering 0.5 μg to 10 μg of total RNAs from HEL cells. Most miRNAs report good linearity up to 3500 median fluorescence intensity readings (after normalization with pre-labeling-controls, FIG. 12b). Taken together with the threshold level of 32, the profiling method has roughly 100-fold of dynamic range.


One common issue that affects hybridization-based analyses for miRNAs is the specificity of detection, since many miRNAs are closely-related on the sequence level. To assess the specificity of detection, we synthesized oligonucleotides corresponding to the reverse-transcription products of adaptor-ligated miRNAs, in this case the human let-7 family of miRNAs and a few artificial mutants. The sequences for these oligonucleotides are in Table 11, and the alignment of human let-7 miRNAs and mutant sequences are listed in Table 12. They were then labeled through PCR using the same primer sets. This provides a collection of sequence-pairs that differ by one, two, or a few nucleotides (FIG. 11 and Table 12). Results are presented in Example 2 and in FIG. 6a,b.


Hierarchical Clustering of Multiple Cancer and Normal Samples

We applied this miRNA profiling platform for 140 human cancer specimens, 46 normal human tissues, and various cell lines. The collection of samples covers more than ten tissues and cancer types. This collection was referred to as miGCM (for miRNA Global Cancer Map). We first examined the miRNA expression profiles to see whether we can detect previously reported tissue-restricted expression of miRNAs. Indeed, we observed tissue-restricted expression patterns. For example, miR-122a, a reported liver-specific miRNA (Lagos-Quintana et al., 2002), is exclusively expressed in the liver samples, whereas miR-124a, a brain-specific miRNA (Lagos-Quintana et al., 2002), is abundantly expressed in the brain samples.


We performed hierarchical clustering on this data set, as described in the Methods. Hierarchical clustering is an unsupervised analysis tool that captures internal relationship between the samples. It organizes the samples (or features) into a tree structure (a dendrogram) according to the similarity between the samples (or the features). Close pairs of samples (ones with similar expression profiles) will generally be connected in the dendrogram at an earlier phase, while samples with larger distances (with less similar expression profiles) will be connected at a later phase (details can be found in Duda et al., 2000). The detailed result of hierarchical clustering on both the samples and features using correlation metrics is presented in FIG. 7a and FIG. 9.


Comparison of miRNA and mRNA Clustering in Regard to GI Samples


After finding that the gastrointestinal tract samples were clustered together (Example 2 and FIG. 7a), we asked whether or not this structure is similarly displayed by clustering in the mRNA space. We took 89 epithelial samples that have both successful mRNA and miRNA profiling data, and subjected them to hierarchical clustering. Both data underwent identical gene filtering, i.e. a lower threshold filter to eliminate genes that do not have expression values over 7.25 (on log2 scale) in any sample, and underwent the same clustering procedure. This gene filtering resulted in 195 miRNAs and 14546 mRNAs. Data were presented in the main text, FIG. 7c and FIG. 13. Results show that the mRNA clustering does not recover the coherence of GI samples, as identified in the miRNA expression space. Of note, the exact outcome of hierarchical clustering is dependent on the collection of samples present for analysis. Consequently, the cluster of the GI samples in miRNA clustering in FIG. 7c is slightly different from that of FIG. 7a, since the latter comprises of many more samples.


In order to test whether the lack of coherence of GI samples in the mRNA clustering is sensitive to the choice of genes that were used to represent each sample, we tested two additional gene filtering methods. First, we used a variation filter as was performed in Ramaswamy et al., 2001 (lower threshold of 20, upper threshold of 16000, the maximum value is at least 5 fold greater than the minimum value, and the maximum value is more than 500 greater than the minimum value), which yielded 6621 genes. Second, we examined only transcription factors, a set of gene regulators as are miRNAs. We took the genes that passed the above variation filter and that are also annotated with transcription factor activity in the Gene Ontology (GO:0003700). This resulted in 220 transcription factors as listed in the Table 13. Similar to the minimum-expression filter on the mRNA data, these two gene selection methods yielded clustering by tissue types to a certain degree. However, none recovered the gut coherence (FIG. 13). This indicated either that the miRNA space contains some different information from the mRNA space or that in the mRNA space, the gut signal is masked by other signals or noise. Importantly, a set of transcription factors did not mimic miRNAs in this test, suggesting the difference is not solely due to the gene regulator nature of miRNAs.


Normal/Tumor Classifier and kNN Prediction of Mouse Lung Samples

In order to build a classifier of normal samples vs. tumor samples based on the miGCM collection, we first picked tissues that have enough normal and tumor samples (at least 3 in each class). Table 14 summarizes the tissues for this analysis.


kNN (Duda et al., 2000) is a predicting algorithm that learns from a training data set (in this case, the above samples from the miGCM data set) and predicts samples in a test data set (in this case, the mouse lung sample set). A set of markers (features that best distinguishes two classes of samples, in this case, normal vs. tumor) was selected using the training data set. Distances between the samples were measured in the space of the selected markers. Prediction is performed, one test sample at a time, by: (i), identifying the k nearest samples (neighbors) of the test sample among the training data set; and (ii) assigning the test sample to the majority class of these k samples.


We first selected markers that best differentiate the normal and tumor samples (see Materials and Methods above) out of the 187 features that passed the filter (which was applied on the training set alone). This generated a list of 131 markers that each has a p-value <0.05 after Bonferroni correction; 129/131 markers are over-expressed in normal samples, whereas 2/131 are over-expressed in the tumor samples. Table 15 lists these markers.


These 131 markers were used without modification to predict the 12 mouse lung samples using the k-nearest neighbor algorithm. Each mouse sample was predicted separately, using log2 transformed mouse and human expression data. The tumor/normal phenotype prediction of a mouse sample was based on the majority type of the k nearest human samples using the chosen metric in the selected feature space. Since the tumor/normal distinction was observed at the raw miRNA expression levels, we decided to use Euclidean distance to measure the distances between samples. Thus, we performed kNN with the Euclidean distance measure and k=3, resulting in 100% accuracy. The detailed prediction results are available in Table 16. Similar classification results were obtained with other kNN parameters, with the exception of one mouse tumor T_MLUNG5 (3rd column from right in FIG. 12b). This sample was occasionally classified as normal, for example, when using cosine distance measure (k=3). It should be pointed out that cosine distance captures less an overall shift in expression levels compared to Euclidean distance. It rather focuses on comparing the relationships among the different miRNAs So it appears that the same miRNA data capture different information with different distance metrics; Pearson correlation captures information about the lineage (as seen in clustering results), and Euclidean distance captures the normal/tumor distinction.


Differentiation of HL-60 Cells

One hypothesis for the global decrease of miRNA expression in tumors (FIG. 7a, FIG. 8a,b) is that many miRNAs are upregulated during differentiation. We examined an in vitro differentiation system, the differentiation of HL-60 acute myeloblastic leukemia cells. HL-60 cells differentiate with increasing neutrophil characteristics upon treatment with all-trans retinoic acid (ATRA) during a course of 5 days (Stegmaier et al., 2004). We found 59 miRNAs commonly expressed (see Materials and Methods for the definition of “expressed”) in three independent experiments of HL-60 cells with or without ATRA treatment. These 59 miRNAs are shown in Table 17. A heatmap is shown in FIG. 8c, reflecting averages of successfully profiled same condition samples. Results indicate increased expression of many miRNAs after 5 days of ATRA-induced differentiation (5d+). Since HL-60 is a cancerous cell line, this result supports the hypothesis that the global miRNA downregulation in cancer is related to differentiation. Whether or not the observed global miRNA expression change is associated with certain windows of differentiation needs further investigation.


Erythroid Differentiation of Primary Hematopoietic Cells In Vitro

We profiled the expression of miRNAs during erythroid differentiation in vitro to ask whether the increase in miRNA expression observed in the differentiation of HL-60 cells also occurs in primary cells. The accessibility of normal hematopoietic progenitor cells and the ability to recapitulate erythropoiesis in vitro provide a model to study normal differentiation. We purified CD34+ hematopoietic progenitor cells from umbilical cord blood. Erythroid differentiation was induced in vitro using a two phase liquid culture system. The state of differentiation of cultured cells was monitored every other day by evaluating expression of CD71 and glycophorin A (Gly-A) (FIG. 14b). CD71 expression increases early in erythroid differentiation and gradually decreases in terminal erythroid differentiation. Gly-A expression increases later in erythropoiesis and remains elevated through terminal differentiation. As in HL60 cells, the expression of many miRNAs increased during differentiation (FIG. 14c). Unlike HL-60 cells, the erythroid cells continued to proliferate at the time points when miRNA expression increased (FIG. 14a). This suggests that proliferation itself, which is often integrally linked to differentiation, cannot account completely for the increased miRNA expression during differentiation.


Analyzing Tissue Samples Using an mRNA Proliferation Signature


It is conceivable that differences in cellular proliferation, often integrally linked to differentiation, may contribute to the global miRNA signals. We asked whether the miRNA global expression differences among samples are merely a consequence of their differences in proliferation rates. To estimate the proliferation rates in tissue samples, we assembled a consensus mRNA signature of proliferation, reported to positively correlate with proliferation or mitotic index in breast tumors, lymphomas and HeLa cells (Alizadeh et al., 2000; Perou et al., 2000; Whitfield, et al., 2002). Table 18 summarizes this list.


We first asked whether the mRNA proliferation signature reflects proliferation rates in our samples. Indeed, we noticed that the mean expression of these mRNAs is higher in tumors than normal tissues (FIG. 15), reflecting faster proliferation rates in tumor samples.


Next, we examined in the tumor samples the expression of the mRNA proliferation signature. We focused on lung and breast, two tissues that we have sufficient numbers of poorly differentiated tumors and more differentiated tumors. It is important to point out that poorly differentiated tumors have globally lower miRNA expression than more differentiated tumors. However, we did not observe any difference in the mRNA proliferation signature between these two categories of samples (FIG. 15). This result also suggests that the global miRNA expression is unlikely to be solely dependent on proliferation rates.


RT-PCR Analyses of Genes Involved in miRNA Machinery


One possible mechanism of the observed global miRNA expression difference between normal samples and tumors is changes in expression levels of miRNA processing enzymes. In lung cancer, Dicer levels were reported to correlate with prognosis (Karube et al., 2005). We decided to examine Dicer1, Drosha, DGCR8 and Argonaute 2 (Ago2), which are critical in miRNA processing (Tomari et al., 2005). Lacking probe sets representing these genes in our mRNA data, we used quantitative RT-PCR and analyzed 79 samples (32 normal samples and 47 tumors, covering 8 tissues, including colon, breast, uterus, lung, kidney, pancreas, prostate and bladder). We normalized the quantitative PCR data with 18S rRNA levels. We performed Student's t-test (two-tail, unequal variance) for normal/tumor phenotypes on all samples examined (P=0.3 for Dicer1, P=0.11 for Drosha, P=0.0011 for DGCR8, P=0.0138 for Ago2). DGCR8 and Ago2 have significant nominal p-values under the above test. However, the fold differences of DGCR8 and Ago2 are small between tumors and normal samples (tumor samples have higher mean threshold cycle (Ct) values for these two genes; the mean Ct differences between normal and tumor samples are: 0.776 for DGCR8 and 0.798 for Ago2, corresponding to 1.7-fold and 1.5-fold absolute level differences respectively, after correction for PCR amplification efficiency). Whether or not the observed weak decreases on the transcript level may account for the differences in miRNA expression needs further investigation. It is also important to note that these results do not exclude the possibility that these miRNA machinery genes are involved in regulating tumor/normal miRNA expression in certain cancer types, or are regulated on the protein and activity levels.


Analyses of Poorly Differentiated Tumors

We first set out to determine whether poorly differentiated tumors show a globally weaker miRNA expression than tumor samples in the miGCM collection, which represent more differentiated states. To this end, we made a comparison of poorly differentiated tumors to more differentiated tumors of the corresponding tissue types. The analysis was performed on 180 features, after the data were filtered to eliminate non-expressing miRNAs on the 55 samples which belong to tissue types that have both more-differentiated and poorly-differentiated samples (see the hierarchical clustering section in Supplementary Methods for data filtration). FIG. 10 shows that poorly differentiated tumors indeed have globally lower miRNA expression. Out of the 180 features, 95 miRNAs display lower mean expression levels in poorly differentiated tumors (p<0.05 with a variance-thresholded t-test).


We used PNN for prediction of tissue origin of poorly differentiated tumors. PNN is a probability based prediction algorithm and can be considered as a smooth version of kNN. For a multi-class prediction, PNN avoids the ambiguity often encountered with kNN, when multiple training classes are equally presented in the k nearest neighbors of a test sample. For a two-class classification problem, PNN assigns a probability for a test sample to be classified into one of the two classes. The contribution of each training sample to the classification of a test sample is related to their distance and follows the Gaussian distribution: the closer the test sample, the larger the contribution. The probability for a test sample to belong to a certain class is the total contribution from every training sample belonging to that class, divided by the total contributions of all training samples (see Materials and Methods for more details).


For the prediction of poorly differentiated tumors, the training sample set consists of 68 tumor samples with both miRNA and mRNA profiling data, covering 11 tissue types. The test set contains 17 poorly differentiated tumors. Table 19 summarizes the information on the 17 poorly differentiated tumors. To solve this multi-class prediction problem, we broke down the task into 11 two-class predictions. Each two-class prediction assigns a probability for a test sample to belong to a certain tissue-type vs. the rest of the tissue-types (one vs. the rest, OVR), for example, colon vs. non-colon. After performing OVR classifications for all 11 tissues, the one tissue-type that receives the highest probability marks the predicted tissue type. The prediction results are summarized in Table 20.


REFERENCES



  • van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. New Engl. J. Med. 347, 1999-2009 (2002).

  • Glas, A. M. et al. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood 105, 301-307 (2005).

  • Stegmaier, K. et al. Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat. Genet. 36, 257-263 (2004).

  • Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675-1680 (1996).

  • Van Gelder, R. N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663-1667 (1990).

  • Tyagi, S. & FR, K. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303-308 (1996).

  • Gibson, U. E., Heid, C. A. & Williams, P. M. A novel method for real time quantitative RT-PCR. Genome Res. 6, 995-1001 (1996).

  • Morrison, T. B., Weis, J. J. & Wittwer, C. T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24, 954-962 (1998).

  • Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science 241, 1077-1080 (1988).

  • Nilsson, M., Barbany, G., Antson, D. O., Gertow, K. & Landegren, U. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat. Biotechnol. 18, 791-793 (2000).

  • Hsuih, T. C. et al. Novel, ligation-dependent PCR assay for detection of hepatitis C in serum. J. Clin. Microbio. 34, 501-507 (1996).

  • Yeakley, J. M. et al. Profiling alternative splicing on fiber-optic arrays. Nat. Biotechnol. 20, 353-358 (2002).

  • Eldering, E. et al. Expression profiling via novel multiplex assay allows rapid assessment of gene regulation in defined signalling pathways. Nucleic Acids Res. 31, e153 (2003).

  • Shoemaker, D. D., Lashkari, D. A., Morris, D., Mittmann, M. & Davis, R. W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 14, 450-456 (1996).

  • Iannone, M. A. et al. Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39, 131-140 (2000).

  • Yuen, T., Wurmbach, E., Pfeffer, R. L., Ebersole, B. J. & Sealfon, S. C. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30, e48 (2002).

  • Cover, T. M. & Hart, P. E. Nearest neighbor pattern classification. IEEE Trans. Info. Theory IT-13, 21-27 (1967).

  • Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-97 (2004).

  • Ambros, V. The functions of animal microRNAs. Nature 431, 350-5 (2004).

  • Chung, C. H., Bernard, P. S. & Perou, C. M. Molecular portraits and the family tree of cancer. Nat Genet. 32 Suppl, 533-40 (2002).

  • Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98, 15149-54 (2001).

  • Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409-16 (1984).

  • Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-54 (1993).

  • Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-6 (2000).

  • Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1, 882-91 (2003).

  • Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99, 15524-9 (2002).

  • Eis, P. S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102, 3627-32 (2005).

  • Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635-47 (2005).

  • Liu, C. G. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101, 9740-4 (2004).

  • Miska, E. A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5, R68 (2004).

  • Thomson, J. M., Parker, J., Perou, C. M. & Hammond, S. M. A custom microarray platform for analysis of microRNA gene expression. Nature Methods 1, 47-53 (2004).

  • Nelson, P. T. et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nature Methods 1, 155-161 (2004).

  • Babak, T., Zhang, W., Morris, Q., Blencowe, B. J. & Hughes, T. R. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10, 1813-9 (2004).

  • Sun, Y. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32, e188 (2004).

  • Barad, O. et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14, 2486-94 (2004).

  • Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101, 11755-60 (2004).

  • Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111-6 (2001).

  • Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19, 489-501 (2005).

  • Pavlidis, N., Briasoulis, E., Hainsworth, J. & Greco, F. A. Diagnostic and therapeutic management of cancer of an unknown primary. Eur J Cancer 39, 1990-2005 (2003).

  • Cullen, B. R. Transcription and processing of human microRNA precursors. Mol Cell 16, 861-5 (2004).

  • Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-8 (1994).

  • Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105-11 (2001).

  • Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100, 3983-8 (2003).

  • Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396-401 (2004).

  • Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133-43 (2002).

  • Ferrando, A. A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75-87 (2002).

  • Ebert, B. L. et al. An RNA interference model of RPS 19 deficiency in Diamond Blackfan Anemia recapitulates defective hematopoiesis and rescue by dexamethasone: identification of dexamethasone responsive genes by microarray. Blood (2005).

  • Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-62 (2001).

  • Jain, A. K. & Dubes, R. C. Algorithms for clustering data. Prentice-Hall Inc., Upper Saddle River (1988).

  • Good, P. I. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses, 2nd Ed. Springer-Verlag, New York (2000).

  • Specht, D. F. Probabilistic Neural Networks, Neural Networks. Elsevier Science Ltd., St. Louis 3, 109-118 (1990).

  • Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res 32 Database issue, D109-11 (2004).

  • Ambros, V. et al. A uniform system for microRNA annotation. RNA 9, 277-9 (2003).

  • Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-9 (2002).

  • Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification, 2nd Ed. Wiley-Interscience, Hoboken (2000).

  • Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-11 (2000).

  • Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747-52 (2000).

  • Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13, 1977-2000 (2002).

  • Karube, Y. et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96, 111-5 (2005).

  • Tomari, Y. & Zamore, P. D. MicroRNA biogenesis: drosha can't cut it without a partner. Curr Biol 15, R61-4 (2005).


    All references described herein are incorporated by reference.










TABLE 1







Classification Accuracy.









differential expression











1.5-2.5x
3-4.5x
>5x

















basal
20-60
12.5
2.3
2.3



expression
 60-125
14.8
1.1
5.7



level
>125
1.1
1.1
0











Error rates (%) of a k-nearest-neighbor classifier trained on IVT-GeneChip data to predict the true identity (tretinoin or DMSO) of eighty-eight test samples in the space of each of the nine gene classes from FIG. 4.









TABLE 2







Gene Selection













mean expression

log10

signal to


Affymetrix
level
fold
(fold
standard deviation
noise















ID
RefSeq ID(s)
DMSO
tretinoin
change
change)
DMSO
tretinoin
ratio










basal expression level 20-60 units


fold change 1.5-2.5















200721_s_at
NM_005736
51.20
81.30
1.59
0.20
1.05
1.37
12.47


210944_s_at
NM_000070
52.48
130.88
2.49
0.40
3.88
3.84
10.15



NM_024344



NM_173087



NM_173088



NM_173089



NM_173090



NM_212464



NM_212465



NM_212467


218282_at
NM_018217
46.40
78.77
1.70
0.23
2.78
0.52
9.79


218327_s_at
NM_004782
52.94
128.96
2.44
0.39
5.00
3.26
9.20


202946_s_at
NM_014962
27.21
59.36
2.18
0.34
2.50
1.58
7.87



NM_181443


203064_s_at
NM_004514
124.55
50.66
2.46
0.39
4.95
1.00
12.43



NM_181430



NM_181431


208896_at
NM_006773
114.16
46.90
2.43
0.39
4.71
2.17
9.77


205176_s_at
NM_014288
110.04
58.77
1.87
0.27
4.05
1.88
8.65


213761_at
NM_017440
97.62
43.75
2.23
0.35
6.15
1.37
7.17



NM_020128


209054_s_at
NM_007331
103.36
58.15
1.78
0.25
3.70
2.78
6.97



NM_014919



NM_133330



NM_133331



NM_133332



NM_133333



NM_133334



NM_133335



NM_133336







fold change 3-4.5















212467_at
NM_173823
40.63
125.08
3.08
0.49
0.69
3.21
21.68


205128_x_at
NM_000962
58.26
249.54
4.28
0.63
11.31
2.21
14.14



NM_080591


214544_s_at
NM_003825
43.98
136.04
3.09
0.49
6.06
1.59
12.03



NM_130798


217783_s_at
NM_016061
51.52
214.96
4.17
0.62
6.70
7.03
11.90


204417_at
NM_000153
46.08
163.45
3.55
0.55
4.18
7.57
9.98


202557_at
NM_006948
113.75
30.10
3.78
0.58
5.27
1.27
12.79


208433_s_at
NM_004631
168.09
49.49
3.40
0.53
9.79
3.58
8.87



NM_017522



NM_033300


203362_s_at
NM_002358
218.12
52.85
4.13
0.62
15.89
3.67
8.45


208962_s_at
NM_013402
165.07
37.06
4.45
0.65
8.70
7.42
7.94


203627_at
NM_000875
111.98
35.96
3.11
0.49
6.82
3.90
7.09



NM_015883







fold change >5















207111_at
NM_001974
39.97
287.27
7.19
0.86
2.28
4.89
34.51


205786_s_at
NM_000632
51.38
331.91
6.46
0.81
7.15
4.53
24.01


212412_at
NM_006457
47.38
242.16
5.11
0.71
6.38
4.85
17.34


204446_s_at
NM_000698
50.70
563.72
11.12
1.05
5.18
26.90
15.99


210724_at
NM_032571
26.85
278.89
10.39
1.02
1.98
17.05
13.24



NM_152939


210254_at
NM_006138
500.13
43.80
11.42
1.06
11.55
3.22
30.90


212563_at
NM_015201
189.55
30.71
6.17
0.79
1.90
3.97
27.08


204538_x_at
NM_006985
298.36
28.02
10.65
1.03
12.03
4.11
16.76


221539_at
NM_004095
622.12
51.77
12.02
1.08
18.14
20.13
14.90


222036_s_at
NM_005914
243.17
44.11
5.51
0.74
18.70
5.26
8.31



NM_182746







basal expression level 60-125 units


fold change 1.5-2.5















201779_s_at
NM_007282
121.10
297.22
2.45
0.39
2.64
11.71
12.27



NM_183381



NM_183382



NM_183383



NM_183384


211067_s_at
NM_003644
122.85
267.79
2.18
0.34
8.26
5.49
10.54



NM_005890



NM_201432



NM_201433


202923_s_at
NM_001498
63.33
145.68
2.30
0.36
4.04
4.23
9.96


204295_at
NM_003172
123.97
211.17
1.70
0.23
5.99
3.85
8.86


207629_s_at
NM_004723
103.61
177.50
1.71
0.23
5.56
2.82
8.82


217850_at
NM_014366
291.05
119.42
2.44
0.39
2.98
4.54
22.82



NM_206825



NM_206826


203315_at
NM_001004720
121.02
61.68
1.96
0.29
0.66
2.06
21.78



NM_001004722



NM_003581


218607_s_at
NM_018115
160.90
96.30
1.67
0.22
1.92
4.54
9.99


209511_at
NM_021974
127.46
83.32
1.53
0.18
2.55
1.92
9.87


221699_s_at
NM_024045
189.21
93.24
2.03
0.31
4.49
5.34
9.77







fold change 3-4.5















202902_s_at
NM_004079
65.75
262.67
3.99
0.60
8.96
3.98
15.22


201413_at
NM_000414
77.30
335.21
4.34
0.64
10.18
8.52
13.79


212135_s_at
NM_001001396
92.80
332.51
3.58
0.55
2.52
14.99
13.69



NM_001684


208485_x_at
NM_003879
60.99
214.30
3.51
0.55
7.62
5.12
12.04


201565_s_at
NM_002166
105.04
340.67
3.24
0.51
6.80
12.79
12.03


208581_x_at
NM_005952
305.95
93.48
3.27
0.51
10.39
2.12
16.98


201890_at
NM_001034
352.52
104.62
3.37
0.53
13.89
2.55
15.08


201516_at
NM_003132
428.63
113.75
3.77
0.58
19.76
2.03
14.45


221652_s_at
NM_018164
280.86
78.45
3.58
0.55
13.83
3.01
12.02


212282_at
NM_014573
300.99
96.70
3.11
0.49
11.04
8.12
10.66







fold change >5















209030_s_at
NM_014333
114.63
3138.68
27.38
1.44
8.58
21.28
101.28


200701_at
NM_006432
101.26
992.64
9.80
0.99
5.45
8.88
62.17


209949_at
NM_000433
64.04
431.32
6.74
0.83
5.21
3.41
42.63


202838_at
NM_000147
98.39
1727.68
17.56
1.24
17.24
66.39
19.48


211506_s_at
NM_000584
91.45
598.35
6.54
0.82
4.81
24.33
17.40


201013_s_at
NM_006452
645.25
105.67
6.11
0.79
2.52
4.11
81.40


201930_at
NM_005915
633.11
107.33
5.90
0.77
4.02
10.80
35.48


204351_at
NM_005980
1257.67
72.27
17.40
1.24
36.81
20.07
20.84


200790_at
NM_002539
949.56
101.20
9.38
0.97
63.91
4.53
12.40


202887_s_at
NM_019058
508.55
89.10
5.71
0.76
31.95
14.40
9.05







basal expression level >125 units


fold change 1.5-2.5















200077_s_at
NM_004152
2228.65
3478.72
1.56
0.19
36.65
7.31
28.43


207320_x_at
NM_004602
159.09
243.61
1.53
0.19
4.33
0.65
16.96



NM_017452



NM_017453



NM_017454


208641_s_at
NM_006908
125.43
286.94
2.29
0.36
1.61
7.94
16.91



NM_018890



NM_198829


213867_x_at
NM_001101
6437.29
10848.75
1.69
0.23
107.58
169.49
15.92


204158_s_at
NM_006019
183.26
446.89
2.44
0.39
3.84
12.91
15.74



NM_006053


200691_s_at
NM_004134
450.19
188.06
2.39
0.38
10.10
6.16
16.12


201077_s_at
NM_001003796
675.17
379.69
1.78
0.25
11.15
7.98
15.45



NM_005008


217810_x_at
NM_020117
352.53
218.24
1.62
0.21
5.20
3.67
15.14


200792_at
NM_001469
940.53
580.29
1.62
0.21
23.54
5.17
12.55


218140_x_at
NM_021203
400.95
197.86
2.03
0.31
8.19
8.61
12.09







fold change 3-4.5















210908_s_at
NM_002624
857.33
2675.14
3.12
0.49
20.67
51.57
25.16



NM_145896



NM_145897


201460_at
NM_004759
142.58
473.41
3.32
0.52
4.71
9.73
22.92



NM_032960


203470_s_at
NM_002664
167.89
689.86
4.11
0.61
3.62
23.36
19.34


202803_s_at
NM_000211
558.85
2149.86
3.85
0.59
30.29
61.10
17.41


209124_at
NM_002468
168.56
687.89
4.08
0.61
7.63
22.94
16.99


201892_s_at
NM_000884
1690.72
556.27
3.04
0.48
43.73
15.45
19.17


200647_x_at
NM_003752
2203.38
717.78
3.07
0.49
84.31
29.06
13.10


218512_at
NM_018256
458.15
145.51
3.15
0.50
13.13
10.86
13.03


209932_s_at
NM_001948
783.00
248.26
3.15
0.50
15.57
29.24
11.93


200650_s_at
NM_005566
1944.97
593.69
3.28
0.52
90.23
31.23
11.13







fold change >5















217733_s_at
NM_021103
637.96
3221.75
5.05
0.70
33.65
82.85
22.18


210592_s_at
NM_002970
157.29
1070.71
6.81
0.83
11.56
37.71
18.54


204122_at
NM_003332
456.11
3465.79
7.60
0.88
14.27
154.50
17.83



NM_198125


204232_at
NM_004106
200.54
1713.24
8.54
0.93
14.01
80.44
16.02


216598_s_at
NM_002982
132.79
5147.99
38.77
1.59
27.61
322.89
14.31


204798_at
NM_005375
877.47
132.27
6.63
0.82
20.74
14.06
21.41


203949_at
NM_000250
2732.30
170.06
16.07
1.21
148.73
13.39
15.80


202107_s_at
NM_004526
696.44
137.07
5.08
0.71
48.08
4.62
10.61


211951_at
NM_004741
752.52
135.10
5.57
0.75
42.57
19.86
9.89


202431_s_at
NM_002467
2723.42
174.53
15.60
1.19
381.41
6.76
6.57
















TABLE 3





Probe Sequences















signature genes:

















Flex




















Affymetrix


MAP



downstream probe


ID
RefSeq ID
RefSet ID
ID
upstream probe sequence


sequence



















200721_s_at
NM_005736
HG_010_01195
LUA#1
TAATACGACTCACTATAGGGCTTT
seq
1
CCCAGTGTACTGAA
seq
91






AATCTCAATCAATACAAATCAACC
id

ATAAAGTCCCTTTA
id







ACATTGCCTGGTGGGG
no:

GTGAGGGTTAAT
no:






210944_s_at
NM_000070
HG_010_18277
LUA#2
TAATACGACTCACTATAGGGCTTT
seq
2
GACGCAGGATTCCA
seq
92






ATCAATACATACTACAATCAAGAT
id

CCTCAATCCCTTTA
id







GCGAAATGCAGTCAAC
no:

GTGAGGGTTAAT
no:






218282_at
NM_018217
HG_010_21926
LUA#3
TAATACGACTCACTATAGGGTACA
seq
3
CATTACTGGGACAG
seq
93






CTTTATCAAATCTTACAATCGCCC
id

GTTTTCTCCCTTTA
id







TTCACCTCCAAGTTGG
no:

GTGAGGGTTAAT
no:






218327_s_at
NM_004782
HG_010_06845
LUA#4
TAATACGACTCACTATAGGGTACA
seq
4
GGTTCCACTTACTG
seq
94






TTACCAATAATCTTCAAATCGCAG
id

TAATTGTCCCTTTA
id







AGCAGCTTTTGTGCAC
no:

GTGAGGGTTAAT
no:






202946_s_at
NM_014962
HG_010_21147
LUA#5
TAATACGACTCACTATAGGGCAAT
seq
5
GTTGTTCATTCTGG
seq
95






TCAAATCACAATAATCAATCTCTG
id

GGATAATCCCTTTA
id







GCTGGCAGTCTTTGTC
no:

GTGAGGGTTAAT
no:






203064_s_at
NM_004514
HG_010_18737
LUA#46
TAATACGACTCACTATAGGGTACA
seq
6
CATGTGGCTCGCGT
seq
96






TCAACAATTCATTCAATACATTTA
id

GGACAGTCCCTTTA
id







TCCACCTCCATTTCAG
no:

GTGAGGGTTAAT
no:






208896_at
NM_006773
HG_010_01959
LUA#47
TAATACGACTCACTATAGGGCTTC
seq
7
CTGTGCTCACTGCT
seq
97






TCATTAACTTACTTCATAATGATT
id

GTAAAATCCCTTTA
id







TTTGTGGCATGGATTG
no:

GTGAGGGTTAAT
no:






205176_s_at
NM_014288
HG_010_08052
LUA#48
TAATACGACTCACTATAGGGAAAC
seq
8
CACTCACCATGAGC
seq
98






AAACTTCACATCTCAATAATTGAG
id

ACCAACTCCCTTTA
id







GCATTAAGAAGAAATG
no:

GTGAGGGTTAAT
no:






213761_at
NM_017440
HG_010_16616
LUA#49
TAATACGACTCACTATAGGGTCAT
seq
9
CAGAACCAGAAGCC
seq
99






CAATCTTTCAATTTACTTACGAGC
id 

CCGGAATCCCTTTA
id







AATGTGGTTGCATCAC
no: 

GTGAGGGTTAAT
no:






209054_s_at
NM_007331
HG_010_20167
LUA#50
TAATACGACTCACTATAGGGCAAT
seq
10
GGCAGCATCTTCAG
seq
100






ATACCAATATCATCATTTACAAGC
id

CTCTTGTCCCTTTA
id







GAAATCGGGCTTCCAC
no:

GTGAGGGTTAAT
no:






212467_at
NM_173823
*
LUA#6
TAATACGACTCACTATAGGGTCAA
seq
11
CTGCCACCTCCTGT
seq
101






CAATCTTTTACAATCAAATCCTAC
id

AGACCATCCCTTTA
id







ATCAGTCATGTCTAAC
no:

GTGAGGGTTAAT
no:






205128_x_at
NM_000962
HG_010_04807
LUA#7
TAATACGACTCACTATAGGGCAAT
seq
12
CCTGCTAGTCTGCC
seq
102






TCATTTACCAATTTACCAATACTC
id

CTATGGTCCCTTTA
id







CTGCCTGAGTTTCCAG
no:

GTGAGGGTTAAT
no:






214544_s_at
NM_003825
HG_010_06841
LUA#8
TAATACGACTCACTATAGGGAATC
seq
13
CATAATCAAGTTGA
seq
103






CTTTTACATTCATTACTTACCTTG
id

TGTGGATCCCTTTA
id







TGTATTGAACTATGTC
no:

GTGAGGGTTAAT
no:






217783_s_at
NM_016061
HG_010_21524
LUA#9
TAATACGACTCACTATAGGGTAAT
seq
14
CTATTTGCCACTGG
seq
104






CTTCTATATCAACATCTTACTGAG
id

GCTGTTTCCCTTTA
id







TACAGTTAAGTTCCTC
no:

GTGAGGGTTAAT
no:






204417_at
NM_000153
HG_010_18368
LUA#10
TAATACGACTCACTATAGGGATCA
seq
15
CTCAGTCAGTTCCT
seq
105






TACATACATACAAATCTACAAAGG
id

TTCACTTCCCTTTA
id







TTCTCTTGTATACCTG
no:

GTGAGGGTTAAT
no:






202557_at
NM_006948
HG_010_16269
LUA#51
TAATACGACTCACTATAGGGTCAT
seq
16
CTCATCTCATGTCC
seq
106






TTCAATCAATCATCAACAATTGAC
id

TGAAGTTCCCTTTA
id







AAAATAGGGCAGGCAG
no:

GTGAGGGTTAAT
no:






208433_s_at
NM_004631
HG_010_03370
LUA#52
TAATACGACTCACTATAGGGTCAA
seq
17
CTGGAGAACGAGGC
seq
107






TCATCTTTATACTTCACAATACAA
id

CATTTTTCCCTTTA
id







GGTGTTCTGGACAGAC
no:

GTGAGGGTTAAT
no:






203362_s_at
NM_002358
HG_010_20134
LUA#53
TAATACGACTCACTATAGGGTAAT
seq
18
GTCAAGTAGTTTGA
seq
108






TATACATCTCATCTTCTACATTCC
id

CTCAGTTCCCTTTA
id







TAAATCAGATGTTTTG
no:

GTGAGGGTTAAT
no:






208962_s_at
NM_013402
HG_010_02173
LUA#54
TAATACGACTCACTATAGGGCTTT
seq
19
CCTTCTCAGCCTAC
seq
109






TTCAATCACTTTCAATTCATAAGC
id

AGCAGTTCCCTTTA
id







ACCTGAACCACTGTGG
no:

GTGAGGGTTAAT
no:






203627_at
NM_000875
HG_010_00403
LUA#55
TAATACGACTCACTATAGGGTATA
seq
20
CTTCTGACTAGATT
seq
110






TACACTTCTCAATAACTAACCAGG
id

ATTATTTCCCTTTA
id







CACACAGGTCTCATTG
no:

GTGAGGGTTAAT
no:






207111_at
NM_001974
HG_010_17076
LUA#11
TAATACGACTCACTATAGGGTACA
seq
21
CACTGATGAGAAAT
seq
111






AATCATCAATCACTTTAATCCGTC
id

CAGACGTCCCTTTA
id







TTCCTGTGGTTGTATG
no:

GTGAGGGTTAAT
no:






205786_s_at
NM_000632
HG_010_20041
LUA#12
TAATACGACTCACTATAGGGTACA
seq
22
CAGGCGATGTGCAA
seq
112






CTTTCTTTCTTTCTTTCTTTGGTT
id

GTGTATTCCCTTTA
id







TCCTTCAGACAGATTC
no:

GTGAGGGTTAAT
no:






212412_at
NM_006457
HG_010_19532
LUA#13
TAATACGACTCACTATAGGGCAAT
seq
23
GATCAGTGGCACCA
seq
113






AAACTATACTTCTTCACTAAAAAC
id

GCCAACTCCCTTTA
id







AGCGCTACTTACTCAG
no:

GTGAGGGTTAAT
no:






204446_s_at
NM_000698
HG_010_16744
LUA#14
TAATACGACTCACTATAGGGCTAC
seq
24
CAGCAACAGCAAAT
seq
114






TATACATCTTACTATACTTTCTCA
id

CACGACTCCCTTTA
id







GCATTTCCACACCAAG
no:

GTGAGGGTTAAT
no:






210724_at
NM_032571
HG_010_15648
LUA#15
TAATACGACTCACTATAGGGATAC
seq
25
CTGACTCAAAACCC
seq
115






TTCATTCATTCATCAATTCAACTT
id

AGTGAGTCCCTTTA
id







TCCAGCAAGATGGGTC
no:

GTGAGGGTTAAT
no:






210254_at
NM_006138
HG_010_15460
LUA#56
TAATACGACTCACTATAGGGCAAT
seq
26
GAACTCACACATGC
seq
116






TTACTCATATACATCACTTTTTTA
id

CCTGATTCCCTTTA
id







TTTCAGTGAACTGCTG
no:

GTGAGGGTTAAT
no:






212563_at
NM_015201
HG_010_10972
LUA#57
TAATACGACTCACTATAGGGCAAT
seq
27
CTGGTGTGGTTTGA
seq
117






ATCATCATCTTTATCATTACGTGG
id

CCTGGATCCCTTTA
id







GAGCTACGATAGCAAG
no:

GTGAGGGTTAAT
no:






204538_x_at
NM_006985
*
LUA#58
TAATACGACTCACTATAGGGCTAC
seq
28
GGAGTGTCTGCTCT
seq
118






TAATTCATTAACATTACTACGATA
id

ATCCCCTCCCTTTA
id







ATCTCAAGACACCTGC
no:

GTGAGGGTTAAT
no:






221539_at
NM_004095
HG_010_07678
LUA#59
TAATACGACTCACTATAGGGTCAT
seq
29
GGAAAGCTCCCTCC
seq
119






CAATCAATCTTTTTCACTTTTCCT
id

CCCTCCTCCCTTTA
id







TAGGTTGATGTGCTTG
no:

GTGAGGGTTAAT
no:






222036_s_at
NM_005914
*
LUA#60
TAATACGACTCACTATAGGGAATC
seq
30
GCTTAAACCCAGGC
seq
120






TACAAATCCAATAATCTCATGAGG
id

GGCAGATCCCTTTA
id







TTGAGGCAGGAGAATC
no:

GTGAGGGTTAAT
no:






201779_s_at
NM_007282
HG_010_08042
LUA#16
TAATACGACTCACTATAGGGAATC 
seq
31
GAGAGGCAACAAGG
seq
121






AATCTTCATTCAAATCATCACTGA
id

TAATTCTCCCTTTA
id







CCTGCCAATCATTAGG
no:

GTGAGGGTTAAT
no:






211067_s_at
NM_003644
HG_010_17163
LUA#17
TAATACGACTCACTATAGGGCTTT
seq
32
GAGAATCAGACAGA
seq
122






AATCCTTTATCACTTTATCACCAT
id

GGGCAATCCCTTTA
id







TGCAGCAGGTTAGAGC
no:

GTGAGGGTTAAT
no:






202923_s_at
NM_001498
HG_010_18372
LUA#18
TAATACGACTCACTATAGGGTCAA
seq
33
CCCCAAGCTTTCCC
seq
123






AATCTCAAATACTCAAATCAATAA
id

CTCTGATCCCTTTA
id







TCACTTGGTCACCTTG
no:

GTGAGGGTTAAT
no:






204295_at
NM_003172
HG_010_06973
LUA#19
TAATACGACTCACTATAGGGTCAA
seq
34
CATTATCGAGACCT
seq
124






TCAATTACTTACTCAAATACATCC
id

GGAAGCTCCCTTTA
id







AGAAAGGAACCACTGG
no:

GTGAGGGTTAAT
no:






207629_s_at
NM_004723
HG_010_03179
LUA#20
TAATACGACTCACTATAGGGCTTT
seq
35
CAACCATGACCTGA
seq
125






TACAATACTTCAATACAATCGACC
id

AACCTCTCCCTTTA
id







TCATCTTCCACCTCAG
no:

GTGAGGGTTAAT
no:






217850_at
NM_014366
HG_010_20659
LUA#61
TAATACGACTCACTATAGGGAATC
seq
36
CAGGTGAACAGTCT
seq
126






TTACCAATTCATAATCTTCACACT
id

ACAAGGTCCCTTTA
id







TCTGAGGAGACTACAG
no:

GTGAGGGTTAAT
no:






203315_at
NM_003581
HG_010_17522
LUA#62
TAATACGACTCACTATAGGGTCAA
seq
37
GTCAGGGAAGAACA
seq
127






TCATAATCTCATAATCCAATTTCT
id

AACACTTCCCTTTA
id







CCGTGTCCCTTAAAGC
no:

GTGAGGGTTAAT
no:






218607_s_at
NM_018115
HG_010_21859
LUA#63
TAATACGACTCACTATAGGGCTAC
seq
38
CCTGTAATATTTTC
seq
128






TTCATATACTTTATACTACATTTC
id

AGCCCATCCCTTTA
id







CTCAGCCTTCCTTCAG
no:

GTGAGGGTTAAT
no:






209511_at
NM_021974
HG_010_02843
LUA#64
TAATACGACTCACTATAGGGCTAC
seq
39
GAGTCATCTTCCTG
seq
129






ATATTCAAATTACTACTTACCATC
id

CCCTTGTCCCTTTA
id







ATCACCGACTGAGCTG
no:

GTGAGGGTTAAT
no:






221699_s_at
NM_024045
HG_010_01029
LUA#65
TAATACGACTCACTATAGGGCTTT
seq
40
CATCAAGCTTTGAA
seq
130






TCATCAATAATCTTACCTTTTTTA
id

CCACGATCCCTTTA
id







GCCCACATTTCTGGTG
no:

GTGAGGGTTAAT
no:






202902_s_at
NM_004079
HG_010_15445
LUA#21
TAATACGACTCACTATAGGGAATC
seq
41
GAATCTAAACAAAC
seq
131






CTTTCTTTAATCTCAAATCAAAGC
id

AGGCCTTCCCTTTA
id







ACAGGGACACAAAGAG
no:

GTGAGGGTTAAT
no:






201413_at
NM_000414
HG_010_17294
LUA#22
TAATACGACTCACTATAGGGAATC
seq
42
CCAGAGGGAACATC
seq
132






CTTTTTACTCAATTCAATCACTTT
id

ATGCTGTCCCTTTA
id







AGTGGCAGGCTGAAGG
no:

GTGAGGGTTAAT
no:






212135_s_at
NM_001684
HG_010_16788
LUA#23
TAATACGACTCACTATAGGGTTCA
seq
43
CATCACCCCACCCC
seq
133






ATCATTCAAATCTCAACTTTAATG
id

ACATTCTCCCTTTA
id







ATGACAATCCTCTTGG
no:

GTGAGGGTTAAT
no:






208485_x_at
NM_003879
*
LUA#24
TAATACGACTCACTATAGGGTCAA
seq
44
CACACTCTGAGAAA
seq
134






TTACCTTTTCAATACAATACAATA
id

GAAACTTCCCTTTA
id







TTATGTCTGGCTGCAG
no:

GTGAGGGTTAAT
no:






201565_s_at
NM_002166
HG_010_17313
LUA#25
TAATACGACTCACTATAGGGCTTT
seq
45
CCTTCTGAGTTAAT
seq
135






TCAATTACTTCAAATCTTCACCTT
id

GTCAAATCCCTTTA
id







GCAGGCTTCTGAATTC
no:

GTGAGGGTTAAT
no:






208581_x_at
NM_005952
*
LUA#66
TAATACGACTCACTATAGGGTAAC
seq
46
CAACCTATATAAAC
seq
136






ATTACAACTATACTATCTACGCTC
id

CTGGATTCCCTTTA
id







TCAGATGTAAATAGAG
no:

GTGAGGGTTAAT
no:






201890_at
NM_001034
HG_010_18467
LUA#67
TAATACGACTCACTATAGGGTCAT
seq
47
CCCCTCTGAGTAGA
seq
137






TTACTCAACAATTACAAATCAGTG
id

GTGTTGTCCCTTTA
id







TCCTGGGATTCTCTGC
no:

GTGAGGGTTAAT
no:






201516_at
NM_003132
HG_010_17983
LUA#68
TAATACGACTCACTATAGGGTCAT
seq
48
CCTATACCAGCTGT
seq
138






AATCTCAACAATCTTTCTTTTCTG
id

GTACAGTCCCTTTA
id







GCGTTCCACCTCCAAG
no:

GTGAGGGTTAAT
no:






221652_s_at
NM_018164
HG_010_00331
LUA#69
TAATACGACTCACTATAGGGCTAT
seq
49
GGCAGTGAAGAGTG
seq
139






AAACATATTACATTCACATCAGAA
id

ACTTGATCCCTTTA
id







AATGGAAAAGCCAGCC
no:

GTGAGGGTTAAT
no:






212282_at
NM_014573
*
LUA#70
TAATACGACTCACTATAGGGATAC
seq
50
CATCTCAAGGCTGA
seq
140






CAATAATCCAATTCATATCATCCC
id

TCTGGATCCCTTTA
id







TGTATCTGAAGTCTAG
no:

GTGAGGGTTAAT
no:






209030_s_at
NM_014333
HG_010_14934
LUA#26
TAATACGACTCACTATAGGGTTAC
seq
51
GCACTTAACCAAGA
seq
141






TCAAAATCTACACTTTTTCATACC
id

CAAAAATCCCTTTA
id







CCTCCCCTATCCCTAG
no:

GTGAGGGTTAAT
no:






200701_at
NM_006432
HG_010_08035
LUA#27
TAATACGACTCACTATAGGGCTTT
seq
52
GCTGGTTCTCAGTG
seq
142






TCAAATCAATACTCAACTTTCAGA
id

GTTGTCTCCCTTTA
id







AACTGAGCTCCGGGTG
no:

