Many modern day electronic devices contain electronic memory configured to store data. Electronic memory may be volatile memory or non-volatile memory. Volatile memory stores data when it is powered, while non-volatile memory is able to store data when power is removed. Resistive random-access memory is a promising candidate for a next generation non-volatile memory technology. This is because resistive random-access memory devices provide for many advantages, including a fast write time, high endurance, low power consumption, and low susceptibility to damage from radiation.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
The semiconductor industry continues to improve the integration density of various electronic devices (e.g., transistors, diodes, resistors, capacitors, etc.) by, for example, reducing minimum feature sizes and/or arranging electronic devices closer to one another, which allows more components to be integrated into a given area. As the nodes of fabrication continue to shrink, front-end-of-line (FEOL) transistor becomes the major bottleneck to drive high-density non-volatile memories (NVMs), such as in magnetoresistive random access memory (MRAM) devices. MRAM's operation requires a high write current (for example, greater than 200 μA/μm). One way to obtain this high write current is to enlarge transistor dimensions or to adopt multiple transistors for one memory element. For example, some proposed schematics use two transistors or more for one memory element in order to have enough drive current. Those approaches pose a large FEOL area penalty.
In view of above, the present disclosure relates to a back-end-of-line (BEOL) transistor used as a selecting transistor for a memory device and associated manufacturing methods to enable high-density non-volatile memory devices. In some embodiments, the memory device comprises a substrate. A back-end interconnect structure is disposed over the substrate and comprises a plurality of interconnect metal layers one stacked over another. A memory cell is disposed between an upper interconnect metal layer and an intermediate interconnect metal layer. A selecting transistor is disposed between the intermediate interconnect metal layer and a lower interconnect metal layer. By placing the selecting transistor within the back-end interconnect structure between two interconnect metal layers, front-end space is freed-up, and more integration flexibility is provided.
In some further embodiments, the selecting transistor is a planar transistor. A selector gate electrode of the selecting transistor can be disposed on and electrically coupled to the lower interconnect metal layer. A selector channel layer is disposed over the selector gate electrode. A selector source/drain layer is disposed on the selector channel layer. The selector source/drain layer comprises a first selector source/drain region and a second selector source/drain region separated by a sidewall spacer. A portion of the channel layer directly under the sidewall spacer serves as the channel region of the selecting transistor. Thus, a width of the sidewall spacer defines a channel length of the selecting transistor. In some embodiments, the channel layer comprises an oxide semiconductor (OS) material. For example, the channel layer can be made of indium gallium zinc oxide (IGZO). The OS material channel region provides ultra-low leakage currents (ION/IOFF>1013) and can be used to fabricate a BEOL compatible transistor for memory devices. In some embodiments, the selector source/drain regions can have various shapes. For example, the second selector source/drain region can be a circle, a square, a single-fin, a multiple fin, an oval or other application shapes. The sidewall spacer surrounds the second selector source/drain region, and the first selector source/drain region enclose outer peripherals of the sidewall spacer.
Also in some embodiments, the memory cell comprises a bottom electrode and a top electrode separated by a data storage structure. The selecting transistor may be connected to the bottom electrode of the memory cell through the intermediate interconnect metal layer. The storage structure and the top electrode are stacked over the bottom electrode. In some embodiments, the data storage structure is a magnetic tunnel junction (MTJ) or a spin-valve. In such cases, the memory cell is referred as a magnetic memory cell, and the memory device made of an array of such memory cells is referred as a MRAM device. In some alternative embodiments, the data storage structure is a metal-insulator-metal (MIM) stack, and the memory cell may be a resistance memory cell. Other structures for the data storage structure and/or other memory cell types for the memory cell are also amenable.