GTGAGGGTTAAT
no:






209949_at
NM_000433
HG_010_18441
LUA#28
TAATACGACTCACTATAGGGCTAC
seq
53
CAGGTACTGATCCT
seq
143






AAACAAACAAACATTATCAAAAGG
id

GTTTCTTCCCTTTA
id







GCACGAGAGAGTCTTC
no:

GTGAGGGTTAAT
no:






202838_at
NM_000147
HG_010_16435
LUA#29
TAATACGACTCACTATAGGGAATC
seq
54
CTATGGTCAACTCT
seq
144






TTACTACAAATCCTTTCTTTGGAA
id

TCAGAATCCCTTTA
id







AAGGCTTACCAGGCTG
no:

GTGAGGGTTAAT
no:






211506_s_at
NM_000584
HG_010_00131
LUA#30
TAATACGACTCACTATAGGGTTAC
seq
55
CAGTCTTGTCATTG
seq
145






CTTTATACCTTTCTTTTTACCAAT
id

CCAGCTTCCCTTTA
id







CCTAGTTTGATACTCC
no:

GTGAGGGTTAAT
no:






201013_s_at
NM_006452
HG_010_04110
LUA#71
TAATACGACTCACTATAGGGATCA
seq
56
CTTTAGTTCTCTGA
seq
146






TTACAATCCAATCAATTCATGGAC
id

AGGCCCTCCCTTTA
id







TGCCACACATTGGTAC
no:

GTGAGGGTTAAT
no:






201930_at
NM_005915
HG_010_16268
LUA#72
TAATACGACTCACTATAGGGTCAT
seq
57
CCTTGATGTCTGAG
seq
147






TTACCTTTAATCCAATAATCACCC
id

CTTTCCTCCCTTTA
id







ATGAGTACTCAACTTG
no:

GTGAGGGTTAAT
no:






204351_at
NM_005980
HG_010_19452
LUA#73
TAATACGACTCACTATAGGGATCA
seq
58
CCGTGGATAAATTG
seq
148






AATCTCATCAATTCAACAATGAGT
id

CTCAAGTCCCTTTA
id







GGAAAAGACAAGGATG
no:

GTGAGGGTTAAT
no:






200790_at
NM_002539
HG_010_17575
LUA#74
TAATACGACTCACTATAGGGTACA
seq
59
CATTTGTAGCTTGT
seq
149






CATCTTACAAACTAATTTCACCCC
id

ACAATGTCCCTTTA
id







TCAGCTGCTGAACAAG
no:

GTGAGGGTTAAT
no:






202887_s_at
NM_019058
*
LUA#75
TAATACGACTCACTATAGGGAATC
seq
60
CCTTCCCCCATCGT
seq
150






ATACCTTTCAATCTTTTACAACCT
id

GTACTGTCCCTTTA
id







GGCAGCTGCGTTTAAG
no:

GTGAGGGTTAAT
no:






200077_s_at
NM_004152
HG_010_22476
LUA#31
TAATACGACTCACTATAGGGTTCA
seq
61
GTGCAAATAAACGC
seq
151






CTTTTCAATCAACTTTAATCTTTG
id

TCACTCTCCCTTTA
id







TCCGCATGTTGTAATC
no:

GTGAGGGTTAAT
no:






207320_x_at
NM_004602
HG_010_18893
LUA#32
TAATACGACTCACTATAGGGATTA
seq
62
AGAACTAAATGCAC
seq
152






TTCACTTCAAACTAATCTACGAAA
id

TGTGCATCCCTTTA
id







GCATAACCCCTACTGT
no:

GTGAGGGTTAAT
no:






208641_s_at
NM_018890
HG_010_22573
LUA#33
TAATACGACTCACTATAGGGTCAA
seq
63
GAGAAGAAGCTGAC
seq
153






TTACTTCACTTTAATCCTTTACAC
id

TCCCATTCCCTTTA
id







GATCGAGAAACTGAAG
no:

GTGAGGGTTAAT
no:






213867_x_at
NM_001101
HG_010_19208
LUA#34
TAATACGACTCACTATAGGGTCAT
seq
64
CACACAGGGGAGGT
seq
154






TCATATACATACCAATTCATGCCC
id

GATAGCTCCCTTTA
id







AGTCCTCTCCCAAGTC
no:

GTGAGGGTTAAT
no:






204158_s_at
NM_006019
HG_010_07626
LUA#35
TAATACGACTCACTATAGGGCAAT
seq
65
GCATCTGTGAATGG
seq
155






TTCATCATTCATTCATTTCAGGTT
id

CTGGAGTCCCTTTA
id







GCTGGACCTGCCTGAC
no:

GTGAGGGTTAAT
no:






200691_s_at
NM_004134
HG_010_15879
LUA#76
TAATACGACTCACTATAGGGAATC
seq
66
CTGTGTCTGGCACC
seq
156






TAACAAACTCATCTAAATACTTTT
id

TACATCTCCCTTTA
id







CTAGCTACCTTCTGCC
no:

GTGAGGGTTAAT
no:






201077_s_at
NM_005008
HG_010_18994
LUA#77
TAATACGACTCACTATAGGGCAAT
seq
67
CTGGCATGAAGGAT
seq
157






TAACTACATACAATACATACTCAG
id

TCCAGGTCCCTTTA
id







AGAGCATGAACTGATG
no:

GTGAGGGTTAAT
no






217810_x_at
NM_020117
HG_010_16506
LUA#78
TAATACGACTCACTATAGGGCTAT
seq
68
GCTATCAGAACCTT
seq
158






CTATCTAACTATCTATATCACTGA
id

AGGCTGTCCCTTTA
id







TTGTGTCTACTGATTG
no:

GTGAGGGTTAAT
no:






200792_at
NM_001469
HG_010_07661
LUA#79
TAATACGACTCACTATAGGGTTCA
seq
69
GTGTAGCCCTCCCA
seq
159






TAACTACAATACATCATCATTTTC
id

CTTTGCTCCCTTTA
id







TGTTGCCATGGTGATG
no:

GTGAGGGTTAAT
no:






218140_x_at
NM_021203
HG_010_03138
LUA#80
TAATACGACTCACTATAGGGCTAA
seq
70
CTGCTCTGCTGCTC
seq
160






CTAACAATAATCTAACTAACAGTG
id

TGGATGTCCCTTTA
id







TGTGGAGATTTAGGTG
no:

GTGAGGGTTAAT
no:






210908_s_at
NM_002624
HG_010_15000
LUA#36
TAATACGACTCACTATAGGGCAAT
seq
71
GAGAAGCACGCCAT
seq
161






TCATTTCATTCACAATCAATAAAT
id

GAAACATCCCTTTA
id







CCAACCAGCTCTTCAG
no:

GTGAGGGTTAAT
no:






201460_at
NM_004759
HG_010_02788
LUA#37
TAATACGACTCACTATAGGGCTTT
seq
72
CAATAACTCTCTAC
seq
162






TCATCTTTTCATCTTTCAATCCTG
id

AGGAATTCCCTTTA
id







CCCACGGGAGGACAAG
no:

GTGAGGGTTAAT
no:






203470_s_at
NM_002664
HG_010_17685
LUA#38
TAATACGACTCACTATAGGGTCAA
seq
73
CTGTTCCCACTCCC
seq
163






TCATTACACTTTTCAACAATCCCC
id

AGATGGTCCCTTTA
id







TGTAACATTCCTGAAG
no:

GTGAGGGTTAAT
no:






202803_s_at
NM_000211
HG_010_18487
LUA#39
TAATACGACTCACTATAGGGTACA
seq
74
CCCTCAAAATGACA
seq
164






CAATCTTTTCATTACATCATAGAA
id

GCCATGTCCCTTTA
id







ATCCAGTTATTTTCCG
no:

GTGAGGGTTAAT
no:






209124_at
NM_002468
HG_010_07210
LUA#40
TAATACGACTCACTATAGGGCTTT
seq
75
CCATGCACCTGTCC
seq
165






CTACATTATTCACAACATTACTTG
id

CCCTTTTCCCTTTA
id







TTGAGGCATTTAGCTG
no:

GTGAGGGTTAAT
no:






201892_s_at
NM_000884
HG_010_17352
LUA#81
TAATACGACTCACTATAGGGCTTT
seq
76
CTGGCATCCAACAC
seq
166






AATCTACACTTTCTAACAATATTT
id

TCATGCTCCCTTTA
id







GTCCCTTACCTGATTG
no:

GTGAGGGTTAAT
no:






200647_x_at
NM_003752
HG_010_19669
LUA#82
TAATACGACTCACTATAGGGTACA
seq
77
CTGCTACCACATGA
seq
167






TACACTAATAACATACTCATTTGC
id

CAGACATCCCTTTA
id







TGATTATACTTCTGAG
no:

GTGAGGGTTAAT
no:






218512_at
NM_018256
HG_010_03754
LUA#83
TAATACGACTCACTATAGGGATAC
seq
78
GACAGACACAGGGC
seq
168






AATCTAACTTCACTATTACAAAAG
id

TACTTCTCCCTTTA
id







TTCTGAGTGTAGACTG
no:

GTGAGGGTTAAT
no:






209932_s_at
NM_001948
HG_010_10582
LUA#84
TAATACGACTCACTATAGGGTCAA
seq
79
CACAGGCAAGAGTG
seq
169






CTAACTAATCATCTATCAATGACC
id

TTCTTTTCCCTTTA
id







ACCCAGTTTGTGGAAG
no:

GTGAGGGTTAAT
no:






200650_s_at
NM_005566
HG_010_19291
LUA#85
TAATACGACTCACTATAGGGATAC
seq
80
GCACCACTGCCAAT
seq
170






TACATCATAATCAAACATCAATAG
id

GCTGTATCCCTTTA
id







TTCTGCCACCTCTGAC
no:

GTGAGGGTTAAT
no:






217733_s_at
NM_021103
HG_010_00217
LUA#41
TAATACGACTCACTATAGGGTTAC
seq
81
GAGAAGCGGAGTGA
seq
171






TACACAATATACTCATCAATCCAA
id

AATTTCTCCCTTTA
id







AGAGACCATTGAGCAG
no:

GTGAGGGTTAAT
no:






210592_s_at
NM_002970
HG_010_17875
LUA#42
TAATACGACTCACTATAGGGCTAT
seq
82
GAGTGCTGCTGTAG
seq
172






CTTCATATTTCACTATAAACAATG
id

ATGACATCCCTTTA
id







GCAACAGAGGAGTGAG
no:

GTGAGGGTTAAT
no:






204122_at
NM_003332
HG_010_18121
LUA#43
TAATACGACTCACTATAGGGCTTT
seq
83
CAGACCGCTCCCCA
seq
173






CAATTACAATACTCATTACAGAGT
id

ATACTCTCCCTTTA
id







GCCATCCCTGAGAGAC
no:

GTGAGGGTTAAT
no:






204232_at
NM_004106
HG_010_18680
LUA#44
TAATACGACTCACTATAGGGTCAT
seq
84
GAGACTCTGAAGCA
seq
174






TTACCAATCTTTCTTTATACCCAG
id

TGAGAATCCCTTTA
id







GAACCAGGAGACTTAC
no:

GTGAGGGTTAAT
no:






216598_s_at
NM_002982
HG_010_15183
LUA#45
TAATACGACTCACTATAGGGTCAT
seq
85
CCTGGGATGTTTTG
seq
175






TTCACAATTCAATTACTCAATCTT
id

AGGGTCTCCCTTTA
id







GAACCACAGTTCTACC
no:

GTGAGGGTTAAT
no:






204798_at
NM_005375
HG_010_19159
LUA#86
TAATACGACTCACTATAGGGCTAA
seq
86
CATGGATCCTGTGT
seq
176






TTACTAACATCACTAACAATGTAT
id

TTGCAATCCCTTTA
id







GGTCTCAGAACTGTTG
no:

GTGAGGGTTAAT
no:






203949_at
NM_000250
HG_010_18429
LUA#87
TAATACGACTCACTATAGGGAAAC
seq
87
CTTATTCACTGAAG
seq
177






TAACATCAATACTTACATCATTCC
id

TTCTCCTCCCTTTA
id







TCACCCTGATTTCTTG
no:

GTGAGGGTTAAT
no:






202107_s_at
NM_004526
HG_010_18766
LUA#88
TAATACGACTCACTATAGGGTTAC
seq
88
CTCCCTGTCTGTTT
seq
178






TTCACTTTCTATTTACAATCACAG
id

CCCCACTCCCTTTA
id







TTATCAGCTGCCATTG
no:

GTGAGGGTTAAT
no:






211951_at
NM_004741
HG_010_18809
LUA#89
TAATACGACTCACTATAGGGTATA
seq
89
GGTCTTGATGAGGA
seq
179






CTATCAACTCAACAACATATCCCT
id

CAGAAGTCCCTTTA
id







CAGGTCTCTAGGTGAG
no:

GTGAGGGTTAAT
no:






202431_s_at
NM_002467
HG_010_00920
LUA#90
TAATACGACTCACTATAGGGCTAA
seq
90
GTCCAAGCAGAGGA
seq
180






ATACTTCACAATTCATCTAACCAC
id

GCAAAATCCCTTTA
id







AGCATACATCCTGTCC
no:

GTGAGGGTTAAT
no:










control features:

















FlexMAP




















description
RefSeq ID
RefSet ID
ID
upstream probe sequence


downstream probe sequence



















ACTB
NM_001101
*
LUA#91
TAATACGACTCACTATAGGGTTCA
seq
181
CATTGTTACAGGAA
seq
186






TAACATCAATCATAACTTACGTCA
id

GTCCCTTCCCTTTA
id







TTCCAAATATGAGATG
no:

GTGAGGGTTAAT
no:






TFRC
NM_003234
*
LUA#92
TAATACGACTCACTATAGGGCTAT
seq
182
GTGATCAATTAAAT
seq
187






TACACTTTAAACATCAATACCGTC
id

GTAGGTTCCCTTTA
id







TGCCTACCCATTCGTG
no:

GTGAGGGTTAAT
no:






GAPDH_5
NM_002046
*
LUA#93
TAATACGACTCACTATAGGGCTTT
seq
183
GTTTACATGTTCCA
seq
188






CTATTCATCTAAATACAAACTCAT
id

ATATGATCCCTTTA
id







TGACCTCAACTACATG
no:

GTGAGGGTTAAT
no:






GAPDH_M
NM_002046
*
LUA#94
TAATACGACTCACTATAGGGCTTT
seq
184
CCACCCAGAAGACT
seq
189






CTATCTTTCTACTCAATAATCACA
id

GTGGATTCCCTTTA
id







GTCCATGCCATCACTG
no:

GTGAGGGTTAAT
no:






GAPDH_3
NM_002046
*
LUA#95
TAATACGACTCACTATAGGGTACA
seq
185
CAAGAGCACAAGAG
seq
190






CTTTAAACTTACTACACTAACCCT
id

GAAGAGTCCCTTTA
id







GGACCACCAGCCCCAG
no:

GTGAGGGTTAAT
no:





* probes designed against RefSeq


FlexMAP sequence shown in red


gene specific sequences shown in blue


FlexMAP sequence of upstream primer bases 21-44


gene specific sequences of upstream probe bases 45-64


gene specific sequences of downstream probe bases 1-20













TABLE 4







Capture Probes











FlexMAP




bead ID
ID
capture probe sequence





Bead #1
LUA-1
GATTTGTATTGATTGAGATTAAAG
seq id no: 191





Bead #2
LUA-2
TGATTGTAGTATGTATTGATAAAG
seq id no: 192





Bead #3
LUA-3
GATTGTAAGATTTGATAAAGTGTA
seq id no: 193





Bead #4
LUA-4
GATTTGAAGATTATTGGTAATGTA
seq id no: 194





Bead #5
LUA-5
GATTGATTATTGTGATTTGAATTG
seq id no: 195





Bead #46
LUA-46
TGTATTGAATGAATTGTTGATGTA
seq id no: 196





Bead #47
LUA-47
ATTATGAAGTAAGTTAATGAGAAG
seq id no: 197





Bead #48
LUA-48
ATTATTGAGATGTGAAGTTTGTTT
seq id no: 198





Bead #49
LUA-49
GTAAGTAAATTGAAAGATTGATGA
seq id no: 199





Bead #50
LUA-50
GTAAATGATGATATTGGTATATTG
seq id no: 200





Bead #6
LUA-6
GATTTGATTGTAAAAGATTGTTGA
seq id no: 201





Bead #7
LUA-7
ATTGGTAAATTGGTAAATGAATTG
seq id no: 202





Bead #8
LUA-8
GTAAGTAATGAATGTAAAAGGATT
seq id no: 203





Bead #9
LUA-9
GTAAGATGTTGATATAGAAGATTA
seq id no: 204





Bead #10
LUA-10
TGTAGATTTGTATGTATGTATGAT
seq id no: 205





Bead #51
LUA-51
ATTGTTGATGATTGATTGAAATGA
seq id no: 206





Bead #52
LUA-52
ATTGTGAAGTATAAAGATGATTGA
seq id no: 207





Bead #53
LUA-53
TGTAGAAGATGAGATGTATAATTA
seq id no: 208





Bead #54
LUA-54
ATGAATTGAAAGTGATTGAAAAAG
seq id no: 209





Bead #55
LUA-55
GTTAGTTATTGAGAAGTGTATATA
seq id no: 210





Bead #11
LUA-11
GATTAAAGTGATTGATGATTTGTA
seq id no: 211





Bead #12
LUA-12
AAAGAAAGAAAGAAAGAAAGTGTA
seq id no: 212





Bead #13
LUA-13
TTAGTGAAGAAGTATAGTTTATTG
seq id no: 213





Bead #14
LUA-14
AAAGTATAGTAAGATGTATAGTAG
seq id no: 214





Bead #15
LUA-15
TGAATTGATGAATGAATGAAGTAT
seq id no: 215





Bead #56
LUA-56
AAAGTGATGTATATGAGTAAATTG
seq id no: 216





Bead #57
LUA-57
GTAATGATAAAGATGATGATATTG
seq id no: 217





Bead #58
LUA-58
GTAGTAATGTTAATGAATTAGTAG
seq id no: 218





Bead #59
LUA-59
AAAGTGAAAAAGATTGATTGATGA
seq id no: 219





Bead #60
LUA-60
ATGAGATTATTGGATTTGTAGATT
seq id no: 220





Bead #16
LUA-16
TGATGATTTGAATGAAGATTGATT
seq id no: 221





Bead #17
LUA-17
TGATAAAGTGATAAAGGATTAAAG
seq id no: 222





Bead #18
LUA-18
TGATTTGAGTATTTGAGATTTTGA
seq id no: 223





Bead #19
LUA-19
GTATTTGAGTAAGTAATTGATTGA
seq id no: 224





Bead #20
LUA-20
GATTGTATTGAAGTATTGTAAAAG
seq id no: 225





Bead #61
LUA-61
TGAAGATTATGAATTGGTAAGATT
seq id no: 226





Bead #62
LUA-62
ATTGGATTATGAGATTATGATTGA
seq id no: 227





Bead #63
LUA-63
TGTAGTATAAAGTATATGAAGTAG
seq id no: 228





Bead #64
LUA-64
GTAAGTAGTAATTTGAATATGTAG
seq id no: 229





Bead #65
LUA-65
AAAGGTAAGATTATTGATGAAAAG
seq id no: 230





Bead #21
LUA-21
TGATTTGAGATTAAAGAAAGGATT
seq id no: 231





Bead #22
LUA-22
TGATTGAATTGAGTAAAAAGGATT
seq id no: 232





Bead #23
LUA-23
AAAGTTGAGATTTGAATGATTGAA
seq id no: 233





Bead #24
LUA-24
GTATTGTATTGAAAAGGTAATTGA
seq id no: 234





Bead #25
LUA-25
TGAAGATTTGAAGTAATTGAAAAG
seq id no: 235





Bead #66
LUA-66
GTAGATAGTATAGTTGTAATGTTA
seq id no: 236





Bead #67
LUA-67
GATTTGTAATTGTTGAGTAAATGA
seq id no: 237





Bead #68
LUA-68
AAAGAAAGATTGTTGAGATTATGA
seq id no: 238





Bead #69
LUA-69
GATGTGAATGTAATATGTTTATAG
seq id no: 239





Bead #70
LUA-70
TGATATGAATTGGATTATTGGTAT
seq id no: 240





Bead #26
LUA-26
TGAAAAAGTGTAGATTTTGAGTAA
seq id no: 241





Bead #27
LUA-27
AAAGTTGAGTATTGATTTGAAAAG
seq id no: 242





Bead #28
LUA-28
TTGATAATGTTTGTTTGTTTGTAG
seq id no: 243





Bead #29
LUA-29
AAAGAAAGGATTTGTAGTAAGATT
seq id no: 244





Bead #30
LUA-30
GTAAAAAGAAAGGTATAAAGGTAA
seq id no: 245





Bead #71
LUA-71
ATGAATTGATTGGATTGTAATGAT
seq id no: 246





Bead #72
LUA-72
GATTATTGGATTAAAGGTAAATGA
seq id no: 247





Bead #73
LUA-73
ATTGTTGAATTGATGAGATTTGAT
seq id no: 248





Bead #74
LUA-74
TGAAATTAGTTTGTAAGATGTGTA
seq id no: 249





Bead #75
LUA-75
TGTAAAAGATTGAAAGGTATGATT
seq id no: 250





Bead #31
LUA-31
GATTAAAGTTGATTGAAAAGTGAA
seq id no: 251





Bead #32
LUA-32
GTAGATTAGTTTGAAGTGAATAAT
seq id no: 252





Bead #33
LUA-33
AAAGGATTAAAGTGAAGTAATTGA
seq id no: 253





Bead #34
LUA-34
ATGAATTGGTATGTATATGAATGA
seq id no: 254





Bead #35
LUA-35
TGAAATGAATGAATGATGAAATTG
seq id no: 255





Bead #76
LUA-76
GTATTTAGATGAGTTTGTTAGATT
seq id no: 256





Bead #77
LUA-77
GTATGTATTGTATGTAGTTAATTG
seq id no: 257





Bead #78
LUA-78
TGATATAGATAGTTAGATAGATAG
seq id no: 258





Bead #79
LUA-79
ATGATGATGTATTGTAGTTATGAA
seq id no: 259





Bead #80
LUA-80
GTTAGTTAGATTATTGTTAGTTAG
seq id no: 260





Bead #36
LUA-36
ATTGATTGTGAATGAAATGAATTG
seq id no: 261





Bead #37
LUA-37
ATTGAAAGATGAAAAGATGAAAAG
seq id no: 262





Bead #38
LUA-38
ATTGTTGAAAAGTGTAATGATTGA
seq id no: 263





Bead #39
LUA-39
ATGATGTAATGAAAAGATTGTGTA
seq id no: 264





Bead #40
LUA-40
TAATGTTGTGAATAATGTAGAAAG
seq id no: 265





Bead #81
LUA-81
ATTGTTAGAAAGTGTAGATTAAAG
seq id no: 266





Bead #82
LUA-82
ATGAGTATGTTATTAGTGTATGTA
seq id no: 267





Bead #83
LUA-83
TGTAATAGTGAAGTTAGATTGTAT
seq id no: 268





Bead #84
LUA-84
ATTGATAGATGATTAGTTAGTTGA
seq id no: 269





Bead #85
LUA-85
TGATGTTTGATTATGATGTAGTAT
seq id no: 270





Bead #41
LUA-41
ATTGATGAGTATATTGTGTAGTAA
seq id no: 271





Bead #42
LUA-42
GTTTATAGTGAAATATGAAGATAG
seq id no: 272





Bead #43
LUA-43
TGTAATGAGTATTGTAATTGAAAG
seq id no: 273





Bead #44
LUA-44
GTATAAAGAAAGATTGGTAAATGA
seq id no: 274





Bead #45
LUA-45
TTGAGTAATTGAATTGTGAAATGA
seq id no: 275





Bead #86
LUA-86
ATTGTTAGTGATGTTAGTAATTAG
seq id no: 276





Bead #87
LUA-87
TGATGTAAGTATTGATGTTAGTTT
seq id no: 277





Bead #88
LUA-88
GATTGTAAATAGAAAGTGAAGTAA
seq id no: 278





Bead #89
LUA-89
ATATGTTGTTGAGTTGATAGTATA
seq id no: 279





Bead #90
LUA-90
TTAGATGAATTGTGAAGTATTTAG
seq id no: 280





Bead #91
LUA-91
GTAAGTTATGATTGATGTTATGAA
seq id no: 281





Bead #92
LUA-92
GTATTGATGTTTAAAGTGTAATAG
seq id no: 282





Bead #93
LUA-93
GTTTGTATTTAGATGAATAGAAAG
seq id no: 283





Bead #94
LUA-94
ATTATTGAGTAGAAAGATAGAAAG
seq id no: 284





Bead #95
LUA-95
TTAGTGTAGTAAGTTTAAAGTGTA
seq id no: 285
















TABLE 5A-I





Microtiter plates







Table 5A. Microtiter plates.





















FlexMap














description
ID
blank
blank
dmso1
dmso2
dmso3
dmso4
dmso5
dmso6
dmso7
dmso8
dmso9
dmso10





NM_005736
LUA#1
40
33.5
902
774
850.5
914
836.5
900
888
563
803.5
692.5


NM_000070
LUA#2
39
36
653.5
434
571
624
650
609
575.5
265
499.5
499.5


NM_018217
LUA#3
42
30
1547
1243
1382
1463
1448
1444.5
1416
713
1276.5
1180


NM_004782
LUA#4
45
39
1402
1082
1284
1397
1324
1234
1389.5
724.5
1105
1140.5


NM_014962
LUA#5
49
39
1724
1597
1549
1670
1554
1467
1437
732
1251
1222


NM_004514
LUA#46
39
30.5
1490.5
1130
1389
1498
1455
1394
1420.5
804.5
1235
1160.5


NM_006773
LUA#47
34.5
40
682
571
683
734
698
672.5
664
409
683
635


NM_014288
LUA#48
41
37
713
527
655
721
710
761
657
364
672
643


NM_017440
LUA#49
28
32
621
443
568
629
599
613
562
303
499
481


NM_007331
LUA#50
38.5
29
1011
821.5
931.5
956
988
981.5
839
359
755
736


NM_173823
LUA#6
38
27
1411
1222.5
1272.5
1413
1326
1203.5
1333
475
850
861


NM_000962
LUA#7
33
37
472
401
416.5
435
406
368.5
387
138
306
287


NM_003825
LUA#8
42
34.5
574.5
483
474.5
575
482
430.5
434
188
336
324


NM_016061
LUA#9
46
37
1208
1137
1050.5
1049
962
909.5
905
365
714
683


NM_000153
LUA#10
35
43
63
57.5
59
62.5
48
44.5
46
38
46
48


NM_006948
LUA#51
36.5
32.5
71
55
75
68
74
79.5
60.5
46
50
41


NM_004631
LUA#52
41
26
1544.5
1163
1288
1230
1170.5
1060
1047
364
731.5
729


NM_002358
LUA#53
33
32.5
564
409
570
611.5
616
671
583
275
547
464


NM_013402
LUA#54
34.5
31
1273.5
943.5
1181
1190
1216.5
1153.5
1108
456
976
945


NM_000875
LUA#55
42
30
1243.5
1137.5
1219.5
1507
1425
1383
1250
854.5
1158
1168


NM_001974
LUA#11
33
34
147
137
170
221.5
273
213.5
183
58
139
130


NM_000632
LUA#12
41
35
500.5
399
483
509
499.5
519.5
492
282
378
338.5


NM_006457
LUA#13
33.5
30
94
75
82.5
91
82
68
75
38
60
59


NM_000698
LUA#14
38.5
28
188
153
163.5
209
215.5
184
149
99
134
133


NM_032571
LUA#15
34.5
49.5
209
146
172
223
198
173.5
187
87
152
150


NM_006138
LUA#56
44
38.5
145.5
150
157
229
199
209
158
133
140
130


NM_015201
LUA#57
42
33
878
689
822
965
877.5
927
932
381
635
570


NM_006985
LUA#58
38
34
919
775
826
897
857
925
751
292.5
727
619


NM_004095
LUA#59
41
32
695
536.5
595
574
562
655
565.5
183.5
345
337.5


NM_005914
LUA#60
46
37
2195.5
1744
2157
2234
2262
2579
2082
1102
2212
2079


NM_007282
LUA#16
34
20
4387
3871
4222
4458
4248
4005
4536
3049.5
3935
3689


NM_003644
LUA#17
36
33
526
406
480.5
528
498
450
494
246.5
411.5
391.5


NM_001498
LUA#18
42
36
1913
1585
1809.5
2005
1957
1776.5
1849
805
1607
1538


NM_003172
LUA#19
39
33
3589
2978.5
3400
3500
3410.5
3151
3536
3020
3531
3474


NM_004723
LUA#20
60
48
832
591.5
736.5
873
807.5
813
798
329.5
716.5
652


NM_014366
LUA#61
38
28
1995
1551
1903.5
2057
1962
1912.5
1996
1294.5
1720
1635


NM_003581
LUA#62
38
39
360
341.5
317.5
455
640.5
540
412
151.5
429
402


NM_018115
LUA#63
38
31.5
3024
2378
2960
3112
2963
2980
2866
1873
2710
2595


NM_021974
LUA#64
36
35
2077.5
1654.5
2019
2122
2051
2001
1859.5
973.5
1770.5
1771


NM_024045
LUA#65
42
40
734
526.5
675
775
713
729
683
264
520
494


NM_004079
LUA#21
42
31
4089
3862.5
3968
3977
3945.5
3731
3760
2211
3375
3283.5


NM_000414
LUA#22
30.5
38.5
604
446
533
594
583
764
580
203
475
440.5


NM_001684
LUA#23
36
38
2409.5
1974
2345
2586
2361
2644
2639
1719.5
2063
2080


NM_003879
LUA#24
31
29.5
960
709.5
920
1061
1060.5
1079.5
920.5
446
891
871


NM_002166
LUA#25
41
29
1321.5
1026
1432
1466
1409
1475.5
1220
663.5
1490.5
1453


NM_005952
LUA#66
40
36
1423
1277.5
1395.5
1459.5
1482
1431
1332
675.5
1259
1185


NM_001034
LUA#67
40
36
607
491.5
520.5
777
713
635.5
580
255
614
609


NM_003132
LUA#68
36
42
789
626
706
671
617
563.5
583
198.5
518.5
524


NM_018164
LUA#69
41
34
205.5
149
182
235
274
250
198
100.5
189
142


NM_014573
LUA#70
41
39
292
225.5
240
328.5
314.5
272
244.5
114
257.5
232


NM_014333
LUA#26
28.5
27
1505
1147
1369.5
1467
1427
1484
1415
774.5
1217.5
1236


NM_006432
LUA#27
38.5
33
699
534
646
713.5
703
718
636
315
562
550


NM_000433
LUA#28
45
44
878
576
830.5
896
906
796
844
351
893
824


NM_000147
LUA#29
42
24
639
466
629
651
659
597.5
645
256
532.5
499


NM_000584
LUA#30
41.5
36
394
346
379
483.5
407
340.5
306.5
120
268.5
289


NM_006452
LUA#71
35
36
2704.5
2307.5
2678
2654.5
2673
2689
2707
1357.5
2109
1953


NM_005915
LUA#72
45.5
39
1061.5
874
1025
1120
1087
921
1013
478
1105
1020


NM_005980
LUA#73
40.5
44.5
159
108
139
145.5
144.5
144
145
92.5
138.5
130


NM_002539
LUA#74
47
43
2035.5
1756
2051.5
2189.5
2318
1930
1994
1204.5
2047.5
2038


NM_019058
LUA#75
48
37
2504
2473
2482
2914
3027.5
2942.5
2642
1576
2562.5
2616.5


NM_004152
LUA#31
44
42
1205
983
1218
1317
1344
1212
1299
547.5
1317.5
1129.5


NM_004602
LUA#32
38
30
182
293
205
255
222
159
170
770
223.5
139


NM_018890
LUA#33
51
44
2917
2521.5
2741.5
2699
3109
2785
3028.5
2194
2814
2125


NM_001101
LUA#34
47
41
3269.5
2707
3122.5
3280
3254.5
2939
3057
2117
3070
2979


NM_006019
LUA#35
40
32.5
732
617.5
657.5
710.5
678
550.5
633
242
493
479.5


NM_004134
LUA#76
53
49
1773
1613
1923
1777.5
1756.5
1565
1674
812.5
1734
1752


NM_005008
LUA#77
38
37
1466
1175
1420
1489
1546
1279
1331
613.5
1198
1154


NM_020117
LUA#78
37
32.5
3623
3228
3691
3649
3820
3251
3418
2516
3693.5
3553


NM_001469
LUA#79
35
30.5
609.5
490
632.5
745
811
727
615.5
295
646
600


NM_021203
LUA#80
43
48
854.5
657
825
824
830.5
702
752
289.5
812
729


NM_002624
LUA#36
54
45.5
483
414
462
482.5
490
414.5
426
178
314
300.5


NM_004759
LUA#37
45
40
210
160
207
214.5
192
162
157
97
190
175


NM_002664
LUA#38
42.5
44
758.5
572
687
715.5
717
676
717
272
683
690


NM_000211
LUA#39
43
47
2399
2085
2457.5
2480
2328
1741
2234
1125
2855
2765


NM_002468
LUA#40
36
41.5
434
421
408.5
461
466
408
403
238
396.5
335


NM_000884
LUA#81
48
53
1425.5
1158
1403
1476
1501.5
1293
1396
661
1224.5
1201.5


NM_003752
LUA#82
51
46
2178
1591
1908
2000
2057
1847
2035
1041.5
1743
1589


NM_018256
LUA#83
38
42
1960
1487
1947.5
1945.5
1933
1831
1798
1027
1858.5
1781


NM_001948
LUA#84
51
44
3639
3037
3513
3628
3641
3222
3639
1898.5
3089
3064


NM_005566
LUA#85
50
46.5
2849
2508
2754
2860
2845
2649
2739.5
1334
2560
2497


NM_021103
LUA#41
51
45
3369.5
2796
3116
3286.5
3175
2888
3034
2155
2887
2663.5


NM_002970
LUA#42
50
53
1390
1330
1252
1169.5
1144.5
922.5
1002
381
800.5
798


NM_003332
LUA#43
37
42
3442
3303
2960
2860
2644
2238
2494
1006
1976
2066.5


NM_004106
LUA#44
43
40
756
623
688
662
601
546
562
203
416.5
430.5


NM_002982
LUA#45
48
38.5
4465
4583
4733
4626
4576
4067.5
4536
2998
4098
3942.5


NM_005375
LUA#86
53.5
53
3445
2883
3140
3429
3216
3079
3213.5
1598.5
2714
2510


NM_000250
LUA#87
50
40.5
3990
3233.5
3862
3996
3850
3694.5
3993
2672
3456
3368


NM_004526
LUA#88
42
31
2129
1933
2176
2149
2161
1926
1970.5
1115
1947
1890.5


NM_004741
LUA#89
50.5
39
1970
1864
1808.5
1645
1661
1432.5
1528
561.5
1340
1146.5


NM_002467
LUA#90
67
56.5
3253
2824
3142
3156.5
3104
2666
2784
1819.5
2700.5
2541


ACTB
LUA#91
54
51
3126
2638
3086
3191
3160
3024
3100
1853.5
3149
3002.5


TFRC
LUA#92
76
79.5
1348
983.5
1283.5
1329.5
1267
1098
1256
467.5
946
967


GAPDH_5
LUA#93
59
46
2708
1911
2385.5
2693
2523
2374.5
2539.5
1475
2364
2243.5


GAPDH_M
LUA#94
48
49.5
4772
3907
4477
5031.5
4540
4282
4848
3529
4163
4180


GAPDH_3
LUA#95
74.5
69
4277
3837
4461.5
4434
4414
4444
4482
3794.5
4211
4058










Table 5B. Microtiter plates





















FlexMap














description
ID
dmso11
dmso12
dmso13
dmso14
dmso15
dmso16
dmso17
dmso18
dmso19
dmso20
dmso21
dmso22





NM_005736
LUA#1
863
780.5
645
792.5
662
690
686.5
690
744
752
821
824.5


NM_000070
LUA#2
602
551
497.5
605
489
519
524.5
532
532.5
541
574
575


NM_018217
LUA#3
1301
1291
1131
1309.5
1049
1136
1159
1144
1216.5
1295
1334
1278


NM_004782
LUA#4
1261.5
1219
1206
1280
936.5
1113
1077
1085
1223
1228
1291.5
1200


NM_014962
LUA#5
1351
1339
1064
1149.5
1037
1121
1101
1135
1245
1246.5
1325
1246.5


NM_004514
LUA#46
1269
1286.5
1143
1367
1083
1216
1144
1196
1271
1302
1276
1284.5


NM_006773
LUA#47
742.5
671
677.5
757
598
690.5
691.5
689
687
707
730
706


NM_014288
LUA#48
754
671
683
764
579
735.5
701
704
708
718
733
708


NM_017440
LUA#49
533
498
481.5
569
436
529
490
506
499
527
533
544.5


NM_007331
LUA#50
756
792
605
745
636
718
726
692
711
767
785
786


NM_173823
LUA#6
876
1030
673.5
802
672
763
735
738
861.5
954
913.5
959


NM_000962
LUA#7
293
363
281
328.5
281.5
275
278
278
291
340
348
342


NM_003825
LUA#8
350
335
293
267.5
254
222
245.5
265
313
315
347
310


NM_016061
LUA#9
737
740
530.5
653.5
623
649
597
618
659
648
707
681


NM_000153
LUA#10
44.5
46
46
44
39
41
44
42
43
50
53
51


NM_006948
LUA#51
51
55.5
56
65
56
62
55
60
55.5
64
57
60.5


NM_004631
LUA#52
792.5
864
593.5
702.5
575
698.5
641
698.5
709.5
756
744.5
779


NM_002358
LUA#53
614
582.5
560
676
542.5
606
503
526
553
560.5
578.5
574.5


NM_013402
LUA#54
974
1061
870
999
812
940.5
906.5
918
941
970.5
977
1031


NM_000875
LUA#55
1337
1263
1215
1372.5
1168
1101
1141.5
1096
1191
1173.5
1280
1223


NM_001974
LUA#11
194
214
175
216
163.5
117
114
119
164
178
222.5
205.5


NM_000632
LUA#12
360
389.5
361
404
333
383
372
307
361.5
376
396
397


NM_006457
LUA#13
71
62.5
56
64.5
55
56.5
50
60
67
65
67
64


NM_000698
LUA#14
132.5
136
123.5
166.5
146
130
114
129
115.5
135
142
145


NM_032571
LUA#15
132.5
173
141
190
108
160.5
135
142.5
164.5
170
178
157


NM_006138
LUA#56
128
133.5
142
134
140
138
137
117
146.5
150
154
153


NM_015201
LUA#57
688
692
583
736.5
650
684.5
588.5
557
637
652
691.5
698


NM_006985
LUA#58
630
701
543.5
707.5
550
672
684
635
653.5
678
720.5
692


NM_004095
LUA#59
334
407
294.5
363
352.5
440
347.5
319
372
340
398.5
391


NM_005914
LUA#60
1967.5
2255
1967
2196
1708
2021
2120
1877
2054
2334
2477
2222


NM_007282
LUA#16
4208
4000.5
3735
4128
3643
3554
3724
3707
4109
3898.5
4083
3866


NM_003644
LUA#17
461
445.5
422.5
467
331
409
394
418
430
437.5
462.5
465.5


NM_001498
LUA#18
1627.5
1631
1477
1773
1383
1618.5
1582
1614
1701
1727
1700
1716


NM_003172
LUA#19
3838
3647
3528
3823.5
3374
3493
3499.5
3566
3683
3672
3821
3575


NM_004723
LUA#20
848.5
770
717
823.5
607
677
702.5
717
709
705
759
789.5


NM_014366
LUA#61
2015
1794.5
1782
2122.5
1726.5
1787
1758
1753
1799
1782
1903
1815


NM_003581
LUA#62
561
312
364
462
507
198.5
275
245
268
472.5
540
562.5


NM_018115
LUA#63
2942
2980
2750
3020
2659.5
2912
2714
2598
2775
2741
2898
2815


NM_021974
LUA#64
1949
1868
1777
2001
1535.5
1806
1739.5
1752
1837
1744
1888
1869.5


NM_024045
LUA#65
520
585
448
599
494
545.5
509
475
489
513.5
539.5
530


NM_004079
LUA#21
3630
3578.5
3061
3459
3268.5
3368
3393.5
3216
3473.5
3414
3469.5
3382


NM_000414
LUA#22
554
514
473
566
440
552
539
518
523
534
546.5
539


NM_001684
LUA#23
2436
2350
2186
2429
2206
2209
2068
2000
2280
2214.5
2479
2192.5


NM_003879
LUA#24
897
985
843.5
1017
839
918.5
909
959
942.5
961
1003
983


NM_002166
LUA#25
1616.5
1692
1460
1463
1050.5
1282
1493
1420
1532
1618
1690
1601


NM_005952
LUA#66
1343.5
1432.5
1069
1249
1130.5
1206.5
1195.5
1107.5
1166.5
1214
1263.5
1259


NM_001034
LUA#67
537
642
588
647
495.5
491
523.5
545
572
667
680
675.5


NM_003132
LUA#68
457
536
413
517
403
507
516
462
529
548
538
522


NM_018164
LUA#69
195.5
184
178
231
184
122
129
142.5
186
209.5
214
203


NM_014573
LUA#70
230
271
230
293
193.5
212
214
230
212
256
280
259


NM_014333
LUA#26
1335
1361
1221.5
1387
1155
1214.5
1230
1281
1305
1393
1462
1429


NM_006432
LUA#27
585
632
533
689
499
575
534
545
594
662
702.5
671.5


NM_000433
LUA#28
920
893
911
1009
655
928.5
927
928.5
950.5
969
1001
979


NM_000147
LUA#29
500
521
468
541
462
505
484.5
459.5
511.5
506
555
539


NM_000584
LUA#30
256
366
256
269
251
183
169.5
207
243.5
316
301.5
315


NM_006452
LUA#71
2099
2084
1892
2120
2006
2266
2093
1950
2197
2076.5
2209
2167


NM_005915
LUA#72
1226
1099
1053
1205.5
860
943
1063
1093.5
1138
1053
1123.5
1079


NM_005980
LUA#73
142
132
131
147
131
150.5
147.5
140
142.5
157
140
144


NM_002539
LUA#74
2425
2316
2087
2311
1877
1927.5
2018
1928
2145
2151
2222
2192


NM_019058
LUA#75
3031
2880
2490.5
2668
2516.5
2095
2271
2515
2626
2535
2676
2717


NM_004152
LUA#31
1242.5
1194
1192
1395.5
1060
1213
1238
1194.5
1259
1273
1272.5
1273


NM_004602
LUA#32
160
171
118
146
139
185.5
224
144
136
148
144
175


NM_018890
LUA#33
3178
2820
2759
3652
2563.5
2013
2134
1994.5
2953
3108
3381
3102.5


NM_001101
LUA#34
3390
3286
3055
3351
3058
2997
3223
3069
3164
3182.5
3260
3244.5


NM_006019
LUA#35
429
517
421
502
432
439
465
472
469
520
559
517.5


NM_004134
LUA#76
1839
1854.5
1599
1770
1402
1666
1823
1718
1844
1891.5
1836
1747.5


NM_005008
LUA#77
1088
1303
1122.5
1276.5
1020
1110
1139.5
1151.5
1213
1281
1304
1340


NM_020117
LUA#78
4107
3817
3879
4057
3458.5
3506
3738
3565.5
3943
3851.5
4059.5
3820.5


NM_001469
LUA#79
710.5
619
678
842
686
630
612
622.5
670.5
688
825
835


NM_021203
LUA#80
780
794
768
808.5
590
757
807
745.5
808
803
818
784.5


NM_002624
LUA#36
336
353
250
305
275
297
283
299
334.5
335
381
331


NM_004759
LUA#37
186
205.5
183
212
157
194
186
173
184
194
197
206


NM_002664
LUA#38
797
730.5
691
732
548
671
688
703
750
757
769
762


NM_000211
LUA#39
3211
2924
2886
2921
1857
2278
2657
2797
3053
2908
3039.5
2797.5


NM_002468
LUA#40
429
379.5
347
429
297
306.5
343
339
349
375
391
371.5


NM_000884
LUA#81
1428
1318
1197
1324
1090
1199
1217
1234
1315
1314.5
1350
1293


NM_003752
LUA#82
1846
1808.5
1603
1888
1612
1740.5
1728.5
1633
1761
1702
1825
1762


NM_018256
LUA#83
2062
1861
1845.5
2074.5
1645
1792
1851
1876
1910
1907
1960
1898.5


NM_001948
LUA#84
3418
3494
3142.5
3336
2664
2977
3066
3045
3170
3332
3464
3272.5


NM_005566
LUA#85
2977
2714
2584
2752
2214
2342
2574
2571
2654.5
2695
2715
2669.5


NM_021103
LUA#41
3189.5
3018
2718
3105
2604.5
2742
2818
2882
2966
2956
3130
2913.5


NM_002970
LUA#42
879
899
596
638
621
698
698
707
813
778
840
748


NM_003332
LUA#43
2000
2210
1489
1631.5
1664.5
1829
1865
1854
2095.5
2120.5
2375
2163


NM_004106
LUA#44
416.5
450.5
371
410
366
407
398
375
392
398
463
418


NM_002982
LUA#45
4022
4124
3811.5
4093
3650
3735
3781.5
3873
4035
4073
4216
3981.5


NM_005375
LUA#86
3004.5
2906
2558
2880
2360
2568
2646
2638.5
2846
2892
3039.5
2842


NM_000250
LUA#87
3741.5
3571
3474
3656
3421.5
3371
3432
3378
3509
3505
3695
3495


NM_004526
LUA#88
2058
2055
1808
1911
1680
1726.5
1825.5
1736
1909.5
1896.5
1978
1990


NM_004741
LUA#89
1108
1321.5
947.5
1238
1024
1083
1073
1051.5
1149
1280
1378.5
1306


NM_002467
LUA#90
2459.5
2556
2463.5
2716
2442.5
2612
2700
2639
2735
2770
2847
2864.5


ACTB
LUA#91
3366
3226
2978
3292
2667
3186
3158
3128
3408.5
3183
3323
3238.5


TFRC
LUA#92
948
1112
883
1059
758
1009
944.5
929
1063.5
1069
1197
1157


GAPDH_5
LUA#93
2063
2310
2363
2598
2157
2324
2337
2442
2468
2425.5
2655
2417


GAPDH_M
LUA#94
4206
4269
4371
4733.5
4179.5
4071
4252.5
4207
4413
4315
4737
4324.5


GAPDH_3
LUA#95
4477
4343.5
4445
4632
3923
4014
4259.5
4169
4620.5
4371
4726
4365










Table 5C. Microtiter plates





















FlexMap














description
ID
dmso23
dmso24
dmso25
dmso26
dmso27
dmso28
dmso29
dmso30
dmso31
dmso32
dmso33
dmso34





NM_005736
LUA#1
821.5
761.5
188
697
774.5
787.5
819
983.5
981.5
798
306.5
708


NM_000070
LUA#2
594.5
430.5
145.5
562
569.5
544.5
596.5
671
648
486
165
548.5


NM_018217
LUA#3
1272
1058
376
1157
1280
1212
1311
1475
1368
1128
433
1123


NM_004782
LUA#4
1254
1072
442
1106
1257
1209.5
1279
1435
1295
1042
496.5
1128.5


NM_014962
LUA#5
1284.5
950
381
1032
1210
1259.5
1287
1466
1347
1046
405
1094


NM_004514
LUA#46
1275
1119
432
1216
1259
1206
1358
1503.5
1391.5
1179
512
1155.5


NM_006773
LUA#47
691
616
242
666
731
726
757
756
731
663
283
684


NM_014288
LUA#48
701
566
240
703
741
758
751
738
705
616
285
687


NM_017440
LUA#49
568.5
487
184.5
503.5
534
536.5
553
615
619
504
214
489.5


NM_007331
LUA#50
842
569.5
172
659
721
712.5
770.5
918
866
625
207
673


NM_173823
LUA#6
1025
607
154
705
814
832.5
938
1231
1222
732
173.5
845


NM_000962
LUA#7
352
211
64
253
284
279
369
400.5
441.5
264
78
293


NM_003825
LUA#8
381
251.5
111
235
283
306
350
401
379
249
117
325.5


NM_016061
LUA#9
745
481
166
546
662
645
728
788
830
574.5
181
539


NM_000153
LUA#10
55
45
32
43
43.5
43
54.5
62
65
51
37
44.5


NM_006948
LUA#51
81
46.5
45
62.5
59
53
70
75
73
70.5
34
62.5


NM_004631
LUA#52
856
460
151
651.5
676
654
697
822.5
826.5
502.5
148
646


NM_002358
LUA#53
656
440
130
575
518
562
675
706
732
536
162
547


NM_013402
LUA#54
1023.5
761
223
871
927
926.5
975
1112
1116
832
250
883


NM_000875
LUA#55
1365
1238
416
1061
1243
1287
1314
1444
1351
1231
477.5
1182.5


NM_001974
LUA#11
210
101.5
49.5
148
138
150
217
378.5
312.5
119
51.5
131.5


NM_000632
LUA#12
422
322.5
70
324.5
355
343.5
371
420
466
365
101.5
346


NM_006457
LUA#13
82
45
39
55
64
67
67.5
89
100
51
37
62


NM_000698
LUA#14
196
141
53
133
119
131
158
214
204
156
49.5
135


NM_032571
LUA#15
171
126
43
146
184
147
184
200
220
135.5
54
161


NM_006138
LUA#56
187.5
154.5
53.5
125.5
140
118.5
156.5
179
181
152
66
140.5


NM_015201
LUA#57
785
654
157
602
652
676.5
745
864
989.5
753
187
597


NM_006985
LUA#58
748
480
115.5
632.5
634
596
693
721
753.5
549.5
136
577


NM_004095
LUA#59
449
277
74
298
339
355.5
377.5
423
534
335
97.5
282


NM_005914
LUA#60
2065
1570
585.5
1976
2363
2060
2352
2412.5
2143
1828
640
1900


NM_007282
LUA#16
3898
3815
2119
3519
4076.5
4109
4055
4442
4132
3867
2338
3559


NM_003644
LUA#17
463
361
151
404.5
468
438.5
476
510
481
365
173.5
435


NM_001498
LUA#18
1764
1346.5
396
1556.5
1713
1626
1775
1908
1881
1507
461
1600.5


NM_003172
LUA#19
3530.5
3727
2201
3535
3813
3727
3844
3804
3566
3747
2476
3638.5


NM_004723
LUA#20
733.5
581
164.5
714
744
778
808
839.5
848
691.5
205
742


NM_014366
LUA#61
1790
1932
755
1697
1841
1830
1930
1971
1885.5
2015
854
1815.5


NM_003581
LUA#62
508
264
59
336.5
263
336
362
671
472
392
100
295


NM_018115
LUA#63
2891
2754
1010
2590
2914.5
2749
3009
3130
3163
2849
1137
2663.5


NM_021974
LUA#64
1800
1540
533
1673
1868
1801
1844
1955
1839.5
1621
613
1682.5


NM_024045
LUA#65
580.5
456
127
458
493
477
564.5
602
684.5
541
149
490


NM_004079
LUA#21
3373
2792
1173
3108.5
3361
3403
3373
3610.5
3401
2919
1179
3060


NM_000414
LUA#22
573
384
101
508
570.5
556
556
574.5
625
456
113
509.5


NM_001684
LUA#23
2316
2260
966
2120.5
2395
2329.5
2457
2669.5
2647.5
2428
1083
2158


NM_003879
LUA#24
919
761
233
892.5
963
916.5
985
1092
1063
893
283.5
903


NM_002166
LUA#25
1348
993
408
1513
1746
1565
1930
1844
1355
1134
467
1441.5


NM_005952
LUA#66
1283
1016.5
336
1102
1159
1200
1283
1387
1325
1101
353
1138


NM_001034
LUA#67
689.5
450
112
505
540
557
672
811.5
809
423
132
611


NM_003132
LUA#68
535
319
94
458.5
473
475
503
592
559
372
105
444


NM_018164
LUA#69
226
130
59
149
147
157
221.5
281.5
252
165
63
160.5


NM_014573
LUA#70
277
201.5
61.5
219
207
238
288.5
333
436
224
73
237


NM_014333
LUA#26
1363.5
1109
448
1216
1325
1285.5
1464.5
1547
1503.5
1192
521
1233


NM_006432
LUA#27
716.5
478
170.5
548.5
613
585
701
828
774.5
545.5
207.5
565.5


NM_000433
LUA#28
900
625
185
906
976.5
938
971.5
1056
926
710
226.5
875


NM_000147
LUA#29
565
447
136
456
509
496
566
633.5
674
499
160
509


NM_000584
LUA#30
332
167.5
51.5
194
216
250
440.5
577.5
679
232
64
266.5


NM_006452
LUA#71
2382
1862
572
1894.5
2078
2134
2062
2363
2464.5
1959
642
1927


NM_005915
LUA#72
1040.5
812
258
1015
1145
1113
1142
1191
1078
905.5
298
1096.5


NM_005980
LUA#73
162
113.5
46
145.5
150
140
143.5
142
143.5
133.5
65
134


NM_002539
LUA#74
2219.5
1712
716.5
1940
2176
2201
2248
2379
2236
1902
756
1957.5


NM_019058
LUA#75
2565.5
2239
883
2338.5
2445
2617
2767.5
2997
2585
2218.5
937.5
2571


NM_004152
LUA#31
1238.5
885
254.5
1116
1248
1222
1313
1419
1325.5
1031
326
1154.5


NM_004602
LUA#32
207.5
581
86
127.5
144
138
172
214
245
385
210
165.5


NM_018890
LUA#33
3131.5
2053.5
683
2273
2061
2264
3223
3293
2669
2625
1280
1831


NM_001101
LUA#34
3138
2898
1256
2946
3193.5
3261
3363
3638
3259
3136
1401
3093.5


NM_006019
LUA#35
552
373
118
421
443
456
541
679
653
420.5
131
419


NM_004134
LUA#76
1621
1208
429
1734
1827
1817
1814.5
1856
1730
1437
510.5
1704.5


NM_005008
LUA#77
1325
876
284
1091
1131.5
1088
1258
1464
1405.5
945
321
1145


NM_020117
LUA#78
3812
3366
1892.5
3512
3795
3850
3953
4053.5
3597.5
3343.5
2066
3664


NM_001469
LUA#79
816
489
131.5
644
627
637
698
1000
783
548
176
613.5


NM_021203
LUA#80
802
445
136
682
771.5
789.5
811
929
728
523
163.5
740.5


NM_002624
LUA#36
396
259.5
81
285
310
308.5
361
445
448
296
101
332.5


NM_004759
LUA#37
212
146
56
191.5
195
200
218
230
229
174
73
180


NM_002664
LUA#38
713
463
147
679
769.5
768
798
850
820
551
158
712


NM_000211
LUA#39
2300
1665
817
2789
3080.5
3084
3060
3115
2385.5
1682
880
2773


NM_002468
LUA#40
427
289
84
328.5
354
368
391.5
437
500
341
105
374.5


NM_000884
LUA#81
1285
948
318
1168
1347
1357
1357.5
1526.5
1366
1084
349
1198


NM_003752
LUA#82
1763
1642
538.5
1556
1773
1728.5
1820
2059
2038
1723
603.5
1651


NM_018256
LUA#83
1856
1542
566.5
1765
1956.5
2005
1978
2084.5
1880
1678
628
1815.5


NM_001948
LUA#84
3267
2654
1083
2928
3321
3331
3460
3698
3453.5
2621.5
1165.5
3034


NM_005566
LUA#85
2590
1917.5
682
2426
2711
2775
2726
2956
2650.5
2079
728
2471


NM_021103
LUA#41
2956
2604.5
1342
2649
2997
3023.5
3125.5
3151
2850
2606
1390
2874


NM_002970
LUA#42
879
470.5
177
617
645
720.5
854
935
819
484
175
626


NM_003332
LUA#43
2270
1228
527
1706
2044
2248.5
2272.5
2640
2476.5
1319.5
496.5
1835.5


NM_004106
LUA#44
486
268
100
347
378.5
379
441.5
519
499.5
309
101.5
338


NM_002982
LUA#45
4008
3520
1385.5
3498
3857.5
3867
3911.5
4376.5
4090
3402
1612
3652


NM_005375
LUA#86
2929
2138
780
2591
3000
3007
2930
3132
3068
2187
846.5
2508


NM_000250
LUA#87
3651
3489
1765
3299
3612
3693
3847
4025
3686.5
3647
1803
3408


NM_004526
LUA#88
1880
1497
585
1628
1882
1926
2035.5
2119
2056
1644
650
1709


NM_004741
LUA#89
1381
700
242
992.5
1014
1103
1378
1416
1429
794
253
998.5


NM_002467
LUA#90
2628
2183.5
955
2420
2720
2741
2784
2979
2694
2237.5
1032
2422


ACTB
LUA#91
3135
2568
1118.5
3053.5
3423.5
3204
3422
3556
3070
2801.5
1285
3053


TFRC
LUA#92
1174
664
207
912
1113
1032
1189
1370
1388
813
235
1034


GAPDH_5
LUA#93
2447
2014.5
859
2239.5
2438
2261
2400
2572
2390.5
2139
1023
2433


GAPDH_M
LUA#94
4314
4528
2358.5
4048
4414
4150
4464
4643
4474
4483.5
2639.5
4111


GAPDH_3
LUA#95
4468
4283
3479
3998
4500
4518
4621
4645.5
4414
4249
3411
4026










Table 5D. Microtiter plates





















FlexMap














description
ID
dmso35
dmso36
dmso37
dmso38
dmso39
dmso40
dmso41
dmso42
dmso43
dmso44
dmso45
dmso46





NM_005736
LUA#1
800
833
740.5
838.5
652
751.5
746
714.5
87
136
806
835


NM_000070
LUA#2
605.5
588.5
578.5
652.5
538
377.5
350
518
67
62.5
534.5
556


NM_018217
LUA#3
1308.5
1279.5
1242
1243.5
1030
901
915
1109.5
89
167
1158.5
1114


NM_004782
LUA#4
1238
1228
1232
1133
974
882.5
885.5
1085
96
187.5
1077.5
1018


NM_014962
LUA#5
1158
1208
1175
1187
1015
823
819
1036
87
161
1104
1084


NM_004514
LUA#46
1237
1258
1186
1216
1067.5
909
946
1072
88
178
1161
1144


NM_006773
LUA#47
769
741
699.5
701.5
619
544
528
685.5
88
128
653
647


NM_014288
LUA#48
733
721.5
667
692
609.5
478
510
676
132
140.5
643.5
702


NM_017440
LUA#49
582
547
529
527
462
423
387
490
73
97.5
501
562


NM_007331
LUA#50
744
743
749.5
756
670.5
465
464
657
66
92
679
711.5


NM_173823
LUA#6
761
855
839
836
801
520.5
491.5
695
47
64
894
880


NM_000962
LUA#7
309
343.5
293
332
297
178
186
245
44
30
295
316.5


NM_003825
LUA#8
286
240
257
299
278.5
182
215.5
256
62
72
306
331


NM_016061
LUA#9
586
658.5
613
659
536
369
398.5
507
66
83.5
557.5
606


NM_000153
LUA#10
47.5
56
50
57
56
46
40.5
41
29
28
54
64


NM_006948
LUA#51
62
61.5
69.5
67
67
56
51
51
29
15
57.5
71


NM_004631
LUA#52
643.5
646
686.5
663
591
328
336
545
80
92.5
615
650


NM_002358
LUA#53
573.5
540
564
592
580
419
385
538
36.5
49
559
606.5


NM_013402
LUA#54
966
978
921
940.5
856.5
563.5
599
823
46
95
875
880


NM_000875
LUA#55
1285.5
1133
1138
1263
1075
1092
1048
1124
106
188.5
1221
1110


NM_001974
LUA#11
138
141
155.5
212
134
83
93
119
36
35
137
207


NM_000632
LUA#12
387
363
342
400
356
348
296
342
47.5
53
353
359.5


NM_006457
LUA#13
62
71.5
61
81
78.5
55
49
48.5
28
23
75
63


NM_000698
LUA#14
146
141
122
167
160.5
135
125.5
121.5
40
33.5
148
200


NM_032571
LUA#15
164
176.5
167.5
169
138
110
109
129.5
28
33
160
172


NM_006138
LUA#56
166.5
146
121
158.5
152
141.5
125
125
39
46
135
151


NM_015201
LUA#57
686.5
706
631.5
729
656
569
485
618
42
74
666
624


NM_006985
LUA#58
638
615
623
582
538
345
345
555
37
54
584
588


NM_004095
LUA#59
304
350
338.5
374
354
235
211
281
38
46
316
357


NM_005914
LUA#60
2448.5
2103
2338
1967.5
1571
1343
1339
2015
118
230
1893
1677


NM_007282
LUA#16
3893.5
3874.5
3637.5
3391
3071
3437
3494
3535
359
966
3373
3307


NM_003644
LUA#17
446
449.5
439
424
365.5
311
308.5
406
53
79
411
413


NM_001498
LUA#18
1703
1725
1714
1637
1450
1059
1094
1550
69
141
1618
1541


NM_003172
LUA#19
3764
3726.5
3602
3543
2943
3368
3715.5
3362
481
1067
3343
3330


NM_004723
LUA#20
813.5
783
707
724
636
453
457
671.5
41
77
685
708


NM_014366
LUA#61
1911
1754
1710
1737.5
1493
1770
1731
1733
126
331.5
1643
1713


NM_003581
LUA#62
257.5
265
351
494.5
436
221.5
299
340
41
42
405
615.5


NM_018115
LUA#63
2928.5
2916
2747
2814
2454.5
2212
2288.5
2701
162.5
384
2539.5
2803


NM_021974
LUA#64
1901
1937
1813
1847
1596
1284.5
1344
1669
113
212.5
1647.5
1703


NM_024045
LUA#65
479
524
444
568
465
367
340.5
409.5
40.5
56
475
450


NM_004079
LUA#21
3238
3361
3198
3133
2881
2391
2398
2889
181
455
3041.5
2926


NM_000414
LUA#22
568
553
535
523
514
336
297
495
40.5
46
491.5
489


NM_001684
LUA#23
2275
2323.5
2187
2171
1887.5
1959.5
1968
2061
177.5
450.5
2037.5
2024


NM_003879
LUA#24
986.5
968.5
943.5
939
784
585
663
892
49
93
827
895.5


NM_002166
LUA#25
1657
1602
1549
1381
965.5
726
980.5
1589
75
166
1280
1227.5


NM_005952
LUA#66
1260
1233.5
1097
1147
991
801.5
831
1068
58
116.5
1122.5
1144


NM_001034
LUA#67
626
529
574
618
505
295
404
608.5
45
58
619
704


NM_003132
LUA#68
482
469
474.5
473
389
253.5
259.5
423
46.5
46
408
387


NM_018164
LUA#69
170
161
167
261
164
111.5
136
151
45
39
201
256


NM_014573
LUA#70
267.5
271
267
275.5
244
160
170
247
32
43.5
243
207


NM_014333
LUA#26
1364.5
1335.5
1312
1377.5
1155
983
962.5
1199.5
104
191
1229.5
1285


NM_006432
LUA#27
642
639
657
680.5
551
408
416
547
59
84
598
584.5


NM_000433
LUA#28
1066
942
920
924
750
515
567.5
860
47
80
841
797


NM_000147
LUA#29
529
555.5
529
517
462.5
387
380
487.5
45
65
533
539


NM_000584
LUA#30
242
278
258
423
221
124
161
199.5
40
40
257.5
294


NM_006452
LUA#71
2013
2089
2061
1989
1848
1611.5
1467.5
1781
101
221.5
1882
1980.5


NM_005915
LUA#72
1188
1179
1051.5
1098
845
584.5
691
948
59
101
1030.5
1063


NM_005980
LUA#73
153
160
142
150.5
126.5
112
104
137
38
32
140.5
128


NM_002539
LUA#74
2191
2195
2121
2170
1808.5
1433
1564.5
1898
118
287.5
2001.5
1947


NM_019058
LUA#75
2782
2271.5
2318
2538.5
2171
1860
2008
2257
134
341
2417
2269


NM_004152
LUA#31
1261
1241
1153
1334
991
696
753
1089
54
100
1113
1186


NM_004602
LUA#32
265.5
213
162
220
199.5
625
660
131
93
90
275
257.5


NM_018890
LUA#33
2075
2485
2508.5
3390.5
1910
2162
2101
2009.5
165.5
458
2526
2784.5


NM_001101
LUA#34
3429.5
3266.5
3048
3076
2572
2528
2638
3090
204
538.5
2953
2968


NM_006019
LUA#35
466
541
465
530.5
460
286
331
389.5
40.5
51
471
498


NM_004134
LUA#76
1792.5
1804.5
1765
1703.5
1324
1003
1120
1633.5
80
164
1503.5
1611.5


NM_005008
LUA#77
1191
1314
1203
1286
965.5
702
700
1069
68
121
1117
1163


NM_020117
LUA#78
3834
3886
3716.5
3752.5
3058
2885
3210
3558
317
821.5
3341
3770


NM_001469
LUA#79
681
598.5
718.5
792
616
403
431
600
49
70
579.5
749


NM_021203
LUA#80
807
744
750
772
661
371
410
686
49
69
730.5
642.5


NM_002624
LUA#36
278
328.5
338
388
292
234
213.5
274.5
34
48.5
323.5
411


NM_004759
LUA#37
193
202
188
206
158
134
138
184.5
38
42
180
185


NM_002664
LUA#38
714
737
750
734
590
385.5
418
645.5
40
64.5
656
700.5


NM_000211
LUA#39
3006
2869
2683
2721
1875
1271
1745
2569
132
322.5
2468.5
2468


NM_002468
LUA#40
379
415
338.5
380
305
294
281.5
294
45
51.5
378
353.5


NM_000884
LUA#81
1287
1282
1226
1286.5
1040
779.5
865
1131.5
70
124
1225
1136


NM_003752
LUA#82
1821.5
1763
1615.5
1734
1487
1332.5
1338
1538
91.5
208.5
1630
1496


NM_018256
LUA#83
2020.5
1982
1850
1812.5
1542.5
1282
1341.5
1768
89
218.5
1730.5
1731


NM_001948
LUA#84
3271
3345
3206
3253
2653
2216.5
2299
2996
214
499
3014.5
2966


NM_005566
LUA#85
2684
2614.5
2520
2485
2077
1560
1596
2313
109
268
2317
2122.5


NM_021103
LUA#41
2997
2869
2675
2722
2340
2323.5
2451
2529
321
666
2658
2720.5


NM_002970
LUA#42
648
665.5
668
715
587.5
354
371
529
72
91
654.5
656


NM_003332
LUA#43
1942.5
2132
2127
2213
1879
953.5
987
1653.5
218.5
335
1969
1813


NM_004106
LUA#44
375
377.5
366
397.5
359
217.5
210
330
47
55
348
355


NM_002982
LUA#45
3896.5
3808
3711
3649
3206
3020
3081
3635
273
694
3579
3162


NM_005375
LUA#86
2763
2813
2692
2661.5
2436
1824
1784.5
2537
157
354
2526.5
2672


NM_000250
LUA#87
3517
3557
3405
3467
3013
3199.5
3142
3251
299
711
3253
3188.5


NM_004526
LUA#88
1885
1915
1804.5
1852
1579.5
1229
1326.5
1636
115
248
1701
1706.5


NM_004741
LUA#89
1002
1136
1118
1351
929.5
501
537.5
825
90
128
977.5
1228.5


NM_002467
LUA#90
2713
2738
2634
2516
2218
1932
1877
2262
270
462
2574
2413


ACTB
LUA#91
3240
3312
3154
3122.5
2542.5
2334
2382.5
2809.5
185
452
2830
2846.5


TFRC
LUA#92
1052
1166
1040
1153
979.5
598
566.5
952
71
108.5
1087
990


GAPDH_5
LUA#93
2458
2471
2312
2286
1881
1785.5
1872
2132
141.5
332
2197
1991.5


GAPDH_M
LUA#94
4477.5
4376
3992.5
4130
3535.5
4220
4298
3887.5
405
961.5
3835
3521


GAPDH_3
LUA#95
4410
4411
4111.5
4179
3477.5
4067
4018.5
3937
1107
2164
3853
3345










Table 5E. Microtiter plates



















FlexMap












description
ID
dmso47
tretinoin1
tretinoin2
tretinoin3
tretinoin4
tretinoin5
tretinoin6
tretinoin7
tretinoin8
tretinoin9





NM_005736
LUA#1
712.5
1007
600
745
120
784.5
969
868
403
1056


NM_000070
LUA#2
542
645
609.5
617.5
257
804.5
748
679
244
752


NM_018217
LUA#3
972
1449
1280.5
1420
201
1539.5
1583
1510
682.5
1494.5


NM_004782
LUA#4
880.5
1159.5
1019.5
1093
191.5
1254
1263
1211.5
610.5
1219.5


NM_014962
LUA#5
1037
1464
1254
1316.5
176
1544
1556
1381
600
1344


NM_004514
LUA#46
941
1137
1091
1095
124
1305
1280
1218
659
1230.5


NM_006773
LUA#47
518
891
958
980.5
376
1067
994
1039
537
1062.5


NM_014288
LUA#48
524
640
712
763.5
370
801
816
737
395.5
809


NM_017440
LUA#49
461
544
516
515
226.5
586
612.5
615
298
622


NM_007331
LUA#50
638.5
912
911
865
183
1163.5
1068
987
369
958


NM_173823
LUA#6
960
1186.5
1029
1067
66
1345
1453
1179
381.5
1145.5


NM_000962
LUA#7
353
753
749
829.5
56
863
827.5
775
259
910.5


NM_003825
LUA#8
399
472
311
338
90
452
463
392
149
374


NM_016061
LUA#9
615
1280
1287
1337
110
1411
1519
1429
611
1267


NM_000153
LUA#10
119
141
148
144
44
160
184
146
57
152


NM_006948
LUA#51
75
75.5
64.5
65.5
37.5
75
66
94
47
67.5


NM_004631
LUA#52
651
893.5
845
865
133
1055
1218
998.5
283
808


NM_002358
LUA#53
498
418.5
426
405
34
477
491
522
210.5
523


NM_013402
LUA#54
789
1188.5
1164
1216
51
1393.5
1428
1345
506
1246


NM_000875
LUA#55
958
1248
1018.5
1094.5
75
1151.5
1201
1151.5
672
1198


NM_001974
LUA#11
198
826
132
221
30
240
313
382
72
590


NM_000632
LUA#12
363
485.5
406
446.5
45.5
519
580
537
172
496.5


NM_006457
LUA#13
135
83
79
67
36
91
109.5
88.5
38
81


NM_000698
LUA#14
220
252
202
222
47
259
284.5
292
92
236


NM_032571
LUA#15
191
193
192
197
53
236
253
217
71
239


NM_006138
LUA#56
210
557
420
445
45
467.5
500
464
203
494


NM_015201
LUA#57
705.5
1456
1263
1605
73
1699.5
1741
1620
797
1647.5


NM_006985
LUA#58
486.5
1364
1663
1539
48
1704.5
1609
1657
540
1438.5


NM_004095
LUA#59
376
714
733
799.5
43
891
900
902
277
764


NM_005914
LUA#60
1384
1942
1765.5
1972
209
2367
2086.5
2213
1002
1994


NM_007282
LUA#16
2507
3727.5
3308
3659.5
148
4025.5
3945
3663.5
2556
3643


NM_003644
LUA#17
374.5
374
336
376
136.5
402.5
436
387.5
203
400


NM_001498
LUA#18
1440.5
1427
1476.5
1522.5
89
1721
1766
1670
620
1578


NM_003172
LUA#19
2385.5
3240
3377
3457
142
3452
3345.5
3194.5
2743
3711


NM_004723
LUA#20
588
977
863
1030.5
44
1074
1047
982
435
1148


NM_014366
LUA#61
1280.5
1716
1736
1892
51.5
1915
1973
1899
1422.5
1937.5


NM_003581
LUA#62
345
742
360
455
48
551
988
918.5
186
626.5


NM_018115
LUA#63
2140
3715
3778.5
3863
104
3963
3999.5
3870.5
2808.5
3954


NM_021974
LUA#64
1382
2119
2344.5
2289
107.5
2544
2617.5
2309
1258
2411.5


NM_024045
LUA#65
484
771
761
793
47
917
904
960.5
346
825


NM_004079
LUA#21
2374.5
3579.5
3604
3848
137.5
4150
4022
3854
1810
3690.5


NM_000414
LUA#22
504.5
669
806.5
897
37
930.5
889.5
848
319
954


NM_001684
LUA#23
1613
3259
2761.5
3205
115
3451
3522
3269
2585
3440


NM_003879
LUA#24
707
1579.5
1854
1864
56
2010
2086
1929
996
1963


NM_002166
LUA#25
838
2678.5
2699
3180
82
2976
2983
2559
1905
3511.5


NM_005952
LUA#66
943
957
924
940
58
976
1108
1027.5
375.5
941


NM_001034
LUA#67
554
891
421
558
64.5
662
644
688
186.5
824


NM_003132
LUA#68
411.5
374
402.5
388
53.5
506
493
404
97.5
371


NM_018164
LUA#69
207
258
161
205
45
239
301
343
88.5
244


NM_014573
LUA#70
283
446.5
172
196
52
244
306
260
86
369


NM_014333
LUA#26
1010.5
1288
1167
1274.5
249
1456.5
1539
1513
672.5
1394.5


NM_006432
LUA#27
528
663
465
539
116.5
748.5
749
805
261
687


NM_000433
LUA#28
594
353
431.5
443.5
37
540
453.5
429
158
476.5


NM_000147
LUA#29
472
271
214
261
49
313
299
265
94
297.5


NM_000584
LUA#30
380
1027
270
453
50
411
600
505.5
116
723


NM_006452
LUA#71
1689
1715
1680
1742.5
83.5
2089
2031
1986
764
1717


NM_005915
LUA#72
768
481
443
497.5
50
517
560
541
173
543


NM_005980
LUA#73
147
106
90
96
46
92.5
99
112
47
90


NM_002539
LUA#74
1486
794.5
825
806.5
62.5
906
907
906
341
879


NM_019058
LUA#75
1861
2700.5
2316
2808
62.5
2607
2827
2598
1106
2635


NM_004152
LUA#31
844
613.5
664
635.5
50
804.5
811
920
225
661


NM_004602
LUA#32
439
967.5
114
307
49
178.5
275.5
231
315
364


NM_018890
LUA#33
1456
3289.5
2445.5
3142
144
3827.5
3781
4048.5
1671
3276.5


NM_001101
LUA#34
2148
2044
2141
2169
72
2194
2152
2208
1143.5
2249.5


NM_006019
LUA#35
475.5
431
378
402
61
452
533
447
108
403


NM_004134
LUA#76
1078
1012
1176
1010.5
67
1224.5
1261.5
1071.5
361
1060


NM_005008
LUA#77
895
1088
865
951
60
1096.5
1252.5
1117.5
281
1095


NM_020117
LUA#78
2483
2041
2196.5
2274
75.5
2432
2308
2248
1261
2246


NM_001469
LUA#79
496.5
850
405
467.5
47
592.5
796
833
164
637


NM_021203
LUA#80
559
396.5
401
428
50
487
504
437.5
92
406


NM_002624
LUA#36
354.5
378
268
348
52
451.5
542.5
417
124
342.5


NM_004759
LUA#37
183.5
130
145
140
49
150.5
165
169
45.5
133


NM_002664
LUA#38
573
797
806
872
56.5
987
938.5
870
293
950.5


NM_000211
LUA#39
1417
1438.5
1493
1537
64
1639
1647
1273.5
446
1558


NM_002468
LUA#40
370
463
273
333
55
355
441
352.5
117.5
387


NM_000884
LUA#81
967
907
802.5
882
79
1048.5
1027.5
931
331.5
962


NM_003752
LUA#82
1327
1015
949
1033
56
1119
1129.5
1088
467
1103


NM_018256
LUA#83
1250.5
951
1138
1055
66.5
1193
1204.5
1181
447.5
1205


NM_001948
LUA#84
2244.5
2685
2401.5
2620
110.5
2687
2842.5
2584
1071
2714


NM_005566
LUA#85
1709
1526.5
1628
1860.5
67.5
1881
1746.5
1895
630
1630


NM_021103
LUA#41
1926
2244.5
2051
2229
111.5
2407
2540
2141
1271
2148


NM_002970
LUA#42
624
821
659.5
791
125
970.5
975
816
233
695


NM_003332
LUA#43
1965
1940.5
1658
1865
312
2451
2442.5
2074
594
1769


NM_004106
LUA#44
347.5
348.5
281
335
53
351
392
399
96
302


NM_002982
LUA#45
2713
3642
2895
3096
129.5
3463.5
3752
3173
1511
3062


NM_005375
LUA#86
2159
2531
2256
2421
167.5
2822
2752
2748
1102
2492.5


NM_000250
LUA#87
2546.5
2107
2130.5
2120
88
2263
2364
2168
1006
2120


NM_004526
LUA#88
1386
1245
1195
1263
84
1418
1400.5
1287
493.5
1316.5


NM_004741
LUA#89
933
1599
1127.5
1113.5
153
1546
1679
1620
315.5
1160


NM_002467
LUA#90
1956
1673
1851
1710.5
295
2200
2298
1831
739.5
1677


ACTB
LUA#91
2149.5
2840.5
3108
3160.5
93
3297
3543
3123
1706
3268


TFRC
LUA#92
1049
775
707.5
768
73
1002.5
1062
878.5
259
904


GAPDH_5
LUA#93
1561.5
2061
2169.5
2073
80
2401
2387
2222
1175
2449


GAPDH_M
LUA#94
2911.5
3948
3761
3945
135
4111
4218
3809
2710.5
4026


GAPDH_3
LUA#95
2910
4091
3621
4239.5
277
4336
4378.5
3889
3607
4420.5










Table 5F. Microtiter plates



















FlexMap












description
ID
tretinoin10
tretinoin11
tretinoin12
tretinoin13
tretinoin14
tretinoin15
tretinoin16
tretinoin17
tretinoin18
tretinoin19





NM_005736
LUA#1
645
651.5
674.5
735.5
698
796
882
791
689
699


NM_000070
LUA#2
664
625
565
704
699
728.5
711.5
723.5
700
635


NM_018217
LUA#3
1364
1259
1292.5
1313
1384.5
1423
1521.5
1476
1348
1316


NM_004782
LUA#4
1107
1102
1041
1177.5
1148
1130
1235
1243
1214
1168


NM_014962
LUA#5
1169
1120
1197
1283
1243
1247.5
1277.5
1244
1215.5
1154


NM_004514
LUA#46
1104.5
1065.5
1095
1188.5
1228
1147
1236
1267
1212
1126.5


NM_006773
LUA#47
1012
1004.5
946
1062
1037
1097
1217.5
1141
1139.5
1101.5


NM_014288
LUA#48
777.5
770
765
771
805.5
793
896.5
895
861
801.5


NM_017440
LUA#49
557
520
523
557
591
626.5
692
633
588
568


NM_007331
LUA#50
881
812
753
849
919
879
897
978
854.5
837.5


NM_173823
LUA#6
963
952
995.5
1024.5
1050
1081
1034
1040
1026
946


NM_000962
LUA#7
762
738.5
738.5
864
902
752.5
845
860
784
779


NM_003825
LUA#8
299
334
341.5
358
252
310
327.5
324
309
274.5


NM_016061
LUA#9
1213
1145.5
1169.5
1280
1352
1241
1351
1380
1258
1197.5


NM_000153
LUA#10
156.5
142
135
150
148.5
138
166
175
157
144.5


NM_006948
LUA#51
69
62
63.5
72.5
65.5
66
72
80
64
62.5


NM_004631
LUA#52
768
722.5
723
823
790
782
743
734
715
668.5


NM_002358
LUA#53
472
428
395
462
455
552
548
527
445.5
414


NM_013402
LUA#54
1081.5
1089.5
1098
1196
1271
1266.5
1222
1215
1143
1087


NM_000875
LUA#55
1088.5
1079.5
1051
1151
1112
1167
1284
1241
1177
1060


NM_001974
LUA#11
169.5
194
254
355
223.5
263
231
205
211
175


NM_000632
LUA#12
393.5
405
394
451.5
442
478
551
484.5
434.5
403


NM_006457
LUA#13
74
71
80
75
77
84
82
75.5
77
67


NM_000698
LUA#14
190
205
169
233
215
234
237.5
218.5
214
184


NM_032571
LUA#15
194
177
178
217
217
219
212
217.5
198
208


NM_006138
LUA#56
412.5
383
396
459.5
498
441
511.5
528.5
429
436


NM_015201
LUA#57
1394
1432
1363
1500
1520
1702
1654.5
1623
1554
1485


NM_006985
LUA#58
1445
1332
1321.5
1558.5
1539.5
1511
1579
1614
1465
1349


NM_004095
LUA#59
677.5
673
714
723
761
813
888
849
713
743


NM_005914
LUA#60
2195
1712.5
1855
1767.5
1964
2001.5
2183
2217.5
1849
1801


NM_007282
LUA#16
3404
3317
3420
3720
3640
3628
3771
3742
3829
3740


NM_003644
LUA#17
382
379
360
396
403
384
420
424
420.5
395.5


NM_001498
LUA#18
1428
1422
1451
1542.5
1650
1646.5
1659
1643
1534
1547


NM_003172
LUA#19
3489.5
3393
3442.5
3630
3640
3407
3561.5
3713.5
3684
3729


NM_004723
LUA#20
1006
1055
941.5
1072
1070
1033.5
1103.5
1121
1101
1058


NM_014366
LUA#61
1858
1818.5
1815
1958
1893
1955
2124
2045
1954.5
1939


NM_003581
LUA#62
461
459
490
1104
560.5
575.5
784
492
442
292.5


NM_018115
LUA#63
3868
3688
3621.5
3997.5
4012
4038
4183
4186
3995.5
3973


NM_021974
LUA#64
2317
2285
2229
2359.5
2501
2395
2375
2577
2473
2448


NM_024045
LUA#65
751
715.5
652
803
823
922
958
891.5
766
704


NM_004079
LUA#21
3401
3346
3386
3649
3578.5
3621
3487
3722
3500
3466


NM_000414
LUA#22
849
886
876
922
959
923
991
997
1006
975.5


NM_001684
LUA#23
3100
3084
3141
3356.5
3190
3092
3330
3482
3482
3375


NM_003879
LUA#24
1887.5
1750.5
1837
1884.5
1982
2019
1981.5
2000
1908
1739


NM_002166
LUA#25
3185
2943.5
2941
3269
3091
2616
2919
3433
3462
2977


NM_005952
LUA#66
876
786
799
803.5
902
990
1022.5
960
878
811


NM_001034
LUA#67
493
529
561
721
515.5
682
767.5
716
677
449.5


NM_003132
LUA#68
347.5
309
330
344
404
351.5
355
349.5
350.5
323


NM_018164
LUA#69
193
163
225
324.5
196
284
359
269
277.5
175


NM_014573
LUA#70
193
198
204
268
232.5
272
262
277.5
256
187


NM_014333
LUA#26
1261
1234
1285
1432
1339
1336.5
1431.5
1414
1322.5
1274


NM_006432
LUA#27
589
537
543
644.5
587
652
654
625
592.5
501


NM_000433
LUA#28
519.5
465
439
478
544
475
576
543
515.5
491.5


NM_000147
LUA#29
231
253
261
242
286
280
269
256.5
266
242


NM_000584
LUA#30
268
331.5
415.5
491
316
397
371.5
438
375.5
271


NM_006452
LUA#71
1525.5
1457
1651
1599
1661
1895
1960
1641.5
1669
1592


NM_005915
LUA#72
442
446
457
449
507.5
501
489
502
463
469


NM_005980
LUA#73
94
88
90.5
85
94.5
97
114
91
95
93.5


NM_002539
LUA#74
793.5
759
750.5
783
845
953
975
909
783
795


NM_019058
LUA#75
2292.5
2282.5
2565
2388
2535.5
2484
2654.5
2545
2583
2289


NM_004152
LUA#31
630
607
706.5
700
697
751
782
717
646
677


NM_004602
LUA#32
102
102
113
124
98
205
540
400
104
138


NM_018890
LUA#33
2566.5
2827.5
3299
3828
3031.5
3314.5
3385
2517
3080.5
2211


NM_001101
LUA#34
2072
1968.5
2040.5
2060.5
2190
2259
2320
2389.5
2222
2133.5


NM_006019
LUA#35
336.5
316.5
346
403
354
404
367
363
348
346


NM_004134
LUA#76
952
989
1087
1135
1163
1017.5
1092
1083
1053.5
1056


NM_005008
LUA#77
826
834.5
886
963.5
996
949
884
937.5
914
857


NM_020117
LUA#78
2051
2083
2189
2086.5
2301
2289.5
2334
2460
2260
2288


NM_001469
LUA#79
433
407
554
697
555
594.5
461
448.5
502.5
369


NM_021203
LUA#80
345
387
409
387
426
427
412
427
416
381.5


NM_002624
LUA#36
273
266
280
324
295
328
304
291
286
271


NM_004759
LUA#37
122
120
127
128
144.5
135.5
147
132
124
134


NM_002664
LUA#38
847.5
834
832
873
937.5
902
875
929
902.5
944


NM_000211
LUA#39
1491
1458.5
1552
1507
1624
1206
1321
1614
1564.5
1554


NM_002468
LUA#40
259.5
253.5
269
284
279
315
376
349.5
262
279


NM_000884
LUA#81
784
800
844
868
921
887
940
932
895
849


NM_003752
LUA#82
952
992
998
943
993
1078
1145
1140
982.5
993


NM_018256
LUA#83
1089
1074.5
1091
1043
1123
1201.5
1267
1209.5
1127
1218


NM_001948
LUA#84
2343
2452
2481
2585.5
2510
2541
2508
2564.5
2473
2549


NM_005566
LUA#85
1548.5
1448
1550.5
1600
1689
1693.5
1735
1768
1561
1536.5


NM_021103
LUA#41
2065
1955.5
2142
2153
2196
2101
2263.5
2283
2152
2177


NM_002970
LUA#42
513.5
548.5
668
657
594
594.5
606
530
611
610.5


NM_003332
LUA#43
1333
1474
1892
1924
1823
1789
1557
1583.5
1724
1751.5


NM_004106
LUA#44
243.5
224
272
284
273
267
288
241
272.5
253


NM_002982
LUA#45
2470
2373.5
2700
2650
2725
2864
2951.5
2762
2734.5
2708


NM_005375
LUA#86
2294.5
2336.5
2443
2444.5
2426
2521
2719
2526.5
2478
2523.5


NM_000250
LUA#87
2043
1985
1993
2045
2198.5
2355.5
2463
2159
2135
2254


NM_004526
LUA#88
1153
1095.5
1178
1222.5
1322.5
1285
1299
1245
1257.5
1168.5


NM_004741
LUA#89
755.5
845
1009
1203
1030
1084
1146
1021
897
788


NM_002467
LUA#90
1510
1469
1648
1680
1767.5
1684
1670
1715.5
1649.5
1681


ACTB
LUA#91
3243
3090
3181
3245
3443.5
3098.5
3174.5
3348
3385
3370


TFRC
LUA#92
692
743
812
830
855
839
816
843.5
762.5
801


GAPDH_5
LUA#93
2242
1971.5
2105
2295
2386.5
2392
2183
2284
2124
2235


GAPDH_M
LUA#94
3858
3566.5
3872
3913
3933
3983
3872
4090
3926
3949.5


GAPDH_3
LUA#95
3915
3968
4259
4355
4446
4043
4225.5
4362
4541
4571










Table 5G. Microtiter plates



















FlexMap












description
ID
tretinoin20
tretinoin21
tretinoin22
tretinoin23
tretinoin24
tretinoin25
tretinoin26
tretinoin27
tretinoin28
tretinoin29





NM_005736
LUA#1
640
730
788
766
718.5
145.5
751
792.5
778.5
741.5


NM_000070
LUA#2
685
687.5
755
686
478
115
700
690
707.5
750


NM_018217
LUA#3
1359
1442
1484
1465
1196
235
1307
1438
1438
1492


NM_004782
LUA#4
1134
1250
1263
1217
962
226
1119
1230
1371
1286.5


NM_014962
LUA#5
1192
1211
1294
1182
872
218
1154
1277.5
1326.5
1336


NM_004514
LUA#46
1159
1194
1197.5
1151
971.5
243
1114
1193.5
1243
1193


NM_006773
LUA#47
1043
1086
1044.5
1145
874
229.5
1091
1167
1177.5
1171


NM_014288
LUA#48
867
887
849
859
606
198
905
883.5
896
853


NM_017440
LUA#49
563.5
606.5
635
668
504
126.5
572
648.5
629
633.5


NM_007331
LUA#50
804
879
877
868
608
128
875
901
875
857


NM_173823
LUA#6
1031.5
1028
1074.5
1021
710
89
1015.5
996
1138
1126


NM_000962
LUA#7
786
838
835
742.5
502
92
805
820
873.5
847


NM_003825
LUA#8
293.5
304
303.5
303
208
84.5
314
265.5
328
358.5


NM_016061
LUA#9
1161
1212
1243.5
1255
942
195.5
1273
1292
1309
1366


NM_000153
LUA#10
142.5
166
147
124.5
108
42
176
157
173.5
164


NM_006948
LUA#51
63.5
72
79.5
82
59
30.5
88
79
73
75.5


NM_004631
LUA#52
675
735.5
722
673
420
123
680.5
683
730
736


NM_002358
LUA#53
404
452
468
552
396
65
522
505
462
479.5


NM_013402
LUA#54
1170
1190.5
1234.5
1175
847
159
1146
1184.5
1207
1299


NM_000875
LUA#55
1106
1147
1164
1109.5
1133
244
1050
1207.5
1186.5
1240


NM_001974
LUA#11
192.5
244
328
229
131
41
187
206
326
280.5


NM_000632
LUA#12
416
462
441
466
399
62
417
427.5
472
485.5


NM_006457
LUA#13
71
77
88
76.5
62
29
91
70
77
88


NM_000698
LUA#14
184
221
218.5
240
183
51
234
217
231
250


NM_032571
LUA#15
197
206
211
210
146.5
39
207.5
199.5
237
225


NM_006138
LUA#56
439
465
463
492
400
76
505.5
508
481
455


NM_015201
LUA#57
1474
1697
1545.5
1613
1288
239
1501.5
1566.5
1693
1688


NM_006985
LUA#58
1404
1426.5
1391
1466
1025
152.5
1520
1559.5
1588.5
1516.5


NM_004095
LUA#59
781
826.5
724
833.5
508
80.5
750
786
836.5
825


NM_005914
LUA#60
1889
2185
2217
2583
1861
314
1944
2405
2103
2084.5


NM_007282
LUA#16
3819
3830
3905
3599
3355
1195
3365
3717
3937
3873


NM_003644
LUA#17
418
413
423
392.5
312.5
90.5
407
394
423
439.5


NM_001498
LUA#18
1596
1583
1644.5
1592.5
1126
194.5
1507
1592
1675
1729


NM_003172
LUA#19
3734
3740
3765
3485.5
3527
1393.5
3551
3869
3875.5
3546


NM_004723
LUA#20
1025
1135.5
1076
967
712.5
142
1098
1078
1129
1205.5


NM_014366
LUA#61
1866
1983.5
1990
1945
2046
505.5
1985
2063
2011
2041


NM_003581
LUA#62
349
459
725
486
433.5
59
330
467
542
538


NM_018115
LUA#63
4087.5
4059
3982
3939
3665
1204
4071
4113
4167
4218


NM_021974
LUA#64
2484
2467.5
2483
2350
1757
441
2372.5
2637
2567
2591


NM_024045
LUA#65
729.5
798
779.5
770
587
99
747
790
826
797


NM_004079
LUA#21
3552
3605.5
3495
3377
2652.5
688.5
3443.5
3592
3531
3582


NM_000414
LUA#22
941
1003
979
933
633
96.5
1010
1015
1053
1005


NM_001684
LUA#23
3316.5
3530
3511
3136.5
3092
1247
3338
3430.5
3590
3642.5


NM_003879
LUA#24
1848
2031
1977
1896.5
1645
342
1984
2060
2126.5
2034


NM_002166
LUA#25
3071
3382.5
3762.5
2832
2572
617
3016
3708
3766.5
3602.5


NM_005952
LUA#66
814.5
845
850.5
894.5
737
127
851.5
850.5
872
913


NM_001034
LUA#67
484
710
707.5
608
337
64
394.5
517
729.5
805


NM_003132
LUA#68
333.5
304
353
334
199
50.5
314
304.5
342
355.5


NM_018164
LUA#69
170
247
293
223
225.5
51
168
196
284
297


NM_014573
LUA#70
189
231
251
273.5
154
52
216.5
199
237
267.5


NM_014333
LUA#26
1265
1399.5
1470
1456.5
1091
254
1237
1396
1489.5
1499


NM_006432
LUA#27
554.5
605.5
690
686
480
101.5
574
628.5
679
694.5


NM_000433
LUA#28
541
499
552
488.5
308
69
478
551.5
545
548.5


NM_000147
LUA#29
273
266
299
278
198.5
49
207
257.5
286
277.5


NM_000584
LUA#30
231
358
433
352
199
57
314
280
411
431


NM_006452
LUA#71
1830
1544.5
1789
1876.5
1259.5
252
1497
1660
1647
1637


NM_005915
LUA#72
460.5
493.5
510
433.5
306
76
502.5
519
491
498


NM_005980
LUA#73
97
94
96
96
83.5
40
101.5
104
95
90


NM_002539
LUA#74
902
784.5
850
893
623
129
754
831
786
828


NM_019058
LUA#75
2347
2353
2439.5
2270
1909
415
2069.5
2436
2667
2983


NM_004152
LUA#31
679
718
764
752
450
88
610
631
712
768


NM_004602
LUA#32
95
108
161
115
685
100
321.5
251
106
111


NM_018890
LUA#33
2323
3545
3734
3090
3474.5
868
2600
2734.5
3577
3830


NM_001101
LUA#34
2216
2108.5
2276.5
2231.5
1848.5
439
2166.5
2230
2157.5
2312


NM_006019
LUA#35
388
349
414
328.5
242
56
344
357.5
392
417


NM_004134
LUA#76
1041
1069
1060.5
987
651
132
1092
1095
1138.5
1200


NM_005008
LUA#77
853
895
1077
907
520
118
791
852.5
942
939.5


NM_020117
LUA#78
2468
2232
2341
2280.5
1844.5
467
2069
2395
2201
2287


NM_001469
LUA#79
425
580
740.5
599
359
81.5
467
500.5
586
636


NM_021203
LUA#80
415
396
437
372
217.5
57
363
405
409.5
445


NM_002624
LUA#36
274
294
336
309.5
241.5
48
285
292
355
346


NM_004759
LUA#37
149
116
151
130
114
42
178
122
140
139


NM_002664
LUA#38
977.5
914
985
863
577.5
111.5
817
950
905
914


NM_000211
LUA#39
1765
1572.5
1714.5
1155
740
226
1502
1608
1601.5
1621


NM_002468
LUA#40
284
300
313
272
277
55
266.5
327
329
307.5


NM_000884
LUA#81
903
886.5
945
903
570
118
819.5
863
870
906


NM_003752
LUA#82
1041
1060
1104
1061
837.5
170
938.5
1068
1038
1035


NM_018256
LUA#83
1108
1137
1196
1134
827.5
167
1206.5
1275
1135
1244


NM_001948
LUA#84
2580
2584
2660
2423.5
1685.5
408
2252.5
2493
2630
2638


NM_005566
LUA#85
1561
1647
1700
1554
1127.5
209
1471
1537
1646
1690.5


NM_021103
LUA#41
2307
2172
2274
2057
1814
618
2016
2179
2230
2237.5


NM_002970
LUA#42
606
572
551
556
317
112
622
574
616.5
627


NM_003332
LUA#43
1942.5
1967.5
1914
1850
794.5
344
1313
1673
2015
2047


NM_004106
LUA#44
272
246
291
273
172
64.5
313
251
305
293


NM_002982
LUA#45
2717.5
2736
2784.5
2777
2331
489
2387.5
2700.5
2681.5
2746.5


NM_005375
LUA#86
2474
2594
2548
2496
1566.5
360
2233
2415
2634
2525


NM_000250
LUA#87
2214.5
2002.5
2248
2313
1710
399.5
1844
2084
2015
2121


NM_004526
LUA#88
1164
1159
1256
1110
796
197
1091
1190
1226
1219


NM_004741
LUA#89
883
948.5
1013.5
920
617
168
738
768
924
987


NM_002467
LUA#90
1628.5
1730
1731
1783
1174
317
1467
1738
1729.5
1861


ACTB
LUA#91
3368
3386
3350.5
3125
2605
672
3275
3524.5
3469
3388


TFRC
LUA#92
860.5
835
930.5
845
477
109
774
838
892
890


GAPDH_5
LUA#93
2317.5
2229
2328
2155
1768
404.5
2142
2223
2241
2203


GAPDH_M
LUA#94
3957
3991
4132
3551.5
3745
1082
3577
4067
3950.5
3995


GAPDH_3
LUA#95
4351
4364
4325
4183.5
3891.5
2279
3800.5
4394
4434
4483










Table 5H. Microtiter plates



















FlexMap












description
ID
tretinoin30
tretinoin31
tretinoin32
tretinoin33
tretinoin34
tretinoin35
tretinoin36
tretinoin37
tretinoin38
tretinoin39