The memory cell 108 may comprise a bottom electrode 110, a data storage structure 112 arranged over the bottom electrode 110, and a top electrode 114 arranged over the data storage structure 112. The upper interconnect metal layer 116 extends through the upper ILD layer 104U to reach on the top electrode 114. In some embodiments, the bottom electrode 110 and the top electrode 114 may comprise tantalum nitride, titanium nitride, tantalum, titanium, platinum, nickel, hafnium, zirconium, ruthenium, iridium, or the like. In some embodiments, the data storage structure 112 is a magnetic tunnel junction (MTJ) or a spin-valve. In such cases, the memory cell 108 is referred as a magnetic memory cell, and the memory device 100 made of an array of such memory cells 108 is referred as a magnetoresistive random access memory (MRAM) device. In such embodiments, the data storage structure 112 may comprise a magnetic tunnel junction, a ferroelectric capacitor or junction, or the like. In some alternative embodiments, the data storage structure 112 is a metal-insulator-metal (MIM) stack, and the memory cell 108 may be a resistance memory cell. In such cases, the memory cell 108 is referred as a resistive memory cell, and the memory device 100 made of an array of such memory cells 108 is referred as a RRAM device. In such embodiments, the data storage structure 112 comprises a high-k dielectric material, such as hafnium dioxide (HfO2), zirconium dioxide (ZrO2), aluminum oxide (Al2O3), tantalum pentoxide (Ta2O5), hafnium aluminum oxide (HfAlO), hafnium zirconium oxide (HfZrO), or the like. Other structures for the data storage structure 112 and/or other memory-cell types for the memory cell 108 are also amenable.
In some embodiments, the selecting transistor 118 is electrically coupled to the bottom electrode 110 of the memory cell 108 through the intermediate interconnect metal layer 106. In some embodiments, a source/drain layer 134 is disposed under the intermediate interconnect metal layer 106. The source/drain layer 134 comprises a first selector source/drain region 120 and a second selector source/drain region 122 separated by a sidewall spacer 128. A selector channel layer 126 is disposed under the source/drain layer 134. A selector gate dielectric layer 132 is disposed under the selector channel layer 126 and separating a selector gate electrode 124 from the selector channel layer 126. The selector gate electrode 124 may be disposed on a lower interconnect metal layer 130 and surrounded by the lower ILD layer 104L. During operation, a drain-source voltage is applied between the first selector source/drain region 120 and the second selector source/drain region 122. A gate-source voltage is applied between the selector gate electrode 124 and the first selector source/drain region 120. If the gate-source voltage is sufficient, a channel path in the selector channel layer 126 is turned on connecting the first selector source/drain region 120 and the second selector source/drain region 122. A width of the sidewall spacer 128 defines a channel length Lc of the selecting transistor 118 in the selector channel layer 126 directly under the sidewall spacer 128. An interface perimeter between the sidewall spacer 128 and the second selector source/drain region 122 defines a channel width of the selecting transistor 118.
In some embodiments, the first selector source/drain region 120 and the second selector source/drain region 122 comprise doped semiconductor material (e.g., p-doped or n-doped polysilicon), and/or Titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), copper (Cu), or other CMOS contact metals. The first selector source/drain region 120 and the second selector source/drain region 122 may each have a thickness in a range of from about 10 nm to about 50 nm. In some embodiments, the sidewall spacer 128 may be a single layer of non-conductive material. In some alternative embodiments, the sidewall spacer 128 may include multiple layers of the same or different materials collectively insulating the second selector source/drain region 122 from the first selector source/drain region 120. For example, the sidewall spacer 128 may comprise a dielectric material or multiple dielectric materials such as silicon dioxide, silicon nitride, or the like. The sidewall spacer 128 can have a thickness in a range of from about 5 nm to about 30 nm. In some embodiments, the selector channel layer 126 comprises an oxide semiconductor (OS) material. For example, the channel layer can be made of such as indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), indium tin oxide or indium titanium oxide (ITO), or another oxide semiconductor material. The selector channel layer 126 can have a thickness in a range of from about 3 nm to about 50 nm, or about 5 nm to about 30 nm. The OS material channel region provides ultra-low leakage and can be used to fabricate a BEOL compatible transistor for memory devices. In some embodiments, the selector gate dielectric layer 132 comprise aluminum oxide (Al2O3), Hafnium oxide (HfO2), tantalum oxide (Ta2O5), Zirconium oxide (ZrO2), Titanium oxide (TiO2), strontium titanium oxide (SrTiO3), or another high-k dielectric material, among others. The selector gate dielectric layer 132 may have a thickness in a range of from about 1 nm to about 15 nm, or about 1 nm to about 5 nm. By placing the selecting transistor within back-end interconnect structure between two interconnect metal layers, front-end becomes available for novel logic functions, and more integration flexibility is provided.