NM_005736
LUA#1
769
747
1238.5
1115
813.5
721
962.5
1272
847.5
790


NM_000070
LUA#2
689.5
657
758.5
754
803
540.5
741
761
740.5
589.5


NM_018217
LUA#3
1322
1374
1573
1436.5
1463
1150
1445
1403
1383
1174.5


NM_004782
LUA#4
1185.5
1099
1239
1216.5
1215
921
1141.5
1079
1213.5
956


NM_014962
LUA#5
1150.5
1180
1240.5
1191
1253
853
1132
1133
1258
1011


NM_004514
LUA#46
1094.5
1087
1186
1169.5
1242
941
1167
1131
1193
977.5


NM_006773
LUA#47
1033
990
1208
1122
1156
847
1103.5
1060.5
1077
922


NM_014288
LUA#48
810
728
911.5
842
881.5
617
825.5
791
787
644


NM_017440
LUA#49
589
605.5
756
676
636.5
465
606
652
646
518.5


NM_007331
LUA#50
817
843
963
889
941
646.5
873
889.5
926
727


NM_173823
LUA#6
1059
1019.5
1053
1013.5
1122
648
994
985.5
1175.5
938


NM_000962
LUA#7
852
700.5
819.5
858
900
571.5
816
798
844.5
643


NM_003825
LUA#8
306
343
267
332
340
243
288
287
360
352


NM_016061
LUA#9
1193
1073.5
1220.5
1219
1260
928.5
1243.5
1193
1168
1021


NM_000153
LUA#10
142
139
155
171
143.5
110.5
152
145
173
140


NM_006948
LUA#51
76.5
77.5
91
84
92
68.5
75.5
79
78
74


NM_004631
LUA#52
698
714
696
645
717
415
656
645
773.5
621


NM_002358
LUA#53
461
581
624
570
530.5
354
470.5
458
553
484


NM_013402
LUA#54
1164
1118
1162
1205
1236
814
1171
1055
1330
987


NM_000875
LUA#55
1102
1155
1372
1375
1322
1146
1294
1286
1195
1045.5


NM_001974
LUA#11
305.5
276
191
246
259
162.5
192
206
295
226


NM_000632
LUA#12
441
482
621
688
451
309
426.5
453
450
447


NM_006457
LUA#13
73
106
88
88
92.5
59
79.5
84
96
98


NM_000698
LUA#14
261
264
271.5
260
282
176
237
269
279.5
260


NM_032571
LUA#15
201
224.5
213.5
200
216
141
223
213
231
214


NM_006138
LUA#56
460
420.5
539
534
484
367
443
470
470.5
449


NM_015201
LUA#57
1524
1740
1601
1563
1686
1294
1589.5
1575
1698
1441


NM_006985
LUA#58
1336
1304
1469
1513.5
1622.5
982
1517.5
1475
1453
1167.5


NM_004095
LUA#59
733
717
786
697
764.5
433
732
708.5
793.5
612


NM_005914
LUA#60
1856
2038.5
2571
2012.5
1880
1606
1870
1839
1896
1530


NM_007282
LUA#16
3508
3192.5
3565
3677
3822.5
3381
3679
3410
3550.5
2848


NM_003644
LUA#17
386.5
383
417.5
396
423
301
374
379
432
336


NM_001498
LUA#18
1574
1494
1634
1631
1704
1106
1567
1552
1756
1327


NM_003172
LUA#19
3400.5
3075
3448
3697
3747
3740
3828
3719
3455.5
2881


NM_004723
LUA#20
979
935.5
1064
1087
1182.5
753
1069
975.5
1032.5
798


NM_014366
LUA#61
1912
1786
2169.5
2125
2094
1938
2057
2071
1931
1729.5


NM_003581
LUA#62
580
836
497.5
667
676
406
453
544
633
625.5


NM_018115
LUA#63
3832.5
3397
4093
4088
4279.5
3877
4112.5
3898.5
3945
3394


NM_021974
LUA#64
2311
2023
2396
2418
2572
2001
2468
2388
2492
1925


NM_024045
LUA#65
778
821.5
869
774.5
847.5
557.5
752
697
801
700.5


NM_004079
LUA#21
3270
2953
3391
3470
3448
2730.5
3407.5
3299
3366
2635


NM_000414
LUA#22
997
865.5
1028
974
1061
630.5
996
885.5
948
778.5


NM_001684
LUA#23
3231
3000
3194.5
3326
3417
3351
3506.5
3213.5
3205
2689


NM_003879
LUA#24
1900
1735
2096
2056
2072
1621.5
2080
1945
1980.5
1569.5


NM_002166
LUA#25
2926
2752
2950
2945
2932
2688.5
2896
2989
2573
2189.5


NM_005952
LUA#66
843
867.5
978
977.5
953
645
842
796
927
766.5


NM_001034
LUA#67
718
878
591.5
781
904
488
618.5
586.5
694
572


NM_003132
LUA#68
342
274
322
361.5
318.5
210
307
316
370.5
250


NM_018164
LUA#69
315
320
241.5
360.5
357
178.5
201
241
354
292


NM_014573
LUA#70
252.5
283
251
305
286
220
233
257
280
232


NM_014333
LUA#26
1319
1406
1465
1494
1419
1092.5
1371.5
1338
1429.5
1161


NM_006432
LUA#27
661
705.5
664
722
683
461.5
592
634
716
572


NM_000433
LUA#28
523
441
538
528
568
326
499
457
537
346


NM_000147
LUA#29
258
300
313
275
294
195
304
253.5
326
246


NM_000584
LUA#30
391.5
493
276
416
451
259
288
399.5
432
343.5


NM_006452
LUA#71
1577.5
1658
1888
1709
1735
1113
1497
1516.5
1840
1397.5


NM_005915
LUA#72
481.5
510.5
523
583.5
576
356
504.5
415
564
392.5


NM_005980
LUA#73
90
99
124
123
112
81
100
99
105.5
108


NM_002539
LUA#74
830
864
906.5
944.5
939
599
833
759
913
662


NM_019058
LUA#75
2325
2239
2435
2754
2662
1983
2392.5
2181
2399.5
1863


NM_004152
LUA#31
707
677
734
995
718
405
615.5
675
744
547


NM_004602
LUA#32
153.5
214
909
1332
203
575
362.5
661
173
545


NM_018890
LUA#33
3389
3144
3168
4165
3486
2889
2506
3509
3510
2841.5


NM_001101
LUA#34
2091
2067
2357
2333
2374
1832
2294
2114.5
2236
1732


NM_006019
LUA#35
361.5
380
336.5
375
398
238
335
355
418
362


NM_004134
LUA#76
1049
803.5
933.5
1017
1043.5
699.5
1017
1031
1077.5
763


NM_005008
LUA#77
878
900
828
936.5
1033
581
886.5
860.5
949.5
736


NM_020117
LUA#78
2230
2093
2431
2387.5
2540.5
1912
2311
2187
2354
1724


NM_001469
LUA#79
691.5
645
471
654
680.5
506.5
464.5
577
767
627


NM_021203
LUA#80
400
353
369
437
476
210
385.5
351.5
442
327


NM_002624
LUA#36
312.5
357
327
291
357
234
326
320
376
332.5


NM_004759
LUA#37
147
125.5
134
177
156
107
133
132
158
121.5


NM_002664
LUA#38
867
808
927
916.5
1041
612
854.5
843
960.5
655


NM_000211
LUA#39
1459.5
1090
1164
1588
1684
1053
1460.5
1363
1622.5
766.5


NM_002468
LUA#40
270
364
428
462.5
356
285
336
540
393
353.5


NM_000884
LUA#81
847
824
971
938
986.5
575
838
813
932
759.5


NM_003752
LUA#82
968
1037
1171.5
1058
1106
797
1027.5
973
1082
863


NM_018256
LUA#83
1156.5
1089
1223
1153
1309
858
1084.5
996
1123
870


NM_001948
LUA#84
2417
2293.5
2372
2431
2615
1881.5
2387
2286
2542
1863


NM_005566
LUA#85
1603.5
1464.5
1570
1600.5
1792
1039
1520.5
1348
1667.5
1186.5


NM_021103
LUA#41
2062
1819
2376
2712
2331.5
1867.5
2178
2117
2183
1664


NM_002970
LUA#42
557
632
554
689
557
324.5
443
542
579
454


NM_003332
LUA#43
2024
1928
1382
1319.5
1562
875.5
1550.5
1649
2060
1620


NM_004106
LUA#44
259
257.5
287.5
297
295
172
238
298
282
235


NM_002982
LUA#45
2586
2449
3029.5
3071
2895
2314
2978
3409
2749.5
2503.5


NM_005375
LUA#86
2374.5
2331
2476
2278.5
2453.5
1650
2201
2224
2486
2014


NM_000250
LUA#87
2007
1994
2529
2190
2281
1760
2035
2053.5
2251
1773


NM_004526
LUA#88
1199.5
1072
1200
1291
1302
863
1242
1132.5
1240
874


NM_004741
LUA#89
948
938
694
1441
960
494
724
909
941
817


NM_002467
LUA#90
1735
1597
1675.5
1910.5
1668
1121
1574.5
1764.5
1806
1401


ACTB
LUA#91
3074
2741
3236
3178
3290
2654.5
3268
3235
3265
2408.5


TFRC
LUA#92
899
882
882
800.5
940
534
833
845
1049.5
774.5


GAPDH_5
LUA#93
2041.5
1918
2170.5
2325
2409.5
1721
2170.5
2079
2197
1628


GAPDH_M
LUA#94
3615
3383
3924
4094
4111
3702
4060
3901
3849
3216


GAPDH_3
LUA#95
4065
3741
4295
4166
4220
4140
4339.5
4356
4121
3415










Table 5I. Microtiter plates



















FlexMap











description
ID
tretinoin40
tretinoin41
tretinoin42
tretinoin43
tretinoin44
tretinoin45
tretinoin46
tretinoin47







NM_005736
LUA#1
92
522
909
1432
1896
847
1205.5
695



NM_000070
LUA#2
84.5
400
756
769.5
717.5
638.5
741
490.5



NM_018217
LUA#3
189
990
1514
1581
1499
1286
1386
854.5



NM_004782
LUA#4
163
811
1306
1264
1063.5
1077
1094
639



NM_014962
LUA#5
152.5
726
1269
1290
1213
1076
1134
717



NM_004514
LUA#46
176
834
1159.5
1224
964
992
1017
626



NM_006773
LUA#47
164
717
1137
1120.5
783
937.5
907
576.5



NM_014288
LUA#48
154
477.5
801
816
527.5
706
650
453



NM_017440
LUA#49
101
405.5
707
774
716
607
693
477



NM_007331
LUA#50
88
474
915.5
927.5
770
739
835
583



NM_173823
LUA#6
84
594.5
1106.5
1168.5
1130.5
1080
1163
807



NM_000962
LUA#7
63.5
391
761
776
470
646.5
671.5
452



NM_003825
LUA#8
81.5
192.5
338
383.5
307.5
331
502
476.5



NM_016061
LUA#9
134
674
1086
1267.5
863
975
1073.5
741



NM_000153
LUA#10
35
90
138
150
120
138
171.5
223



NM_006948
LUA#51
34
49
82
95
83
79.5
85.5
106.5



NM_004631
LUA#52
86.5
322
705
629
524
633
667
532



NM_002358
LUA#53
64
339
572
611
366
481
531
433



NM_013402
LUA#54
114
705
1150
1150
806
1051.5
1087
711



NM_000875
LUA#55
184
1002
1389.5
1772
1303
1192
1271
810



NM_001974
LUA#11
38.5
98
351
256
258
253.5
286.5
224



NM_000632
LUA#12
60
298
544
994
932
486
500
525.5



NM_006457
LUA#13
36
51
83
94
84
95
132
200



NM_000698
LUA#14
45.5
156
269
394
342
297.5
363
352



NM_032571
LUA#15
31
109
203
222.5
165.5
191
270.5
253.5



NM_006138
LUA#56
70
325.5
443
659.5
488
437
429
341



NM_015201
LUA#57
182
1154
1768
1714
1251
1398.5
1507
930.5



NM_006985
LUA#58
90
720
1223
1310
813
1136.5
983
635



NM_004095
LUA#59
72
383
714
665
496.5
650.5
593.5
442



NM_005914
LUA#60
303
1363
2538.5
2273
1739
1694
1933.5
1154.5



NM_007282
LUA#16
778.5
3067.5
3626
3678
3097
3055
2958.5
1505



NM_003644
LUA#17
69
255
415
428
359
374
395
302



NM_001498
LUA#18
126.5
890.5
1632
1563.5
1134
1467
1510
888



NM_003172
LUA#19
818
3200.5
3348
3577.5
2983
2898
2747
1471



NM_004723
LUA#20
89
620
1056
982
761
886
853
494.5



NM_014366
LUA#61
383
1773
2236
2380
1850
1787.5
1681.5
1009.5



NM_003581
LUA#62
62.5
372
962
808
751
735.5
801
515



NM_018115
LUA#63
746.5
3193
3722
4141
3225.5
3292.5
3054
1569



NM_021974
LUA#64
268
1606
2307
2301
1472
1996
1890
1117.5



NM_024045
LUA#65
85
495
831
833.5
527
681
728.5
471



NM_004079
LUA#21
350
2202
3008
3030.5
2326
2816
2701
1488



NM_000414
LUA#22
79.5
477
902
920
503
800
838
646



NM_001684
LUA#23
884
3012
3316.5
3512
3036
2755.5
2662
1478



NM_003879
LUA#24
225
1355.5
1937.5
1983.5
1275
1677
1564
923



NM_002166
LUA#25
411.5
1693.5
2999
2964
2068
1985
2518
1239



NM_005952
LUA#66
104
573
891
961
623.5
847.5
775
571



NM_001034
LUA#67
65
447
989
779
733.5
645
1063
476



NM_003132
LUA#68
41
126
264.5
264
195.5
257
296
327.5



NM_018164
LUA#69
52
170
429
380
304.5
304
358.5
234



NM_014573
LUA#70
43
143
320
325
274
243
407.5
300



NM_014333
LUA#26
180.5
949.5
1577
1549
1309
1337
1390
811



NM_006432
LUA#27
90
394
854.5
800
695
670
719
450



NM_000433
LUA#28
53
234
451.5
466
318
421
370.5
244.5



NM_000147
LUA#29
48
184
276.5
330.5
274
275
318
288



NM_000584
LUA#30
45
189
470
461
435
379
597
352



NM_006452
LUA#71
207.5
1176
1736
1656.5
1374
1531
1587
911.5



NM_005915
LUA#72
48
300
495
474
315.5
496
401.5
256.5



NM_005980
LUA#73
35.5
83
102
162
149
95
114
168



NM_002539
LUA#74
94
559
886
952
715
861.5
822
535



NM_019058
LUA#75
258
1804
2807
2882
2288
2430
2201
1184



NM_004152
LUA#31
58
337
710
811
628.5
782
652
408.5



NM_004602
LUA#32
458.5
678
736.5
1957
1765.5
664
571.5
773.5



NM_018890
LUA#33
562
2557
3812.5
4178
4310
3724.5
2984
1462.5



NM_001101
LUA#34
260.5
1606
2206
2257
1647
1943
1881
904



NM_006019
LUA#35
41
192.5
363
400.5
353
361
402
332



NM_004134
LUA#76
78
432.5
873
866
531
759
744
493



NM_005008
LUA#77
73
425
885
923
779.5
801
828
525



NM_020117
LUA#78
236.5
1585
2193
2242.5
1690
1988
1734
848.5



NM_001469
LUA#79
65
320.5
885
739
765
734
561
370



NM_021203
LUA#80
53
171
386
377.5
283.5
327
348
279



NM_002624
LUA#36
53
180.5
397
381
330.5
336
400.5
394



NM_004759
LUA#37
40.5
67.5
186.5
169
134.5
142
145
190



NM_002664
LUA#38
73
478
906
798
599
773
748
512



NM_000211
LUA#39
81
598.5
1229
1162.5
868
1061
973
440.5



NM_002468
LUA#40
48
285.5
324
728
896.5
343
632
464



NM_000884
LUA#81
82
506
875
897
732.5
789
805
513.5



NM_003752
LUA#82
115.5
536.5
1061
1015.5
768.5
1020
912.5
596



NM_018256
LUA#83
102
717
1252
1104
692.5
1077
929
470



NM_001948
LUA#84
255
1430
2470.5
2273.5
1891
2131
2132.5
1104



NM_005566
LUA#85
129.5
862.5
1842.5
1550
1000
1282
1196
592



NM_021103
LUA#41
591.5
1730
2238
2731
2283
1975
1828.5
1027



NM_002970
LUA#42
92
298
598
589
622.5
577.5
586
478



NM_003332
LUA#43
274
646
1341.5
1324
1984.5
1651
2226
1241.5



NM_004106
LUA#44
47
142
253.5
302
321
271
273.5
267



NM_002982
LUA#45
286
2331
2514
4037
4231
2722
2898
1696.5



NM_005375
LUA#86
273
1380
2455
2357.5
2068
2193
2264
1273.5



NM_000250
LUA#87
261.5
1504
2135
2243
1820
2094
1863
1124



NM_004526
LUA#88
108
642
1081.5
1122
840
1033
1012
641.5



NM_004741
LUA#89
131
383
972
1003
933
920
1126
571



NM_002467
LUA#90
383
983.5
1643
1800
1920
1518
1725
1034



ACTB
LUA#91
344
2113
2976
3020
2200
2601
2521
1195



TFRC
LUA#92
89
400
794
910.5
811
827.5
1042
592



GAPDH_5
LUA#93
238
1501
2205.5
2064
1482
1768.5
1737
843



GAPDH_M
LUA#94
642
3318
3783.5
3886
3205
3303
3248
1513



GAPDH_3
LUA#95
1659
3754
4065
4240
3880
3379
3353.5
1707.5

















TABLE 6







A Experiment 1- Blank and DMSO




















description
FlexMap ID
BLANK
BLANK
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO





NM_005736
LUA#1
15
30
232
237
270.5
227.5
243
224
230
261
275.5
258


NM_000070
LUA#2
23.5
30
234.5
198
193
219.5
197.5
187
203
225.5
242.5
234


NM_018217
LUA#3
16
21
510
513
510
505
507.5
458
490
523
534
530


NM_004782
LUA#4
34.5
31
449.5
592.5
581
603
605
552
606
605
615.5
608.5


NM_014962
LUA#5
26.5
28
318.5
457
473
482.5
486
438
467
456
500
460


NM_004514
LUA#46
29
35.5
553
424
419
452.5
436
394
449
509
477
470.5


NM_006773
LUA#47
30
38
252
308
313
339
338
285
325
323.5
326
335


NM_014288
LUA#48
31
37.5
203.5
138
132.5
137
136
125.5
138
141
143
137


NM_017440
LUA#49
34
30
106
98.5
105.5
110
118
94
107
121
116
117


NM_007331
LUA#50
19
24
187
130
120
134
128.5
121
140
150
149.5
138


NM_173823
LUA#6
33
28.5
428
500
495
500.5
533
460
522
544
505
517.5


NM_000962
LUA#7
29
39.5
425
368.5
370
383.5
376
339
395
423
419
404


NM_003825
LUA#8
32
26
500.5
352
327
357
355
311
369
381
376
370.5


NM_016061
LUA#9
28
27
261
224
217
222
223
203
234
250
237
237.5


NM_000153
LUA#10
20
32.5
287
213.5
203.5
213
213
183
221.5
244
231
226


NM_006948
LUA#51
31
34
588
600
609.5
609.5
623
565
621.5
647
629
659.5


NM_004631
LUA#52
22
12
291
268
269
284.5
285.5
261
274
297
287
281.5


NM_002358
LUA#53
29
33
343
355
354.5
386
378
328.5
361
387
397
374


NM_013402
LUA#54
24
33
291.5
283
276
301
284.5
248.5
281
282
301
298


NM_000875
LUA#55
25
24
51
60
56
65
64
52.5
58.5
60.5
57
66


NM_001974
LUA#11
28
37
98
105
101
104
113
96
109.5
104
108
109.5


NM_000632
LUA#12
24
29
84
55.5
63.5
56
66
55
55
59
53
66


NM_006457
LUA#13
32.5
36
110
117
124
126
145
118
133
115
134
143


NM_000698
LUA#14
28
30
375.5
380.5
398
392.5
379.5
357
401
372
411
385


NM_032571
LUA#15
23
32
25
28
35
34
27
30
33
37
36
31.5


NM_006138
LUA#56
25
33
986.5
1084
1076
1125
1116.5
986
1104
1154
1109
1139


NM_015201
LUA#57
28
29
772
752
787
792
735
698
745
806
840
793


NM_006985
LUA#58
37
37
171
130
135.5
134
134
116
127
129
131.5
139


NM_004095
LUA#59
46
35
1656
1443.5
1428
1459
1379
1264
1389
1369.5
1487.5
1530


NM_005914
LUA#60
39
28
1214
1110
1128
1193
1211.5
1044.5
1117
1091
1211
1243


NM_007282
LUA#16
22
26.5
50
49
45
53
54
42
53
47.5
53.5
60


NM_003644
LUA#17
36.5
35
226
231.5
232
255
246.5
238.5
260
243
240
233.5


NM_001498
LUA#18
26.5
24
401.5
209
205.5
211
210
173.5
207
236
229.5
214


NM_003172
LUA#19
20
31
259
231
229
249
245
200
246
242
253
260


NM_004723
LUA#20
29
28
598
410
414
404.5
420.5
329.5
372.5
382
421
452


NM_014366
LUA#61
41
34
705
625.5
632
653
617
582
643
655.5
677
661


NM_003581
LUA#62
21
32.5
278
50
115
61
64
48
58.5
60
56.5
53.5


NM_018115
LUA#63
32
27
601.5
675
694
689
724
574.5
665
645
735.5
787


NM_021974
LUA#64
34.5
33
1652
1660
1680.5
1724
1666
1479
1664
1617
1804
1849


NM_024045
LUA#65
34
28
262.5
235.5
241
247
242
208
231
242
253
252


NM_004079
LUA#21
33.5
28
73
65
73
71
67
54.5
71
62
63
73


NM_000414
LUA#22
37.5
24.5
222
134
144.5
152
143.5
124
136.5
142
147
138


NM_001684
LUA#23
20
32
39
38
34
49
43
37
44
46
45
45


NM_003879
LUA#24
39
28
51
46
56
53
58
45.5
54.5
56
54
56


NM_002166
LUA#25
29.5
32
60
66.5
82
81
76
70
74
75.5
75.5
79.5


NM_005952
LUA#66
29
40.5
534.5
534
573
602.5
553
529
592.5
619
556
570


NM_001034
LUA#67
24
21
552
584
586
586
599
530
603
644
604
601


NM_003132
LUA#68
32.5
29
1555
1730
1763
1807
1782.5
1645
1830
1833
1824.5
1844.5


NM_018164
LUA#69
29
28
428.5
431
425
418
411.5
361
433
438
462
499


NM_014573
LUA#70
41
44
589
360
361.5
387
383
338
399.5
419
400.5
397


NM_014333
LUA#26
23
29
69
69
85.5
84
85
65.5
77
82
83
82


NM_006432
LUA#27
25
31
312
272
276
294
275
247
270
306
302
290


NM_000433
LUA#28
30
22.5
252
142
135
135
138
120
141
153
146
160


NM_000147
LUA#29
34
25
102
101
102
106.5
106
84
97
102.5
106
100


NM_000584
LUA#30
30.5
31
1070
726
741
743
750
661
757
785
777.5
788


NM_006452
LUA#71
41.5
42.5
147.5
108.5
115
115
114.5
106
120.5
125
111
110


NM_005915
LUA#72
27
30.5
159.5
116
112
117
118
102
113
121
125
123.5


NM_005980
LUA#73
29.5
39
1277
1452
1399.5
1493
1439
1372
1425
1473
1473
1479


NM_002539
LUA#74
34
32
1594.5
1793
1769
1801
1828
1620
1725
1827
1992
1916


NM_019058
LUA#75
38
39.5
1044.5
886.5
872
897
876.5
792
830
814.5
946
930


NM_004152
LUA#31
26
28.5
1525
1952.5
2027
1926
2057
1856
1823
1940
1987
2025


NM_004602
LUA#32
34
28
195.5
192
193
200
203
178
200
203.5
204.5
198


NM_018890
LUA#33
40
39.5
771.5
596.5
617
647
633
592.5
692.5
700
684
645


NM_001101
LUA#34
31
27
1771.5
1972.5
1931
2061
1922
1789
1912
2051
2122.5
2118.5


NM_006019
LUA#35
38
22
514
534
509
553
526
486
567
589
577
552


NM_004134
LUA#76
33
32
955
610.5
597
619
626
576
611
646
607
605.5


NM_005008
LUA#77
36
51
962
911
889
908.5
906
806
874
855.5
958.5
916


NM_020117
LUA#78
31
35
1235.5
1359
1327
1435.5
1350.5
1243
1362
1424
1399.5
1404.5


NM_001469
LUA#79
39.5
40
1511
1917
1890
1972.5
1994.5
1780.5
1858
1848
1988
2024


NM_021203
LUA#80
41
42
1421.5
1578
1531.5
1552
1535.5
1367
1535
1558
1637
1653


NM_002624
LUA#36
33
26.5
1100
1042
1019.5
1048
1005
957.5
1035
1063
1020
1055


NM_004759
LUA#37
35
39
70.5
84
70.5
73
75
58
71
72.5
62
131


NM_002664
LUA#38
29
25
1467
1319
1313.5
1370
1303.5
1184
1326.5
1428
1394
1398


NM_000211
LUA#39
36
33.5
932
663
621.5
675
660
612.5
679
699
702
686


NM_002468
LUA#40
23
25
134.5
130
139
152
143.5
131.5
143.5
144
147
152


NM_000884
LUA#81
40
46
1284
1582
1611
1668
1647
1514
1652
1669
1670
1688


NM_003752
LUA#82
41
46
216
245
255
244
249
219
230.5
266.5
244
254.5


NM_018256
LUA#83
31.5
28.5
665.5
1012
1090
1120
1141.5
1160
1115
953.5
1044
1014


NM_001948
LUA#84
34
27
180.5
155.5
156
157
154
137
150
168.5
161
159


NM_005566
LUA#85
41
34
2231
2060
2128.5
2169
2106.5
1939.5
2064.5
2145
2116.5
2100


NM_021103
LUA#41
34.5
30
1272
1437
1473
1503
1443
1414
1506
1456
1501
1461


NM_002970
LUA#42
41
24.5
396
450.5
462
478
479
430.5
496
471.5
480
481


NM_003332
LUA#43
34.5
35
838.5
1008
1029.5
982.5
978
931
1004
1061
1030
1037


NM_004106
LUA#44
27.5
30
296
278
282.5
302.5
282.5
276
306
324
291
291


NM_002982
LUA#45
25.5
32
504
487
513
542
502
467
524
578.5
529
521.5


NM_005375
LUA#86
46
38
1101.5
1745
1753
1785
1811
1641
1712.5
1731
1726
1662.5


NM_000250
LUA#87
39
37
2256
2007.5
2043
2043
2031.5
1774
1918.5
1971
2128
2032.5


NM_004526
LUA#88
37
29
853
854
851
889
854
770
833
834.5
872
873


NM_004741
LUA#89
40
36.5
484.5
567
584
610
603
564
622
652
598
554.5


NM_002467
LUA#90
44
52
1411.5
2347
2409
2476
2397.5
2416
2415.5
2431
2435
2296


ACTB
LUA#91
40
39
1480
1420
1437
1536.5
1514
1336
1470
1606
1527
1524.5


TFRC
LUA#92
49
55
508
556
585
587.5
578.5
519
572
623
603
591


GAPDH_5
LUA#93
55
57.5
1707
2319.5
2460
2510
2602
2496
2654
2758.5
2441.5
2356


GAPDH_M
LUA#94
51
29
2351
2607
2800
2937
2802
2679
2809
2793
2767
2698


GAPDH_3
LUA#95
53
47
2550
3645
3798
3870
3894
3590.5
3663.5
3824
3859
3782










B Experiment 1- Tretinoin



















FlexMap












description
ID
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin





NM_005736
LUA#1
319
351
89
329
319.5
138.5
309
279
308
336


NM_000070
LUA#2
269.5
370
104.5
354
372
159
336
318
329.5
386


NM_018217
LUA#3
659.5
824
225.5
823
800
343
785
727
747
886


NM_004782
LUA#4
635
855
232
870
812.5
341
855
750
790.5
907


NM_014962
LUA#5
414.5
556
171.5
552.5
567
232
576.5
516.5
537
575.5


NM_004514
LUA#46
262
320
96
306
313
144.5
302
286
312.5
356


NM_006773
LUA#47
139
213
56.5
216
219
79.5
235
174
213
257


NM_014288
LUA#48
55
61
45
60
56
41.5
60
59
64
62


NM_017440
LUA#49
55
68
40
67
68
48.5
66.5
62
59
66


NM_007331
LUA#50
70
81
42
96
87
53
91
80
85.5
97


NM_173823
LUA#6
482.5
654
186.5
675
646
291
604.5
573
591.5
718


NM_000962
LUA#7
663
823
294
793.5
807
398
772
764
754
894


NM_003825
LUA#8
476.5
630.5
256
580
609
318
584
550
557
658


NM_016061
LUA#9
297
401
128
385
382
173
357.5
357
362.5
422


NM_000153
LUA#10
324
419.5
120
384
408
170
374
377.5
357.5
432


NM_006948
LUA#51
592.5
791.5
224
773.5
795
325
762
716.5
742
840.5


NM_004631
LUA#52
238
334
103
331
310.5
135.5
326
289.5
304
352


NM_002358
LUA#53
72
98
53
96
99
58
98
85
99
113


NM_013402
LUA#54
62
75
43
72
75.5
48.5
75
71.5
72
71


NM_000875
LUA#55
53
62
36
62
65
48
74
54
63
68


NM_001974
LUA#11
288
435.5
95
414
430
141
420.5
396
403
466


NM_000632
LUA#12
222
292
78
307
277
114
275.5
251
254
323.5


NM_006457
LUA#13
113
135
78
123
136
90
151.5
132
144
135


NM_000698
LUA#14
1332.5
1743
503
1688
1686.5
787
1606
1552.5
1562
1779


NM_032571
LUA#15
125
161
60
169
164.5
81
172.5
146
144
188


NM_006138
LUA#56
93
124
51.5
113.5
115.5
66
122
114.5
114
130


NM_015201
LUA#57
139
222
64
208
203
87
194.5
183
181
226.5


NM_006985
LUA#58
47
59
37
55
56
40
57
51
52
54


NM_004095
LUA#59
148
227
78
212
212
101
214.5
194.5
203
247


NM_005914
LUA#60
566.5
843
209
866
848.5
351
885
795
881.5
948


NM_007282
LUA#16
39
64.5
42.5
64
62
56
61
64.5
60.5
60


NM_003644
LUA#17
195.5
252
105
266.5
259
142
271.5
260
282
272


NM_001498
LUA#18
279
402
96
374
412
140
360
335.5
361
424


NM_003172
LUA#19
208
286
86
264
257
121
260
235
243
276


NM_004723
LUA#20
318
394
127
418.5
388.5
184
400
363.5
380
446


NM_014366
LUA#61
163
235
66
231
235
97
231
209.5
213
263


NM_003581
LUA#62
147
80
50
65
52
43
50
42
53
57


NM_018115
LUA#63
552.5
735.5
143
690
601
227.5
582
418
506.5
644


NM_021974
LUA#64
872
1105
293.5
1102.5
1052.5
477.5
1068
955
1003
1158


NM_024045
LUA#65
100
145
52
141
142
69
133
119
124
146


NM_004079
LUA#21
93
124.5
55
127
122
70
125.5
99.5
113
129


NM_000414
LUA#22
270
442
100
408.5
415
145
402.5
373
372.5
470.5


NM_001684
LUA#23
54
66.5
41
65
65
43
61
63
69
68


NM_003879
LUA#24
57
80
41
71
76
53
80
67
72.5
77.5


NM_002166
LUA#25
124.5
159.5
61
168
159
79.5
156.5
152
154
180


NM_005952
LUA#66
149
198.5
72.5
189
203
95.5
188.5
182
172
212


NM_001034
LUA#67
157
225
73
209
212.5
92
219
185
191
243


NM_003132
LUA#68
410
540
148
523
517
212
488
467.5
488
596


NM_018164
LUA#69
131
165
57
152.5
155
75
143
142
140.5
177


NM_014573
LUA#70
99
153.5
61
138
155
79
138.5
144.5
135
155


NM_014333
LUA#26
366.5
531
134
492
530
197.5
497
459.5
472
584


NM_006432
LUA#27
1081.5
1409.5
397
1446
1405
625
1345
1203
1294.5
1495


NM_000433
LUA#28
442.5
640
144
605
622
228.5
564
532
536.5
647


NM_000147
LUA#29
573
861
195.5
822.5
850
302
783
763
764
894


NM_000584
LUA#30
1464
1938.5
476
1981.5
1945
799.5
1938
1717
1765
2115


NM_006452
LUA#71
67.5
79.5
41
75
68
53.5
82
74
78.5
76


NM_005915
LUA#72
39
54
34.5
44
56
41
51
47
44
59


NM_005980
LUA#73
106
163
57
142
163
74
149.5
151
145
173


NM_002539
LUA#74
231
326
85
313
314.5
131
300
281.5
276
362


NM_019058
LUA#75
143
164
59
158
152
79.5
148.5
129
143.5
158


NM_004152
LUA#31
1662
2073
775
2127.5
2117
1110
2045
1823
1944
2194


NM_004602
LUA#32
182
239
88
232.5
227.5
113.5
224
212
215.5
258


NM_018890
LUA#33
537.5
758
187.5
788
743.5
293.5
719
712
705
824


NM_001101
LUA#34
2773
2969.5
1490
2968.5
2890
1977
2893.5
2694
2722
3119.5


NM_006019
LUA#35
569
818
186
828
762
287
767
734.5
746
867


NM_004134
LUA#76
207
277
83.5
292
306
111
280
266.5
278
318


NM_005008
LUA#77
307
392
123
401
382.5
167
372
338.5
343
416


NM_020117
LUA#78
408
584.5
145
554
564
230
529.5
519
527
607


NM_001469
LUA#79
809
1179
284
1191
1179
463
1140.5
1077
1076
1221


NM_021203
LUA#80
442.5
642.5
151
578.5
611
228.5
563
546
547
654


NM_002624
LUA#36
1267
1418
576
1447
1402
820
1369
1224.5
1288
1492.5


NM_004759
LUA#37
148
139.5
53
128
141
67
134
103
116
149.5


NM_002664
LUA#38
2157
2552
892
2527
2504
1337
2394
2330
2325
2761


NM_000211
LUA#39
1125
1420
454.5
1349
1366.5
682
1361
1315
1294.5
1488


NM_002468
LUA#40
325
448.5
121
496.5
473
174.5
426.5
399.5
418
492


NM_000884
LUA#81
676
871.5
250
871
865
389
830.5
799
799
946


NM_003752
LUA#82
114
144.5
71
128.5
142
94
137.5
124.5
130.5
145.5


NM_018256
LUA#83
897
726
388
903
998
589
1256.5
1208
1557
747


NM_001948
LUA#84
61
73
47
63
71
51
76
66
58
75


NM_005566
LUA#85
583.5
642
150
607
596
219
577
523.5
540
632.5


NM_021103
LUA#41
2257.5
2689
925
2668.5
2611
1370
2590
2454
2412
2719


NM_002970
LUA#42
1181
1595
400
1478
1584
651
1503
1459
1455
1683.5


NM_003332
LUA#43
2219
2571.5
1100
2688.5
2573.5
1470
2528
2325
2387.5
2641


NM_004106
LUA#44
994
1303
373
1308
1315
576.5
1274.5
1218
1187
1452


NM_002982
LUA#45
3231
3797
1738
3852
3752
2466
3667
3451
3488
3786


NM_005375
LUA#86
523
594.5
238
631.5
617
351
734
717
780.5
638


NM_000250
LUA#87
137
194
74
177
187
95.5
173
166
164
198


NM_004526
LUA#88
150
213
77
208
192.5
101
206.5
182.5
192
223


NM_004741
LUA#89
168
215
100
204
198
116
214
204.5
205
208


NM_002467
LUA#90
702
736
256
792.5
842.5
399
957
976
1030
801


ACTB
LUA#91
1929
2483
818
2425.5
2563
1173
2347
2296.5
2313
2609


TFRC
LUA#92
191.5
285
81.5
280.5
289
109
272
251.5
250
305


GAPDH_5
LUA#93
998.5
1419
378.5
1433
1505.5
632
1469
1347
1299
1629


GAPDH_M
LUA#94
1134
1511.5
460
1520
1502
698.5
1462
1334
1360.5
1575


GAPDH_3
LUA#95
2428
2979
1102.5
2911
2912
1645
2823
2559
2580
2982
















TABLE 7







A Experiment 2- Blank and DMSO





















FlexMap














description
ID
BLANK
BLANK
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO





NM_005736
LUA#1
30
38
48
53
245
256
258.5
259
226
275
219
208


NM_000070
LUA#2
31
26.5
39
39
198
207
202
235
180.5
201
193
202


NM_018217
LUA#3
34
26
50.5
94
550
605
604
639.5
531
629.5
544
531


NM_004782
LUA#4
36.5
37
46
85.5
600.5
569
593
654.5
556
689
629.5
538


NM_014962
LUA#5
39
36.5
50
74
486
492
469
496.5
415
590.5
469
411


NM_004514
LUA#46
29
29.5
39
90
562.5
607
641
633
497.5
539
597.5
605


NM_006773
LUA#47
26
27.5
29
60
489
496
528
572
475
479
499
491


NM_014288
LUA#48
23
26
27
35
171
170
154
163.5
138.5
158
161
145


NM_017440
LUA#49
35
32
26
36
135
144
129
159
128
134
146
141


NM_007331
LUA#50
31
23
25
31
148
161.5
182.5
182
119
149.5
150
150


NM_173823
LUA#6
18
20
42
71
502
447
463
504
432
573.5
501
462


NM_000962
LUA#7
25
25
59
91
401
406
398
403
330
411
397
371.5


NM_003825
LUA#8
26.5
34
101
114
433
423.5
419
420.5
352.5
418.5
400
405


NM_016061
LUA#9
21.5
23
41
60
256.5
250.5
257
268
222
275
243.5
233


NM_000153
LUA#10
29
30
38
47.5
250
268
260
264
226
264
243.5
229


NM_006948
LUA#51
28.5
41
51
100
708
696
668
684
579
724
667
631


NM_004631
LUA#52
32.5
35
37
49
308
320
323
328
280
335
309
307


NM_002358
LUA#53
30
33
35
42
431
395
435
419
362
429
418
401


NM_013402
LUA#54
23
28
32
56.5
349
342
360
380
313.5
353
340
349


NM_000875
LUA#55
20
28.5
27
27
85
90
92
110
105
90.5
93
79


NM_001974
LUA#11
19
30
24
27
129
146
121.5
125
94
139
102
102


NM_000632
LUA#12
20
33.5
24
26
72
80
82
82
76
72
67
81


NM_006457
LUA#13
33
35
49
51
140
153
132
152
126
143
118.5
92


NM_000698
LUA#14
30
27.5
47
80
467
500
484
483
398
475
451
418


NM_032571
LUA#15
25
23
22
21
21
30
26
22
32.5
29
29
23


NM_006138
LUA#56
36
29
71
200
1270
1262
1328.5
1397
1193
1225
1253
1285


NM_015201
LUA#57
26
30
45
117.5
849.5
896
938.5
929
725
845
846
878


NM_006985
LUA#58
26
33
33
34
146
144
144.5
133
111
145
147
111


NM_004095
LUA#59
31
38
115
311
1642
1798
1731
1809
1469
1644
1613
1462.5


NM_005914
LUA#60
32
24
71.5
218
1471
1443
1509
1635.5
1124
1420.5
1406.5
1263


NM_007282
LUA#16
27
35
24.5
20
42.5
46
43
46
45
44
46
40


NM_003644
LUA#17
30
34
49
53.5
252
221
229
232
192
223
198
217


NM_001498
LUA#18
22
35
27
37
236
268
276.5
300
252
263
258
266


NM_003172
LUA#19
33
27
30
43
257
266
270
268
218
276.5
245
240


NM_004723
LUA#20
30
17
45
90
536
581
535
621
482.5
569
496
439


NM_014366
LUA#61
26.5
23.5
39
93
765
795
829
876
725
785
785
741.5


NM_003581
LUA#62
12.5
28.5
72.5
52
69
62
68
55
56
51
62
58


NM_018115
LUA#63
32
44.5
66
163
1006
1121
1018
1181
1223
1257
1010
902


NM_021974
LUA#64
27.5
32
125
353
1802.5
1974.5
2019.5
2034
1663
1901.5
1782
1687


NM_024045
LUA#65
27.5
27.5
31
47
313.5
294
302
313
258
298
293.5
261


NM_004079
LUA#21
22.5
33
23
29
83
81.5
66
77
76
84
77
71


NM_000414
LUA#22
29
26
35
31
178
175
188
202
163
186
186
167


NM_001684
LUA#23
39
32
22
20.5
43
41
41.5
42
34
27
40
37


NM_003879
LUA#24
27
34
27.5
23
54
52.5
56
58
52
60
50
47


NM_002166
LUA#25
29
25
23
27
87
97
96
108
82
86
94
93


NM_005952
LUA#66
34
43.5
44.5
106
752
774
816
850
743.5
716.5
746
723


NM_001034
LUA#67
36
30
45
88
685
724
735
752
501
688
679
713


NM_003132
LUA#68
28
28
132
426
2030
2020
2077.5
2026.5
1779
1959
1928.5
1955


NM_018164
LUA#69
42.5
33
40
63
475
477
510
533
439
517
504
497


NM_014573
LUA#70
36
41.5
43
51
450
419
422
409
334
451
428
397


NM_014333
LUA#26
46
39
34
31
98
89
86
100
87
94
84
66


NM_006432
LUA#27
37
35
29
53.5
339
356
364
386
345
340
360
381


NM_000433
LUA#28
33
34
59
29
170
171
158
153
123
171
148
125


NM_000147
LUA#29
35.5
31
26
26
121
118
137
133
117
117
123
122.5


NM_000584
LUA#30
23
32
63
127
993
1017.5
1080.5
1142.5
950
993
1000
1062


NM_006452
LUA#71
49
36
33.5
34
140
135
121
128
105.5
135
117
112


NM_005915
LUA#72
34
30
35
29
114
124
126
128
116
135
122
110


NM_005980
LUA#73
39
32
76
270.5
1527
1547
1567
1651
1425
1597
1547
1462


NM_002539
LUA#74
43
35.5
117
366
2091
2193.5
2209
2175
1830
2082
2100
1912.5


NM_019058
LUA#75
35
31
62
157
1015
1152
1188
1217
952
1044
1044
1030


NM_004152
LUA#31
31
29.5
89.5
327
1999
1862
1854
1955
1630
2131
1980
1691


NM_004602
LUA#32
18
39.5
45
77.5
233.5
267
235
228.5
174
269.5
219
221


NM_018890
LUA#33
39
39
36
89
796.5
742
744
789.5
607
728.5
728
731.5


NM_001101
LUA#34
32.5
36.5
162.5
461
2101
2075
2065
2052.5
1748.5
2089.5
2074
1945


NM_006019
LUA#35
34
35
39
87
598
650
705
709
566
616
646
700


NM_004134
LUA#76
47.5
33
54
116
808
818
818
830
705
810
760.5
725


NM_005008
LUA#77
43
35
57
151
975.5
1026
1002.5
1038
842.5
1024
953
860


NM_020117
LUA#78
35
31.5
83
292
1653
1701
1746.5
1779
1445
1605.5
1611
1656


NM_001469
LUA#79
47
33.5
114
331
2049
2042
2027
2124
1772
2105.5
1958.5
1868


NM_021203
LUA#80
44
32
88
252
1671
1685
1722
1739
1458
1583.5
1673.5
1542


NM_002624
LUA#36
25
30
73
245.5
1176.5
1202.5
1226
1248
1132
1204
1139.5
1123


NM_004759
LUA#37
36
33
26
31
124
121
109
136
135
136
115
117


NM_002664
LUA#38
41
37
82.5
266
1521
1584
1621
1668
1378
1474
1502.5
1492


NM_000211
LUA#39
33
27
67
123.5
769.5
707
672
674
541
741.5
646
629.5


NM_002468
LUA#40
20
32.5
28
39
153
199
205
208.5
161
183
168
171.5


NM_000884
LUA#81
42
45
166
373
1693.5
1578
1629
1658
1421
1696
1631
1512


NM_003752
LUA#82
49
44
56
67
323
322
329
342
266
307.5
293.5
274


NM_018256
LUA#83
41
40
250
291
1045
1031
1078
1037.5
826
1007
961
985


NM_001948
LUA#84
40
40
35
42
213.5
203
219
225
180
203
201
195.5


NM_005566
LUA#85
39.5
44
199
520
2411.5
2445
2535.5
2462.5
2077
2326
2375
2334


NM_021103
LUA#41
30.5
38
97
247
1549
1351
1575
1693
1430.5
1500
1527.5
1296.5


NM_002970
LUA#42
36
45
24.5
52
522
484
507
532.5
440
542
529
519


NM_003332
LUA#43
35
35
60
178
1034.5
1140
1065
1157
988
1085
1058
1004


NM_004106
LUA#44
24
27
30.5
55
393
378
404
433.5
367
407
389
403


NM_002982
LUA#45
20
34
32
94
652
675
707
713.5
646
638
670
685


NM_005375
LUA#86
34.5
37
149.5
354
1811
1867
2001.5
1991.5
1718
1807
1813
1899


NM_000250
LUA#87
33
40
147.5
510
2353
2404
2415.5
2430
2078
2358
2296
2225


NM_004526
LUA#88
40
36
75
182.5
1064
1120
1093
1099
896
1035
1034
954.5


NM_004741
LUA#89
33
33
74
119.5
810
852
879.5
840
689.5
792
797.5
738


NM_002467
LUA#90
52.5
56
369
760
2507.5
2577
2640
2642
2322
2586
2604.5
2599


ACTB
LUA#91
55.5
44
100
318
1796
1791
1930
1940.5
1558
1747.5
1799
1831


TFRC
LUA#92
53
46.5
56
94
737
788
844
868.5
630
733
791
797


GAPDH_5
LUA#93
50
39
192
807
2708.5
2707
2729
2828
2320
2618
2741
2716


GAPDH_M
LUA#94
43
42
201
737
3051
3052
3041
3075.5
2623
3060
2962
2834.5


GAPDH_3
LUA#95
45.5
41
616.5
1663
3524
3712
3728
3841
3284
3651.5
3806
3593










B Experiment 2- Tretinoin



















FlexMap












description
ID
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin





NM_005736
LUA#1
36.5
390
90.5
408
411
385
392
414.5
384.5
298.5


NM_000070
LUA#2
34
444
120
393
393
419
422
444
437.5
358


NM_018217
LUA#3
48
935
258
992
1053.5
947
966
1022.5
980
922


NM_004782
LUA#4
45
979.5
253
1005
1030
914
929
1044
1036.5
932


NM_014962
LUA#5
39
595.5
160
670.5
705
677.5
678
710
691
618


NM_004514
LUA#46
25
469
99
428
445
422
420.5
460
399
424.5


NM_006773
LUA#47
28
270
68
273
283
272
279
305
284
354.5


NM_014288
LUA#48
22
52
33
60
57
57
57
65
63.5
55


NM_017440
LUA#49
29
88
42
78
97
87.5
84
86.5
91
108


NM_007331
LUA#50
24
115
47
95.5
96
97.5
94.5
111.5
102
115


NM_173823
LUA#6
36
736
182.5
758
734.5
658.5
681
816
760
592


NM_000962
LUA#7
65
900
253
845
904.5
846
846
930
873
822.5


NM_003825
LUA#8
102
772
220
800
733
738
727
764
721
689.5


NM_016061
LUA#9
48
458
121
470.5
464
468
459
503.5
450
440


NM_000153
LUA#10
45
539
124
511
505
473
501
542
487
484


NM_006948
LUA#51
51
974
248
1014
1006
963.5
958.5
1024.5
980
887


NM_004631
LUA#52
38.5
391
97
396
399.5
399
401.5
424
399
397


NM_002358
LUA#53
33.5
103
39
109
103
96
97
119
109
94


NM_013402
LUA#54
30
82
46
90.5
95.5
85
84.5
97
89
83


NM_000875
LUA#55
28.5
81
36
79
80
85
90
87.5
89
104


NM_001974
LUA#11
30
516.5
92.5
533
515
493
470
539
494
340.5


NM_000632
LUA#12
26
491.5
96
406
400
360.5
374
395
369.5
476


NM_006457
LUA#13
43
115.5
65
115.5
118
120
131
117
131
121


NM_000698
LUA#14
64.5
1902
539
1934.5
1914.5
1773
1769
1871.5
1787
1685


NM_032571
LUA#15
22.5
244
58.5
228
234
208
205
239
228
244


NM_006138
LUA#56
32.5
115.5
48
111
127
118
119.5
120
124
117


NM_015201
LUA#57
27
266
63
252
243
230
244
268.5
241
245.5


NM_006985
LUA#58
33
55
33
50
52
54
60
63
56
50


NM_004095
LUA#59
31
287
77
286.5
293
270
294
331
293
227


NM_005914
LUA#60
42
871
213.5
1091
1131
1081.5
1125
1172.5
1161.5
1104


NM_007282
LUA#16
22
61
26
69
64
59
62
61
58
53


NM_003644
LUA#17
41
319
69
269
274
192
231
300
274
259


NM_001498
LUA#18
32
521
110.5
507.5
513
441.5
467
531.5
494.5
511


NM_003172
LUA#19
36
333
82
370
365
330
352
380
333
312.5


NM_004723
LUA#20
34
472.5
134.5
498
506
470
487.5
538
501
420


NM_014366
LUA#61
30
304.5
66
297
291
286.5
300
310.5
298.5
321


NM_003581
LUA#62
39
114
50
78
85
59.5
55
53
55
54


NM_018115
LUA#63
54
1440
356
1028
1210
935.5
1175
1004
1238
1270


NM_021974
LUA#64
49.5
1272
295
1368.5
1315
1193.5
1269
1365
1286.5
1160


NM_024045
LUA#65
29
163.5
48
164.5
175.5
158
157
182
178
149


NM_004079
LUA#21
28
144
49
133
133.5
142
143
152
150
147


NM_000414
LUA#22
34
547
115.5
596
561.5
550.5
543
598.5
564.5
544


NM_001684
LUA#23
30
98
38.5
66
79
68
77.5
83
71
75


NM_003879
LUA#24
22
93
39
91.5
86
84
82
97
95
96.5


NM_002166
LUA#25
30
237
60
230
240
221
218
242
227
254.5


NM_005952
LUA#66
40
265
65
274
260
263
224
268
243
261.5


NM_001034
LUA#67
32.5
280
65
281
253
271
252
276
260
246


NM_003132
LUA#68
37.5
721
157
690.5
680
633
648
716
635
618


NM_018164
LUA#69
34
205.5
61
182
188.5
182
186
211
198
200


NM_014573
LUA#70
32
187
49
179
161.5
172
157.5
198
178
154


NM_014333
LUA#26
41
706
166
712
720
662
633.5
726.5
720
704


NM_006432
LUA#27
52.5
1767
522
1718
1798
1725
1678
1814
1693
1842


NM_000433
LUA#28
34
810
158
860
842
753
724
823
786.5
574


NM_000147
LUA#29
36
1106
236
1132
1122.5
1051
1086
1171
1102
1135


NM_000584
LUA#30
72
2315
665
2389
2341.5
2247
2269
2450
2339.5
2517.5


NM_006452
LUA#71
27
83.5
39
93
90
88
96
90
86
86


NM_005915
LUA#72
30
47
33
47
43
44
49
54
47
47


NM_005980
LUA#73
33
197
52
212
204
187
188
209.5
202
190


NM_002539
LUA#74
33
437
89
423
409
392
368
441
416
397


NM_019058
LUA#75
35
192
55.5
181.5
179
176
171
194
177.5
194


NM_004152
LUA#31
74
2313
811
2471.5
2477.5
2269
2335.5
2470
2347
1882


NM_004602
LUA#32
42
320
116
337
334
363
355.5
296
303
274


NM_018890
LUA#33
38
1071
200
983
992
923.5
879
988
934
873


NM_001101
LUA#34
211
3046
1578
3029
3195
2934
2997
3139.5
3017
2733


NM_006019
LUA#35
36
1059
209.5
938.5
911.5
862
871
956
907
1033


NM_004134
LUA#76
36.5
423.5
90
417
415
415
383
426
406
372


NM_005008
LUA#77
34
452.5
108
501
482
432
439.5
502.5
452.5
393


NM_020117
LUA#78
35
750
149
739
734
606
654
748
697
734


NM_001469
LUA#79
73
1230
333.5
1437
1331.5
1308
1281.5
1360
1315
1107


NM_021203
LUA#80
37
757.5
152
703
701.5
650
660
741
657.5
657


NM_002624
LUA#36
71
1714
670
1664
1757
1580.5
1616
1772.5
1647.5
1643


NM_004759
LUA#37
26
284
60.5
179
207.5
192
195
201
206.5
235


NM_002664
LUA#38
91
2815
1002
2840.5
2805
2642
2652
2875
2701.5
2723


NM_000211
LUA#39
89
1828
470
1717
1734.5
1593.5
1570
1763
1639.5
1219


NM_002468
LUA#40
35
511
135
556.5
549
498
494
589.5
531.5
584


NM_000884
LUA#81
61
951
259.5
1004
988
925
916
1010
963.5
841


NM_003752
LUA#82
44
168
66
149.5
150
153
162
164
139
142


NM_018256
LUA#83
158
455
229
571
556
643
655
483.5
568
635.5


NM_001948
LUA#84
33
79.5
40
68
70.5
62
68
81
72
70


NM_005566
LUA#85
49
851
181.5
821
830
748
752
776.5
744
745


NM_021103
LUA#41
99
2331.5
939
2558
2559
793
1990
2996.5
2724
2581.5


NM_002970
LUA#42
42
1624
435.5
1759.5
1743
1655.5
1575
1823
1716.5
1563


NM_003332
LUA#43
120
2589.5
1244
2832
2821
2704
2692
2772
2733
2691.5


NM_004106
LUA#44
55
1762
508
1756
1799
1678
1587.5
1827
1697
1748


NM_002982
LUA#45
294
3328
2094
3522
3632
3562
3485
3768
3697
3859


NM_005375
LUA#86
78
552
158
568
593
585
589
587
565
642


NM_000250
LUA#87
39
249
70
246
243
232
239.5
253
236
228


NM_004526
LUA#88
31
244
69
270
260
240.5
243
277
256
233


NM_004741
LUA#89
57
370.5
99
329
324
317
325
328
327
402.5


NM_002467
LUA#90
108
762.5
205
792
798
823
776
759
741
823


ACTB
LUA#91
107
2939
1020
2820
2870
2791
2727
2873.5
2807
2986


TFRC
LUA#92
48
413
83
375
381
358
345.5
382
346
400.5


GAPDH_5
LUA#93
72
1965.5
509
1847
2001
1834.5
1691
1994
1888
1977.5


GAPDH_M
LUA#94
73
1871
514
1911
2010.5
1693.5
1762.5
1932.5
1814
1595.5


GAPDH_3
LUA#95
139.5
2850
1137
3025
3066
2936
2973
3162.5
3075
2896
















TABLE 8







A Experiment 3- Blank and DMSO




















description
FlexMap ID
BLANK
BLANK
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO





NM_005736
LUA#1
28
33.5
247
240.5
214.5
233
240
250
272
276
278.5
286.5


NM_000070
LUA#2
26
29.5
179
187.5
181
162.5
162
182.5
226
229
239.5
231


NM_018217
LUA#3
25
32
484
551.5
483
494.5
485
543
601
647.5
630
584


NM_004782
LUA#4
27.5
38.5
467
617
560.5
616
627.5
630
688
723.5
787.5
652.5


NM_014962
LUA#5
26.5
32
364.5
495
443
455
463
497
492
511
543
485.5


NM_004514
LUA#46
26
28
585
474.5
436
454
440
463
547
554.5
530
493


NM_006773
LUA#47
32
19
328
444
453
412
408
448.5
475.5
487
477
443


NM_014288
LUA#48
29
29
169
131.5
122.5
122
129
139.5
161
155.5
151.5
138


NM_017440
LUA#49
33.5
28
150
137
127.5
129
128
151
168
160.5
156
146


NM_007331
LUA#50
28
27.5
188
151
128
143
134.5
151
161
178
167
157


NM_173823
LUA#6
33.5
28
393
516
444
460.5
492
529
559.5
560
558
553.5


NM_000962
LUA#7
28
25
386.5
348
336
360
334
380
421.5
451
403.5
409


NM_003825
LUA#8
26
24.5
436
356
336.5
354.5
340
398
423
431
429.5
414


NM_016061
LUA#9
32
29
268
250
217
241.5
233.5
264
306
301
301
279


NM_000153
LUA#10
35
33
252
211.5
203
205
204
222
261
265
258
237


NM_006948
LUA#51
25
36
593
643
593
617
609
681
746
742
731.5
703.5


NM_004631
LUA#52
25
25
261
263
246.5
264
268.5
294
322
331.5
319
308


NM_002358
LUA#53
26
26
349
419
380
408
394.5
444
502
514
485
466


NM_013402
LUA#54
21
26.5
306
378
334.5
336.5
340
357
397.5
395
388
373


NM_000875
LUA#55
23.5
30
61
82
87
74
70
88
90
91
94
87


NM_001974
LUA#11
28
11
85
84
69
61
67
77
90
87
95.5
80


NM_000632
LUA#12
33
27
76
59
57
51
50
53
55.5
59
58
54


NM_006457
LUA#13
31.5
24
94
124
145
114
106
89
111
123
110
107


NM_000698
LUA#14
17
27.5
353
360.5
325
320
319
316.5
368
400
368
368


NM_032571
LUA#15
27
25
25.5
19
24
25.5
25
23
25
24
25
24


NM_006138
LUA#56
32
31
1076
1274
1213.5
1224
1176
1226
1316
1329
1312
1257


NM_015201
LUA#57
34
35
805.5
834
765.5
799
791
852.5
958
958
907
885.5


NM_006985
LUA#58
40
29.5
200
157
137
154
161
165
188
200
190
187


NM_004095
LUA#59
43
27
1904
1757.5
1707
1798
1644
1666
1925
2035
1825.5
1758.5


NM_005914
LUA#60
34
37
1376.5
1508
1561.5
1339
1246
1355
1448
1595
1420
1337


NM_007282
LUA#16
21
28
47
36
38
35.5
36
42
39
53
44
42


NM_003644
LUA#17
34
37
177.5
213
201
169.5
163
171
177
190
180.5
184


NM_001498
LUA#18
27
31
342
205
211
226
213.5
232
266
284
264
257


NM_003172
LUA#19
27
30
252
234
213
226
230.5
241
276
286.5
272.5
265.5


NM_004723
LUA#20
16.5
25.5
677
476
477.5
461
416
432.5
523
560.5
511
461


NM_014366
LUA#61
32.5
36.5
853
901
904
928
883
943.5
1045.5
1025.5
1014
934


NM_003581
LUA#62
26
24
280
66
48.5
39
41
50
42
46
50
40


NM_018115
LUA#63
31
39.5
1274
1143
1113
1353
1430
1382
1281
1275
1475.5
1295


NM_021974
LUA#64
38
40.5
1787
1842
1743
1855
1727
1723
2087
2161
1976
1987


NM_024045
LUA#65
28.5
30
255
265
267
262.5
251
268.5
303
311
296
298


NM_004079
LUA#21
36
33
73
69
64
60
67
74
87
68
99
71.5


NM_000414
LUA#22
25
42
240
180
157
170
162
184.5
198
198
200
184


NM_001684
LUA#23
25
24.5
26
29
28
27.5
37
36.5
35
38
35
39


NM_003879
LUA#24
21.5
18
56
44
50
50
49
47
54
59.5
54.5
54


NM_002166
LUA#25
28
29
75.5
91
97
103
89
94.5
108
107
104
98


NM_005952
LUA#66
38
27
561.5
627.5
648
673
600
640
672.5
738
687.5
650


NM_001034
LUA#67
26
30
575.5
674
631
619
595
641
764
768
739
692


NM_003132
LUA#68
27
21.5
1705
1840
1717
1797.5
1693.5
1803
2003
2030
1902.5
1861.5


NM_018164
LUA#69
37
27.5
511
495.5
484
532
507
569
633
645
655
594


NM_014573
LUA#70
36.5
40
463
485
425.5
418.5
431.5
478
534
552
501
510


NM_014333
LUA#26
33
28
89
79
94
81
75
89
86
89
83.5
79


NM_006432
LUA#27
26
26
302
287
273.5
302
292
317.5
349
360.5
335
338.5


NM_000433
LUA#28
23
36
187
137
111
115
117
133
153
150
136
136.5


NM_000147
LUA#29
32
34
110
120
117
129
126
125.5
142
148
140
137


NM_000584
LUA#30
29
29
1147
905
868
922
872.5
926
1019
1058
990
959.5


NM_006452
LUA#71
33
32
178
107
102
91
108
110.5
124
130
126
130.5


NM_005915
LUA#72
37
24
141.5
108
96
112
102
114
132
125
126.5
117


NM_005980
LUA#73
41
28
1314
1559
1544
1534
1467
1517
1660
1634.5
1617
1561


NM_002539
LUA#74
43
50
1863
1961.5
1903
2012.5
1865
1987
2241
2169.5
2041
2033


NM_019058
LUA#75
28.5
37.5
1168
1015
974
1004
959
957.5
1134
1130.5
1077
1035


NM_004152
LUA#31
34
32
1698
1990
1909
1973
1935.5
2211.5
2125
2252
2198
2153.5


NM_004602
LUA#32
25
22
206
222
198
216.5
213
229
275
261
279
255


NM_018890
LUA#33
30
44.5
703
648
591.5
627
607.5
669
715
737
695.5
690


NM_001101
LUA#34
22
23.5
2023.5
2026
1824
1841
1885
2013
2164
2148
2108
2048.5


NM_006019
LUA#35
38
34
489
556
511
540.5
528
535
631.5
620
610
583


NM_004134
LUA#76
26.5
26
953.5
677
576
622
589
620.5
715.5
744
688.5
681


NM_005008
LUA#77
33
37.5
882
839
752
791
785
832.5
942
961
951
884


NM_020117
LUA#78
38
43
1342
1519
1444.5
1498
1342
1459
1657
1641
1534
1457


NM_001469
LUA#79
40
43
1531
2065
1894.5
1953
1964.5
1969
2199
2216
2182
2115


NM_021203
LUA#80
39
45.5
1398
1482
1416
1418
1394
1424.5
1659
1692
1607
1533


NM_002624
LUA#36
27
24
1157.5
1111
1048.5
1073.5
1031
1095
1171.5
1194
1158
1135.5


NM_004759
LUA#37
34
24.5
115.5
84
84
87.5
102.5
140
130
108
150
114


NM_002664
LUA#38
35
29
1451
1230.5
1161
1253
1186
1241
1415
1470.5
1375
1311


NM_000211
LUA#39
34
35.5
778
580
496
516
551.5
624
688.5
724.5
690.5
671


NM_002468
LUA#40
27.5
20.5
145
144
156
164.5
168
161
168
206.5
177.5
181.5


NM_000884
LUA#81
39
43
1374
1662
1457.5
1477.5
1517.5
1579.5
1786
1770
1660
1608.5


NM_003752
LUA#82
40
44.5
206
265
245
260
232
223
257
273
246
241


NM_018256
LUA#83
35
32.5
583
948
927
859.5
840
833.5
885.5
923
915.5
934


NM_001948
LUA#84
30
31.5
171.5
166
151
152
142
158
172
175
169
167


NM_005566
LUA#85
39
23
2576
2426
2343.5
2313
2211.5
2208.5
2364
2414
2310
2268


NM_021103
LUA#41
29.5
34
1235.5
1639
1600
1483
1501
1430.5
1490
1618.5
1478
1415


NM_002970
LUA#42
25.5
28
353.5
489
460
492.5
480
537
579.5
614
565
566.5


NM_003332
LUA#43
35
38
954.5
987
937
1025
995
1066
1181
1206
1179
1122


NM_004106
LUA#44
21
26
373.5
394
372.5
394
375.5
419.5
457
461
420
418.5


NM_002982
LUA#45
32
31
603
673.5
609
665
596
652
735.5
760
709.5
655


NM_005375
LUA#86
39.5
33
1128
1776
1693
1718.5
1608
1662
1785.5
1801
1732.5
1749


NM_000250
LUA#87
45
38
2308
1891
1773
1821
1758
1852
2090
2148.5
2015
1937


NM_004526
LUA#88
42
30
1019
1079
955
1021
955
1007
1114
1164
1092
1040


NM_004741
LUA#89
33
43.5
623
778
763
713
731
813
816
821
808
773


NM_002467
LUA#90
40
44
1658
2414
2353
2281
2242.5
2287.5
2464
2519.5
2469.5
2358


ACTB
LUA#91
37
42.5
1668
1753
1743
1832
1683
1785
1924
1902
1857
1793


TFRC
LUA#92
59.5
51
543
595
578
659
620
658.5
750
715
718
678


GAPDH_5
LUA#93
42
51
1954
3132.5
2965
2946
2848
2897
2953
2930
2799
2733.5


GAPDH_M
LUA#94
41
45.5
2721
3317
3109
3039
2963
3139
3320
3320
3195
3068.5


GAPDH_3
LUA#95
47.5
45
2788.5
3887
3821
3905
3912.5
3908.5
4244.5
4050.5
4090
4030










B Experiment 3- Tretinoin


















description
FlexMap ID
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin
Tretinoin





NM_005736
LUA#1
55
84
113
205.5
298
336
235
38
236.5
280


NM_000070
LUA#2
54
82.5
118
224
328.5
330
254
42
274
303


NM_018217
LUA#3
109
187.5
275.5
571
779
801
582.5
61
690.5
742


NM_004782
LUA#4
105
184.5
279
539
825.5
866
689
62
764
803.5


NM_014962
LUA#5
82
120
188.5
369
544.5
551.5
435
52.5
474.5
507


NM_004514
LUA#46
47
73
120
233.5
284.5
300.5
206
33
287
281


NM_006773
LUA#47
37
51
74.5
133
213
245
189.5
34
243
218


NM_014288
LUA#48
30
25
30.5
39
48
48
43
33
45
48


NM_017440
LUA#49
34
34.5
41
74
72
98
77
31
102
86.5


NM_007331
LUA#50
29
40.5
43
65
87
88
81
28
81.5
79


NM_173823
LUA#6
93
147.5
213
415
597
627.5
479
51.5
517
573


NM_000962
LUA#7
142
230
296
559
717.5
722.5
545.5
98.5
665
712


NM_003825
LUA#8
172
244
276
446
630
617
500
162.5
575
613


NM_016061
LUA#9
78
117
154
268
406
421
311
60
359
392


NM_000153
LUA#10
69.5
108
141.5
277
400
396
292
61
336
378


NM_006948
LUA#51
111
189
284
558.5
772
781
604
63
709.5
736


NM_004631
LUA#52
56
78
109
213.5
315.5
325
269
45
306
303


NM_002358
LUA#53
31.5
39
42
68
100
100
76
33
87
93


NM_013402
LUA#54
29
29.5
44.5
56.5
73
76
63
30
68
75


NM_000875
LUA#55
27.5
33
41
59
60
70
70
26
75
70


NM_001974
LUA#11
41
68
94
202
344
371
253
32
276
318.5


NM_000632
LUA#12
40
56
89
189
272
293
236
33
277.5
300


NM_006457
LUA#13
50
53.5
63
82
102
111.5
91
42
89
95


NM_000698
LUA#14
188
330
526
1026
1241
1325
997
65
1148
1215.5


NM_032571
LUA#15
29
39
56
98
152
157
121
30.5
132
146


NM_006138
LUA#56
37
40
49
67
97
102.5
86
38
87
95


NM_015201
LUA#57
40
49
64
139
197
228
156
31
208
198


NM_006985
LUA#58
31
32
37.5
45.5
52
59
46.5
30
48
59


NM_004095
LUA#59
46
66
86.5
166.5
221
208.5
147
36
169
205


NM_005914
LUA#60
102
218.5
314
594
914
889
716.5
44
525.5
804.5


NM_007282
LUA#16
27
29
30
42
53
61.5
58
28
46
62.5


NM_003644
LUA#17
53
72
75.5
137
220
238.5
179
39
181.5
218


NM_001498
LUA#18
40
71
121
262
386
382
279
30
397
391.5


NM_003172
LUA#19
45
68
97
199
234
250
179
33
208
227


NM_004723
LUA#20
61
105
151
271.5
350
352
258
37
281
329


NM_014366
LUA#61
38
61
89.5
191
291.5
299.5
235
33.5
217
294


NM_003581
LUA#62
40
36
42
47
46.5
46
40
33
40.5
39.5


NM_018115
LUA#63
109.5
234
409
710.5
896
1206.5
927
61
1217
860.5


NM_021974
LUA#64
136.5
255.5
403
781.5
929
940
667.5
55
776
891


NM_024045
LUA#65
35
40
57
92.5
135.5
137
110
29
112
127.5


NM_004079
LUA#21
34
41
53
88
122
124
121
30
113
124


NM_000414
LUA#22
48
74
114
272.5
479
477.5
378
35
384
448


NM_001684
LUA#23
30
31.5
31
52
66
60
49
25
52.5
60


NM_003879
LUA#24
23
29
36
51
77
76
59
34
65
69


NM_002166
LUA#25
37
51
74
132
188.5
211
170
29
169.5
207


NM_005952
LUA#66
43
56
74
143
200
197.5
156
34
204
199


NM_001034
LUA#67
42
47
73
122
178
184
155
33
170
171


NM_003132
LUA#68
74
117.5
194
367
461
482
344
38
431
428


NM_018164
LUA#69
37
46
67
139
150
156.5
133
36
148.5
149


NM_014573
LUA#70
40
45
56
93
156
161.5
123
38.5
138.5
144.5


NM_014333
LUA#26
74
128
211
427
674
705
572
41
613
656.5


NM_006432
LUA#27
190
358.5
574
1118
1397.5
1403
1160
68
1364
1394


NM_000433
LUA#28
62
105
169
371.5
580.5
600.5
406
32
454
548


NM_000147
LUA#29
95
188.5
323
713
1109
1156
905
43
987
1072


NM_000584
LUA#30
240
426
663
1369.5
1886
1908.5
1555
96.5
1878.5
1840


NM_006452
LUA#71
25
37
37.5
43
57
71
44
23.5
52
60


NM_005915
LUA#72
25
27
30
35
40
37
38
29
46
42


NM_005980
LUA#73
32
43
52
102.5
157
166
132
34
160
157


NM_002539
LUA#74
46
74
106
209
271
323.5
225
36
276
278.5


NM_019058
LUA#75
37
48
56
90
126
137
97
34
102
129


NM_004152
LUA#31
319
601
837
1645
2020
2157.5
1685
90.5
1845
1993


NM_004602
LUA#32
61
87.5
116
185
270
293
288
46
255
274.5


NM_018890
LUA#33
82
151.5
240
534.5
760
762
652
41
737
769


NM_001101
LUA#34
799
1279
1711
2759.5
2895
2880
2335
235
2622
2644


NM_006019
LUA#35
73
140
227
497
747
787.5
655
34
810
792


NM_004134
LUA#76
47.5
67
93
182
284
297
240
36
268
286


NM_005008
LUA#77
53.5
87
114
239.5
315
316
232
41
242
301.5


NM_020117
LUA#78
65
114
184
371
519
543
415
45
487
502


NM_001469
LUA#79
141.5
246.5
395
731.5
1124
1134
921
75.5
988.5
1104


NM_021203
LUA#80
65
109
165
355
480
514
369
46
445.5
471


NM_002624
LUA#36
253.5
500
700.5
1234
1402
1395
1167.5
79
1359
1343


NM_004759
LUA#37
32
41
60
119
132.5
213
159
28
242
139.5


NM_002664
LUA#38
383
702
1051.5
1832
2052
2064
1635.5
101
1922
1934


NM_000211
LUA#39
204.5
356
501
939
1215
1215
924.5
109
1072
1160


NM_002468
LUA#40
57.5
93
132.5
303
450
473.5
357
36.5
367
421


NM_000884
LUA#81
126
209
304
612
794.5
804
624
58
670
692


NM_003752
LUA#82
54
54
66
93
105
123
96
41
116
113


NM_018256
LUA#83
178.5
177
268
371
633
804.5
779
151
638.5
688.5


NM_001948
LUA#84
34
38
38
50
61
59
54
33
63
62


NM_005566
LUA#85
89
117
183
197.5
597
632
489
45
539.5
610.5


NM_021103
LUA#41
467.5
781.5
992
1953
2465.5
2408
495
142
629
2096


NM_002970
LUA#42
164
329
528
1106
1508
1570.5
1247
57
1316
1443


NM_003332
LUA#43
591
1003
1446
2239
2492
2467
2041
177.5
2312
2346.5


NM_004106
LUA#44
235
457
672
1276
1500
1506
1234
68
1458
1423


NM_002982
LUA#45
1175
1759
2328
3359
3548
3612.5
3101
373
3449
3440


NM_005375
LUA#86
106
131
196
334
547.5
602
531
86
548
553


NM_000250
LUA#87
46
52
67
115
159
166
131
38
141
157


NM_004526
LUA#88
43
61
76.5
137
187.5
191
138
37
153.5
172


NM_004741
LUA#89
70
77
131
204.5
315
415.5
300.5
58
397
326


NM_002467
LUA#90
136
162
239
409.5
576
644
527
86
571
552.5


ACTB
LUA#91
452
812
1191
2112.5
2760
2845
2391
144.5
2538
2604.5


TFRC
LUA#92
54
66
90
168
256
272
213
45
252
255


GAPDH_5
LUA#93
261.5
439.5
741
1388
1787
1865
1714
97
1699
1739.5


GAPDH_M
LUA#94
221.5
396
590.5
1179.5
1602
1586
1267.5
79
1342.5
1462


GAPDH_3
LUA#95
579
1017
1438
2495.5
2680
2718
2148
172
2330.5
2534
















TABLE 9





Sample Information


















Field
Description







Name
Sample name used in this study



Data Set
Data set that stores the miRNA expression data; 1 for miGCM, 2 for PDT_miRNA, 3 for mLung, 4 for ALL, 5 for HL60, 6 for




erythroid



SR Name
Corresponding sample name in Ramaswamy et al, PNAS, 2001, 98: 15149-15154; empty entry for no match



HuFL Scan
Scan name for Affymetrix HuFL (Hu6800) chip, if available



Hu35KsubA
Scan name for Affymetrix Hu35KsubA chip, if available



Scan



BV
Bead version that is used to detect the sample



SSC
Sample source code; 1 for Ramaswamy study, 2 for St Jude, 3 for Dana-Farber, 4 for MIT



MAL
Maliganancy status code; 1 for Normal, 2 for Tumor, 3 for cell line



TT
Tissue type code; 1 for stomach, 2 for colon, 3 for pancreas, 4 for liver, 5 for kidney, 6 for bladder, 7 for prostate, 8 for ovary, 9 for




uterus, 10 for human lung, 11 for mesothelioma, 12 for melanoma, 13 for breast, 14 for brain, 19 for B cell ALL, 20 for T cell ALL,




21 for follicular cleaved lymphoma, 22 for large B cell lymphoma, 23 for mycosis fungoidis, 24 for acute myelogenous leukemia,




26 for mouse lung, 27 for erythrocytes



CLT
Cell line type code; 1 for non-cell-line/others, 2 for MCF-7, 3 for SKMEL-5, 4 for PC-3, 5 for K562, 6 for HEL, 7 for TF-1, 8 for




293, 9 for HL60, 10 for T-ALL cell lines



PDT
Poorly differentiated tumor (PDT) code; 0 for others, 1 for PDT used in prediction, 2 for PDT not used in prediction due to lack of




successful Affymetrix scans



AS
ALL Subtype; 0 for others or unknowns, 1 for BCR/ABL, 2 for E2A/PBX1, 3 for Hyperdiploid 47 to 50, 4 for Hyperdiploid >50, 5 for




MLL, 6 for T_ALL, 7 for TEL/AML1, 9 for Normal ploidy



EP
Epithelial code; 0 for others, 1 for epithelial sample



GI
Gastrointestinal tract code; 0 for others and cell lines, 1 for GI sample



Culture
Description of culture condition for HL-60 and erythrocyte differentiation experiments



N-T CLS
Sample used to build the normal/tumor classifier; 0 for others, 1 for used



MultiC CLS
Sample used to build the multi-cancer classifier; 0 for others, 1 for used



RNA
Starting quantity of total RNA for profiling, measured in micrograms





























Data


Hu35KsubA










N-T
MultiC



Name
Set
SR Name
HuFL Scan
Scan
BV
SSC
MAL
TT
CLT
PDT
AS
EP
GI
Culture
CLS
CLS
RNA





N_STOM_1
1



1
1
1
1
1
0
0
1
1
NA
0
0
10


N_STOM_2
1



1
1
1
1
1
0
0
1
1
NA
0
0
10


N_STOM_3
1



1
1
1
1
1
0
0
1
1
NA
0
0
10


N_STOM_4
1



1
1
1
1
1
0
0
1
1
NA
0
0
10


N_STOM_5
1



1
1
1
1
1
0
0
1
1
NA
0
0
10


N_STOM_6
1



1
1
1
1
1
0
0
1
1
NA
0
0
10


N_COLON_1
1

CL2000090529AA
CL2000090729AA
1
1
1
2
1
0
0
1
1
NA
1
0
10


N_COLON_2
1



1
1
1
2
1
0
0
1
1
NA
1
0
10


N_COLON_3
1

CL2000091210AA
CL2000091510AA
1
1
1
2
1
0
0
1
1
NA
1
0
10


N_COLON_4
1

CL2000090527AA
CL2000090727AA
1
1
1
2
1
0
0
1
1
NA
1
0
10


N_COLON_5
1

CL2000090523AA
CL2000090723AA
1
1
1
2
1
0
0
1
1
NA
1
0
10


T_COLON_1
1



1
1
2
2
1
0
0
1
1
NA
1
0
10


T_COLON_2
1
Colorectal_Adeno_mCRT2_(9752)
CH2000030408AA
SR2000042821AA
1
1
2
2
1
0
0
1
1
NA
1
1
10


T_COLON_3
1
Colorectal_Adeno_9912c055_CC
CH2000031308AA
SR2000042828AA
1
1
2
2
1
0
0
1
1
NA
1
1
10


T_COLON_4
1
Colorectal_Adeno_95_I_175
CH2000030516AA
SR2000042819AA
1
1
2
2
1
0
0
1
1
NA
1
1
10


T_COLON_5
1
Colorectal_Adeno_0001c038_CC
CH2000031317AA
SR2000042826AA
1
1
2
2
1
0
0
1
1
NA
1
1
10


T_COLON_6
1



1
1
2
2
1
0
0
1
1
NA
1
0
10


T_COLON_7
1
Colorectal_Adeno_95_I_057
CH2000030507AA
SR2000042824AA
1
1
2
2
1
0
0
1
1
NA
1
1
10


T_COLON_8
1


SR2000051017AA
1
1
2
2
1
0
0
1
1
NA
1
0
10


T_COLON_9
1
Colorectal_Adeno_0001c040_CC
CH2000031309AA
CL2000091537AA
1
1
2
2
1
0
0
1
1
NA
1
1
10


T_COLON_10
1
Colorectal_Adeno_HCTN_CRT1_(18851_A1B)
SR1999121605AA
SR2000042825AA
1
1
2
2
1
0
0
1
1
NA
1
1
10


N_PAN_1
1

CL2000090543AA
CL2000090743AA
1
1
1
3
1
0
0
1
1
NA
0
0
10


T_PAN_1
1
Pancreas_Adeno_Pan_3T
CH2000031008AA
SR2000042222AA
1
1
2
3
1
0
0
1
1
NA
0
1
10


T_PAN_2
1
Pancreas_Adeno_Pan_6T
CH2000031312AA
SR2000042224AA
1
1
2
3
1
0
0
1
1
NA
0
1
10


T_PAN_3
1
Pancreas_Adeno_97_I_077
CH2000031020AA

1
1
2
3
1
0
0
1
1
NA
0
0
10


T_PAN_4
1
Pancreas_Adeno_Pan_2T
CH2000031318AA
SR2000042221AA
1
1
2
3
1
0
0
1
1
NA
0
1
10


T_PAN_5
1
Pancreas_Adeno_Pan_7T
CH2000031311AA
SR2000042225AA
1
1
2
3
1
0
0
1
1
NA
0
1
10


T_PAN_6
1
Pancreas_Adeno_Pan_17T
CL2000071414AA
CL2000071840AA
1
1
2
3
1
0
0
1
1
NA
0
1
10


T_PAN_7
1
Pancreas_Adeno_Pan_4T
CH2000031024AA
SR2000042223AA
1
1
2
3
1
0
0
1
1
NA
0
1
10


T_PAN_8
1
Pancreas_Adeno_Pan_1T
CH2000031306AA
SR2000042220AA
1
1
2
3
1
0
0
1
1
NA
0
1
10


T_PAN_9
1
Pancreas_Adeno_Pan_29T
CL2000071409AA
CL2000081524AA
1
1
2
3
1
0
0
1
1
NA
0
1
10


N_LVR_1
1



1
1
1
4
1
0
0
1
1
NA
0
0
10


N_LVR_2
1



1
1
1
4
1
0
0
1
1
NA
0
0
10


N_LVR_3
1



1
1
1
4
1
0
0
1
1
NA
0
0
10


N_KID_1
1

CL2000091226AA
CL2000091526AA
1
1
1
5
1
0
0
1
0
NA
1
0
10


N_KID_2
1

CL2000090539AA
CL2000090739AA
1
1
1
5
1
0
0
1
0
NA
1
0
10


N_KID_3
1

CL2000091214AA
CL2000091514AA
1
1
1
5
1
0
0
1
0
NA
1
0
10


T_KID_1
1
Renal_Carcinoma_Carc_628TG
MG1999030902AA
SR2000060917AA
1
1
2
5
1
0
0
1
0
NA
1
1
10


T_KID_2
1


SR2000060913AA
1
1
2
5
1
0
0
1
0
NA
1
0
10


T_KID_3
1
Renal_Carcinoma_Carc_614TO
MG1999030904AA
SR2000060914AA
1
1
2
5
1
0
0
1
0
NA
1
1
10


T_KID_4
1
Renal_Carcinoma_Carc_609TO
MG1999030901AA
SR2000060916AA
1
1
2
5
1
0
0
1
0
NA
1
1
10


T_KID_5
1
Renal_Carcinoma_92_I_126
CH2000030508AA
SR2000050421AA
1
1
2
5
1
0
0
1
0
NA
1
1
10


TCL_293_1
1



1
4
3
5
8
0
0
1
0
NA
0
0
10


TCL_293_2
1



1
4
3
5
8
0
0
1
0
NA
0
0
10


TCL_293_3
1



1
4
3
5
8
0
0
1
0
NA
0
0
10


N_BLDR_1
1

CL2000090532AA
CL2000090732AA
1
1
1
6
1
0
0
1
0
NA
0
0
10


N_BLDR_2
1



1
1
1
6
1
0
0
1
0
NA
0
0
10


T_BLDR_1
1
Bladder_TCC_9858
SR2000042208AA
SR2000051014AA
1
1
2
6
1
0
0
1
0
NA
0
1
10


T_BLDR_2
1



1
1
2
6
1
0
0
1
0
NA
0
0
10


T_BLDR_3
1
Bladder_TCC_11520
SR2000042201AA
SR2000051005AA
1
1
2
6
1
0
0
1
0
NA
0
1
10


T_BLDR_4
1
Bladder_TCC_B_0004
CL2000080113AA
CL2000080314AA
1
1
2
6
1
0
0
1
0
NA
0
1
10


T_BLDR_5
1
Bladder_TCC_B_0008
CL2000080115AA
CL2000080803AA
1
1
2
6
1
0
0
1
0
NA
0
1
10


T_BLDR_6
1
Bladder_TCC_B_0001
CL2000080110AA
CL2000080311AA
1
1
2
6
1
0
0
1
0
NA
0
1
10


T_BLDR_7
1
Bladder_TCC_07-B_003E
CL2000080109AA
CL2000080310AA
1
1
2
6
1
0
0
1
0
NA
0
1
10


N_PROST_1
1

CL2000090515AA
CL2000090715AA
1
1
1
7
1
0
0
1
0
NA
1
0
10


N_PROST_2
1

CL2000090518AA
CL2000090718AA
1
1
1
7
1
0
0
1
0
NA
1
0
10


N_PROST_3
1



1
1
1
7
1
0
0
1
0
NA
1
0
10


N_PROST_4
1

CL2000090514AA
CL2000090714AA
1
1
1
7
1
0
0
1
0
NA
1
0
10


N_PROST_5
1



1
1
1
7
1
0
0
1
0
NA
1
0
10


N_PROST_6
1

CL2000090517AA
CL2000090717AA
1
1
1
7
1
0
0
1
0
NA
1
0
10


N_PROST_7
1

CL2000090519AA
CL2000090719AA
1
1
1
7
1
0
0
1
0
NA
1
0
10


N_PROST_8
1

CL2000090516AA
CL2000090716AA
1
1
1
7
1
0
0
1
0
NA
1
0
10


T_PROST_1
1
Prostate_Adeno_P_0025
CL2000090506AA
CL2000090706AA
1
1
2
7
1
0
0
1
0
NA
1
1
10


T_PROST_2
1
Prostate_Adeno_P_0030
CL2000090507AA
CL2000090707AA
1
1
2
7
1
0
0
1
0
NA
1
1
10


T_PROST_3
1
Prostate_Adeno_P_0036
CL2000090509AA
CL2000090709AA
1
1
2
7
1
0
0
1
0
NA
1
1
10


T_PROST_4
1
Prostate_Adeno_P_0033
CL2000090508AA
CL2000090708AA
1
1
2
7
1
0
0
1
0
NA
1
1
10


T_PROST_5
1
Prostate_Adeno_95_I_256
CL2000071413AA
CL2000071839AA
1
1
2
7
1
0
0
1
0
NA
1
1
10


T_PROST_6
1
Prostate_Adeno_94_I_052
CH2000030405AA
SR2000050409AA
1
1
2
7
1
0
0
1
0
NA
1
1
10


TCL_PC-
1



1
4
3
7
4
0
0
1
0
NA
0
0
10


3_1


TCL_PC-
1



1
4
3
7
4
0
0
1
0
NA
0
0
10


3_2


TCL_PC-
1



1
4
3
7
4
0
0
1
0
NA
0
0
10


3_3


TCL_PC-
1



1
4
3
7
4
0
0
1
0
NA
0
0
10


3_4


T_OVARY_1
1
Ovary_Adeno_mOVT1_(8691)
CH2000030411AA
SR2000050412AA
1
1
2
8
1
0
0
1
0
NA
0
1
10


T_OVARY_2
1



1
1
2
8
1
0
0
1
0
NA
0
0
10


T_OVARY_3
1
Ovary_Adeno_H_6206
CL2000080107AA
CL2000080308AA
1
1
2
8
1
0
0
1
0
NA
0
1
10


T_OVARY_4
1
Ovary_Adeno_07-B_001B
CL2000080103AA
CL2000080304AA
1
1
2
8
1
0
0
1
0
NA
0
1
10


T_OVARY_5
1
Ovary_Adeno_07-B_014G
CL2000080104AA
CL2000080305AA
1
1
2
8
1
0
0
1
0
NA
0
1
10


T_OVARY_6
1
Ovary_Adeno_93_I_081
CH2000030415AA
SR2000050411AA
1
1
2
8
1
0
0
1
0
NA
0
1
10


T_OVARY_7
1



1
1
2
8
1
0
0
1
0
NA
0
0
10


N_UT_1
1



1
1
1
9
1
0
0
1
0
NA
1
0
10


N_UT_2
1



1
1
1
9
1
0
0
1
0
NA
1
0
10


N_UT_3
1



1
1
1
9
1
0
0
1
0
NA
1
0
10


N_UT_4
1



1
1
1
9
1
0
0
1
0
NA
1
0
10


N_UT_5
1



1
1
1
9
1
0
0
1
0
NA
1
0
10


N_UT_6
1



1
1
1
9
1
0
0
1
0
NA
1
0
10


N_UT_7
1



1
1
1
9
1
0
0
1
0
NA
1
0
10


N_UT_8
1

CL2000091225AA
CL2000091525AA
1
1
1
9
1
0
0
1
0
NA
1
0
10


N_UT_9
1



1
1
1
9
1
0
0
1
0
NA
1
0
10


T_UT_1
1
Uterus_Adeno_2967
SR2000042205AA
SR2000051008AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_2
1
Uterus_Adeno_3663
SR2000042203AA
SR2000051003AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_3
1
Uterus_Adeno_3226
SR2000042207AA
SR2000051931AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_4
1
Uterus_Adeno_4915
SR2000042209AA
SR2000051001AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_5
1
Uterus_Adeno_92_I_073
CH2000030413AA
SR2000050424AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_6
1
Uterus_Adeno_5116
SR2000042206AA
SR2000051016AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_7
1
Uterus_Adeno_4075
SR2000042212AA
SR2000051010AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_8
1
Uterus_Adeno_2552
SR2000042210AA
SR2000051004AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_9
1
Uterus_Adeno_4203
SR2000042202AA
SR2000051009AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