In some embodiments, a first interconnect line 206a is disposed within a second ILD layer 104b over the first ILD layer 104a. The first interconnect line 206a may function as a word line of the memory device 200. The selecting transistor 118 comprises a selector gate electrode 124 stacked on the first interconnect line 206a and configured to control current flow between a first selector source/drain region 120 and a second selector source/drain region 122 through a selector channel layer 126. In some embodiments, the selector gate electrode 124 may comprise the same conductive material as the first interconnect line 206a and may be seamless from the first interconnect line 206a. Alternatively, the selector gate electrode 124 may comprise a conductive material different from the first interconnect line 206a. A selector gate dielectric layer 132 may be disposed between the selector gate electrode 124 and the selector channel layer.
In some embodiments, the first selector source/drain region 120 and the second selector source/drain region 122 are disposed on the selector channel layer 126 and separated from each other by a sidewall spacer 128. The sidewall spacer 128 may enclose an outer sidewall of the second selector source/drain region 122. The first selector source/drain region 120 may enclose an outer sidewall of the sidewall spacer 128 and may be surrounded by a third ILD layer 104c. In some embodiments, a dielectric layer 222 is disposed on the first selector source/drain region 120 and the third ILD layer 104c and surround the sidewall spacer 128 or the second selector source/drain region 122. In some embodiments, the sidewall spacer 128 covers a sidewall surface of the second selector source/drain region 122. The first selector source/drain region 120 and the dielectric layer 222 may collectively cover an outer sidewall of the sidewall spacer 128. In some embodiments, the dielectric layer 222 may comprise dielectric materials such as silicon dioxide, silicon nitride, or the like. The dielectric layer 222 can have a thickness in a range of from about 1 nm to about 5 nm.
In some embodiments, the first selector source/drain region 120 is coupled to a source line SL. The second selector source/drain region 122 is coupled to the memory cell 108 through a second interconnect line 206b, which is surrounded by a fourth ILD layer 104d. The second interconnect line 206b may be arranged over the first selector source/drain region 120 and separating from the first selector source/drain region 120 by the dielectric layer 222.
In some embodiments, a lower insulating structure 210 is disposed over the fourth ILD layer 104d. The lower insulating structure 210 comprises sidewalls that define an opening extending through the lower insulating structure 210. In various embodiments, the lower insulating structure 210 may comprise one or more of silicon nitride, silicon dioxide, silicon carbide, or the like. A bottom electrode via 212 is disposed in the opening of the lower insulating structure 210 and lands on the second interconnect line 206b. The memory cell 108 is arranged on the bottom electrode via 212. In some embodiments, the memory cell 108 comprises a bottom electrode 110 that is separated from a top electrode 114 by way of a data storage structure 112. In some embodiments, a hard mask layer 216 may be disposed on the top electrode 114. A sidewall spacer 218 may be disposed on opposing sides of the top electrode 114 and the hard mask layer 216. In some embodiments, the hard mask layer 216 may comprise a metal (e.g., titanium, tantalum, or the like) and/or a dielectric (e.g., a nitride, a carbide, or the like). In some embodiments, the sidewall spacer 218 may comprise an oxide (e.g., silicon rich oxide), a nitride (e.g., silicon nitride), a carbide (e.g., silicon carbide), or the like.