T_UT_10
1
Uterus_Adeno_4840
SR2000042214AA
SR2000051011AA
1
1
2
9
1
0
0
1
0
NA
1
1
10


N_LUNG_1
1

CL2000090521AA
CL2000090721AA
1
1
1
10
1
0
0
1
0
NA
1
0
10


N_LUNG_2
1



1
1
1
10
1
0
0
1
0
NA
1
0
10


N_LUNG_3
1

CL2000091223AA
CL2000091523AA
1
1
1
10
1
0
0
1
0
NA
1
0
10


N_LUNG_4
1



1
1
1
10
1
0
0
1
0
NA
1
0
10


T_LUNG_1
1
Lung_Adeno_004_B
CL2000090501AA
CL2000090701AA
1
1
2
10
1
0
0
1
0
NA
1
1
10


T_LUNG_2
1
Lung_Adeno_H_20154
CL2000090504AA
CL2000090704AA
1
1
2
10
1
0
0
1
0
NA
1
1
10


T_LUNG_3
1
Met_Lung_H_20300
CL2000090505AA
CL2000090705AA
1
1
2
10
1
0
0
1
0
NA
1
1
10


T_LUNG_4
1
Lung_Adeno_009_C
CL2000090502AA
CL2000090702AA
1
1
2
10
1
0
0
1
0
NA
1
1
10


T_LUNG_5
1



1
1
2
10
1
0
0
1
0
NA
1
0
10


T_LUNG_6
1
Lung_Adeno_H_20387
CL2000090503AA
CL2000090703AA
1
1
2
10
1
0
0
1
0
NA
1
1
10


T_MESO_1
1
Mesothelioma_300_T
CH2000031101AA
SR2000050516AA
1
1
2
11
1
0
0
1
0
NA
0
1
10


T_MESO_2
1
Mesothelioma_224_T5
CH2000031015AA
SR2000050509AA
1
1
2
11
1
0
0
1
0
NA
0
1
10


T_MESO_3
1
Mesothelioma_235_T6
CH2000031018AA
SR2000050507AA
1
1
2
11
1
0
0
1
0
NA
0
1
10


T_MESO_4
1
Mesothelioma_169_T7
CH2000031004AA
SR2000050501AA
1
1
2
11
1
0
0
1
0
NA
0
1
10


T_MESO_5
1
Mesothelioma_31_T10
CH2000031014AA
SR2000050513AA
1
1
2
11
1
0
0
1
0
NA
0
1
10


T_MESO_6
1
Mesothelioma_165_T5
CH2000031019AA
SR2000050510AA
1
1
2
11
1
0
0
1
0
NA
0
1
10


T_MESO_7
1
Mesothelioma_74_T6
CH2000031021AA
SR2000050514AA
1
1
2
11
1
0
0
1
0
NA
0
1
10


T_MESO_8
1
Mesothelioma_215_T5
CH2000031017AA
SR2000050511AA
1
1
2
11
1
0
0
1
0
NA
0
1
10


T_MELA_1
1
Melanoma_96_I_166
CH2000031316AA
SR2000050518AA
1
1
2
12
1
0
0
1
0
NA
0
1
10


T_MELA_2
1
Melanoma_94_I_149
CH2000031011AA
SR2000050504AA
1
1
2
12
1
0
0
1
0
NA
0
1
10


T_MELA_3
1
Melanoma_93_I_262
CH2000031305AA
SR2000050519AA
1
1
2
12
1
0
0
1
0
NA
0
1
10


TCL_SKMEL-
1



1
4
3
12
3
0
0
1
0
NA
0
0
10


5_1


TCL_SKMEL-
1



1
4
3
12
3
0
0
1
0
NA
0
0
10


5_2


N_BRST_1
1

CL2000090513AA
CL2000090713AA
1
1
1
13
1
0
0
1
0
NA
1
0
10


N_BRST_2
1

CL2000090511AA
CL2000090711AA
1
1
1
13
1
0
0
1
0
NA
1
0
10


N_BRST_3
1

CL2000090512AA
CL2000090712AA
1
1
1
13
1
0
0
1
0
NA
1
0
10


T_BRST_1
1
Breast_Adeno_9912c068_CC
CH2000031302AA
SR2000042806AA
1
1
2
13
1
0
0
1
0
NA
1
1
10


T_BRST_2
1
Breast_Adeno_94_I_155
CH2000030407AA
SR2000042804AA
1
1
2
13
1
0
0
1
0
NA
1
1
10


T_BRST_3
1
Breast_Adeno_mBRT1_(8697)
CH2000030509AA
SR2000051018AA
1
1
2
13
1
0
0
1
0
NA
1
1
10


T_BRST_4
1
Breast_Adeno_95_I_029
CH2000030511AA
SR2000042803AA
1
1
2
13
1
0
0
1
0
NA
1
1
10


T_BRST_5
1
Breast_Adeno_93_I_250
CH2000031102AA
SR2000042807AA
1
1
2
13
1
0
0
1
0
NA
1
1
10


T_BRST_6
1
Breast_Adeno_09-B_003A
CL2000080301AA
CL2000091505AA
1
1
2
13
1
0
0
1
0
NA
1
1
10


TCL_MCF-
1



1
4
3
13
2
0
0
1
0
NA
0
0
10


7_1


TCL_MCF-
1



1
4
3
13
2
0
0
1
0
NA
0
0
10


7_2


TCL_MCF-
1



1
4
3
13
2
0
0
1
0
NA
0
0
10


7_3


TCL_MCF-
1



1
4
3
13
2
0
0
1
0
NA
0
0
10


7_4


TCL_MCF-
1



1
4
3
13
2
0
0
1
0
NA
0
0
10


7_5


N_BRAIN_1
1

CL2000091228AA
CL2000091528AA
1
1
1
14
1
0
0
0
0
NA
0
0
10


N_BRAIN_2
1

CL2000090547AA
CL2000090747AA
1
1
1
14
1
0
0
0
0
NA
0
0
10


T_BALL_1
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_2
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_3
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_4
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_5
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_6
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_7
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_8
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_9
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_10
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_11
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_12
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_13
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_14
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_15
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_16
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_17
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_18
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_19
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_20
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_21
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_22
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_23
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_24
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_25
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_BALL_26
1



1
2
2
19
1
0
0
0
0
NA
0
0
5


T_TALL_1
1



1
2
2
20
1
0
0
0
0
NA
0
0
5


T_TALL_2
1



1
2
2
20
1
0
0
0
0
NA
0
0
5


T_TALL_3
1



1
2
2
20
1
0
0
0
0
NA
0
0
5


T_TALL_4
1



1
2
2
20
1
0
0
0
0
NA
0
0
5


T_TALL_5
1



1
2
2
20
1
0
0
0
0
NA
0
0
5


T_TALL_6
1



1
3
2
20
1
0
0
0
0
NA
0
0
2


T_TALL_7
1



1
3
2
20
1
0
0
0
0
NA
0
0
2


T_TALL_8
1



1
3
2
20
1
0
0
0
0
NA
0
0
10


T_TALL_9
1



1
3
2
20
1
0
0
0
0
NA
0
0
10


T_TALL_10
1



1
3
2
20
1
0
0
0
0
NA
0
0
10


T_TALL_11
1



1
3
2
20
1
0
0
0
0
NA
0
0
10


T_TALL_12
1



1
3
2
20
1
0
0
0
0
NA
0
0
2


T_TALL_13
1



1
3
2
20
1
0
0
0
0
NA
0
0
2


T_TALL_14
1



1
3
2
20
1
0
0
0
0
NA
0
0
2


T_TALL_15
1



1
3
2
20
1
0
0
0
0
NA
0
0
2


T_TALL_16
1



1
3
2
20
1
0
0
0
0
NA
0
0
1


T_TALL_17
1



1
3
2
20
1
0
0
0
0
NA
0
0
1


T_TALL_18
1



1
3
2
20
1
0
0
0
0
NA
0
0
1


TCL_ALLCL_1
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_2
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_3
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_4
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_5
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_6
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_7
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_8
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_9
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


TCL_ALLCL_10
1



1
3
3
20
10
0
0
0
0
NA
0
0
10


T_FCC_1
1



1
3
2
21
1
0
0
0
0
NA
0
0
10


T_FCC_2
1



1
3
2
21
1
0
0
0
0
NA
0
0
10


T_FCC_3
1



1
3
2
21
1
0
0
0
0
NA
0
0
10


T_FCC_4
1



1
3
2
21
1
0
0
0
0
NA
0
0
10


T_FCC_5
1
FSCC_S98_14359
MG1999052110AA
SR2000060816AA
1
3
2
21
1
0
0
0
0
NA
0
0
10


T_FCC_6
1



1
3
2
21
1
0
0
0
0
NA
0
0
10


T_FCC_7
1



1
3
2
21
1
0
0
0
0
NA
0
0
10


T_FCC_8
1



1
3
2
21
1
0
0
0
0
NA
0
0
10


T_LBL_1
1



1
3
2
22
1
0
0
0
0
NA
0
0
10


T_LBL_2
1



1
3
2
22
1
0
0
0
0
NA
0
0
10


T_LBL_3
1

MG19991001015AA

1
3
2
22
1
0
0
0
0
NA
0
0
10


T_LBL_4
1



1
3
2
22
1
0
0
0
0
NA
0
0
10


T_LBL_5
1



1
3
2
22
1
0
0
0
0
NA
0
0
10


T_LBL_6
1
L_B_CELL_S97_27534_G
MG1999101304AA
SR2000060801AA
1
3
2
22
1
0
0
0
0
NA
0
0
10


T_LBL_7
1



1
3
2
22
1
0
0
0
0
NA
0
0
10


T_LBL_8
1

MG1999100110AA

1
3
2
22
1
0
0
0
0
NA
0
0
10


T_MF_1
1



1
4
2
23
1
0
0
0
0
NA
0
0
10


T_MF_2
1



1
4
2
23
1
0
0
0
0
NA
0
0
10


T_MF_3
1



1
4
2
23
1
0
0
0
0
NA
0
0
10


TCL_K562_1
1



1
4
3
24
5
0
0
0
0
NA
0
0
10


TCL_K562_2
1



1
4
3
24
5
0
0
0
0
NA
0
0
10


TCL_HEL_1
1



1
4
3
24
6
0
0
0
0
NA
0
0
10


TCL_HEL_2
1



1
4
3
24
6
0
0
0
0
NA
0
0
10


TCL_HEL_3
1



1
4
3
24
6
0
0
0
0
NA
0
0
10


TCL_TF-
1



1
4
3
24
7
0
0
0
0
NA
0
0
10


1_1


TCL_TF-
1



1
4
3
24
7
0
0
0
0
NA
0
0
10


1_2


TCL_TF-
1



1
4
3
24
7
0
0
0
0
NA
0
0
10


1_3


PDT_BRST_1
2
CUP_5
CL2000080121AA
CL2000080818AA
1
1
2
13
1
1
0
1
0
NA
0
0
10


PDT_BRST_2
2
CUP_2
CL2000080117AA
CL2000080815AA
1
1
2
13
1
1
0
1
0
NA
0
0
10


PDT_BRST_3
2
CUP_11
CL2000080127AA
CL2000080824AA
1
1
2
13
1
1
0
1
0
NA
0
0
10


PDT_BRST_4
2
CUP_3
CL2000080119AA
CL2000080816AA
1
1
2
13
1
1
0
1
0
NA
0
0
10


PDT_BRST_5
2
CUP_1
CL2000080118AA
CL2000080814AA
1
1
2
13
1
1
0
1
0
NA
0
0
10


PDT_COLON_1
2
CUP_15
CL2000081105AA
CL2000081505AA
1
1
2
2
1
1
0
1
1
NA
0
0
10


PDT_LBL_1
2



1
1
2
22
1
2
0
0
0
NA
0
0
10


PDT_LUNG_1
2
CUP_12
CL2000081102AA
CL2000081502AA
1
1
2
10
1
1
0
1
0
NA
0
0
10


PDT_LUNG_2
2
CUP_9
CL2000080125AA
CL2000080822AA
1
1
2
10
1
1
0
1
0
NA
0
0
10


PDT_LUNG_3
2
CUP_8
CL2000081101AA
CL2000081501AA
1
1
2
10
1
1
0
1
0
NA
0
0
10


PDT_LUNG_4
2
CUP_6
CL2000080122AA
CL2000080819AA
1
1
2
10
1
1
0
1
0
NA
0
0
10


PDT_LUNG_5
2
CUP_22
CL2000081112AA
CL2000081512AA
1
1
2
10
1
1
0
1
0
NA
0
0
10


PDT_LUNG_6
2
CUP_7
CL2000080123AA
CL2000080820AA
1
1
2
10
1
1
0
1
0
NA
0
0
10


PDT_LUNG_7
2
CUP_10
CL2000080126AA
CL2000080823AA
1
1
2
10
1
1
0
1
0
NA
0
0
10


PDT_LUNG_8
2
CUP_4
CL2000080120AA
CL2000080817AA
1
1
2
10
1
1
0
1
0
NA
0
0
10


PDT_OVARY_1
2
CUP_13
CL2000081103AA
CL2000081503AA
1
1
2
8
1
1
0
1
0
NA
0
0
10


PDT_OVARY_2
2
CUP_14
CL2000081104AA
CL2000081504AA
1
1
2
8
1
1
0
1
0
NA
0
0
10


PDT_OVARY_3
2
CUP_17
CL2000081107AA
CL2000081507AA
1
1
2
8
1
1
0
1
0
NA
0
0
10


PDT_STOM_1
2



1
1
2
1
1
2
0
1
1
NA
0
0
10


N_MLUNG_1
3



1
4
1
26
1
0
0
1
0
NA
0
0
5


N_MLUNG_2
3



1
4
1
26
1
0
0
1
0
NA
0
0
5


N_MLUNG_3
3



1
4
1
26
1
0
0
1
0
NA
0
0
5


N_MLUNG_4
3



1
4
1
26
1
0
0
1
0
NA
0
0
5


N_MLUNG_5
3



1
4
1
26
1
0
0
1
0
NA
0
0
5


T_MLUNG_1
3



1
4
2
26
1
0
0
1
0
NA
0
0
5


T_MLUNG_2
3



1
4
2
26
1
0
0
1
0
NA
0
0
5


T_MLUNG_3
3



1
4
2
26
1
0
0
1
0
NA
0
0
5


T_MLUNG_4
3



1
4
2
26
1
0
0
1
0
NA
0
0
5


T_MLUNG_5
3



1
4
2
26
1
0
0
1
0
NA
0
0
5


T_MLUNG_6
3



1
4
2
26
1
0
0
1
0
NA
0
0
5


T_MLUNG_7
3



1
4
2
26
1
0
0
1
0
NA
0
0
5


T_SJ_ALL_1
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_2
4



2
2
2
19
1
0
9
0
0
NA
0
0
5


T_SJ_ALL_3
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_4
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_5
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_6
4



2
2
2
19
1
0
1
0
0
NA
0
0
5


T_SJ_ALL_7
4



2
2
2
19
1
0
9
0
0
NA
0
0
5


T_SJ_ALL_8
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_9
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_10
4



2
2
2
19
1
0
5
0
0
NA
0
0
5


T_SJ_ALL_11
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_12
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_13
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_14
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_15
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_16
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_17
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_18
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_19
4



2
2
2
19
1
0
9
0
0
NA
0
0
5


T_SJ_ALL_20
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_21
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_22
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_23
4



2
2
2
19
1
0
9
0
0
NA
0
0
5


T_SJ_ALL_24
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_25
4



2
2
2
19
1
0
5
0
0
NA
0
0
5


T_SJ_ALL_26
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_27
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_28
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_29
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_30
4



2
2
2
19
1
0
1
0
0
NA
0
0
5


T_SJ_ALL_31
4



2
2
2
19
1
0
5
0
0
NA
0
0
5


T_SJ_ALL_32
4



2
2
2
19
1
0
5
0
0
NA
0
0
5


T_SJ_ALL_33
4



2
2
2
19
1
0
1
0
0
NA
0
0
5


T_SJ_ALL_34
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_35
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_36
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_37
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_38
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_39
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_40
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_41
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_42
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_43
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_44
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_45
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_46
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_47
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_48
4



2
2
2
19
1
0
1
0
0
NA
0
0
5


T_SJ_ALL_49
4



2
2
2
19
1
0
5
0
0
NA
0
0
5


T_SJ_ALL_50
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_51
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_52
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_53
4



2
2
2
19
1
0
5
0
0
NA
0
0
5


T_SJ_ALL_54
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_55
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_56
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_57
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_58
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_59
4



2
2
2
20
1
0
6
0
0
NA
0
0
5


T_SJ_ALL_60
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_61
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_62
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_63
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_64
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_65
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_66
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_67
4



2
2
2
19
1
0
1
0
0
NA
0
0
5


T_SJ_ALL_68
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_69
4



2
2
2
19
1
0
2
0
0
NA
0
0
5


T_SJ_ALL_70
4



2
2
2
19
1
0
4
0
0
NA
0
0
5


T_SJ_ALL_71
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


T_SJ_ALL_72
4



2
2
2
19
1
0
7
0
0
NA
0
0
5


T_SJ_ALL_73
4



2
2
2
19
1
0
3
0
0
NA
0
0
5


TCL_HL60_1
5



1
4
3
24
9
0
0
0
0
1-
0
0
5
















Day −
















ATRA


TCL_HL60_2
5



1
4
3
24
9
0
0
0
0
3-
0
0
5
















Day −
















ATRA


TCL_HL60_3
5



1
4
3
24
9
0
0
0
0
5-
0
0
5
















Day −
















ATRA


TCL_HL60_4
5



1
4
3
24
9
0
0
0
0
1-
0
0
5
















Day +
















ATRA


TCL_HL60_5
5



1
4
3
24
9
0
0
0
0
3-
0
0
5
















Day +
















ATRA


TCL_HL60_6
5



1
4
3
24
9
0
0
0
0
5-
0
0
5
















Day +
















ATRA


N_ERYTH_1
6



2
4
1
27
1
0
0
0
0
2-
0
0
1.6
















Day


N_ERYTH_2
6



2
4
1
27
1
0
0
0
0
4-
0
0
1.6
















Day


N_ERYTH_3
6



2
4
1
27
1
0
0
0
0
6-
0
0
1.6
















Day


N_ERYTH_4
6



2
4
1
27
1
0
0
0
0
8-
0
0
1.6
















Day


N_ERYTH_5
6



2
4
1
27
1
0
0
0
0
10-
0
0
1.6
















Day


N_ERYTH_6
6



2
4
1
27
1
0
0
0
0
12-
0
0
1.6
















Day









Table 10a-10b












Probe Information








Field
Description





Probe ID
Probe name


Seq Type
Biosequence type; oligo for deoxyoligonucleotides


Probe
5′ to 3′ capture probe sequence


Sequence


Target
5′ to 3′ target or target mutant sequence; NA for not


Sequence
available


Human
Human miRNA recognized by probe according to



microRNA registry rfam 5.0


Mouse
Mouse miRNA recognized by probe according to



microRNA registry rfam 5.0


Rat
Rat miRNA recognized by probe according to microRNA



registry rfam 5.0


Other
Special note about recognition


Control
Whether the feature is a control feature and what type of



control


Set Number
The set of beads this feature belongs to in version 1


(V1)


Set Number
The set of beads this feature belongs to in version 2


(V2)


Usage
Whether the feature is used in the final dataset for



analyses and why not



















TABLE 10a





Probe
Seq




ID
Type
Probe Sequence
Target Sequence







EAM103
Oligo
/5AmMC6/TGGCATTCACCGCGTGCCTTA
UUAAGGCACGCGGUGAAUGCCA




seq id no: 286
seq id no: 568





EAM105
Oligo
/5AmMC6/TCACAAGTTAGGGTCTCAGGGA
UCCCUGAGACCCUAACUUGUGA




seq id no: 287
seq id no: 569





EAM109
Oligo
/5AmMC6/AACAACAAAATCACTAGTCTTCCA
UGGAAGACUAGUGAUUUUGUU




seq id no: 288
seq id no: 570





EAM111
Oligo
/5AmMC6/TAACTGTACAAACTACTACCTCA
UGAGGUAGUAGUUUGUACAGU




seq id no: 289
seq id no: 571





EAM115
Oligo
/5AmMC6/CGCCAATATTTACGTGCTGCTA
UAGCAGCACGUAAAUAUUGGCG




seq id no: 290
seq id no: 572





EAM119
Oligo
/5AmMC6/AACACTGATTTCAAATGGTGCTA
UAGCACCAUUUGAAAUCAGUGU




seq id no: 291
seq id no: 573





EAM121
Oligo
/5AmMC6/CACAAGATCGGATCTACGGGT
AACCCGUAGAUCCGAUCUUGUG




seq id no: 292
seq id no: 574





EAM131
Oligo
/5AmMC6/ACAGGCCGGGACAAGTGCAATAT
UAUUGCACUUGUCCCGGCCUGU




seq id no: 293
seq id no: 575





EAM139
Oligo
/5AmMC6/TAACCCATGGAATTCAGTTCTCA
UGAGAACUGAAUUCCAUGGGUU




seq id no: 294
seq id no: 576





EAM145
Oligo
/5AmMC6/AACCATACAACCTACTACCTCA
UGAGGUAGUAGGUUGUAUGGUU




seq id no: 295
seq id no: 577





EAM152
Oligo
/5AmMC6/ACTTTCGGTTATCTAGCTTTAT
UAAAGCUAGAUAACCGAAAGU




seq id no: 296
seq id no: 578





EAM238
Oligo
/5AmMC6/ATACATACTTCTTTACATTCCA
UGGAAUGUAAAGAAGUAUGUA




seq id no: 297
seq id no: 579





EAM270
Oligo
/5AmMC6/GCTGAGTGTAGGATGTTTACA
UGUAAACAUCCUACACUCAGC




seq id no: 298
seq id no: 580





EAM159
Oligo
/5AmMC6/ATGCCCTTTTAACATTGCACTG
CAGUGCAAUGUUAAAAGGGC




seq id no: 299
seq id no: 581





EAM163
Oligo
/5AmMC6/TCCATAAAGTAGGAAACACTACA
UGUAGUGUUUCCUACUUUAUGGA




seq id no: 300
seq id no: 582





EAM171
Oligo
/5AmMC6/CTACGCGTATTCTTAAGCAATAA
UAUUGCUUAAGAAUACGCGUAG




seq id no: 301
seq id no: 583





EAM183
Oligo
/5AmMC6/AGCACAAACTACTACCTCA
UGAGGUAGUAGUUUGUGCU




seq id no: 302
seq id no: 584





EAM184
Oligo
/5AmMC6/CACAAGTTCGGATCTACGGGTT
AACCCGUAGAUCCGAACUUGUG




seq id no: 303
seq id no: 585





EAM186
Oligo
/5AmMC6/GCTACCTGCACTGTAAGCACTTTT
AAAAGUGCUUACAGUGCAGGUAGC




seq id no: 304
seq id no: 586





EAM189
Oligo
/5AmMC6/CACAAATTCGGATCTACAGGGTA
UACCCUGUAGAUCCGAAUUUGUG




seq id no: 305
seq id no: 587





EAM191
Oligo
/5AmMC6/ACAAACACCATTGTCACACTCCA
UGGAGUGUGACAAUGGUGUUUGU




seq id no: 306
seq id no: 588





EAM192
Oligo
/5AmMC6/CGCGTACCAAAAGTAATAATG
CAUUAUUACUUUUGGUACGCG




seq id no: 307
seq id no: 589





EAM198
Oligo
/5AmMC6/GCCCTTTCATCATTGCACTG
CAGUGCAAUGAUGAAAGGGCAU




seq id no: 308
seq id no: 590





EAM202
Oligo
/5AmMC6/TCCCTCTGGTCAACCAGTCACA
UGUGACUGGUUGACCAGAGGG




seq id no: 309
seq id no: 591





EAM209
Oligo
/5AmMC6/GTAGTGCTTTCTACTTTATG
CAUAAAGUAGAAAGCACUAC




seq id no: 310
seq id no: 592





EAM221
Oligo
/5AmMC6/CCCCTATCACAATTAGCATTAA
UUAAUGCUAAUUGUGAUAGGGG




seq id no: 311
seq id no: 593





EAM223
Oligo
/5AmMC6/TGTAAACCATGATGTGCTGCTA
UAGCAGCACAUCAUGGUUUACA




seq id no: 312
seq id no: 594





EAM224
Oligo
/5AmMC6/ACTACCTGCACTGTAAGCACTTTG
CAAAGUGCUUACAGUGCAGGUAGU




seq id no: 313
seq id no: 595





EAM225
Oligo
/5AmMC6/TATCTGCACTAGATGCACCTTA
UAAGGUGCAUCUAGUGCAGAUA




seq id no: 314
seq id no: 596





EAM226
Oligo
/5AmMC6/ACTCACCGACAGCGTTGAATGTT
AACAUUCAACGCUGUCGGUGAGU




seq id no: 315
seq id no: 597





EAM227
Oligo
/5AmMC6/AACCCACCGACAGCAATGAATGTT
AACAUUCAUUGCUGUCGGUGGGUU




seq id no: 316
seq id no: 598





EAM234
Oligo
/5AmMC6/GAACAGGTAGTCTGAACACTGGG
CCCAGUGUUCAGACUACCUGUUC




seq id no: 317
seq id no: 599





EAM235
Oligo
/5AmMC6/GAACAGATAGTCTAAACACTGGG
CCCAGUGUUUAGACUAUCUGUUC




seq id no: 318
seq id no: 600





EAM236
Oligo
/5AmMC6/TCAGTTTTGCATAGATTTGCACA
UGUGCAAAUCUAUGCAAAACUGA




seq id no: 319
seq id no: 601





EAM241
Oligo
/5AmMC6/CTAGTGGTCCTAAACATTTCAC
GUGAAAUGUUUAGGACCACUAG




seq id no: 320
seq id no: 602





EAM242
Oligo
/5AmMC6/AGGCATAGGATGACAAAGGGAA
UUCCCUUUGUCAUCCUAUGCCUG




seq id no: 321
seq id no: 603





EAM243
Oligo
/5AmMC6/CAGACTCCGGTGGAATGAAGGA
UCCUUCAUUCCACCGGAGUCUG




seq id no: 322
seq id no: 604





EAM245
Oligo
/5AmMC6/CAGCCGCTGTCACACGCACAG
CUGUGCGUGUGACAGCGGCUG




seq id no: 323
seq id no: 605





EAM249
Oligo
/5AmMC6/CTGCCTGTCTGTGCCTGCTGT
ACAGCAGGCACAGACAGGCAG




seq id no: 324
seq id no: 606





EAM254
Oligo
/5AmMC6/AGAATTGCGTTTGGACAATCA
UGAUUGUCCAAACGCAAUUCU




seq id no: 325
seq id no: 607





EAM257
Oligo
/5AmMC6/GAAACCCAGCAGACAATGTAGCT
AGCUACAUUGUCUGCUGGGUUUC




seq id no: 326
seq id no: 608





EAM258
Oligo
/5AmMC6/GAGACCCAGTAGCCAGATGTAGCT
AGCUACAUCUGGCUACUGGGUCUC




seq id no: 327
seq id no: 609





EAM259
Oligo
/5AmMC6/GGGGTATTTGACAAACTGACA
UGUCAGUUUGUCAAAUACCCC




seq id no: 328
seq id no: 610





EAM273
Oligo
/5AmMC6/CAATGCAACTACAATGCAC
GUGCAUUGUAGUUGCAUUG




seq id no: 329
seq id no: 611





EAM288
Oligo
/5AmMC6/ACACAAATTCGGTTCTACAGGG
CCCUGUAGAACCGAAUUUGUGU




seq id no: 330
seq id no: 612





EAM293
Oligo
/5AmMC6/ACCCTCCACCATGCAAGGGATG
CAUCCCUUGCAUGGUGGAGGGU




seq id no: 331
seq id no: 613





EAM297
Oligo
/5AmMC6/CTGGGACTTTGTAGGCCAGTT
AACUGGCCUACAAAGUCCCAG




seq id no: 332
seq id no: 614





EAM301
Oligo
/5AmMC6/CCTATCTCCCCTCTGGACC
GGUCCAGAGGGGAGAUAGG




seq id no: 333
seq id no: 615





EAM304
Oligo
/5AmMC6/CATCGTTACCAGACAGTGTTA
UAACACUGUCUGGUAACGAUGU




seq id no: 334
seq id no: 616





EAM306
Oligo
/5AmMC6/AGAACAATGCCTTACTGAGTA
UACUCAGUAAGGCAUUGUUCU




seq id no: 335
seq id no: 617





EAM307
Oligo
/5AmMC6/TCTTCCCATGCGCTATACCTCT
AGAGGUAUAGCGCAUGGGAAGA




seq id no: 336
seq id no: 618





EAM308
Oligo
/5AmMC6/CCACACACTTCCTTACATTCCA
UGGAAUGUAAGGAAGUGUGUGG




seq id no: 337
seq id no: 619





EAM309
Oligo
/5AmMC6/GAGGGAGGAGAGCCAGGAGAAGC
GCUUCUCCUGGCUCUCCUCCCUC




seq id no: 338
seq id no: 620





EAM310
Oligo
/5AmMC6/ACAAGCTTTTTGCTCGTCTTAT
AUAAGACGAGCAAAAAGCUUGU




seq id no: 339
seq id no: 621





EAM247
Oligo
/5AmMC6/GGCCGTGACTGGAGACTGTTA
UAACAGUCUCCAGUCACGGCC




seq id no: 340
seq id no: 622





EAM251
Oligo
/5AmMC6/CACAGTTGCCAGCTGAGATTA
UAAUCUCAGCUGGCAACUGUG




seq id no: 341
seq id no: 623





EAM253
Oligo
/5AmMC6/ACATGGTTAGATCAAGCACAA
UUGUGCUUGAUCUAACCAUGU




seq id no: 342
seq id no: 624





EAM275
Oligo
/5AmMC6/ACAACCAGCTAAGACACTGCCA
UGGCAGUGUCUUAGCUGGUUGUU




seq id no: 343
seq id no: 625





EAM246
Oligo
/5AmMC6/AGGCGAAGGATGACAAAGGGAA
UUCCCUUUGUCAUCCUUCGCCU




seq id no: 344
seq id no: 626





EAM250
Oligo
/5AmMC6/GTCTGTCAATTCATAGGTCAT
AUGACCUAUGAAUUGACAGAC




seq id no: 345
seq id no: 627





EAM252
Oligo
/5AmMC6/ATCCAATCAGTTCCTGATGCAGTA
UACUGCAUCAGGAACUGAUUGGAU




seq id no: 346
seq id no: 628





EAM305
Oligo
/5AmMC6/GTCATCATTACCAGGCAGTATTA
UAAUACUGCCUGGUAAUGAUGAC




seq id no: 347
seq id no: 629





EAM303
Oligo
/5AmMC6/AACCAATGTGCAGACTACTGTA
UACAGUAGUCUGCACAUUGGUU




seq id no: 348
seq id no: 630





EAM300
Oligo
/5AmMC6/GCTGGGTGGAGAAGGTGGTGAA
UUCACCACCUUCUCCACCCAGC




seq id no: 349
seq id no: 631





EAM299
Oligo
/5AmMC6/GCCAATATTTCTGTGCTGCTA
UAGCAGCACAGAAAUAUUGGC




seq id no: 350
seq id no: 632





EAM298
Oligo
/5AmMC6/TCCACATGGAGTTGCTGTTACA
UGUAACAGCAACUCCAUGUGGA




seq id no: 351
seq id no: 633





EAM296
Oligo
/5AmMC6/AGCTGCTTTTGGGATTCCGTTG
CAACGGAAUCCCAAAAGCAGCU




seq id no: 352
seq id no: 634





EAM295
Oligo
/5AmMC6/ACCTAATATATCAAACATATCA
UGAUAUGUUUGAUAUAUUAGGU




seq id no: 353
seq id no: 635





EAM292
Oligo
/5AmMC6/AAGCCCAAAAGGAGAATTCTTTG
CAAAGAAUUCUCCUUUUGGGCUU




seq id no: 354
seq id no: 636





EAM112
Oligo
/5AmMC6/TAACTGTAGAAAGTACTACCTCA
TGAGGTAGTACTTTCTACAGTTA




seq id no: 355
seq id no: 637





EAM116
Oligo
/5AmMC6/CGCCAATATTAAGGTGCTGCTA
TAGCAGCACCTTAATATTGGCG




seq id no: 356
seq id no:638





EAM120
Oligo
/5AmMC6/AACACTGATTTGAAAAGGTGCTA
TAGCACCTTTTCAAATCAGTGTT




seq id no: 357
seq id no: 639





EAM122
Oligo
/5AmMC6/CACAAGATGGGATGTACGGGT
ACCCGTACATCCCATCTTGTG




seq id no: 358
seq id no: 640





EAM132
Oligo
/5AmMC6/ACAGGCCGGGAGAAGAGCAATAT
ATATTGCTCTTCTCCCGGCCTGT




seq id no: 359
seq id no: 641





EAM140
Oligo
/5AmMC6/TAACCCATGGAAATGAGTTCTCA
TGAGAACTCATTTCCATGGGTTA




seq id no: 360
seq id no: 642





EAM282
Oligo
/5AmMC6/GAACAGGTAGTCTAAACACTGGG
CCCAGUGUUUAGACUACCUGUUC




seq id no: 361
seq id no: 643





EAM281
Oligo
/5AmMC6/atccagtcagttcctgatgcagta
UACUGCAUCAGGAACUGACUGGAU




seq id no: 362
seq id no: 644





EAM280
Oligo
/5AmMC6/GCTGCAAACATCCGACTGAAAG
CUUUCAGUCGGAUGUUUGCAGC




seq id no: 363
seq id no: 645





EAM279
Oligo
/5AmMC6/TAACCGATTTCAAATGGTGCTA
UAGCACCAUUUGAAAUCGGUUA




seq id no: 364
seq id no: 646





EAM278
Oligo
/5AmMC6/AACAATACAACTTACTACCTCA
UGAGGUAGUAAGUUGUAUUGUU




seq id no: 365
seq id no: 647





EAM277
Oligo
/5AmMC6/GCAAAAATGTGCTAGTGCCAAA
UUUGGCACUAGCACAUUUUUGCU




seq id no: 366
seq id no: 648





EAM276
Oligo
/5AmMC6/TCATACAGCTAGATAACCAAAGA
UCUUUGGUUAUCUAGCUGUAUGA




seq id no: 367
seq id no: 649





EAM272
Oligo
/5AmMC6/CTTCCAGTCGGGGATGTTTACA
UGUAAACAUCCCCGACUGGAAG




seq id no: 368
seq id no: 650





EAM271
Oligo
/5AmMC6/GCTGAGAGTGTAGGATGTTTACA
UGUAAACAUCCUACACUCUCAGC




seq id no: 369
seq id no: 651





EAM268
Oligo
/5AmMC6/AACCGATTTCAGATGGTGCTAG
CUAGCACCAUCUGAAAUCGGUU




seq id no: 370 
seq id no: 652





EAM264
Oligo
/5AmMC6/CAGAACTTAGCCACTGTGAA
UUCACAGUGGCUAAGUUCUG




seq id no: 371
seq id no: 653





EAM263
Oligo
/5AmMC6/AGCCTATCCTGGATTACTTGAA
UUCAAGUAAUCCAGGAUAGGCU




seq id no: 372
seq id no: 654





EAM262
Oligo
/5AmMC6/CTGTTCCTGCTGAACTGAGCCA
UGGCUCAGUUCAGCAGGAACAG




seq id no: 373
seq id no: 655





EAM261
Oligo
/5AmMC6/GTGGTAATCCCTGGCAATGTGAT
AUCACAUUGCCAGGGAUUACCAC




seq id no: 374
seq id no: 656





EAM260
Oligo
/5AmMC6/GGAAATCCCTGGCAATGTGAT
AUCACAUUGCCAGGGAUUUCC




seq id no: 375
seq id no: 657





EAM256
Oligo
/5AmMC6/AAAGTGTCAGATACGGTGTGG
CCACACCGUAUCUGACACUUU




seq id no: 376
seq id no: 658





EAM255
Oligo
/5AmMC6/ACAGTTCTTCAACTGGCAGCTT
AAGCUGCCAGUUGAAGAACUGU




seq id no: 377
seq id no: 659





EAM248
Oligo
/5AmMC6/GGTACAATCAACGGTCGATGGT
ACCAUCGACCGUUGAUUGUACC




seq id no: 378
seq id no: 660





EAM244
Oligo
/5AmMC6/TCAACATCAGTCTGATAAGCTA
UAGCUUAUCAGACUGAUGUUGA




seq id no: 379
seq id no: 661





EAM240
Oligo
/5AmMC6/CTACCTGCACTATAAGCACTTTA
UAAAGUGCUUAUAGUGCAGGUAG




seq id no: 380
seq id no: 662





EAM237
Oligo
/5AmMC6/TCAGTTTTGCATGGATTTGCACA
UGUGCAAAUCCAUGCAAAACUGA




seq id no: 381
seq id no: 663





EAM233
Oligo
/5AmMC6/CCCAACAACATGAAACTACCTA
UAGGUAGUUUCAUGUUGUUGG




seq id no: 382
seq id no: 664





EAM232
Oligo
/5AmMC6/GGCTGTCAATTCATAGGTCAG
CUGACCUAUGAAUUGACAGCC




seq id no: 383
seq id no: 665





EAM231
Oligo
/5AmMC6/CGGCTGCAACACAAGACACGA
UCGUGUCUUGUGUUGCAGCCGG




seq id no: 384
seq id no: 666





EAM230
Oligo
/5AmMC6/CAGTGAATTCTACCAGTGCCATA
UAUGGCACUGGUAGAAUUCACUG




seq id no: 385
seq id no: 667





EAM229
Oligo
/5AmMC6/TGTGAGTTCTACCATTGCCAAA
UUUGGCAAUGGUAGAACUCACA




seq id no: 386
seq id no: 668





EAM228
Oligo
/5AmMC6/ACTCACCGACAGGTTGAATGTT
AACAUUCAACCUGUCGGUGAGU




seq id no: 387
seq id no: 669





EAM222
Oligo
/5AmMC6/CACAAACCATTATGTGCTGCTA
UAGCAGCACAUAAUGGUUUGUG




seq id no: 388
seq id no: 670





EAM220
Oligo
/5AmMC6/CGAAGGCAACACGGATAACCTA
UAGGUUAUCCGUGUUGCCUUCG




seq id no: 389
seq id no: 671





EAM219
Oligo
/5AmMC6/TCACTTTTGTGACTATGCAA
UUGCAUAGUCACAAAAGUGA




seq id no: 390
seq id no: 672





EAM218
Oligo
/5AmMC6/CCAAGTTCTGTCATGCACTGA
UCAGUGCAUGACAGAACUUGG




seq id no: 391
seq id no: 673





EAM217
Oligo
/5AmMC6/ACACTGGTACAAGGGTTGGGAGA
UCUCCCAACCCUUGUACCAGUG




seq id no: 392
seq id no: 674





EAM216
Oligo
/5AmMC6/GGAGTGAAGACACGGAGCCAGA
UCUGGCUCCGUGUCUUCACUCC




seq id no: 393
seq id no: 675





EAM215
Oligo
/5AmMC6/ACAAAGTTCTGTGATGCACTGA
UCAGUGCAUCACAGAACUUUGU




seq id no: 394
seq id no: 676





EAM214
Oligo
/5AmMC6/ACAAAGTTCTGTAGTGCACTGA
UCAGUGCACUACAGAACUUUGU




seq id no: 395
seq id no: 677





EAM212
Oligo
/5AmMC6/AAGGGATTCCTGGGAAAACTGGAC
GUCCAGUUUUCCCAGGAAUCCCUU




seq id no: 396
seq id no: 678





EAM211
Oligo
/5AmMC6/CTAGTACATCATCTATACTGTA
UACAGUAUAGAUGAUGUACUAG




seq id no: 397
seq id no: 679





EAM210
Oligo
/5AmMC6/tgAGCTACAGTGCTTCATCTCA
UGAGAUGAAGCACUGUAGCUCA




seq id no: 398
seq id no: 680





EAM208
Oligo
/5AmMC6/CCATCTTTACCAGACAGTGTT
AACACUGUCUGGUAAAGAUGG




seq id no: 399
seq id no: 681





EAM207
Oligo
/5AmMC6/CTACCATAGGGTAAAACCACT
AGUGGUUUUACCCUAUGGUAG




seq id no: 400
seq id no: 682





EAM206
Oligo
/5AmMC6/AGACACGTGCACTGTAGA
UCUACAGUGCACGUGUCU




seq id no: 401
seq id no: 683





EAM205
Oligo
/5AmMC6/GATTCACAACACCAGCT
AGCUGGUGUUGUGAAUC




seq id no: 402
seq id no: 684





EAM203
Oligo
/5AmMC6/TTCACATAGGAATAAAAAGCCATA
UAUGGCUUUUUAUUCCUAUGUGA




seq id no: 403
seq id no: 685





EAM200
Oligo
/5AmMC6/ACAGCTGGTTGAAGGGGACCAA
UUGGUCCCCUUCAACCAGCUGU




seq id no: 404
seq id no: 686





EAM195
Oligo
/5AmMC6/GAAAGAGACCGGTTCACTGTGA
UCACAGUGAACCGGUCUCUUUC




seq id no: 405
seq id no: 687





EAM194
Oligo
/5AmMC6/AAAAGAGACCGGTTCACTGTGA
UCACAGUGAACCGGUCUCUUUU




seq id no: 406
seq id no: 688





EAM193
Oligo
/5AmMC6/CACAGGTTAAAGGGTCTCAGGGA
UCCCUGAGACCCUUUAACCUGUG




seq id no: 407
seq id no: 689





EAM190
Oligo
/5AmMC6/ACAAATTCGGTTCTACAGGGTA
UACCCUGUAGAACCGAAUUUGU




seq id no: 408
seq id no: 690





EAM187
Oligo
/5AmMC6/TGATAGCCCTGTACAATGCTGCT
AGCAGCAUUGUACAGGGCUAUCA




seq id no: 409
seq id no: 691





EAM185
Oligo
/5AmMC6/TCATAGCCCTGTACAATGCTGCT
AGCAGCAUUGUACAGGGCUAUGA




seq id no: 410
seq id no: 692





EAM181
Oligo
/5AmMC6/AACTATACAATCTACTACCTCA
UGAGGUAGUAGAUUGUAUAGUU




seq id no: 411
seq id no: 693





EAM179
Oligo
/5AmMC6/ACTATGCAACCTACTACCTCT
AGAGGUAGUAGGUUGCAUAGU




seq id no: 412
seq id no: 694





EAM177
Oligo
/5AmMC6/TTCAGCTATCACAGTACTGTA
UACAGUACUGUGAUAGCUGAAG




seq id no: 413
seq id no: 695





EAM175
Oligo
/5AmMC6/TCGCCCTCTCAACCCAGCTTTT
AAAAGCUGGGUUGAGAGGGCGAA




seq id no: 414
seq id no: 696





EAM168
Oligo
/5AmMC6/CTATACAACCTCCTACCTCA
UGAGGUAGGAGGUUGUAUAGU




seq id no: 415
seq id no: 697





EAM161
Oligo
/5AmMC6/CTCAATAGACTGTGAGCTCCTT
AAGGAGCUCACAGUCUAUUGAG




seq id no: 416
seq id no: 698





EAM160
Oligo
/5AmMC6/AACCTATCCTGAATTACTTGAA
UUCAAGUAAUUCAGGAUAGGUU




seq id no: 417
seq id no: 699





EAM155
Oligo
/5AmMC6/TCCATCATCAAAACAAATGGAGT
ACUCCAUUUGUUUUGAUGAUGGA




seq id no: 418
seq id no: 700





EAM153
Oligo
/5AmMC6/AACTATACAACCTACTACCTCA
UGAGGUAGUAGGUUGUAUAGUU




seq id no: 419
seq id no: 701





EAM147
Oligo
/5AmMC6/AACCACACAACCTACTACCTCA
UGAGGUAGUAGGUUGUGUGGUU




seq id no: 420
seq id no: 702





EAM137
Oligo
/5AmMC6/CCGACCATGGCTGTAGACTGTTA
UAACAGUCUACAGCCAUGGUCG




seq id no: 421
seq id no: 703





EAM133
Oligo
/5AmMC6/ACACCAATGCCCTAGGGGATGCG
CGCAUCCCCUAGGGCAUUGGUGU




seq id no: 422
seq id no: 704





EAM311
Oligo
/5AmMC6/CTTCAGTTATCACAGTACTGTA
UACAGUACUGUGAUAACUGAAG




seq id no: 423
seq id no: 705





EAM312
Oligo
/5AmMC6/ACAGGAGTCTGAGCATTTGA
UCAAAUGCUCAGACUCCUGU




seq id no: 424
seq id no: 706





EAM313
Oligo
/5AmMC6/ATCTGCACTGTCAGCACTTTA
UAAAGUGCUGACAGUGCAGAU




seq id no: 425
seq id no: 707





EAM314
Oligo
/5AmMC6/GCATTATTACTCACGGTACGA
UCGUACCGUGAGUAAUAAUGC




seq id no: 426
seq id no: 708





EAM315
Oligo
/5AmMC6/AGCCAAGCTCAGACGGATCCGA
UCGGAUCCGUCUGAGCUUGGCU




seq id no: 427
seq id no: 709





EAM316
Oligo
/5AmMC6/GCAGAAGCATTTCCACACAC
GUGUGUGGAAAUGCUUCUGC




seq id no: 428
seq id no: 710





EAM317
Oligo
/5AmMC6/CCCCTATCACGATTAGCATTAA
UUAAUGCUAAUCGUGAUAGGGG




seq id no: 429
seq id no: 711





EAM318
Oligo
/5AmMC6/ACAAGTGCCTTCACTGCAGT
ACUGCAGUGAAGGCACUUGU




seq id no: 430
seq id no: 712





EAM319
Oligo
/5AmMC6/TAGTTGGCAAGTCTAGAACCA
UGGUUCUAGACUUGCCAACUA




seq id no: 431
seq id no: 713





EAM320
Oligo
/5AmMC6/ACTGATATCAGCTCAGTAGGCAC
GUGCCUACUGAGCUGAUAUCAGU




seq id no: 432
seq id no: 714





EAM321
Oligo
/5AmMC6/CATCATTACCAGGCAGTATTAGA
CUCUAAUACUGCCUGGUAAUGAUG




seq id no: 433
seq id no: 715





EAM291
Oligo
/5AmMC6/GAACTGCCTTTCTCTCCA
UGGAGAGAAAGGCAGUUC




seq id no: 434
seq id no: 716





EAM290
Oligo
/5AmMC6/ACCCTTATCAGTTCTCCGTCCA
UGGACGGAGAACUGAUAAGGGU




seq id no: 435
seq id no: 717





EAM322
Oligo
/5AmMC6/TCCATCATTACCCGGCAGTATT
AAUACUGCCGGGUAAUGAUGGA




seq id no: 436
seq id no: 718





EAM323
Oligo
/5AmMC6/TAAACGGAACCACTAGTGACTTG
CAAGUCACUAGUGGUUCCGUUUA




seq id no: 437
seq id no: 719





EAM324
Oligo
/5AmMC6/TCAGACCGAGACAAGTGCAATG
CAUUGCACUUGUCUCGGUCUGA




seq id no: 438
seq id no: 720





EAM325
Oligo
/5AmMC6/GGCGGAACTTAGCCACTGTGAA
UUCACAGUGGCUAAGUUCCGCC




seq id no: 439
seq id no: 721





EAM326
Oligo
/5AmMC6/ACAGGATTGAGGGGGGGCCCT
AGGGCCCCCCCUCAAUCCUGU




seq id no: 440
seq id no: 722





EAM327
Oligo
/5AmMC6/ATGTATGTGGGACGGTAAACCA
UGGUUUACCGUCCCACAUACAU




seq id no: 441
seq id no: 723





EAM328
Oligo
/5AmMC6/GCTTTGACAATACTATTGCACTG
CAGUGCAAUAGUAUUGUCAAAGC




seq id no: 442
seq id no: 724





EAM329
Oligo
/5AmMC6/TCACCAAAACATGGAAGCACTTA
UAAGUGCUUCCAUGUUUUGGUGA




seq id no: 443
seq id no: 725





EAM330
Oligo
/5AmMC6/GCTTCCAGTCGAGGATGTTTACA
UGUAAACAUCCUCGACUGGAAGC




seq id no: 444
seq id no: 726





EAM331
Oligo
/5AmMC6/TCCAGTCAAGGATGTTTACA
UGUAAACAUCCUUGACUGGA




seq id no: 445
seq id no: 727





EAM332
Oligo
/5AmMC6/CAGCTATGCCAGCATCTTGCCT
AGGCAAGAUGCUGGCAUAGCUG




seq id no: 446
seq id no: 728





EAM333
Oligo
/5AmMC6/GCAACTTAGTAATGTGCAATA
UAUUGCACAUUACUAAGUUGC




seq id no: 447
seq id no: 729





EAM334
Oligo
/5AmMC6/GAACCCACAATCCCTGGCTTA
UAAGCCAGGGAUUGUGGGUUC




seq id no: 448
seq id no: 730





EAM335
Oligo
/5AmMC6/CAATCAGCTAATGACACTGCCT
AGGCAGUGUCAUUAGCUGAUUG




seq id no: 449
seq id no: 731





EAM336
Oligo
/5AmMC6/GCAATCAGCTAACTACACTGCCT
AGGCAGUGUAGUUAGCUGAUUGC




seq id no: 450
seq id no: 732





EAM337
Oligo
/5AmMC6/CTACCTGCACGAACAGCACTTTG
CAAAGUGCUGUUCGUGCAGGUAG




seq id no: 451
seq id no: 733





EAM338
Oligo
/5AmMC6/TGCTCAATAAATACCCGTTGAA
UUCAACGGGUAUUUAUUGAGCA




seq id no: 452
seq id no: 734





EAM339
Oligo
/5AmMC6/CGCTTGGTCGGTTCTTCGGGTG
CACCCGUAGAACCGACCUUGCG




seq id no: 453
seq id no: 735





EAM340
Oligo
/5AmMC6/AGAAAGGCAGCAGGTCGTATAG
CUAUACGACCUGCUGCCUUUCU




seq id no: 454
seq id no: 736





EAM341
Oligo
/5AmMC6/TACCTGCACTGTTAGCACTTTG
CAAAGUGCUAACAGUGCAGGUA




seq id no: 455
seq id no: 737





EAM342
Oligo
/5AmMC6/CACATAGGAATGAAAAGCCATA
UAUGGCUUUUCAUUCCUAUGUG




seq id no: 456
seq id no: 738





EAM343
Oligo
/5AmMC6/CCTCAAGGAGCCTCAGTCTAGT
ACUAGACUGAGGCUCCUUGAGG




seq id no: 457
seq id no: 739





EAM344
Oligo
/5AmMC6/ACAAGTGCCCTCACTGCAGT
ACUGCAGUGAGGGCACUUGU




seq id no: 458
seq id no: 740





EAM345
Oligo
/5AmMC6/TAAACGGAACCACTAGTGACTTA
UAAGUCACUAGUGGUUCCGUUUA




seq id no: 459
seq id no: 741





EAM346
Oligo
/5AmMC6/AAAAAGTGCCCCCATAGTTTGAG
CUCAAACUAUGGGGGCACUUUUU




seq id no: 460
seq id no: 742





EAM347
Oligo
/5AmMC6/GGCACACAAAGTGGAAGCACTTT
AAAGUGCUUCCACUUUGUGUGCC




seq id no: 461
seq id no: 743





EAM348
Oligo
/5AmMC6/AGAGAGGGCCTCCACTTTGATG
CAUCAAAGUGGAGGCCCUCUCU




seq id no: 462
seq id no: 744





EAM349
Oligo
/5AmMC6/ACACTCAAAACCTGGCGGCACTT
AAGUGCCGCCAGGUUUUGAGUGU




seq id no: 463
seq id no: 745





EAM350
Oligo
/5AmMC6/CAAAAGAGCCCCCAGTTTGAGT
ACUCAAACUGGGGGCUCUUUUG




seq id no: 464
seq id no: 746





EAM351
Oligo
/5AmMC6/ACACTACAAACTCTGCGGCACT
AGUGCCGCAGAGUUUGUAGUGU




seq id no: 465
seq id no: 747





EAM352
Oligo
/5AmMC6/ACACACAAAAGGGAAGCACTTT
AAAGUGCUUCCCUUUUGUGUGU




seq id no: 466
seq id no: 748





EAM353
Oligo
/5AmMC6/AGACTCAAAAGTAGTAGCACTTT
AAAGUGCUACUACUUUUGAGUCU




seq id no: 467
seq id no: 749





EAM354
Oligo
/5AmMC6/CATGCACATGCACACATACAT
AUGUAUGUGUGCAUGUGCAUG




seq id no: 468
seq id no: 750





EAM355
Oligo
/5AmMC6/GGAAGAACAGCCCTCCTCTGCC
GGCAGAGGAGGGCUGUUCUUCC




seq id no: 469
seq id no: 751





EAM356
Oligo
/5AmMC6/GAAGAGAGCTTGCCCTTGCATA
UAUGCAAGGGCAAGCUCUCUUC




seq id no: 470
seq id no: 752





EAM357
Oligo
/5AmMC6/TGTTGCTGCGCTTCTTGTTT
AAACAUGAAGCGCUGCAACA




seq id no: 471
seq id no: 753





EAM358
Oligo
/5AmMC6/AGAGGTCGACCGTGTAATGTGC
GCACAUUACACGGUCGACCUCU




seq id no: 472
seq id no: 754





EAM359
Oligo
/5AmMC6/CCAGCAGCACCTGGGGCAGT
CCACUGCCCCAGGUGCUGCUGG




seq id no: 473
seq id no: 755





EAM360
Oligo
/5AmMC6/ACACTTACTGAGCACCTACTAGG
CCUAGUAGGUGCUCAGUAAGUGU




seq id no: 474
seq id no: 756





EAM361
Oligo
/5AmMC6/ACTGGAGGAAGGGCCCAGAGG
CCUCUGGGCCCUUCCUCCAGU




seq id no: 475
seq id no: 757





EAM362
Oligo
/5AmMC6/ACGGAAGGGCAGAGAGGGCCAG
CUGGCCCUCUCUGCCCUUCCGU




seq id no: 476
seq id no: 758





EAM363
Oligo
/5AmMC6/AAAAAGGTTAGCTGGGTGTGTT
AACACACCCAGCUAACCUUUUU




seq id no: 477
seq id no: 759





EAM364
Oligo
/5AmMC6/TCTCTGCTGGCCCTGTGCTTTGC
GCAAAGCACAGGGCCUGCAGAGA




seq id no: 478
seq id no: 760





EAM365
Oligo
/5AmMC6/TTCTAGGATAGGCCCAGGGGC
GCCCCUGGGCCUAUCCUAGAA




seq id no: 479
seq id no: 761





EAM366
Oligo
/5AmMC6/AAAGGCATCATATAGGAGCTGAA
UUCAGCUCCUAUAUGAUGCCUUU




seq id no: 480
seq id no: 762





EAM367
Oligo
/5AmMC6/TCAACAAAATCACTGATGCTGGA
UCCAGCAUCAGUGAUUUUGUUGA




seq id no: 481
seq id no: 763





EAM368
Oligo
/5AmMC6/TGAGCTCCTGGAGGACAGGGA
UCCCUGUCCUCCAGGAGCUCA




seq id no: 482
seq id no: 764





EAM369
Oligo
/5AmMC6/GGCTATAAAGTAACTGAGACGGA
UCCGUCUCAGUUACUUUAUAGCC




seq id no: 483
seq id no: 765





EAM370
Oligo
/5AmMC6/ACTGACCGACCGACCGATCGA
UCGAUCGGUCGGUCGGUCAGU




seq id no: 484
seq id no: 766





EAM371
Oligo
/5AmMC6/GACGGGTGCGATTTCTGTGTGAGA
UCUCACACAGAAAUCGCACCCGUC




seq id no: 485
seq id no: 767





EAM372
Oligo
/5AmMC6/ACAGTCAGGCTTTGGCTAGATCA
UGAUCUAGCCAAAGCCUGACUGU




seq id no: 486
seq id no: 768





EAM373
Oligo
/5AmMC6/GCACTGGACTAGGGGTCAGCA
UGCUGACCCCUAGUCCAGUGC




seq id no: 487
seq id no: 769





EAM374
Oligo
/5AmMC6/AGAGGCAGGCACTCGGGCAGA
UGUCUGCCCGAGUGCCUGCCUCU




seq id no: 488
seq id no: 770





EAM375
Oligo
/5AmMC6/CAATCAGCTAATTACACTGCCTA
UAGGCAGUGUAAUUAGCUGAUUG




seq id no: 489
seq id no: 771





EAM376
Oligo
/5AmMC6/GTGAAAGTGTATGGGCTTTGTG
UUCACAAAGCCCAUACACUUUCAC




seq id no: 490
seq id no: 772





EAM377
Oligo
/5AmMC6/CAGGCTCAAAGGGCTCCTCAGG
UCCCUGAGGAGCCCUUUGAGCCUG




seq id no: 491
seq id no: 773





EAM378
Oligo
/5AmMC6/AACAAAATCACAAGTCTTCCA
UGGAAGACUUGUGAUUUUGUU




seq id no: 492
seq id no: 774





EAM379
Oligo
/5AmMC6/TTGCTTTTTGGGGTTTGGGCTT
AAGCCCUUACCCCAAAAAGCAU




seq id no: 493
seq id no: 775





EAM380
Oligo
/5AmMC6/TGTCCGTGGTTCTTCCCTGTG
UACCACAGGGUAGAACCACGGACA




seq id no: 494
seq id no: 776





EAM381
Oligo
/5AmMC6/TACTAGACTGTGAGCTCCTCGA
UCGAGGAGCUCACAGUCUAGUA




seq id no: 495
seq id no: 777





EAM382
Oligo
/5AmMC6/TGTAAGTGCTCGTAATGCAGT
ACUGCAUUACGAGCACUUACA




seq id no: 496
seq id no: 778





EAM383
Oligo
/5AmMC6/ACCCTCATGCCCCTCAAGG
CCUUGAGGGGCAUGAGGGU




seq id no: 497
seq id no: 779





EAM384
Oligo
/5AmMC6/AAAAGTAACTAGCACACCAC
GUGGUGUGCUAGUUACUUUU




seq id no: 498
seq id no: 780





EAM385
Oligo
/5AmMC6/ACATTTTTCGTTATTGCTCTT
UCAAGAGCAAUAACGAAAAAUGU




seq id no: 499
seq id no: 781





EAM386
Oligo
/5AmMC6/AGACTAGATATGGAAGGGTGA
UCACCCUUCCAUAUCUAGUCU




seq id no: 500
seq id no: 782





EAM387
Oligo
/5AmMC6/ACTGGGCACACGGAGGGAGA
UCUCCCUCCGUGUGCCCAGU




seq id no: 501
seq id no: 783





EAM388
Oligo
/5AmMC6/ACGGTCAGGCTTTGGCTAGAT
UGAUCUAGCCAAAGCCUGACCGU




seq id no: 502
seq id no: 784





EAM389
Oligo
/5AmMC6/AGAGGCAGGCACTCAGGCAGA
UGUCUGCCUGAGUGCCUGCCUCU




seq id no: 503
seq id no: 785





EAM390
Oligo
/5AmMC6/TGGGCGACCCAGAGGGACA
UGUCCCUCUGGGUCGCCCA




seq id no: 504
seq id no: 786





EAM391
Oligo
/5AmMC6/AGAGGTTAAGACAGCAGGGCTG
CAGCCCUGCUGUCUUAACCUCU




seq id no: 505
seq id no: 787





EAM392
Oligo
/5AmMC6/TACTATGCAACCTACTACTCT
AGAGUAGUAGGUUGCAUAGUA




seq id no: 506
seq id no: 788





EAM393
Oligo
/5AmMC6/TATGGCAGACTGTGATTTGTTG
CAACAAAUCACAGUCUGCCAUA




seq id no: 507
seq id no: 789





emc139
Oligo
/5AmMC6/CGAAATGCGTCTCATACAAAATC
NA




seq id no: 508
seq id no: 790





EAM289
Oligo
/5AmMC6/AACAAGCCCAGACCGCAAAAAG
CUUUUUGCGGUCUGGGCUUGCU




seq id no: 509
seq id no: 791





EAM283
Oligo
/5AmMC6/AGGCAAAGGATGACAAAGGGAA
UUCCCUUUGUCAUCCUUUGCCU




seq id no: 510
seq id no: 792





PTG20210
Oligo
/5AmC12/CATTGAGGCTCGCTGAGAGT
GTGACTCTCAGCGAGCCTCAATGC




seq id no: 511
seq id no: 793





MRC677
Oligo
/5AmC12/GATGAAATCGGCTCCCGCAG-
TGTCTGCGGGAGCCGATTTCATCA




seq id no: 512
seq id no: 794





FVR506
Oligo
/5AmC12/TGTATTCCTCGCCTGTCCAG
TCCCTGGACAGGCGAGGAATACAG




seq id no: 513
seq id no: 795





EAM104
Oligo
/5AmMC6/TGGCATTCAGCGGGTGCCTTA
TAAGGCACCCGCTGAATGCCA




seq id no: 514
seq id no: 796





EAM106
Oligo
/5AmMC6/TCACAAGTAAGGGTGTCAGGGA
TCCCTGACACCCTTACTTGTGA




seq id no: 515
seq id no: 797





EAM110
Oligo
/5AmMC6/AACAACAAAATGAGTAGTCTTCCA
TGGAAGACTACTCATTTTGTTGTT




seq id no: 516
seq id no: 798





EAM1101
Oligo
/5AmMC6/GTGGTAGCGCAGTGCGTAGAA
TTCTACGCACTGCGCTACCAC




seq id no: 517
seq id no: 799





EAM1102
Oligo
/5AmMC6/GGTGATGCCCTGAATGTTGTC
NA




seq id no: 518
seq id no: 800





EAM1103
Oligo
/5AmMC6/TGTCATGGATGACCTTGGCCA
NA




seq id no: 519
seq id no: 801





EAM1104
Oligo
/5AmMC6/CTTTTGACATTGAAGGGAGCT
NA




seq id no: 520
seq id no: 802





EAM146
Oligo
/5AmMC6/AACCATACAAGCTAGTACCTCA
TGAGGTACTAGCTTGTATGGTT




seq id no: 521
seq id no: 803





emc130
Oligo
/5AmMC6/CTTGTACCAGTTATCTGCAA
UUGCAGAUAACUGGUACAAG




seq id no: 522
seq id no: 804





emc115
Oligo
/5AmMC6/TTGTACGTTTACATGGAGGTC
GACCUCCAUGUAAACGUACAA




seq id no: 523
seq id no: 805





EAM148
Oligo
/5AmMC6/AACCACACAAGCTAGTACCTCA
TGAGGTACTAGCTTGTGTGGTT




seq id no: 524
seq id no: 806





EAM138
Oligo
/5AmMC6/CCGACCATGGGTGAAGACTGTTA
TAACAGTCTTCACCCATGGTCGG




seq id no: 525
seq id no: 807





EAM134
Oligo
/5AmMC6/ACACCAATGGCGTAGGGGATGCG
CGCATCCCCTACGCCATTGGTGT




seq id no: 526
seq id no: 808





EAM395
Oligo
/5AmMC6/CTGACTGACTGACTGACTGACTG
CAGUCAGUCAGUCAGUCAGUCAG




seq id no: 527
seq id no: 809





EAM149I
Oligo
/5AmMC6/GTCACTATTGTTGAGAACGTTGGCC
NA




seq id no: 528
seq id no: 810





EAM150I
Oligo
/5AmMC6/GTCACTATTGTAGAGAAGGTTGGCC
NA




seq id no: 529
seq id no: 811





EAM399
Oligo
/5AmMC6/TTCAATTTCTGCCGCAAAAG
UAUCUUUUGCGGCAGAAAUUGAA




seq id no: 530
seq id no: 812





EAM400
Oligo
/5AmMC6/GCTATCTGCTGCAACAGAATTT
AAAUUCUGUUGCAGCAGAUAGC




seq id no: 531
seq id no: 813





EAM401
Oligo
/5AmMC6/GTGTGCTTACACACTTCCCGTTA
UAACGGGAAGUGUGUAAGCACAC




seq id no: 532
seq id no: 814





EAM402
Oligo
/5AmMC6/TAGCTGGTTGAAGGGGACCAA
UUGGUCCCCUUCAACCAGCUA




seq id no: 533
seq id no: 815





EAM403
Oligo
/5AmMC6/CCTCAAGGAGCTTCAGTCTAGT
ACUAGACUGAAGCUCCUUGAGG




seq id no: 534
seq id no: 816





EAM404
Oligo
/5AmMC6/CCAACAACAGGAAACTACCTA
UAGGUAGUUUCCUGUUGUUGG




seq id no: 535
seq id no: 817





EAM405
Oligo
/5AmMC6/CTACTAAAACATGGAAGCACTTA
UAAGUGCUUCCAUGUUUUAGUAG




seq id no: 536
seq id no: 818





EAM406
Oligo
/5AmMC6/AGAAAGCACTTCCATGTTAAAGT
ACUUUAACAUGGAAGUGCUUUCU




seq id no: 537
seq id no: 819





EAM407
Oligo
/5AmMC6/CCACTGAAACATGGAAGCACTTA
UAAGUGCUUCCAUGUUUCAGUGG




seq id no: 538
seq id no: 820





EAM408
Oligo
/5AmMC6/CAGCAGGTACCCCCATGTTA
UUUAACAUGGGGGUACCUGCUG




seq id no: 539
seq id no: 821





EAM409
Oligo
/5AmMC6/ACACTCAAACATGGAAGCACTTA
UAAGUGCUUCCAUGUUUGAGUGU




seq id no: 540
seq id no: 822





EAM410
Oligo
/5AmMC6/ACTTACTGGACACCTACTAGG
CCUAGUAGGUGUCCAGUAAGU




seq id no: 541
seq id no: 823





EAM411
Oligo
/5AmMC6/TCTCTGCTGGCCGTGTGCTT
GCAAAGCACACGGCCUGCAGAGA




seq id no: 542
seq id no: 824





EAM412
Oligo
/5AmMC6/AAAGGCATCATATAGGAGCTGGA
UCCAGCUCCUAUAUGAUGCCUUU




seq id no: 543
seq id no: 825





EAM413
Oligo
/5AmMC6/GCCCTGGACTAGGAGTCAGCA
UGCUGACUCCUAGUCCAGGGC




seq id no: 544
seq id no: 826





EAM414
Oligo
/5AmMC6/AGAGGCAGGCATGCGGGCAG
UGUCUGCCCGCAUGCCUGCCUCU




seq id no: 545
seq id no: 827





EAM415
Oligo
/5AmMC6/TCACCATTGCTAAAGTGCAATT
AAUUGCACUUUAGCAAUGGUGA




seq id no: 546
seq id no: 828





EAM416
Oligo
/5AmMC6/AAACGTGGAATTTCCTCTATGT
ACAUAGAGGAAAUUCCACGUUU




seq id no: 547
seq id no: 829





EAM417
Oligo
/5AmMC6/AAAGATCAACCATGTATTATT
AAUAAUACAUGGUUGAUCUUU




seq id no: 548
seq id no: 830





EAM418
Oligo
/5AmMC6/CCAGGTTCCACCCCAGCAGG
GCCUGCUGGGGUGGAACCUGG




seq id no: 549
seq id no: 831





EAM419
Oligo
/5AmMC6/ACACTCAAAAGATGGCGGCA
GUGCCGCCAUCUUUUGAGUGU




seq id no: 550
seq id no: 832





EAM420
Oligo
/5AmMC6/ACGCTCAAATGTCGCAGCAC
AAAGUGCUGCGACAUUUGAGCGU




seq id no: 551
seq id no: 833





EAM421
Oligo
/5AmMC6/ACACCCCAAAATCGAAGCAC
GAAGUGCUUCGAUUUUGGGGUGU




seq id no: 552
seq id no: 834





EAM422
Oligo
/5AmMC6/GGAAAGCGCCCCCATTTTGA
ACUCAAAAUGGGGGCGCUUUCC




seq id no: 553
seq id no: 835





EAM423
Oligo
/5AmMC6/CACTTATCAGGTTGTATTATAA
UUAUAAUACAACCUGAUAAGUG




seq id no: 554
seq id no: 836





EAM424
Oligo
/5AmMC6/TAGCTGGTTGAAGGGGACCA
UUGGUCCCCUUCAACCAGCUA




seq id no: 555
seq id no: 837





EAM425
Oligo
/5AmMC6/CCAACAACAGGAAACTACCTA
UAGGUAGUUUCCUGUUGUUGG




seq id no: 556
seq id no: 838





EAM426
Oligo
/5AmMC6/GTCTGTCAAATCATAGGTCAT
AUGACCUAUGAUUUGACAGAC




seq id no: 557
seq id no: 839





EAM427
Oligo
/5AmMC6/GGGGTTCACCGAGCAACATTC
GAAUGUUGCUCGGUGAACCCCUU




seq id no: 558
seq id no: 840





EAM428
Oligo
/5AmMC6/CAGGCCATCTGTGTTATATT
AAUAUAACACAGAUGGCCUGUU




seq id no: 559
seq id no: 841





EAM429
Oligo
/5AmMC6/AGTGGATGTTCCTCTATGAT
AUCAUAGAGGAACAUCCACUUU




seq id no: 560
seq id no: 842





EAM430
Oligo
/5AmMC6/CGTGGATTTTCCTCTACGAT
AUCGUAGAGGAAAAUCCACGUU




seq id no: 561
seq id no: 843





EAM431
Oligo
/5AmMC6/GAGGGTTAGTGGACCGTGTT
AACACGGUCCACUAACCCUCAGU




seq id no: 562
seq id no: 844





EAM432
Oligo
/5AmMC6/GATGTGGACCATACTACATA
UAUGUAGUAUGGUCCACAUCUU




seq id no: 563
seq id no: 845





EAM433
Oligo
/5AmMC6/GGCTAGTGGACCAGGTGAAG
CUUCACCUGGUCCACUAGCCGU




seq id no: 564
seq id no: 846





EAM396
Oligo
/5AmMC6/AGCACGTCACTTCCACTAAGA
UCUUAGUGGAAGUGACGUGCU




seq id no: 565
seq id no: 847





EAM397
Oligo
/5AmMC6/GCAAGGGCGAATGCAGAAAA
UAUUUUCUGCAUUCGCCCUUGC




seq id no: 566
seq id no: 848





EAM398
Oligo
/5AmMC6/AACTCCGGGGCTGATCAGGT
UAACCUGAUCAGCCCCGGAGUU




seq id no: 567
seq id no: 849
























TABLE 10b











Set
Set









No.
No.


Probe ID
Human
Mouse
Rat
Other
Control
(V1)
(V2)
Usage







EAM103
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



124a
124a
124a


EAM105
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



125b
125b
125b


EAM109
hsa-
mmu-
rno-


1
1
Used



miR-7
miR-7
miR-7


EAM111
hsa-let-
mmu-



1
1
Used



7g
let-7g


EAM115
hsa-
mmu-
rno-


1
1
Used



miR-16
miR-
miR-




16
16


EAM119
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



29b
29b
29b


EAM121
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



99a
99a
99a


EAM131
hsa-
mmu-
rno-


1
1
Used



miR-92
miR-
miR-




92
92


EAM139
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



146
146
146


EAM145
hsa-let-
mmu-
rno-


1
1
Used



7c
let-7c
let-





7c


EAM152
hsa-
mmu-



1
1
Used



miR-9*
miR-




9*


EAM238
hsa-
mmu-



1
1
Used



miR-1
miR-1


EAM270
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



30b
30b
30b


EAM159
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



130a
130a
130a


EAM163
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



142-3p
142-
142-




3p
3p


EAM171
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



137
137
137


EAM183
hsa-let-
mmu-
rno-


1
1
Used



7i
let-7i
let-7i


EAM184
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



100
100
100


EAM186
hsa-




1
1
Used



miR-



106a


EAM189
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



10a
10a
10a


EAM191
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



122a
122a
122a


EAM192
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



126*
126*
126*


EAM198
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



130b
130b
130b


EAM202
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



134
134
134


EAM209
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



142-5p
142-
142-




5p
5p


EAM221

mmu-



1
1
Used




miR-




155


EAM223
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



15b
15b
15b


EAM224
hsa-
mmu-
rno-


1
1
Used



miR-17-
miR-
miR-



5p
17-5p
17


EAM225
hsa-
mmu-
rno-


1
1
Used



miR-18
miR-
miR-




18
18


EAM226
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



181a
181a
181a


EAM227
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



181b
181b
181b


EAM234
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



199a
199a
199a


EAM235
hsa-




1
1
Used



miR-



199b


EAM236
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



19a
19a
19a


EAM241
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



203
203
203


EAM242
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



204
204
204


EAM243
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



205
205
205


EAM245
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



210
210
210


EAM249
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



214
214
214


EAM254
hsa-
mmu-
rno-


1
3
Used



miR-
miR-
miR-



219
219
219


EAM257
hsa-
mmu-
rno-


1
3
Used



miR-
miR-
miR-



221
221
221


EAM258
hsa-
mmu-
rno-


1
3
Used



miR-
miR-
miR-



222
222
222


EAM259
hsa-
mmu-
rno-


1
3
Used



miR-
miR-
miR-



223
223
223


EAM273
hsa-
mmu-
rno-


1
3
Used



miR-33
miR-
miR-




33
33


EAM288

mmu-



1
3
Used




miR-




10b


EAM293
hsa-
mmu-



1
3
Used



miR-
miR-



188
188


EAM297
hsa-
mmu-
rno-


1
3
Used



miR-
miR-
miR-



193
193
193


EAM301
hsa-




1
3
Used



miR-



198


EAM304
hsa-
mmu-
rno-


1
2
Used



miR-
miR-
miR-



200a
200a
200a


EAM306

mmu-



1
1
Used




miR-




201


EAM307

mmu-



1
1
Used




miR-




202


EAM308
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



206
206
206


EAM309

mmu-



1
1
Used




miR-




207


EAM310
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



208
208
208


EAM247
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



212
212
212


EAM251
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



216
216
216


EAM253
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



218
218
218


EAM275
hsa-
mmu-
rno-


1
1
Used



miR-
miR-
miR-



34a
34a
34a


EAM246
hsa-




1
1
Used



miR-



211


EAM250
hsa-




1
1
Used



miR-



215


EAM252
hsa-




1
1
Used



miR-



217


EAM305

mmu-



1
3
Used




miR-




200b


EAM303
hsa-
mmu-



1
3
Used



miR-
miR-



199a*
199a*


EAM300
hsa-




1
3
Used



miR-



197


EAM299
hsa-
mmu-
rno-


1
3
Used



miR-
miR-
miR-



195
195
195


EAM298
hsa-
mmu-
rno-


1
2
Used



miR-
miR-
miR-



194
194
194


EAM296
hsa-
mmu-
rno-


1
2
Not Used,



miR-
miR-
miR-




high



191
191
191




background


EAM295
hsa-
mmu-
rno-


1
2
Used



miR-
miR-
miR-



190
190
190


EAM292
hsa-
mmu-
rno-


1
2
Used



miR-
miR-
miR-



186
186
186


EAM112




Yes,
1
1
Not Used,







Mismatch


control










feature


EAM116




Yes,
1
1
Not Used,







Mismatch


control










feature


EAM120




Yes,
1
1
Not Used,







Mismatch


control










feature


EAM122




Yes,
1
1
Not Used,







Mismatch


control










feature


EAM132




Yes,
1
1
Not Used,







Mismatch


control










feature


EAM140




Yes,
1
1
Not Used,







Mismatch


control










feature


EAM282

mmu-



2
1
Used




miR-




199b


EAM281

mmu-
rno-


2
1
Used




miR-
miR-




217
217


EAM280
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



30a-3p
30a-
30a-




3p
3p


EAM279
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



29c
29c
29c


EAM278
hsa-
mmu-
rno-


2
1
Used



miR-98
miR-
miR-




98
98


EAM277
hsa-
mmu-
rno-


2
3
Used



miR-96
miR-
miR-




96
96


EAM276
hsa-
mmu-
rno-


2
3
Used



miR-9
miR-9
miR-9


EAM272
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



30d
30d
30d


EAM271
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



30c
30c
30c


EAM268
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



29a
29a
29a


EAM264
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



27b
27b
27b


EAM263
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



26a
26a
26a


EAM262
hsa-
mmu-
rno-


2
3
Used



miR-24
miR-
miR-




24
24


EAM261
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



23b
23b
23b


EAM260
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



23a
23a
23a


EAM256
hsa-




2
3
Used



miR-



220


EAM255
hsa-
mmu-
rno-


2
3
Used



miR-22
miR-
miR-




22
22


EAM248
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



213
213
213


EAM244
hsa-
mmu-
rno-


2
3
Used



miR-21
miR-
miR-




21
21


EAM240
hsa-
mmu-
rno-


2
3
Used



miR-20
miR-
miR-




20
20


EAM237
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



19b
19b
19b


EAM233
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



196a
196a
196a


EAM232
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



192
192
192


EAM231
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



187
187
187


EAM230
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



183
183
183


EAM229
hsa-
mmu-



2
3
Used



miR-
miR-



182
182


EAM228
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



181c
181c
181c


EAM222
hsa-
mmu-



2
1
Used



miR-
miR-



15a
15a


EAM220
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



154
154
154


EAM219
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



153
153
153


EAM218
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



152
152
152


EAM217
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



150
150
150


EAM216
hsa-
mmu-



2
3
Used



miR-
miR-



149
149


EAM215
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



148b
148b
148b


EAM214
hsa-
mmu-



2
3
Used



miR-
miR-



148a
148a


EAM212
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



145
145
145


EAM211
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



144
144
144


EAM210
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



143
143
143


EAM208
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



141
141
141


EAM207
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



140
140
140


EAM206
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



139
139
139


EAM205
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



138
138
138


EAM203
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



135a
135a
135a


EAM200
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



133a
133a
133a


EAM195
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



128b
128b
128b


EAM194
hsa-
mmu-
rno-


2
3
Used



miR-
miR-
miR-



128a
128a
128a


EAM193
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



125a
125a
125a


EAM190
hsa-

rno-


2
1
Used



miR-

miR-



10b

10b


EAM187
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



107
107
107


EAM185
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



103
103
103


EAM181
hsa-let-
mmu-
rno-


2
1
Used



7f
let-7f
let-7f


EAM179
hsa-let-
mmu-
rno-


2
1
Used



7d
let-7d
let-





7d


EAM177

mmu-
rno-


2
1
Used




miR-
miR-




101b
101b


EAM175
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



320
320
320


EAM168
hsa-let-
mmu-
rno-


2
1
Used



7e
let-7e
let-





7e


EAM161
hsa-
mmu-
rno-


2
1
Used



miR-28
miR-
miR-




28
28


EAM160
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



26b
26b
26b


EAM155
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



136
136
136


EAM153
hsa-let-
mmu-
rno-


2
1
Used



7a
let-7a
let-





7a


EAM147
hsa-let-
mmu-
rno-


2
1
Used



7b
let-7b
let-





7b


EAM137
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



132
132
132


EAM133
hsa-
mmu-
rno-


2
1
Used



miR-
miR-
miR-



324-5p
324-
324-




5p
5p


EAM311
hsa-
mmu-
rno-


2
2
Used



miR-
miR-
miR-



101
101
101


EAM312
hsa-




2
2
Used



miR-



105


EAM313
hsa-
mmu-
rno-


2
2
Used



miR-
miR-
miR-



106b
106b
106b


EAM314
hsa-
mmu-
rno-


2
2
Used



miR-
miR-
miR-



126
126
126


EAM315
hsa-
mmu-
rno-


2
2
Used



miR-
miR-
miR-



127
127
127


EAM316
hsa-




2
2
Used



miR-



147


EAM317
hsa-




2
2
Used



miR-



155


EAM318
hsa-




2
2
Used



miR-17-



3p


EAM319
hsa-




2
2
Used



miR-



182*


EAM320
hsa-
mmu-



2
2
Used



miR-
miR-



189
189


EAM321
hsa-

rno-


2
2
Used



miR-

miR-



200b

200b


EAM291
hsa-
mmu-
rno-


2
2
Used



miR-
miR-
miR-



185
185
185


EAM290
hsa-
mmu-
rno-


2
2
Used



miR-
miR-
miR-



184
184
184


EAM322
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



200c
200c
200c


EAM323
hsa-




3
2
Used



miR-



224


EAM324
hsa-
mmu-
rno-


3
2
Used



miR-25
miR-
miR-




25
25


EAM325
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



27a
27a
27a


EAM326
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



296
296
296


EAM327
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



299
299
299


EAM328
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



301
301
301


EAM329
hsa-
mmu-



3
2
Used



miR-
miR-



302a
302


EAM330
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



30a-5p
30a-
30a-




5p
5p


EAM331
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



30e
30e
30e


EAM332
hsa-
mmu-
rno-


3
2
Used



miR-31
miR-
miR-




31
31


EAM333
hsa-
mmu-
rno-


3
2
Used



miR-32
miR-
miR-




32
32


EAM334



OLD_miR-321,

3
2
Used






ARG_tRNA_FRAGMENT


EAM335
hsa-




3
2
Used



miR-



34b


EAM336
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



34c
34c
34c


EAM337
hsa-
mmu-
rno-


3
2
Used



miR-93
miR-
miR-




93
93


EAM338
hsa-




3
2
Used



miR-95


EAM339
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



99b
99b
99b


EAM340

mmu-
rno-


3
2
Used




let-7d*
let-





7d*


EAM341

mmu-



3
2
Used




miR-




106a


EAM342
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



135b
135b
135b


EAM343

mmu-
rno-


3
2
Used




miR-
miR-




151
151


EAM344

mmu-



3
2
Used




miR-




17-3p


EAM345

mmu-



3
2
Used




miR-




224


EAM346

mmu-
rno-


3
2
Used




miR-
miR-




290
290


EAM347

mmu-
rno-


3
2
Used




miR-
miR-




291-
291-




3p
3p


EAM348

mmu-
rno-


3
2
Used




miR-
miR-




291-
291-




5p
5p


EAM349

mmu-
rno-


3
2
Used




miR-
miR-




292-
292-




3p
3p


EAM350

mmu-
rno-


3
2
Used




miR-
miR-




292-
292-




5p
5p


EAM351

mmu-



3
2
Used




miR-




293


EAM352

mmu-



3
2
Used




miR-




294


EAM353

mmu-



3
2
Used




miR-




295


EAM354

mmu-



3
2
Used




miR-




297


EAM355

mmu-
rno-


3
2
Used




miR-
miR-




298
298


EAM356

mmu-
rno-


3
2
Used




miR-
miR-




300
300


EAM357

mmu-
rno-


3
2
Used




miR-
miR-




322
322


EAM358
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



323
323
323


EAM359
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



324-3p
324-
324-




3p
3p


EAM360

mmu-
rno-


3
2
Used




miR-
miR-




325
325


EAM361
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



326
326
326


EAM362
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



328
328
328


EAM363

mmu-
rno-


3
2
Used




miR-
miR-




329
329


EAM364

mmu-
rno-


3
2
Used




miR-
miR-




330
330


EAM365
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



331
331
331


EAM366

mmu-
rno-


3
2
Used




miR-
miR-




337
337


EAM367
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



338
338
338


EAM368
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



339
339
339


EAM369
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



340
340
340


EAM370

mmu-
rno-


3
2
Used




miR-
miR-




341
341


EAM371
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



342
342
342


EAM372

mmu-



3
2
Used




miR-




344


EAM373

mmu-
rno-


3
2
Used




miR-
miR-




345
345


EAM374

mmu-



3
2
Used




miR-




346


EAM375

mmu-
rno-


3
2
Used




miR-
miR-




34b
34b


EAM376

mmu-
rno-


3
2
Used




miR-
miR-




350
350


EAM377

mmu-
rno-


3
2
Used




miR-
miR-




351
351


EAM378

mmu-
rno-


3
2
Used




miR-
miR-




7b
7b


EAM379


rno-


3
2
Used





miR-





129*


EAM380


rno-


3
2
Used





miR-





140*


EAM381


rno-


3
2
Used





miR-





151*


EAM382


rno-


3
2
Used





miR-





20*


EAM383


rno-


3
2
Used





miR-





327


EAM384


rno-


3
2
Used





miR-





333


EAM385
hsa-
mmu-
rno-


3
2
Used



miR-
miR-
miR-



335
335
335


EAM386


rno-


3
2
Used





miR-





336


EAM387


rno-


3
2
Used





miR-





343


EAM388


rno-


3
2
Used





miR-





344


EAM389


rno-


3
2
Used





miR-





346


EAM390


rno-


3
2
Used





miR-





347


EAM391


rno-


3
2
Used





miR-





349


EAM392


rno-


3
2
Used





miR-





352


EAM393


rno-


3
2
Used





miR-





7*


emc139




Yes, Other
3
Not
Not Used, control









Used
feature


EAM289
hsa-
mmu-
rno-


3
1
Used



miR-
miR-
miR-



129
129
129


EAM283

mmu-
rno-


3
1
Used




miR-
miR-




211
211


PTG20210




Yes, post-
1, 2, 3
1, 2, 3
Not Used, control







ctrl


feature


MRC677




Yes, Other
1, 2, 3
1, 2, 3
Not Used, control










feature


FVR506




Yes, post-
1, 2, 3
1, 2, 3
Not Used, control







ctrl


feature


EAM104




Yes,
1, 2, 3
1
Not Used, control







Mismatch


feature


EAM106




Yes,
1, 2, 3
1
Not Used, control







Mismatch


feature


EAM110




Yes,
1, 2, 3
1
Not Used, control







Mismatch


feature


EAM1101




Yes,
1, 2, 3
1
Not Used, control







Mismatch


feature


EAM1102




Yes, Other
1, 2, 3
Not
Not Used, control









Used
feature


EAM1103




Yes, Other
1, 2, 3
Not
Not Used, control









Used
feature


EAM1104




Yes, Other
1, 2, 3
Not
Not Used, control









Used
feature


EAM146




Yes,
1, 2, 3
1
Not Used, control







Mismatch


feature


emc130




Yes, Other
1, 2, 3
1, 2, 3
Not Used, control










feature


emc115




Yes, pre-ctrl
1, 2, 3
1, 2, 3
Not Used, control










feature


EAM148




Yes,
1, 2, 3
1
Not Used, control







Mismatch


feature


EAM138




Yes,
1, 2, 3
1
Not Used, control







Mismatch


feature


EAM134




Yes,
1, 2, 3
1
Not Used, control







Mismatch


feature


EAM395




Yes, pre-ctrl
1, 2, 3
1, 2, 3
Not Used, control










feature


EAM149I




Yes, Other
1, 2, 3
Not
Not Used, control









Used
feature


EAM150I




Yes, Other
1, 2, 3
Not
Not Used, control









Used
feature


EAM399



ebv-miR-BHRF1-2

Not
3
Used only in ALL study








Used


EAM400



ebv-miR-BHRF1-2*

Not
3
Used only in ALL study








Used


EAM401



ebv-miR-BHRF1-3

Not
3
Used only in ALL study








Used


EAM402
hsa-
mmu-



Not
3
Used only in ALL study



miR-
miR-



Used



133b
133b


EAM403
hsa-




Not
3
Used only in ALL study



miR-




Used



151


EAM404
hsa-
mmu-
rno-


Not
3
Used only in ALL study



miR-
miR-
miR-


Used



196b
196b
196b


EAM405
hsa-




Not
3
Used only in ALL study



miR-




Used



302b


EAM406
hsa-




Not
3
Used only in ALL study



miR-




Used



302b*


EAM407
hsa-




Not
3
Used only in ALL study



miR-




Used



302c


EAM408
hsa-




Not
3
Used only in ALL study



miR-




Used



302c*


EAM409
hsa-




Not
3
Used only in ALL study



miR-




Used



302d


EAM410
hsa-




Not
3
Used only in ALL study



miR-




Used



325


EAM411
hsa-




Not
3
Used only in ALL study



miR-




Used



330


EAM412
hsa-




Not
3
Used only in ALL study



miR-




Used



337


EAM413
hsa-




Not
3
Used only in ALL study



miR-




Used



345


EAM414
hsa-




Not
3
Used only in ALL study



miR-




Used



346


EAM415
hsa-




Not
3
Used only in ALL study



miR-




Used



367


EAM416
hsa-




Not
3
Used only in ALL study



miR-




Used



368


EAM417
hsa-




Not
3
Used only in ALL study



miR-




Used



369


EAM418
hsa-
mmu-



Not
3
Used only in ALL study



miR-
miR-



Used



370
370


EAM419
hsa-




Not
3
Used only in ALL study



miR-




Used



371


EAM420
hsa-




Not
3
Used only in ALL study



miR-




Used



372


EAM421
hsa-




Not
3
Used only in ALL study



miR-




Used



373


EAM422
hsa-




Not
3
Used only in ALL study



miR-




Used



373*


EAM423
hsa-




Not
3
Used only in ALL study



miR-




Used



374


EAM424
hsa-
mmu-



Not
3
Used only in ALL study



miR-
miR-



Used



133b
133b


EAM425
hsa-
mmu-
rno-


Not
3
Used only in ALL study



miR-
miR-
miR-


Used



196b
196b
196b


EAM426

mmu-



Not
3
Used only in ALL study




miR-



Used




215


EAM427

mmu-



Not
3
Used only in ALL study




miR-



Used




409


EAM428

mmu-



Not
3
Used only in ALL study




miR-



Used




410


EAM429

mmu-



Not
3
Used only in ALL study




miR-



Used




376b


EAM430

mmu-



Not
3
Used only in ALL study




miR-



Used




376a


EAM431

mmu-



Not
3
Used only in ALL study




miR-



Used




411


EAM432

mmu-



Not
3
Used only in ALL study




miR-



Used




380-




3p


EAM433

mmu-



Not
3
Used only in ALL study




miR-



Used




412


EAM396



ebv-miR-BART1

Not
3
Used only in ALL study








Used


EAM397



ebv-miR-BART2

Not
3
Used only in ALL study








Used


EAM398



ebv-miR-BHRF1-1

Not
3
Used only in ALL study








Used
















TABLE 11







Oligonucleotide Sequences for Detection Specificity Experiment








miRNA or



Mutant Name
Oligonucleotide Sequence (5′ to 3′)





hsa-let-7g
CTGGAATTCGCGGTTAAAACTGTACAAACTACTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 850)





let-7-mutl
CTGGAATTCGCGGTTAAATAACTGTAGAAAGTACTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 851)





hsa-let-7c
CTGGAATTCGCGGTTAAAAACCATACAACCTACTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 852)





let-7-mut2
CTGGAATTCGCGGTTAAAAACCATACAAGCTAGTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 853)





hsa-let-7b
CTGGAATTCGCGGTTAAAAACCACACAACCTACTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 854)





let-7-mut3
CTGGAATTCGCGGTTAAAAACCACACAAGCTAGTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 855)





hsa-let-7a
CTGGAATTCGCGGTTAAAAACTATACAACCTACTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 856)





hsa-let-7e
CTGGAATTCGCGGTTAAAACTATACAACCTCCTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 857)





hsa-let-7d
CTGGAATTCGCGGTTAAAACTATGCAACCTACTACCTCTTTTAGTGAGGAATTCCGT



(Seq ID No: 858)





hsa-let-7f
CTGGAATTCGCGGTTAAAAACTATACAATCTACTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 858)





hsa-let-7i
CTGGAATTCGCGGTTAAAAGCACAAACTACTACCTCATTTAGTGAGGAATTCCGT



(Seq ID No: 860)
