In some embodiments, an upper insulating structure 220 is disposed over the memory cell 108 and on the lower insulating structure 210. The upper insulating structure 220 continuously extends from a first position directly over the memory cell 108 to a second position abutting an upper surface of the lower insulating structure 210. The upper insulating structure 220 separates the memory cell 108 from a fifth ILD layer 104e. The upper insulating structure 220 may comprise one or more dielectric materials such as silicon nitride, silicon dioxide, silicon carbide, or the like. In some embodiments, an upper interconnect metal layer 116 extends through the fifth ILD layer 104e to electrically contact the top electrode 114. The upper interconnect metal layer 116 may comprise a top electrode via 214 disposed through the hard mask layer 216 and the upper insulating structure 220 and a third interconnect line 206c connecting to the top electrode via 214. The third interconnect line 206c may function as a bit line of the memory device 200.
During operation, signals (e.g., voltages and/or currents) may be selectively applied to the word line WL, the source line SL, and the bit line BL to read data from and to write data to the memory cell 108.
An interconnect structure 104 is disposed over the substrate 102 overlying the logic devices 202, 306. The interconnect structure 104 comprises a plurality of metal layers one stacked over another and including stacked metal lines 206a-206e and metal vias 208a-208e disposed within stacked ILD layers 104a-104f. In some embodiments, the plurality of stacked ILD layers 104a-104f may comprise one or more of silicon dioxide, a fluorosilicate glass, a silicate glass (e.g., borophosphate silicate glass (BSG), phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorosilicate glass (FSG), undoped silicate glass (USG), or the like. In some embodiments, adjacent ILD layers 104a-104f may be separated by an etch stop layer (not shown) comprising a nitride, a carbide, or the like. The plurality of metal layers is referred by numerals in industry as M0, M1, M2, M3 . . . from a lower position closer to the substrate to an upper position away from the substrate. M0 is referred to a metal layer closest to the substrate and comprising metal lines electrically coupling to active regions of the logic devices through conductive contacts 204. M1 (not shown) is referred to a next metal layer stacked over the metal layer M0 and comprising metal lines electrically coupling to metal lines of the metal layer M0 through metal vias. Similarly, Mn+1 is referred to a next metal layer stacked over an underlying metal layer Mn and comprising metal lines electrically coupling to metal lines of the underlying metal layer Mn through metal vias, n is a positive integral number. It is emphasized that though some specific metal layer numbers are given hereafter, such as M6, M7, M8, M9, M10, etc., these specific numbers are not for limiting purpose, and various metal layers can be used for different applications.
A memory cell 108 is disposed between an upper interconnect metal layer 116 and an intermediate interconnect metal layer 106, for example, between M10 and M8 as shown in
In some embodiments, the selecting transistor 118 is inserted within one or more interconnect metal layer (for example, M7) between the intermediate interconnect metal layer 106 and the lower interconnect metal layer 130 (for example, between M8 and M6). A selector gate electrode 124 of the selecting transistor 118 is disposed within a dielectric layer and electrically coupled to the lower interconnect metal layer 130. A selector gate dielectric layer 132 and a selector channel layer 126 may be disposed in the memory region 302 on the selector gate electrode 124 and the surrounding dielectric layer. A first selector source/drain region 120 and a second selector source/drain region 122 may be disposed in the memory region 302 on the selector channel layer 126 and separated from each other by a sidewall spacer 128. In some embodiments, the first selector source/drain region 120 is coupled to a source line SL. The second selector source/drain region 122 is coupled to the memory cell 108 through one or more interconnect lines 206c and one or more interconnect vias 208c, which is surrounded by one or more ILD layers.
As noted above, the selecting transistor 118 and the memory cell 108 can be flexibly positioned within various metal layers. In some embodiments, the selecting transistor 118 is located above fourth interconnect metal layer M4, and thus at least four interconnect metal layers (M1, M2, M3, M4) are disposed between the selector gate electrode 124 and the substrate 102. Per routing needs, the interconnect structure 104 has denser metal lines with a smaller size in a lower metal layer than in an upper metal layer. It would consume precious routing area if the selecting transistor 118 is positioned within a metal layer lower than the fourth interconnect metal layer M4. Above the fourth interconnect metal layer M4, exact location of the selecting transistor 118 can be determined with reference to the routing needs, and thus provide design flexibility.
Although the memory array 400 is illustrated as having 3 rows and 3 columns, the memory array 400 may have any number of rows and any number of columns. Each of the memory units C11-C33 may include a memory cell 108 coupled to a selecting transistor 118. The selecting transistor 118 is configured to selectively provide access to the memory cell 108 selected while inhibiting leakage currents through non-selected memory units.
The memory units C11-C33 may be controlled through bit-lines BL1-BL3, word-lines WL1-WL3, and source lines SL1-SL3 The word-lines WL1-WL3 may be used to operate the selecting transistors 118 corresponding to the memory units C11-C33. When a selecting transistor 118 for a memory cell 108 is turned on, a voltage may be applied to that memory cell. A bit line decoder 119 applies a read voltage or a write voltage to one of the bit-lines BL1-BL3. A word line decoder 127 applies another voltage to one of the word-lines WL1-WL3, which turns on the selecting transistor 118 for the memory units C11-C33 in a corresponding row. Together, these operations cause the read voltage or the write voltage to be applied to a selected memory unit among the memory units C11-C33.
Appling a voltage to a selected memory cell 108 results in a current. During read operations, a sense amplifier 117 determines the programming state of the selected memory cell based on the current. The sense amplifier 117 may be connected to source lines SL1-SL3. Alternatively, the sense amplifier 117 may be connected to bit-lines BL1-BL3. The sense amplifier 117 may determine the programming state of the memory cell 108 based on the current. In some embodiments, the sense amplifier 117 determines the programming state of the memory cell 108 by comparing the current to one or more reference currents. The sense amplifier 117 may convey the programming state determination to an I/O buffer, which may be coupled to a driver circuit to implement write and write verify operations. The driver circuit is configured to select a voltage to apply to selected memory unit for read, write, and write-verify operations.
It will be appreciated that the voltage of significance is an absolute value of a potential difference across the memory cell 108. For the memory array 400, applying a voltage to a selected memory cell means operating a word line WL1-WL3 to turn on the selecting transistor 118 corresponding to that memory cell and using the driver circuit to make the absolute value of the potential difference between the source line SL1-SL3 and the bit line BL1-BL3 corresponding to that cell equal in magnitude to that voltage. In some embodiments, applying a voltage to a memory cell is accomplished by coupling a corresponding bit line BL1-BL3 to the voltage while holding a corresponding source line SL1-SL3 at a ground potential. Also, source lines SL1-SL3 may be held at other potentials and the roles bit-lines BL1-BL3, and source line SL1-SL3 may be reversed.
In some embodiments, the second selector source/drain region 122 can have a centro-symmetrical shape such as a round circle as shown in
As shown in a cross-sectional view 800 of
In some embodiments, one or more lower interconnect metal layers may be formed within one or more lower ILD layers formed over the logic device 306 and the substrate 102. In some embodiments, the one or more lower interconnect metal layers may comprise one or more of a conductive contact 204 formed in a first ILD layer 104a, a first interconnect line 206a and a first interconnect via 208a formed in a second ILD layer 104b, and more interconnect lines and vias stacked thereover (not shown). The one or one or more lower interconnect metal layers may be formed by repeatedly forming a lower ILD layer (e.g., an oxide, a low-k dielectric, or an ultra-low-k dielectric) over the substrate 102, selectively etching the lower ILD layer to define a via hole and/or a trench within the lower ILD layer, forming a conductive material (e.g., copper, aluminum, etc.) within the via hole and/or the trench, and performing a planarization process (e.g., a chemical mechanical planarization process) to remove excess of the conductive material from over the lower ILD layer. The conductive contact 204, the interconnect line 206a/206b, and the interconnect via 208a shown in
As shown in a cross-sectional view 900 of
As shown in a cross-sectional view 1000 of
As shown in a cross-sectional view 1100 of
As shown in a cross-sectional view 1200 of
In some embodiments, a dielectric layer 222 is formed on the first selector source/drain layer 120′ and the third ILD layer 104c prior to forming the opening 1202. The dielectric layer 222 may be patterned and may function as a hard mask for the formation of the opening 1202. The dielectric layer 222 may be formed by a deposition process followed by a planarization process (e.g., a chemical mechanical planarization process), and may comprise oxide material such as silicon dioxide. In some embodiments, the dielectric layer 222 can have a thickness in a range of from about 1 nm to about 5 nm.