TABLE 12





Alignment of Human let-7 miRNAs and


 Mutant Sequences

















UGAGGUAGUAGUUUGUACAGU
(Seq ID No: 861)
hsa-let-7g





UGAGGUAGUACUUUCUACAGUUA
(Seq ID No: 862)
let-7-mutl





UGAGGUAGUAGGUUGUAUGGUU
(Seq ID No: 863)
hsa-let-7c





UGAGGUACUAGCUUGUAUGGUU
(Seq ID No: 864)
let-7-mut2





UGAGGUAGUAGGUUGUGUGGUU
(Seq ID No: 865)
hsa-let-7b





UGAGGUACUAGCUUGUGUGGUU
(Seq ID No: 866)
let-7-mut3





UGAGGUAGUAGGUUGUAUAGUU
(Seq ID No: 867)
hsa-let-7a





UGAGGUAGGAGGUUGUAUAGU
(Seq ID No: 868)
hsa-let-7e





AGAGGUAGUAGGUUGCAUAGU
(Seq ID No: 869)
hsa-let-7d





UGAGGUAGUAGAUUGUAUAGUU
(Seq ID No: 870)
hsa-let-7f





UGAGGUAGUAGUUUGUGCU
(Seq ID No: 871)
hsa-let-7i
















TABLE 13







220 mRNA genes with transcription factor activity annotation









Chip
Probe Set ID
Gene Title





Hu6800
AB000468_at
ring finger protein 4


Hu6800
D43642_at
transcription factor-like 1


Hu6800
D83784_at
pleiomorphic adenoma gene-like 2


Hu6800
D86479_at
AE binding protein 1


Hu6800
D87673_at
heat shock transcription factor 4


Hu6800
J03161_at
serum response factor (c-fos serum response element-




binding transcription factor)


Hu6800
J03827_at
nuclease sensitive element binding protein 1


Hu6800
L02785_at
solute carrier family 26, member 3


Hu6800
L11672_at
zinc finger protein 91 (HPF7, HTF10)


Hu6800
L11672_r_at
zinc finger protein 91 (HPF7, HTF10)


Hu6800
L13203_at
forkhead box I1


Hu6800
L13740_at
nuclear receptor subfamily 4, group A, member 1


Hu6800
L17131_rna1_at
high mobility group AT-hook 1


Hu6800
L20298_at
core-binding factor, beta subunit


Hu6800
L22342_at
SP110 nuclear body protein


Hu6800
L22454_at
nuclear respiratory factor 1


Hu6800
L40904_at
peroxisome proliferative activated receptor, gamma


Hu6800
M14328_s_at
enolase 1, (alpha)


Hu6800
M16938_s_at
homeo box C6


Hu6800
M19720_rna1_at
v-myc myelocytomatosis viral oncogene homolog 1, lung




carcinoma derived (avian)


Hu6800
M23263_at
androgen receptor (dihydrotestosterone receptor; testicular




feminization; spinal and bulbar muscular atrophy; Kennedy




disease)


Hu6800
M24900_at
thyroid hormone receptor, alpha (erythroblastic leukemia




viral (v-erb-a) oncogene homolog, avian) /// nuclear




receptor subfamily 1, group D, member 1


Hu6800
M25269_at
ELK1, member of ETS oncogene family


Hu6800
M31627_at
X-box binding protein 1


Hu6800
M36542_s_at
POU domain, class 2, transcription factor 2


Hu6800
M38258_at
retinoic acid receptor, gamma


Hu6800
M64673_at
heat shock transcription factor 1


Hu6800
M65214_s_at
transcription factor 3 (E2A immunoglobulin enhancer




binding factors E12/E47)


Hu6800
M68891_at
GATA binding protein 2


Hu6800
M76732_s_at
msh homeo box homolog 1 (Drosophila)


Hu6800
M77698_at
YY1 transcription factor


Hu6800
M79462_at
promyelocytic leukemia


Hu6800
M79463_s_at
promyelocytic leukemia


Hu6800
M93650_at
paired box gene 6 (aniridia, keratitis)


Hu6800
M95929_at
sideroflexin 3


Hu6800
M97676_at
msh homeo box homolog 1 (Drosophila)


Hu6800
M97935_s_at
signal transducer and activator of transcription 1, 91 kDa


Hu6800
M97936_at
signal transducer and activator of transcription 1, 91 kDa


Hu6800
M99701_at
transcription elongation factor A (SII)-like 1


Hu6800
S81264_s_at
T-box 2


Hu6800
U00968_at
sterol regulatory element binding transcription factor 1


Hu6800
U11861_at
maternal G10 transcript


Hu6800
U18018_at
ets variant gene 4 (E1A enhancer binding protein, E1AF)


Hu6800
U20734_s_at
jun B proto-oncogene


Hu6800
U28687_at
zinc finger protein 157 (HZF22)


Hu6800
U29175_at
SWI/SNF related, matrix associated, actin dependent




regulator of chromatin, subfamily a, member 4


Hu6800
U35048_at
transforming growth factor beta 1 induced transcript 4


Hu6800
U36922_at
forkhead box O1A (rhabdomyosarcoma)


Hu6800
U39840_at
forkhead box A1


Hu6800
U44755_at
small nuclear RNA activating complex, polypeptide 2,




45 kDa


Hu6800
U51003_s_at
distal-less homeo box 2


Hu6800
U51127_at
interferon regulatory factor 5


Hu6800
U53830_at
interferon regulatory factor 7


Hu6800
U58681_at
neurogenic differentiation 2


Hu6800
U63842_at
neurogenin 1


Hu6800
U69126_s_at
KH-type splicing regulatory protein (FUSE binding protein




2)


Hu6800
U72649_at
BTG family, member 2


Hu6800
U73843_at
E74-like factor 3 (ets domain transcription factor, epithelial-




specific)


Hu6800
U76388_at
nuclear receptor subfamily 5, group A, member 1


Hu6800
U81599_at
homeo box B13


Hu6800
U81600_at
paired related homeobox 2


Hu6800
U82759_at
homeo box A9


Hu6800
U85193_at
nuclear factor I/B


Hu6800
U85658_at
transcription factor AP-2 gamma (activating enhancer




binding protein 2 gamma)


Hu6800
U95040_at
tripartite motif-containing 28


Hu6800
X03635_at
estrogen receptor 1


Hu6800
X06614_at
retinoic acid receptor, alpha


Hu6800
X12794_at
nuclear receptor subfamily 2, group F, member 6


Hu6800
X13293_at
v-myb myeloblastosis viral oncogene homolog (avian)-like 2


Hu6800
X13810_s_at
POU domain, class 2, transcription factor 2


Hu6800
X16316_at
vav 1 oncogene


Hu6800
X16665_at
homeo box B2


Hu6800
X16706_at
FOS-like antigen 2


Hu6800
X17360_rna1_at
homeo box D4


Hu6800
X17651_at
myogenin (myogenic factor 4)


Hu6800
X51345_at
jun B proto-oncogene


Hu6800
X52541_at
early growth response 1


Hu6800
X55005_rna1_at
thyroid hormone receptor, alpha (erythroblastic leukemia




viral (v-erb-a) oncogene homolog, avian)


Hu6800
X55037_s_at
GATA binding protein 3


Hu6800
X56681_s_at
jun D proto-oncogene


Hu6800
X58072_at
GATA binding protein 3


Hu6800
X60003_s_at
cAMP responsive element binding protein 1


Hu6800
X61755_rna1_s_at
homeo box C5


Hu6800
X65463_at
retinoid X receptor, beta


Hu6800
X66079_at
Spi-B transcription factor (Spi-1/PU.1 related)


Hu6800
X68688_rna1_s_at
zinc finger protein 11b (KOX 2) /// zinc finger protein 33a




(KOX 31)


Hu6800
X69699_at
paired box gene 8


Hu6800
X70683_at
SRY (sex determining region Y)-box 4


Hu6800
X72632_s_at
thyroid hormone receptor, alpha (erythroblastic leukemia




viral (v-erb-a) oncogene homolog, avian) /// nuclear




receptor subfamily 1, group D, member 1


Hu6800
X78992_at
zinc finger protein 36, C3H type-like 2


Hu6800
X85786_at
regulatory factor X, 5 (influences HLA class II expression)


Hu6800
X90824_s_at
upstream transcription factor 2, c-fos interacting


Hu6800
X93996_rna1_at
myeloid/lymphoid or mixed-lineage leukemia (trithorax




homolog, Drosophila); translocated to, 7


Hu6800
X96401_at
MAX binding protein


Hu6800
X96506_s_at
DR1-associated protein 1 (negative cofactor 2 alpha)


Hu6800
X99101_at
estrogen receptor 2 (ER beta)


Hu6800
Y08976_at
FEV (ETS oncogene family)


Hu6800
Z11899_s_at
POU domain, class 5, transcription factor 1


Hu6800
Z17240_at
high-mobility group box 2


Hu6800
Z22951_rna1_s_at



Hu6800
Z49825_s_at
hepatocyte nuclear factor 4, alpha


Hu6800
Z50781_at
delta sleep inducing peptide, immunoreactor


Hu6800
Z56281_at
interferon regulatory factor 3


Hu35KsubA
AA010750_at
LAG1 longevity assurance homolog 2 (S. cerevisiae)


Hu35KsubA
AA036900_at
FOS-like antigen 2


Hu35KsubA
AA091017_at
nuclear factor of activated T-cells 5, tonicity-responsive


Hu35KsubA
AA099501_at
p66 alpha


Hu35KsubA
AA127183_s_at
serologically defined colon cancer antigen 33


Hu35KsubA
AA157520_at
signal transducer and activator of transcription 5B


Hu35KsubA
AA287840_at
Runt-related transcription factor 2


Hu35KsubA
AA328684_at
SLC2A4 regulator


Hu35KsubA
AA347664_at
lymphoid enhancer-binding factor 1


Hu35KsubA
AA355201_at
SRY (sex determining region Y)-box 4


Hu35KsubA
AA418098_at
cAMP responsive element binding protein-like 2


Hu35KsubA
AA424381_s_at
Forkhead box C1


Hu35KsubA
AA431268_at



Hu35KsubA
AA436315_at
forkhead box O3A


Hu35KsubA
AA456687_at
nuclear factor I/A


Hu35KsubA
AA459542_s_at
regulatory factor X-associated ankyrin-containing protein


Hu35KsubA
AA489299_at
transcriptional adaptor 3 (NGG1 homolog, yeast)-like


Hu35KsubA
AA504413_at
Solute carrier family 25, member 29


Hu35KsubA
AB002302_at
myeloid/lymphoid or mixed-lineage leukemia 4


Hu35KsubA
AB002305_at
aryl-hydrocarbon receptor nuclear translocator 2


Hu35KsubA
AB004066_at
basic helix-loop-helix domain containing, class B, 2


Hu35KsubA
C02099_s_at
methionine sulfoxide reductase B2


Hu35KsubA
D45333_at
prefoldin 1


Hu35KsubA
D61676_at
Pre-B-cell leukemia transcription factor 1


Hu35KsubA
D82636_at
CCR4-NOT transcription complex, subunit 7


Hu35KsubA
H45647_at
hairy/enhancer-of-split related with YRPW motif 1


Hu35KsubA
IKAROS_at
zinc finger protein, subfamily 1A, 1 (Ikaros)


Hu35KsubA
L07592_at
peroxisome proliferative activated receptor, delta


Hu35KsubA
L13203_at
forkhead box I1


Hu35KsubA
L16794_s_at
MADS box transcription enhancer factor 2, polypeptide D




(myocyte enhancer factor 2D)


Hu35KsubA
L40904_at
peroxisome proliferative activated receptor, gamma


Hu35KsubA
L41067_at
nuclear factor of activated T-cells, cytoplasmic, calcineurin-




dependent 3


Hu35KsubA
M23263_at
androgen receptor (dihydrotestosterone receptor; testicular




feminization; spinal and bulbar muscular atrophy; Kennedy




disease)


Hu35KsubA
M62626_s_at
T-cell leukemia, homeobox 1


Hu35KsubA
M79462_at
promyelocytic leukemia


Hu35KsubA
M92299_s_at
homeo box B5


Hu35KsubA
M93650_at
paired box gene 6 (aniridia, keratitis)


Hu35KsubA
M96577_s_at
E2F transcription factor 1


Hu35KsubA
M97676_at
msh homeo box homolog 1 (Drosophila)


Hu35KsubA
N32724_at
high-mobility group 20B


Hu35KsubA
N83192_at
KIAA0669 gene product


Hu35KsubA
RC_AA029288_at
zinc finger protein 83 (HPF1)


Hu35KsubA
RC_AA040699_at
ELK3, ETS-domain protein (SRF accessory protein 2)


Hu35KsubA
RC_AA045545_at
glucocorticoid modulatory element binding protein 2


Hu35KsubA
RC_AA055932_at
TAF5-like RNA polymerase II, p300/CBP-associated factor




(PCAF)-associated factor, 65 kDa


Hu35KsubA
RC_AA065094_at
trinucleotide repeat containing 4


Hu35KsubA
RC_AA069549_at
zinc finger protein 37a (KOX 21)


Hu35KsubA
RC_AA114866_s_at
homeo box A11


Hu35KsubA
RC_AA121121_at
Huntingtin interacting protein 2


Hu35KsubA
RC_AA135095_at
high-mobility group 20B


Hu35KsubA
RC_AA136474_at
Meis1, myeloid ecotropic viral integration site 1 homolog 2




(mouse)


Hu35KsubA
RC_AA150205_at
Kruppel-like factor 7 (ubiquitous)


Hu35KsubA
RC_AA156112_at
Krueppel-related zinc finger protein


Hu35KsubA
RC_AA156359_at
TAR DNA binding protein


Hu35KsubA
RC_AA156792_at
hairy/enhancer-of-split related with YRPW motif-like


Hu35KsubA
RC_AA235980_at
transcription factor EB


Hu35KsubA
RC_AA252161_at
p66 alpha


Hu35KsubA
RC_AA253429_at
zinc finger protein 175


Hu35KsubA
RC_AA256678_at
CCR4-NOT transcription complex, subunit 7


Hu35KsubA
RC_AA256680_at
Nuclear factor I/B


Hu35KsubA
RC_AA280130_at
checkpoint suppressor 1


Hu35KsubA
RC_AA284143_at
arginine-glutamic acid dipeptide (RE) repeats


Hu35KsubA
RC_AA286809_at
upstream binding protein 1 (LBP-1a)


Hu35KsubA
RC_AA292717_at
forkhead box P1


Hu35KsubA
RC_AA347288_at
growth arrest-specific 7


Hu35KsubA
RC_AA379087_s_at
apoptosis antagonizing transcription factor


Hu35KsubA
RC_AA393876_s_at
nuclear receptor subfamily 2, group F, member 2


Hu35KsubA
RC_AA419547_at
E74-like factor 5 (ets domain transcription factor)


Hu35KsubA
RC_AA421050_at
zinc finger protein 444


Hu35KsubA
RC_AA425309_at
Nuclear factor I/B


Hu35KsubA
RC_AA428024_at
ubinuclein 1


Hu35KsubA
RC_AA430032_at
pituitary tumor-transforming 1


Hu35KsubA
RC_AA431399_at
arginine-glutamic acid dipeptide (RE) repeats


Hu35KsubA
RC_AA436608_at
SATB family member 2


Hu35KsubA
RC_AA443090_s_at
interferon regulatory factor 7


Hu35KsubA
RC_AA443962_at
MYST histone acetyltransferase 2


Hu35KsubA
RC_AA452256_at
zinc finger protein 265


Hu35KsubA
RC_AA456289_at
nuclear factor I/A


Hu35KsubA
RC_AA456677_at
zinc finger protein, subfamily 1A, 4 (Eos)


Hu35KsubA
RC_AA464251_at
LOC440448


Hu35KsubA
RC_AA476720_at
nuclear factor of activated T-cells, cytoplasmic, calcineurin-




dependent 1


Hu35KsubA
RC_AA478590_at
forkhead box O3A


Hu35KsubA
RC_AA478596_at
zinc fingers and homeoboxes 2


Hu35KsubA
RC_AA504110_at
v-ets erythroblastosis virus E26 oncogene homolog 1




(avian)


Hu35KsubA
RC_AA504144_at
CAMP responsive element binding protein 1


Hu35KsubA
RC_AA504147_s_at
Solute carrier family 25, member 29


Hu35KsubA
RC_AA609017_s_at
forkhead box O1A (rhabdomyosarcoma)


Hu35KsubA
RC_AA621179_at
forkhead box J2


Hu35KsubA
RC_AA621680_at
Kruppel-like factor 4 (gut)


Hu35KsubA
RC_D59299_i_at
myeloid/lymphoid or mixed-lineage leukemia (trithorax




homolog, Drosophila); translocated to, 10


Hu35KsubA
U09366_at
zinc finger protein 133 (clone pHZ-13)


Hu35KsubA
U17163_at
ets variant gene 1


Hu35KsubA
U28687_at
zinc finger protein 157 (HZF22)


Hu35KsubA
U33749_s_at
thyroid transcription factor 1


Hu35KsubA
U53831_s_at
interferon regulatory factor 7


Hu35KsubA
U62392_at
zinc finger protein 193


Hu35KsubA
U63824_at
TEA domain family member 4


Hu35KsubA
U76388_at
nuclear receptor subfamily 5, group A, member 1


Hu35KsubA
U81600_at
paired related homeobox 2


Hu35KsubA
U85707_at
Meis1, myeloid ecotropic viral integration site 1 homolog




(mouse)


Hu35KsubA
U88047_at
AT rich interactive domain 3A (BRIGHT-like)


Hu35KsubA
U89995_at
forkhead box E1 (thyroid transcription factor 2)


Hu35KsubA
W20276_f_at
CG9886-like


Hu35KsubA
W26259_at
forkhead box O3A


Hu35KsubA
W55861_at
Myeloid/lymphoid or mixed-lineage leukemia (trithorax




homolog, Drosophila)


Hu35KsubA
W67850_s_at
TGFB-induced factor 2 (TALE family homeobox)


Hu35KsubA
X13403_s_at
POU domain, class 2, transcription factor 1


Hu35KsubA
X16666_s_at
homeo box B1


Hu35KsubA
X52402_s_at
homeo box C5


Hu35KsubA
X52560_s_at
CCAAT/enhancer binding protein (C/EBP), beta


Hu35KsubA
X58431_rna2_s_at
homeo box B6


Hu35KsubA
X68688_rna1_s_at
zinc finger protein 11b (KOX 2) /// zinc finger protein 33a




(KOX 31)


Hu35KsubA
X70683_at
SRY (sex determining region Y)-box 4


Hu35KsubA
X99101_at
estrogen receptor 2 (ER beta)


Hu35KsubA
X99350_rna1_at
forkhead box J1


Hu35KsubA
Y10746_at
methyl-CpG binding domain protein 1


Hu35KsubA
Z14077_s_at
YY1 transcription factor
















TABLE 14







Number of Training Samples Used to Build the Normal/Tumor Classifier











Tissue
Number of Normal
Number of Tumor















Colon
5
10



Kidney
3
5



Prostate
8
6



Uterus
9
10



Lung
4
6



Breast
3
6

















TABLE 15







Normal/Tumor Makers Selected On the Training Set












Bonferroni-
Variance-thresholded


Probe
Description
corrected p-value
t-test score













EAM159
hmr_miR-130a
0
10.984


EAM331
hmr_miR-30e
0
10.756


EAM311
hmr_miR-101
0
10.392


EAM299
hmr_miR-195
0
9.957


EAM314
hmr_miR-126
0
9.498


EAM300
h_miR-197
0
8.762


EAM181
hmr_let-7f
0
8.299


EAM380
r_miR-140*
0
8.238


EAM111
hm_let-7g
0
8.235


EAM381
r_miR-151*
0
8.198


EAM218
hmr_miR-152
0
8.180


EAM183
hmr_let-7i
0
8.098


EAM253
hmr_miR-218
0
8.077


EAM155
hmr_miR-136
0
8.058


EAM192
hmr_miR-126*
0
7.991


EAM222
hm_miR-15a
0
7.970


EAM161
hmr_miR-28
0
7.949


EAM184
hmr_miR-100
0
7.894


EAM271
hmr_miR-30c
0
7.848


EAM270
hmr_miR-30b
0
7.731


EAM303
hm_miR-199a*
0
7.519


EAM121
hmr_miR-99a
0
7.515


EAM392
r_miR-352
0
7.476


EAM255
hmr_miR-22
0
7.465


EAM249
hmr_miR-214
0
7.338


EAM160
hmr_miR-26b
0
7.313


EAM133
hmr_miR-324-5p
0
7.266


EAM238
hm_miR-1
0
7.259


EAM179
hmr_let-7d
0
7.235


EAM339
hmr_miR-99b
0
7.225


EAM185
hmr_miR-103
0
7.047


EAM168
hmr_let-7e
0
7.034


EAM200
hmr_miR-133a
0
6.959


EAM278
hmr_miR-98
0
6.952


EAM333
hmr_miR-32
0
6.951


EAM291
hmr_miR-185
0
6.910


EAM187
hmr_miR-107
0
6.879


EAM263
hmr_miR-26a
0
6.818


EAM261
hmr_miR-23b
0
6.814


EAM371
hmr_miR-342
0
6.743


EAM330
hmr_miR-30a-5p
0
6.717


EAM280
hmr_miR-30a-3p
0
6.662


EAM233
hmr_miR-196a
0
6.630


EAM292
hmr_miR-186
0
6.602


EAM115
hmr_miR-16
0
6.558


EAM272
hmr_miR-30d
0
6.516


EAM367
hmr_miR-338
0
6.428


EAM379
r_miR-129*
0
6.323


EAM193
hmr_miR-125a
0
6.222


EAM273
hmr_miR-33
0
6.209


EAM223
hmr_miR-15b
0
6.148


EAM105
hmr_miR-125b
0
6.111


EAM385
hmr_miR-335
0
6.011


EAM237
hmr_miR-19b
0
5.981


EAM320
hm_miR-189
0
5.938


EAM262
hmr_miR-24
0
5.909


EAM240
hmr_miR-20
0
5.908


EAM260
hmr_miR-23a
0
5.901


EAM297
hmr_miR-193
0
5.856


EAM236
hmr_miR-19a
0
5.789


EAM264
hmr_miR-27b
0
5.780


EAM205
hmr_miR-138
0
5.721


EAM234
hmr_miR-199a
0
5.718


EAM207
hmr_miR-140
0
5.561


EAM217
hmr_miR-150
0
5.531


EAM235
h_miR-199b
0
5.516


EAM190
hr_miR-10b
0
5.511


EAM282
m_miR-199b
0
5.483


EAM335
h_miR-34b
0
5.315


EAM288
m_miR-10b
0
5.291


EAM275
hmr_miR-34a
0
5.287


EAM195
hmr_miR-128b
0
5.253


EAM328
hmr_miR-301
0
5.203


EAM365
hmr_miR-331
0
5.191


EAM131
hmr_miR-92
0
5.155


EAM215
hmr_miR-148b
0
5.091


EAM325
hmr_miR-27a
0
5.090


EAM279
hmr_miR-29c
0
5.025


EAM369
hmr_miR-340
0
4.959


EAM354
m_miR-297
0
4.953


EAM119
hmr_miR-29b
0
4.937


EAM210
hmr_miR-143
0
4.908


EAM361
hmr_miR-326
0
4.790


EAM324
hmr_miR-25
0
4.764


EAM226
hmr_miR-181a
0
4.742


EAM343
mr_miR-151
0
4.740


EAM228
hmr_miR-181c
0
4.675


EAM366
mr_miR-337
0
4.661


EAM349
mr_miR-292-3p
0
4.652


EAM189
hmr_miR-10a
0
4.494


EAM355
mr_miR-298
0
4.446


EAM318
h_miR-17-3p
0
4.324


EAM387
r_miR-343
0
4.140


EAM363
mr_miR-329
0
4.118


EAM268
hmr_miR-29a
0
4.044


EAM175
hmr_miR-320
0
3.875


EAM212
hmr_miR-145
0
3.869


EAM378
mr_miR-7b
0
3.853


EAM281
mr_miR-217
0
3.670


EAM307
m_miR-202
0
3.625


EAM209
hmr_miR-142-5p
0
3.594


EAM163
hmr_miR-142-3p
0
3.545


EAM384
r_miR-333
0
3.410


EAM362
hmr_miR-328
0
3.356


EAM329
hm_miR-302a
0
3.348


EAM368
hmr_miR-339
0
3.007


EAM351
m_miR-293
0
2.852


EAM153
hmr_let-7a
0
2.818


EAM360
mr_miR-325
0
2.753


EAM145
hmr_let-7c
0
2.393


EAM348
mr_miR-291-5p
0
2.092


EAM298
hmr_miR-194
0
2.068


EAM250
h_miR-215
0
1.746


EAM229
hm_miR-182
0.005
−4.074


EAM224
hmr_miR-17-5p
0.005
4.875


EAM341
m_miR-106a
0.005
4.185


EAM242
hmr_miR-204
0.005
3.457


EAM295
hmr_miR-190
0.005
3.186


EAM353
m_miR-295
0.005
2.916


EAM246
h_miR-211
0.005
2.663


EAM248
hmr_miR-213
0.01
3.369


EAM186
h_miR-106a
0.01
4.650


EAM137
hmr_miR-132
0.01
3.388


EAM258
hmr_miR-222
0.015
4.257


EAM230
hmr_miR-183
0.02
−3.977


EAM364
mr_miR-330
0.02
3.982


EAM206
hmr_miR-139
0.02
3.761


EAM327
hmr_miR-299
0.025
2.353


EAM232
hmr_miR-192
0.04
1.065


EAM257
hmr_miR-221
0.04
4.321


EAM216
hm_miR-149
0.04
3.711
















TABLE 16







Prediction results of mouse lung samples








Field
Description





SAMPLE
Sample name


MAL
Malignancy status (Normal/Tumor)


PRED-MAL
Predicted Malignancy status (Normal/Tumor). Prediction



performed by kNN (k = 3) using a training set of 75



samples


CORRECT?
Is the prediction correct?










Test set: 12 mouse lung samples












SAMPLE
MAL
PRED-MAL
CORRECT?







N_MLUNG_1
Normal
Normal
Yes



N_MLUNG_2
Normal
Normal
Yes



N_MLUNG_3
Normal
Normal
Yes



N_MLUNG_4
Normal
Normal
Yes



N_MLUNG_5
Normal
Normal
Yes



T_MLUNG_1
Tumor
Tumor
Yes



T_MLUNG_2
Tumor
Tumor
Yes



T_MLUNG_3
Tumor
Tumor
Yes



T_MLUNG_4
Tumor
Tumor
Yes



T_MLUNG_5
Tumor
Tumor
Yes



T_MLUNG_6
Tumor
Tumor
Yes



T_MLUNG_7
Tumor
Tumor
Yes

















TABLE 20





Training and prediction results of poorly differentiated tumors
















Field
Description





Tissue Type
Tissue type; COLON for colon, PAN for pancreas, KID for kidney, BLDR for bladder, PROST for prostate, OVARY for



ovary, UT for uterus, LUNG for human lung, MESO for mesothelioma, MELA for melanoma, BRST for breast


TT
Tissue type code; 1 for stomach, 2 for colon, 3 for pancreas, 4 for liver, 5 for kidney, 6 for bladder, 7 for prostate, 8 for



ovary, 9 for uterus, 10 for human lung, 11 for mesothelioma, 12 for melanoma, 13 for breast, 14 for brain, 19 for



B cell ALL, 20 for T cell ALL, 21 for follicular cleaved lymphoma, 22 for large B cell lymphoma, 23 for mycosis



fungoidis, 24 for myoloid, 26 for mouse lung


# of features
Number of features selected by the leave-one-out cross-validation procedure


SIG
The selected σ used in the PNN is SIG times the median nearest neighbor distance (see Supplementary Methods)


NS
Number of samples of the specific tissue-type in the training set


NERR
Number of leave-one-out errors for the selected parameters (Number of features and SIG) (=FP + FN)


FP
Number of false positives (incorrectly predicted to belong to the specific tissue type)


FN
Number of false negatives (incorrectly predicted to not belong to the specific tissue type)


LL
Log-likelihood of the selected parameters (Number of features and SIG)


TRUE
Code of true tisue-type of the test sample (see description of TT)


PRED
Predicted tissue-type (see description of TT for code explanation)


PROB
The PNN's posterior probability to belong to the class


CORR
Is this a correct classification; 1 for correct and 0 for incorrect










miRNA Data





Training set: 68 samples, 11 tissue-types

















Tissue

# of









Type
TT
features
SIG
NS
NERR
FP
FN
LL







COLON
2
16
1
7
2
1
1
−0.075482



PAN
3
30
1.5
8
2
0
2
−0.175494



KID
5
28
1.5
4
1
0
1
−0.047266



BLDR
6
10
1
6
3
0
3
−0.901522



PROST
7
10
2.5
6
1
0
1
−0.181041



OVARY
8
18
1
5
2
1
1
−0.074861



UT
9
30
1
10
3
1
2
−0.151537



LUNG
10
28
1
5
1
0
1
−0.086595



MESO
11
30
1
8
0
0
0
−0.026769



MELA
12
18
1
3
0
0
0
−0.010752



BRST
13
22
1
6
2
1
1
−0.072847











Test set: 17 samples, 4 tissue-types












SAMPLE














PDT_COLON_1
PDT_OVARY_1
PDT_OVARY_2
PDT_OVARY_3
PDT_LUNG_1
PDT_LUNG_2





TRUE
2
8
8
8
10
10


PRED
2
8
8
8
2
10


PROB
0.95
0.838
0.823
0.929
0.312
0.207


CORR
1
1
1
1
0
1












SAMPLE














PDT_LUNG_3
PDT_LUNG_4
PDT_LUNG_5
PDT_LUNG_6
PDT_LUNG_7
PDT_LUNG_8





TRUE
10
10
10
10
10
10


PRED
13
7
10
10
13
10


PROB
0.161
0.128
0.229
0.345
0.377
0.299


CORR
0
0
1
1
0
1












SAMPLE















PDT_BRST_1
PDT_BRST_2
PDT_BRST_3
PDT_BRST_4
PDT_BRST_5







TRUE
13
13
13
13
13



PRED
13
13
13
9
13



PROB
0.905
0.479
0.552
0.476
0.773



CORR
1
1
1
0
1











Test set: Posterior probability matrix











Tissue
SAMPLE













Type
PDT_COLON_1
PDT_OVARY_1
PDT_OVARY_2
PDT_OVARY_3
PDT_LUNG_1
PDT_LUNG_2





COLON
0.95*
0
0
0
0.242
0


PAN
0.069
0.012
0.011
0.004
0.034
0.003


KID
0
0
0
0
0.02
0


BLDR
0
0
0
0
0
0


PROST
0
0.003
0.001
0
0
0.078


OVARY
0
0.838*
0.823*
0.929*
0.03
0


UT
0
0.342
0.193
0.225

0.312

0








(1)



LUNG
0
0
0
0

0

0.207*


MESO
0
0
0
0
0
0.002


MELA
0
0
0
0
0
0


BRST
0
0.001
0
0
0.001
0











Tissue
SAMPLE













Type
PDT_LUNG_3
PDT_LUNG_4
PDT_LUNG_5
PDT_LUNG_6
PDT_LUNG_7
PDT_LUNG_8





COLON
0
0
0
0.247
0
0


PAN
0
0.001
0.004
0.152
0.006
0


KID
0
0
0
0
0
0


BLDR
0.01
0
0
0
0
0


PROST
0

0.128

0.011
0
0.048
0.03


OVARY
0.001
0.121
0.025
0
0.003
0.001


UT
0.029
0
0.012
0.001
0
0.002


LUNG

0.002


0.11

0.229*
0.345*

0.377

0.299*


MESO
0
0
0
0
0
0


MELA
0
0
0
0
0
0


BRST

0.161

0.074
0
0.02

0.659

0.149













Tissue
SAMPLE














Type
PDT_BRST_1
PDT_BRST_2
PDT_BRST_3
PDT_BRST_4
PDT_BRST_5







COLON
0
0
0
0
0



PAN
0.003
0.011
0
0.004
0.007



KID
0
0
0
0
0



BLDR
0.002
0.001
0.077
0.006
0



PROST
0.001
0.003
0.001
0
0.003



OVARY
0
0
0.13
0.009
0



UT
0.003
0
0.004

0.476

0.005



LUNG
0.017
0.035
0
0
0.277



MESO
0
0
0
0
0



MELA
0
0
0
0
0



BRST
0.905*
0.479*
0.552*

0

0.773*











mRNA Data





Training set: 68 samples, 11 tissue-types

















Tissue

# of









Type
TT
features
SIG
NS
NERR
FP
FN
LL







COLON
2
18
1.5
7
0
0
0
−0.033006



PAN
3
14
4
8
1
0
1
−0.15038



KID
5
26
4
4
3
0
3
−0.16908



BLDR
6
10
1
6
5
1
4
−1.852998



PROST
7
30
4
6
1
0
1
−0.288903



OVARY
8
14
4
5
4
2
2
−0.2573



UT
9
20
3
10
2
0
2
−0.228232



LUNG
10
30
2.5
5
2
1
1
−0.119642



MESO
11
24
1.5
8
1
0
1
−0.095081



MELA
12
14
4
3
1
0
1
−0.164286



BRST
13
22
1
6
3
1
2
−0.450012











Test set: 17 samples, 4 tissue-types












SAMPLE














PDT_COLON_1
PDT_OVARY_1
PDT_OVARY_2
PDT_OVARY_3
PDT_LUNG_1
PDT_LUNG_2





TRUE
2
8
8
8
10
10


PRED
7
5
9
8
8
6


PROB
0.013
1
0.376
0.76
0.229
0.128


CORR
0
0
0
1
0
0












SAMPLE














PDT_LUNG_3
PDT_LUNG_4
PDT_LUNG_5
PDT_LUNG_6
PDT_LUNG_7
PDT_LUNG_8





TRUE
10
10
10
10
10
10


PRED
6
3
8
8
8
6


PROB
0.022
0.102
0.305
0.014
0.091
0.173


CORR
0
0
0
0
0
0












SAMPLE















PDT_BRST_1
PDT_BRST_2
PDT_BRST_3
PDT_BRST_4
PDT_BRST_5







TRUE
13
13
13
13
13



PRED
9
8
8
6
3



PROB
0.133
0.362
0.301
0.05
0.027



CORR
0
0
0
0
0











Test set: Posterior probability matrix











Tissue
SAMPLE













Type
PDT_COLON_1
PDT_OVARY_1
PDT_OVARY_2
PDT_OVARY_3
PDT_LUNG_1
PDT_LUNG_2





COLON

0

0
0
0
0
0


PAN
0.012
0.019
0.005
0.002
0.027
0.024


KID
0

1

0
0
0
0


BLDR
0.001
0.166
0.001
0.003
0.191

0.128



PROST

0.013

0.006
0.012
0.081
0.006
0.007


OVARY
0

0


0.244

0.76*

0.229

0.072


UT
0
0

0.376

0.084
0.074
0.007


LUNG
0.001
0
0.261
0

0


0



MESO
0
0.01
0.007
0.001
0.004
0


MELA
0
0
0
0
0
0


BRST
0
0.142
0
0
0.018
0











Tissue
SAMPLE













Type
PDT_LUNG_3
PDT_LUNG_4
PDT_LUNG_5
PDT_LUNG_6
PDT_LUNG_7
PDT_LUNG_8





COLON
0
0
0
0
0
0


PAN
0.004

0.102

0.016
0.009
0.011
0.03


KID
0
0
0
0
0
0


BLDR

0.022

0.041
0.059
0.001
0.057

0.173



PROST
0.015
0.002
0.028
0.005
0.005
0.005


OVARY
0.006
0.062

0.305


0.014


0.091

0.055


UT
0.013
0.038
0.05
0.002
0.009
0.012


LUNG

0.005


0


0


0.001


0.003


0



MESO
0.003
0.006
0.024
0.01
0.002
0.001


MELA
0
0
0
0
0
0


BRST
0
0
0
0
0
0













Tissue
SAMPLE














Type
PDT_BRST_1
PDT_BRST_2
PDT_BRST_3
PDT_BRST_4
PDT_BRST_5







COLON
0
0
0
0
0



PAN
0.016
0.026
0.019
0.021

0.027




KID
0
0
0
0
0



BLDR
0.014
0.044
0.237

0.05

0.003



PROST
0.006
0.025
0.001
0.003
0.021



OVARY
0.01

0.362


0.301

0
0



UT

0.133

0.01
0.036
0.011
0.001



LUNG
0
0.001
0.002
0
0



MESO
0.044
0
0.002
0.007
0.01



MELA
0
0
0
0
0



BRST

0


0.001


0.253


0


0








italic predicted



bold True type



*predicted correctly





Claims
  • 1. A solution-based method for determining the expression level of a population of target nucleic acids, comprising: a) providing in solution a population of target-specific bead sets, wherein each target-specific bead set is individually detectable and comprises a capture probe which corresponds to an individual target nucleic acid referred to as an individual bead set;b) hybridizing in solution the population of target-specific bead sets with a population of molecules that can contain a population of detectable target molecules, wherein each target nucleic acid has been transformed into a corresponding detectable target molecule which will specifically bind to its corresponding individual target-specific bead set; andc) screening in solution for detectable target molecules hybridized to target-specific beads to determine the expression level of the population of target nucleic acids.
  • 2. The method of claim 1, wherein the population of target-specific bead sets comprises at least 5 individual bead sets that can bind with a corresponding set of target nucleic acids.
  • 3. The method of claim 1, wherein the population of target-specific beads comprises at least 100 individual bead sets that can bind with a corresponding set of target nucleic acids.
  • 4. The method of claim 1, wherein the population of target nucleic acids is a population of mRNAs.
  • 5. The method of claim 1, wherein the population of target nucleic acids is a population of mRNAs and wherein each mRNA has been transformed into a corresponding detectable target molecule by a process comprising: a) reverse transcribing the mRNA target nucleic acid to generate a cDNA;b) contacting the cDNA with an upstream probe and a downstream probe, wherein the upstream probe comprises a universal upstream sequence and an upstream target-specific sequence, and the downstream probe comprises a universal downstream sequence and a downstream target-specific sequence, such that when the upstream probe and the downstream probe are both hybridized to the cDNA the two probes are capable of being ligated;c) ligating said cDNA contacted with said upstream and downstream probes to generate ligation complexes; andd) amplifying said ligation complexes with a pair of universal primers comprising a universal upstream primer and a universal downstream primer, wherein the universal upstream primer is complementary to the universal upstream sequence and the universal downstream primer is complementary to the universal downstream sequence, wherein at least one of the pair of universal primers is detectably labeled, wherein the product of the amplification is detectably labeled, thereby generating a detectable target molecule which corresponds to the target nucleic acid.
  • 6. The method of claim 1, wherein the population of target nucleic acids is a population of mRNAs, wherein each mRNA has been transformed into a corresponding detectable target molecule by a process comprising: a) reverse transcribing the mRNA target nucleic acid to generate a cDNA;b) contacting the cDNA with an upstream probe and a downstream probe, wherein the upstream probe comprises a universal upstream sequence and an upstream target-specific sequence, and the downstream probe comprises a universal downstream sequence and a downstream target-specific sequence, such that when the upstream probe and the downstream probe are both hybridized to the cDNA the two probes are capable of being ligated;c) ligating said cDNA contacted with said upstream and downstream probes to generate ligation complexes; andd) amplifying said ligation complexes with a pair of universal primers comprising a universal upstream primer and a universal downstream primer, wherein the universal upstream primer is complementary to the universal upstream sequence and the universal downstream primer is complementary to the universal downstream sequence, wherein at least one of the pair of universal primers is detectably labeled, wherein the product of the amplification is detectably labeled, thereby generating a detectable target molecule which corresponds to the target nucleic acid, wherein either the upstream probe further comprises an amplicon tag between the universal sequence and the target-specific sequence or the downstream probe further comprises an amplicon tag between the universal sequence and the target-specific sequence, wherein the amplicon tag comprises a nucleic acid sequence that is complementary to the sequence of the capture probe of the bead set.
  • 7. A method of identifying an expression signature associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment comprising: a) isolating cells from a group of individuals with said cancer, infection, cellular disorder, or response to treatment, and determining the expression levels of a group of genes;b) isolating cells from a group of individuals without said cancer, infection, cellular disorder, or response to treatment, and determining the expression levels of said group of genes; andc) identifying differentially expressed genes from said group of genes which are together indicative of the presence or risk of cancer, infection, cellular disorder, or response to treatment in an individual, thereby identifying an expression signature associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment, wherein the expression levels of the group of genes is determined using the method of claim 1 and the population of target nucleic acids are mRNAs.
  • 8. The method of claim 1, wherein the population of target nucleic acids is a population of microRNAs.
  • 9. A method of identifying an expression signature associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment comprising: a) isolating cells from a group of individuals with said cancer, infection, cellular disorder, or response to treatment, and determining the expression levels of a group of genes;b) isolating cells from a group of individuals without said cancer, infection, cellular disorder, or response to treatment, and determining the expression levels of said group of genes; andc) identifying differentially expressed genes from said group of genes which are together indicative of the presence or risk of cancer, infection, cellular disorder, or response to treatment in an individual, thereby identifying an expression signature associated with the presence or risk of cancer, infection, cellular disorder, or response to treatment, wherein the expression levels of the group of genes is determined using the method of claim 1, wherein the population of target nucleic acids is a population of microRNAs and, wherein the expression signature comprises at least 5 genes.
  • 10. The method of claim 1, wherein the population of target nucleic acids is a population of microRNAs and wherein each microRNA has been transformed into a corresponding detectable target molecule by a process comprising: a) ligating at least one adaptor to the microRNA, generating an adaptor-microRNA molecule;b) detectably labeling said adaptor-microRNA molecule, thereby generating a detectable target molecule which corresponds to the target nucleic acid.
  • 11. The method of claim 1, wherein the population of target nucleic acids is a population of microRNAs and wherein each microRNA has been transformed into a corresponding detectable target molecule by a process comprising: a) ligating at least one adaptor to the microRNA, generating an adaptor-microRNA molecule;b) detectably labeling said adaptor-microRNA molecule, thereby generating a detectable target molecule which corresponds to the target nucleic acid, wherein the adaptor-microRNA is detectably labeled by reverse transcription using the adaptor-microRNA as a template for polymerase chain reaction, wherein a pair of primers is used in said polymerase chain reaction, and wherein at least one of said primers is detectably labeled.
  • 12. A method of screening for the presence of malignant cells in a test sample comprising: a) determining the level of expression of a group of microRNAs in the test sample, andb) comparing the level of expression of a group of microRNAs between the test sample and a corresponding reference sample, wherein a lower level of expression of the group of microRNAs in the test sample compared to the reference sample is indicative of the test sample containing malignant cells.
  • 13. The method of claim 12, wherein the reference sample is known to express a predetermined expression signature indicative of the presence of malignancy, infection, or cellular disorder, and the similarity of the expression signature of the test sample to the predetermined expression signature of the reference sample indicates the presence of malignant cells, infected cells, or cellular disorder, in the test sample.
  • 14. The method of claim 12, wherein the group of microRNAs comprises at least 5 microRNAs.
  • 15. The method of claim 12, wherein the test sample is isolated from an individual at risk of or suspected of having cancer.
  • 16. A method of classifying a tumor sample comprising: a) determining the expression pattern of a group of microRNAs in a tumor sample of unknown tissue origin, generating a tumor sample profile;b) providing a model of tumor origin microRNA expression patterns based on a dataset of the expression of microRNAs of tumors of known origin; andc) comparing the tumor sample profile to the model to determine which tumors of known origin the sample most closely resembles, thereby classifying the tissue origin of the tumor sample.
  • 17. A method of classifying a tumor sample comprising: a) determining the expression pattern of a group of microRNAs in a tumor sample of unknown tissue origin, generating a tumor sample profile;b) providing a model of tumor origin microRNA expression patterns based on a dataset of the expression of microRNAs of tumors of known origin; andc) comparing the tumor sample profile to the model to determine which tumors of known origin the sample most closely resembles, thereby classifying the tissue origin of the tumor sample, wherein the expression pattern of the group of microRNAs is determined using the methods of claim 1, wherein each target nucleic acid is a microRNA which has been transformed into a corresponding detectable target molecule by a process comprising:d) ligating at least one adaptor to the microRNA, generating an adaptor-microRNA molecule;e) detectably labeling said adaptor-microRNA molecule, thereby generating a detectable target molecule which corresponds to the target nucleic acid.
  • 18. A method for identifying an active compound or molecule, comprising: contacting cells with a plurality of compounds or molecules, determining the expression of a set of marker genes present in the cells using the method of claim 1, and scoring the expression of the marker genes to identify a cellular phenotype, the presence of a specific cellular phenotype being indicative of an active compound or molecule.
  • 19. A method for identifying an active compound or molecule, comprising: contacting cells with a plurality of compounds or molecules, determining the expression of a set of marker genes present in the cells using the method of claim 1, and scoring the expression of the marker genes to identify a cellular phenotype, the presence of a specific cellular phenotype being indicative of an active compound or molecule, wherein the set of marker genes comprises genes which encode microRNAs.
  • 20. A method for identifying an active compound or molecule, comprising: contacting cells with a plurality of compounds or molecules, determining the expression of a set of marker genes present in the cells using the method of claim 1, and scoring the expression of the marker genes to identify a cellular phenotype, the presence of a specific cellular phenotype being indicative of an active compound or molecule, wherein the set of marker genes comprises genes which encode messenger RNAs.
  • 21. A kit for determining in solution the expression level of a population of target nucleic acids, wherein said kit comprises: a) a population of detectable bead sets, wherein each target-specific bead set is individually detectable and is capable of being coupled to a capture probe which corresponds to an individual target nucleic acid of interest;b) components for transforming a target nucleic acid of interest into a corresponding detectable target molecule which will specifically bind to its corresponding individual target-specific bead setc) capture probes capable of specifically hybridizing to at least 10 different microRNAs or at least 10 different mRNAs.
  • 22. The kit of claim 21, wherein the population of target nucleic acids comprises mRNAs, wherein the kit further comprises a) components for reverse transcribing the mRNA to generate cDNA;b) upstream and downstream probes, wherein the upstream probe comprises a universal upstream sequence and an upstream target-specific sequence, and the downstream probe comprises a universal downstream sequence and a downstream target-specific sequence, such that when the upstream probe and the downstream probe are both hybridized to the cDNA the two probes are capable of being ligated;c) components for ligating DNA;d) a pair of universal primers; ande) components for amplifying DNA.
  • 23. The kit of claim 21, wherein the population of target nucleic acids comprises microRNAs, wherein the kit further comprises a) adaptors;b) components for ligating the microRNAs to the adaptors;c) components for reverse transcribing the microRNA to generate cDNA;d) a pair of universal primers; ande) components for amplifying DNA.
  • 24. The kit of claim 21, further comprising a polymerase and nucleotide bases.
  • 25. The kit of claim 21, further comprising a plurality of detectable labels.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application of U.S. Utility application Ser. No. 12/870,126, filed Aug. 27, 2010, now abandoned, which is a Continuation Application of U.S. Utility application Ser. No. 11/449,155, filed Jun. 8, 2006, now abandoned, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/689,110 filed Jun. 8, 2005, the contents of which are herein incorporated by reference in their entirety.

Provisional Applications (1)
Number Date Country
60689110 Jun 2005 US
Continuations (2)
Number Date Country
Parent 12870126 Aug 2010 US
Child 13780189 US
Parent 11449155 Jun 2006 US
Child 12870126 US