As shown in a cross-sectional view 1300 of
As shown in a cross-sectional view 1400 of
As shown in a cross-sectional view 1500 of
As shown in a cross-sectional view 1600 of
As shown in cross-sectional view 1700 of
As shown in cross-sectional view 1800 of
While method 1900 is illustrated and described herein as a series of acts or events, it will be appreciated that the illustrated ordering of such acts or events are not to be interpreted in a limiting sense. For example, some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein. In addition, not all illustrated acts may be required to implement one or more aspects or embodiments of the description herein. Further, one or more of the acts depicted herein may be carried out in one or more separate acts and/or phases.
At act 1902, a substrate is prepared, and a lower interconnect metal layer is formed within a lower inter-level dielectric (ILD) layer over the substrate. In some embodiments, logic devices may be formed within the substrate in a memory region and/or a logic region prior to forming the lower interconnect metal layer.
At act 1904, a BEOL selecting transistor is formed over the lower interconnect metal layer. In some embodiments, the selecting transistor may be formed according to acts 1906-1916.
At act 1906, a select gate electrode is formed on the lower interconnect metal layer.
At act 1908, a selector channel layer is formed over the select gate electrode.
At act 1910, a first selector source/drain region is formed over the selector channel layer.
At act 1912, a dummy dielectric layer is formed on the first selector source/drain region.
At act 1914, a sidewall spacer is formed along an opening of the dummy dielectric layer and the first selector source/drain region.
At act 1916, a second selector source/drain region is formed within the opening and separated from the first selector source/drain region by the sidewall spacer.
At act 1918, an intermediate interconnect metal layer is formed over the BEOL selecting transistor.
At act 1920, a memory cell is formed over the intermediate interconnect metal layer.
At act 1922, an upper interconnect metal layer is formed over the memory cell.
Accordingly, in some embodiments, the present disclosure relates to a memory device (e.g., an MRAM or RRAM device) having a BEOL selecting transistor layer inserted between two BEOL interconnect metal layers.
In some embodiments, the present disclosure relates to a memory device. The memory device comprises a substrate and a lower interconnect metal layer disposed over the substrate. A selecting transistor is disposed over the lower interconnect metal layer. A memory cell is disposed over the selecting transistor and comprises a bottom electrode electrically connected to the selecting transistor, a data storage structure disposed over the bottom electrode, and a top electrode disposed over the data storage structure.
In other embodiments, the present disclosure relates to a memory device. The memory device comprises a substrate and an interconnect structure disposed over the substrate. The interconnect structure is disposed over the substrate and comprises a plurality of interconnect metal layers one stacked over another. A plurality of memory cells is disposed within the interconnect structure and arranged in an array of rows and columns. A plurality of selecting transistors is disposed within the interconnect structure and correspondingly connected to the plurality of memory cells.
In yet other embodiments, the present disclosure relates to a memory device. The memory device comprises a selecting transistor disposed over a substrate. The selecting transistor comprises a selector channel layer, a selector gate electrode disposed on one side of the selector channel layer, and a first selector source/drain region and a second selector source/drain region disposed on the other side of the selector channel layer opposite to the selector gate electrode from a cross-sectional view. The first selector source/drain region and the second selector source/drain region are separated by a sidewall spacer having a ring-shape and enclosing the first selector source/drain region from a top view. A memory cell is disposed over the selecting transistor and electrically connected to the first selector source/drain region.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This Application is a Continuation of U.S. application Ser. No. 17/078,583, filed on Oct. 23, 2020, which claims the benefit of U.S. Provisional Application No. 63/017,731, filed on Apr. 30, 2020. The contents of the above-referenced Patent Applications are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63017731 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17078583 | Oct 2020 | US |
Child | 17718481 | US |